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We study principal component analysis (PCA) for mean zero i.i.d. Gaus-
sian observations X1, . . . ,Xn in a separable Hilbert space H with unknown
covariance operator �. The complexity of the problem is characterized by its
effective rank r(�) := tr(�)

‖�‖ , where tr(�) denotes the trace of � and ‖�‖ de-
notes its operator norm. We develop a method of bias reduction in the problem
of estimation of linear functionals of eigenvectors of �. Under the assump-
tion that r(�) = o(n), we establish the asymptotic normality and asymptotic
properties of the risk of the resulting estimators and prove matching minimax
lower bounds, showing their semiparametric optimality.

1. Introduction. Principal Component Analysis (PCA) is commonly used as a dimen-
sion reduction technique for high-dimensional data sets. Assuming a general framework
where the data lies in a Hilbert space H, PCA can be applied to a wide range of problems
such as functional data analysis [24, 29] or machine learning [4].

The parametric setting has been well understood since the 1960s (e.g., [1] and [8]) and
the asymptotic distribution of sample eigenvalues and sample eigenvectors is well known.
For high-dimensional data, where the dimension p = p(n) → ∞ with the sample size n,
the spiked covariance model introduced by Johnstone in [17] has been the most common
framework to study the asymptotic properties of principal components. In this model, it is
assumed that the covariance matrix is given by a “spike” and a noise part, that is

� =
l∑

j=1

si(θi ⊗ θi) + σ 2Ip,

where
∑l

j=1 si(θi ⊗θi) is a low rank covariance matrix involving several orthonormal compo-

nents (“spike”) θi and σ 2Ip is the covariance of the noise. Error bounds in this model, based
on perturbation analysis, were studied in [25]. Moreover, if p

n
→ c ∈ (0,1] the asymptotic

distribution of sample eigenvectors was derived in [2, 28] and in more general asymptotic
regimes in [38]. Assuming sparsity of the eigenvectors (sparse PCA), inference is possible
even when p

n
→ ∞. This model has recently received substantial attention; see, for example,

[3, 7, 11, 36, 37].
More recently, a so-called “effective rank” setting for PCA has been considered, for exam-

ple, in [20–22, 26, 30, 35]. In this dimension-free setting, it is assumed that the covariance �

is an operator acting in a Hilbert space H, no structural assumptions are made about � and
its “complexity” is characterized by the effective rank r(�) := tr(�)/‖�‖, tr(�) denoting
the trace and ‖�‖ denoting the operator (spectral) norm of �. In a series of papers [20–23],
Koltchinskii and Lounici derived sharp bounds on the spectral norm loss of estimation of �

by the sample covariance �̂ that provide complete characterization of the size of ‖�̂ − �‖
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in terms of ‖�‖ and r(�), and obtained error bounds and limiting results for empirical spec-
tral projection operators and eigenvectors of �̂ under the assumption that r(�) = o(n) as
n → ∞. In a recent paper [26], Naumov et al. constructed bootstrap confidence sets for spec-
tral projections in a lower dimensional regime where r(�) = o(n1/3). In [30], Reiss and Wahl
considered the reconstruction error for spectral projections.

In this paper, we further develop the results of [20] and [22] in the direction of semipara-
metric statistics. In particular, we develop a bias reduction method in the problem of esti-
mation of linear functionals of principal components (eigenvectors of �) and show asymp-
totic normality of the resulting debiased estimators under the assumption that r(�) = o(n).
We prove a nonasymptotic risk lower bound that asymptotically exactly matches our upper
bounds, thus establishing rigorously the semiparametric optimality of our estimator in a gen-
eral dimension-free setting (as long as r(�) = o(n)).

The problem of
√

n-consistent estimation of low-dimensional functionals of high-
dimensional parameters has received increased attention in recent years, and in various mod-
els semiparametric efficiency of regularisation-based estimators has been studied; see, for in-
stance, [10, 15, 27, 31, 32]. Moreover, the paper [12] develops Bernstein–von-Mises (BvM)
results for functionals of covariance matrices in situations where bias is asymptotically negli-
gible. While formal calculations of the Fisher information in such models indicate optimality
of these procedures, a rigorous interpretation of such efficiency claims requires some care: the
standard asymptotic setting for semiparametric efficiency [33] can not be straightforwardly
applied because parameters in high-dimensional models are not fixed but vary with sample
size n, so that establishing LAN expansions to apply Le Cam theory is not always possible
or even desirable. In [15] some nonasymptotic techniques have been suggested under condi-
tions that ensure asymptotic negligibility of the bias of candidate estimators. We take here a
different approach, based on using the van Trees’ inequality [13] to construct nonasymptotic
lower bounds for the minimax risk in our estimation problem that match the upper bound
exactly in the large sample limit.

2. Preliminaries.

2.1. Some notation and conventions. Let H be a separable Hilbert space. In what fol-
lows, 〈·, ·〉 denotes the inner product of H and also, with a little abuse of notation, the
Hilbert–Schmidt inner product between Hilbert–Schmidt operators acting on H. Similarly,
the notation ‖ · ‖ is used both for the norm of vectors in H and for the operator (spec-
tral) norm of bounded linear operators in H. For a nuclear operator A, tr(A) denotes its
trace. We use the notation ‖ · ‖p , 1 ≤ p ≤ ∞ for the Schatten p-norms of operators in
H: ‖A‖p := (tr(|A|p))1/p , where |A| = √

A∗A, A∗ being the adjoint operator of A. For
p = 1, ‖A‖1 is the nuclear norm; for p = 2, ‖A‖2 is the Hilbert–Schmidt norm; for p = ∞,
‖A‖∞ = ‖A‖ is the operator norm.

Given vectors u, v ∈ H, u ⊗ v denotes the tensor product of u and v:

(u ⊗ v) :H �→H, (u ⊗ v)w := 〈v,w〉u.

Given bounded linear operators A,B :H �→H, A ⊗ B denotes their tensor product:

(A ⊗ B)(u ⊗ v) = Au ⊗ Bv, u, v ∈ H.

Note that A ⊗ B can be extended (by linearity and continuity) to a bounded operator in the
Hilbert space H⊗H, which could be identified with the space of Hilbert–Schmidt operators
in H. It is easy to see that, for a Hilbert–Schmidt operator C, we have (A ⊗ B)C = ACB∗ (in
the finite-dimensional case, this defines the so called Kronecker product of matrices). On a
couple of occasions, we might need to use the tensor product of Hilbert–Schmidt operators
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A, B , viewed as vectors in the space of Hilbert–Schmidt operators. For this tensor product,
we use the notation A ⊗v B .

Throughout the paper, the following notation will be used: for nonnegative a, b, a � b

means that there exists a numerical constant c > 0 such that a ≤ cb; a � b is equivalent to
b � a; finally, a  b is equivalent to a � b and b � a. Sometimes, constant c in the above
relationships could depend on some parameter γ . In this case, we provide signs �, � and
 with subscript γ . For instance, a �γ b means that there exists a constant cγ > 0 such that
a ≤ cγ b.

In many places in the proofs, we use exponential bounds for some random variables, say,
ξ of the following form: for all t ≥ 1 with probability at least 1 − e−t , ξ ≤ Ct . In some
cases, it would follow from our arguments that the inequality holds with a slightly different
probability, say, at least 1 − 3e−t . In such cases, it is easy to rewrite the bound again as
1 − e−t by adjusting the value of constant C. Indeed, for t ≥ 1 with probability at least
1 − e−t = 1 − 3e−t−log(3), we have ξ ≤ C(t + log(3)) ≤ 2 log(3)Ct . We will use such an
adjustment of the constants in many proofs, often, without further notice.

2.2. Bounds on sample covariance. Let X be a Gaussian vector in H with mean EX = 0
and covariance operator � := E(X ⊗ X). Given i.i.d. observations X1, . . . ,Xn of X, let �̂ =
�̂n be the sample (empirical) covariance operator defined as follows:

�̂ := n−1
n∑

j=1

Xj ⊗ Xj .

DEFINITION 2.1. The effective rank of the covariance operator � is defined as

r(�) := tr(�)

‖�‖ .

The role of the effective rank as a complexity parameter in covariance estimation is clear
from the following result proved in [21].

THEOREM 2.1. Let X be a mean zero Gaussian random vector in H with covariance
operator � and let �̂ be the sample covariance based on i.i.d. observations X1, . . . ,Xn of
X. Then

(2.1) E‖�̂ − �‖  ‖�‖
(√

r(�)

n
∨ r(�)

n

)
.

This result shows that the size of the properly rescaled operator norm deviation of �̂ from

�, E‖�̂−�‖
‖�‖ , is characterized up to numerical constants by the ratio r(�)

n
. In particular, the

condition r(�) = o(n) is necessary and sufficient for operator norm consistency of �̂ as an
estimator of �. In addition to this, the following concentration inequality for ‖�̂−�‖ around
its expectation was also proved in [21].

THEOREM 2.2. Under the conditions of the previous theorem, for all t ≥ 1 with proba-
bility at least 1 − e−t

(2.2)
∣∣‖�̂ − �‖ −E‖�̂ − �‖∣∣ � ‖�‖

((√
r(�)

n
∨ 1

)√
t

n
∨ t

n

)
.
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It immediately follows from the bounds (2.1) and (2.2) that, for all t ≥ 1 with probability
at least 1 − e−t

(2.3) ‖�̂ − �‖ � ‖�‖
(√

r(�)

n
∨ r(�)

n
∨

√
t

n
∨ t

n

)
.

2.3. Perturbation theory and empirical spectral projections. The covariance operator �

is self-adjoint, positively semidefinite and nuclear. It has spectral decomposition

� = ∑
r≥1

μrPr,

where μr are distinct strictly positive eigenvalues of � arranged in decreasing order and Pr

are the corresponding spectral projection operators. For r ≥ 1, Pr is an orthogonal projection
on the eigenspace of the eigenvalue μr . The dimension of this eigenspace is finite and will
be denoted by mr . The eigenspaces corresponding to different eigenvalues μr are mutually
orthogonal. Denote by σ(�) the spectrum of operator � and let λj = λj (�), j ≥ 1 be the
eigenvalues of � arranged in a nonincreasing order and repeated with their multiplicities.
Denote �r := {j : λj = μr}, r ≥ 1. Then card(�r) = mr . The r-th spectral gap is defined as

gr = gr(�) := dist
(
μr;σ(�) \ {μr}).

Let ḡr = ḡr (�) := min1≤s≤r gs .
We turn now to the definition of empirical spectral projections of sample covariance �̂ that

could be viewed as estimators of the true spectral projections Pr, r ≥ 1. In [20], the following
definition was used: let P̂r be the orthogonal projection on the direct sum of eigenspaces of
�̂ corresponding to its eigenvalues {λj (�̂) : j ∈ �r}. This is not a perfect definition of a
statistical estimator since the set �r is unknown and it has to be recovered from the spectrum
σ(�̂) of �̂.

When �̂ is close to � in the operator norm, the spectrum σ(�̂) of �̂ is a small perturbation
of the spectrum σ(�) of �. This could be quantified by the following inequality that goes
back to H. Weyl:

(2.4) sup
j≥1

∣∣λj (�̂) − λj (�)
∣∣ ≤ ‖�̂ − �‖.

It easily follows from this inequality that, if ‖�̂ − �‖ is sufficiently small, then the eigen-
values λj (�̂) of �̂ form well separated clusters around the eigenvalues μ1,μ2, . . . of �. To
make the last claim more precise, consider a finite or countable bounded set A ⊂ R+ such
that 0 ∈ A and 0 is the only limit point (if any) of A. Given δ > 0, define λδ(A) := max{λ ∈
A : (λ − δ, λ) ∩ A = ∅} and let Tδ(A) := A \ [0, λδ(A)). The set Tδ(A) will be called the
top δ-cluster of A. Let A1 := Tδ(A), A2 := Tδ(A \ A1), A3 := Tδ(A \ (A1 ∪ A2)), . . . and
ν = νδ := min{j : Aj+1 = ∅}. Obviously, ν < ∞. We will call the sets A1, . . . ,Aν the δ-
clusters of A. They provide a partition of A into sets separated by the gaps of length at least
δ and such that the gaps between the points inside each of the clusters are smaller than δ.

The next lemma easily follows from inequality (2.4).

LEMMA 2.1. Let δ > 0 be such that, for some r ≥ 1,

‖�̂ − �‖ < δ/2 and δ <
ḡr

2
.

Let Âδ
1, . . . , Â

δ
ν be the δ-clusters of the set σ(�̂). Then ν ≥ r and, for all 1 ≤ s ≤ r

Âδ
s ⊂ (μs − δ/2,μs + δ/2) and

{
j : λj (�̂) ∈ Âδ

s

} = �s.
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Given δ > 0 and δ-clusters Âδ
1, . . . , Â

δ
ν of σ(�̂), define, for 1 ≤ s ≤ ν, the empirical spec-

tral projection P̂ δ
s as the orthogonal projection on the direct sum of eigenspaces of �̂ corre-

sponding to its eigenvalues from the cluster Âδ
s . It immediately follows from Lemma 2.1 that,

under its assumptions on δ, P̂ δ
s = P̂s , s = 1, . . . , r .

In the following sections, we will be interested in the problem of estimation of spectral
projections in the case when the true covariance � belongs to certain subsets of the following
class of covariance operators:

S(r)(r;a) :=
{
� : r(�) ≤ r,

‖�‖
ḡr (�)

≤ a

}
, a > 1, r> 1.

We will allow the effective rank to be large, r = rn → ∞, but not too large such that rn =
o(n) as n → ∞. For � ∈ S(r)(r;a), we take δ := τ‖�̂‖ for a sufficiently small value of the
constant τ > 0 in the definition of spectral projections P̂ δ

s .
The following lemma is an easy consequence of the exponential bound (2.3).

LEMMA 2.2. Suppose a > 1 and rn = o(n) as n → ∞. Take τ ∈ (0, 1
4a

∧ 2) and δ :=
τ‖�̂‖. Then, there exists a numerical constant β > 0 such that, for all large enough n,

sup
�∈S(r)(r;a)

P�

{∃s = 1, . . . , r : P̂ δ
s �= P̂s

} ≤ e−βτ 2n.

PROOF. By (2.3) with t := βτ 2n, we obtain that

sup
�∈S(r)(r;a)

P�

{
‖�̂ − �‖ ≥ C‖�‖

(√
rn

n
∨

√
βτ 2n

n

)}
≤ e−βτ 2n,

where C > 0 is a numerical constant. Take β = 1
16C2 and note that, for all large enough n,

C
√

rn
n

≤ τ/4 to obtain that

sup
�∈S(r)(r;a)

P�

{‖�̂ − �‖ ≥ (τ/4)‖�‖} ≤ e−βτ 2n.

Since τ/4 ≤ 1/2, we easily obtain that, for all � ∈ S(r)(r;a) and for all n large enough with
probability at least 1 − e−βτ 2n, (1/2)‖�‖ ≤ ‖�̂‖ ≤ 2‖�‖. This implies that with the same
probability (and on the same event)

‖�̂ − �‖ < (τ/4)‖�‖ ≤ (τ/2)‖�̂‖ = δ/2.

On the other hand, for all � ∈ S(r)(r;a),

δ = τ‖�̂‖ ≤ 2τ‖�‖ <
1

2a
‖�‖ ≤ ḡr (�)

2
.

It remains to use Lemma 2.1 to complete the proof. �

In the proofs of the main results of the paper, we deal for the most part with spectral
projections P̂r that were studied in detail in [20]. We use Lemma 2.2 to reduce the results for
P̂ δ

r to the results for P̂r .
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3. Main results. Our main goal is to develop an efficient estimator of the linear func-
tional 〈θr , u〉, where u ∈ H is a given vector and θr = θr(�) is a unit eigenvector of the
unknown covariance operator � corresponding to its r th eigenvalue μr , which is assumed
to be simple (that is, of multiplicity mr = 1). The corresponding spectral projection Pr is
one-dimensional: Pr = θr ⊗ θr . A “naive” plug-in estimator of Pr is the empirical spectral
projection P̂ δ

r with δ = τ‖�̂‖ for a suitable choice of a small constant τ , as described in
Lemma 2.2. According to this lemma and under its assumptions, P̂ δ

r coincides with a high
probability with the one-dimensional empirical spectral projection P̂r := θ̂r ⊗ θ̂r , where θ̂r is
the corresponding unit eigenvector of �̂. As an estimator of θr , we can use an arbitrary unit
vector θ̂ δ

r from the eigenspace Im(P̂ δ
r ), which with a high-probability coincides with ±θ̂r

(under conditions of Lemma 2.2). In case r = 1, when the top eigenvalue μ1 = ‖�‖ of � is
simple and the goal is to estimate a linear functional of the top principal component θ1, there
is no need to use δ-clusters to define an estimator of θ1 since θ̂1 (a unit eigenvector in the
eigenspace of the top eigenvalue ‖�̂‖ of �̂) is already a legitimate estimator.

Note that both θr and −θr are unit eigenvectors of �, so, strictly speaking, 〈θr , u〉 can be
estimated only up to its sign. In what follows, we assume that θ̂ δ

r and θr (or, whenever is
needed, θ̂r and θr ) are properly aligned in the sense that 〈θ̂ δ

r , θr〉 ≥ 0 (which is always the
case either for θr , or for −θr ). This allows us to view 〈θ̂ δ

r , u〉 as an estimator of 〈θr , u〉.
It was shown in [20] that “naive” plug-in estimators of the functional 〈θr , u〉, such as

〈θ̂ δ
r , u〉 or 〈θ̂r , u〉, are biased with the bias becoming substantial enough to affect the efficiency

of the estimator or even its convergence rates as soon as the effective rank is large enough,
namely, r(�) � n1/2. Moreover, it was shown that the quantity

br = br(�) := E�〈θ̂r , θr〉2 − 1 ∈ [−1,0]
plays the role of a bias parameter. In particular, the results of [20] imply that the random
variable 〈θ̂r , u〉 concentrates around

√
1 + br〈θr , u〉 (rather than around 〈θr , u〉) with the size

of the deviations of order O(n−1/2) provided that r(�) = o(n) as n → ∞. Thus, the bias
of 〈θ̂r , u〉 as an estimator of 〈θr , u〉 is of the order (

√
1 + br − 1)〈θr , u〉  br〈θr , u〉. It was

shown in [20] that |br | � r(�)
n

and it will be proved below in this paper that, in fact, |br | 
r(�)

n
(see Lemma 1.1 in the Supplementary Material [19]). This fact implies that, indeed, the

bias of 〈θ̂r , u〉 (and of 〈θ̂ δ
r , u〉) is not negligible and affects the convergence rate as soon as

r(�)

n1/2 → ∞. This resembles the situation in sparse regression (see, e.g., [16, 32, 39]): If p

denotes the dimension of the model and s its sparsity and if s log(p) = o(n1/2), the bias of
a desparsified LASSO estimator for the regressor β is negligible, which makes it possible to
prove asymptotic normality of linear forms of β . On the other hand, if s log(p) � n1/2, Cai
and Guo [6] proved that adaptive confidence sets for linear forms do not exist in general. This
implies that any attempt to further debias the desparsified LASSO or any other estimator to
prove asymptotic normality is deemed to fail. Contrary to this, in our case estimation of the
bias parameter br is possible (as will be shown below).

We will state a uniform (and somewhat stronger) version of some of the results of [20] on
asymptotic normality of linear forms√

n
(〈
θ̂ δ
r , u

〉 − √
1 + br(�)

〈
θr(�),u

〉)
, u ∈ H

under the assumption that r(�) = o(n). To this end, define the following operator:

Cr := ∑
s �=r

1

μr − μs

Ps,

which is bounded with ‖Cr‖ = 1
gr

. Denote

σ 2
r (�;u) := 〈�θr, θr〉〈�Cru,Cru〉 = μr〈�Cru,Cru〉.
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Clearly,

(3.1) σ 2
r (�;u) ≤ ‖�‖2

g2
r

‖u‖2.

Note that, if H is finite-dimensional (with a fixed dimension) and � is nonsingular, then the
Fisher information for the model X ∼ N(0;�) is I(�) = 1

2(�−1 ⊗ �−1) (see, e.g., [9]). The
maximum likelihood estimator �̂ based on n i.i.d. observations of X (the sample covariance)
is then asymptotically normal with

√
n-rate and limit covariance I(�)−1 = 2(� ⊗ �). An

application of the Delta Method to the smooth function g(�) := 〈θr(�),u〉 shows that g(�̂)

is also asymptotically normal with limiting variance 〈(I(�)−1g′(�), g′(�)〉, which turns out
to be equal to σ 2

r (�;u).
For u ∈ H, r > 1, a > 1 and σ0 > 0, consider the following class of covariance operators

in H:

S(r)(r, a, σ0, u) :=
{
� : r(�) ≤ r,

‖�‖
ḡr (�)

≤ a,σ 2
r (�;u) ≥ σ 2

0

}
.

We emphasize here that we regard a and σ0 as fixed constants, but r, ‖�‖ and ḡr may all
possibly depend on n. For example, this allows that ‖�‖ → ∞ as long as ḡr → ∞ at the
same rate as it is the case in factor models as considered in [38]. Note that some additional
conditions on r, a, σ0, u are needed for the class S(r)(r, a, σ0, u) to be nonempty. Say, bound
(3.1) implies that it is necessary for this that σ 2

0 ≤ a2‖u‖2. It is also obvious that there should
be a > r (since ‖�‖ ≥ rgr(�)).

We will also need the following assumption on the loss function .

ASSUMPTION 3.1. Let  : R �→ R+ be a loss function satisfying the following condi-
tions: (0) = 0, (u) = (−u), u ∈ R,  is nondecreasing and convex on R+ and, for some
constants c1, c2 > 0

(u) ≤ c1e
c2u, u ≥ 0.

The proofs to all our theorems are in fact nonasymptotic and often can be expressed by
Berry–Esseen type bounds. However, for a more concise presentation we present asymptotic
statements.

In what follows, Z denotes a standard Gaussian random variable and � denotes its distri-
bution function.

THEOREM 3.1. Let u ∈ H, a > 1 and σ0 > 0. Suppose that rn > 1 and rn = o(n) as
n → ∞. Let δ = τ‖�̂‖ for some τ ∈ (0, 1

4a
∧ 2). Then

sup
�∈S(r)(rn,a,σ0,u)

sup
x∈R

∣∣∣∣P�

{√
n(〈θ̂ δ

r , u〉 − √
1 + br(�)〈θr(�),u〉)

σr(�;u)
≤ x

}

− �(x)

∣∣∣∣ n→∞→ 0.

(3.2)

Moreover, under Assumption 3.1,

sup
�∈S(r)(rn,a,σ0,u)

∣∣∣∣E�

(√
n(〈θ̂ δ

r , u〉 − √
1 + br(�)〈θr(�),u〉)

σr(�;u)

)
−E(Z)

∣∣∣∣ n→∞→ 0.

The proof of this theorem will be given in Section 4 that also includes a number of auxiliary
statements used in the proofs of our main results on efficient estimation of linear functionals.
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COROLLARY 3.1. Let u ∈ H, a > 1 and σ0 > 0. Suppose that rn > 1 and rn = o(
√

n) as
n → ∞. Let δ = τ‖�̂‖ for some τ ∈ (0, 1

4a
∧ 2). Then

sup
�∈S(r)(rn,a,σ0,u)

sup
x∈R

∣∣∣∣P�

{√
n(〈θ̂ δ

r , u〉 − 〈θr(�),u〉)
σr(�;u)

≤ x

}
− �(x)

∣∣∣∣ n→∞→ 0.

Moreover, under Assumption 3.1,

sup
�∈S(r)(rn,a,σ0,u)

∣∣∣∣E�

(√
n(〈θ̂ δ

r , u〉 − 〈θr(�),u〉)
σr(�;u)

)
−E(Z)

∣∣∣∣ n→∞→ 0.

Our next goal is to provide a minimax lower bound on the risk of an arbitrary estimator
of the linear functional 〈θr(�),u〉 in the case of quadratic loss (t) = t2, t ∈ R. The proof is
based on van Trees’ inequality and will be given in Section 3 in the Supplementary Material
[19]. For r > 1, a > 1 and σ 2

0 > 0 define

S̊(r)(r, a, σ0, u) :=
{
� : r(�) < r,

‖�‖
ḡr (�)

< a,σ 2
r (�;u) > σ 2

0

}
,

the interior of the set S(r)(r, a, σ0, u).

THEOREM 3.2. Let r > 1, a > 1 and σ0 > 0. Suppose S̊(r)(r, a, σ0, u) �=∅. Then, for all
statistics Tn(X1, . . . ,Xn),

lim inf
n→∞ inf

Tn

sup
�∈S̊(r)(r,a,σ0,u)

nE�(Tn(X1, . . . ,Xn) − 〈θr(�),u〉)2

σ 2
r (�;u)

≥ 1.

Moreover, for any �0 ∈ S̊(r)(r, a, σ0, u)

lim
ε→0

lim inf
n→∞ inf

Tn

sup
�∈S̊(r)(r,a,σ0,u),

‖�−�0‖1≤ε

nE�(Tn(X1, . . . ,Xn) − 〈θr(�),u〉)2

σ 2
r (�;u)

≥ 1.

It follows from Corollary 3.1 and Theorem 3.2 that the estimator 〈θ̂ δ
r , u〉 is efficient in

a semiparametric sense for quadratic loss under the assumption that rn = o(n1/2). It turns
out, however, that if rn

n1/2 → ∞, then not only the efficiency, but even the
√

n-convergence

rate of this estimator fails in the class of covariance operators S(r)(rn, a, σ0, u). The proof of
Proposition 3.1 is given in Section 1 in the Supplementary Material [19].

PROPOSITION 3.1. Let a > r and let σ 2
0 be sufficiently small, say,

σ 2
0 ≤ 1

2

[
a2

(r − 1)2 − a

r − 1

]
.

Let rn = o(n) and rn
n1/2 → ∞ as n → ∞. Then, for some constant c = c(r;a;σ0) > 0

lim
n→∞ sup

�∈S(r)(rn,a,σ0,u)

P�

{∣∣〈θ̂ δ
r , u

〉 − 〈
θr(�),u

〉∣∣ ≥ c‖u‖rn
n

}
= 1.

The reason for the loss of the
√

n-convergence rate of plug-in estimators of linear function-
als of principal components is their large bias in the case when the complexity of the problem
is even moderately high ( rn

n1/2 → ∞). In [20], a method of bias reduction in this problem was
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suggested that led to
√

n-consistent estimation of linear functionals. The estimator is, how-
ever, not efficient, since the basic sample split employed in its construction gives a limiting
variance that is twice as large as the optimal one. Since the bias parameter depend itself on
sample size in a subtle way, modifying the algorithm in [20] to obtain an efficient estimator
is not straightforward, and we describe below a construction that yields an asymptotically
normal estimator of 〈θr(�),u〉 with optimal variance in the class of covariance operators
S(r)(rn, a, σ0, u) with rn = o(n). The idea is to use only a small portion of the data (of size
o(n)) to estimate the bias parameters and to use most of the data for the estimator of the target
eigenvector.

For some m < n/3, we split the sample X1, . . . ,Xn into three disjoint subsamples, one of
size n′ := n−2m > n/3 and two others of size m each. In Theorem 3.3 below, we choose m =
mn = o(n) as n → ∞, which implies n′ = n′

n = (1+o(1))n as n → ∞. Denote by �̂(1), �̂(2),

�̂(3) the sample covariances based on these three subsamples and let θ̂
δj ,j
r , j = 1,2,3 be the

corresponding empirical eigenvectors with parameters δj = τ‖�̂(j)‖ for a proper choice of τ

(see Lemma 2.2). Let

ďr := 〈θ̂ δ1,1
r , θ̂

δ2,2
r 〉

〈θ̂ δ2,2
r , θ̂

δ3,3
r 〉1/2

and θ̌r := θ̂
δ1,1
r

ďr ∨ (1/2)
.

Our main goal is to prove the following result showing the efficiency of the estimator 〈θ̌r , u〉
of the linear functional 〈θr(�),u〉. Its proof will be given in Section 5.

THEOREM 3.3. Let u ∈ H, a > 1 and σ0 > 0. Suppose that rn > 1 and rn = o(n) as
n → ∞. Take m = mn such that mn = o(n) and nrn = o(m2

n) as n → ∞. Then

sup
�∈S(r)(rn,a,σ0,u)

sup
x∈R

∣∣∣∣P�

{√
n(〈θ̌r , u〉 − 〈θr(�),u〉)

σr(�;u)
≤ x

}
− �(x)

∣∣∣∣
n→∞→ 0.

(3.3)

Moreover, under Assumption 3.1 on the loss ,

sup
�∈S(r)(rn,a,σ0,u)

∣∣∣∣E�

(√
n(〈θ̌r , u〉 − 〈θr(�),u〉)

σr(�;u)

)
−E(Z)

∣∣∣∣ n→∞→ 0.

REMARK 3.1. The assumption rn = o(n) is not necessary for the existence of a
√

n-
consistent estimator of 〈θr(�),u〉. In fact, the estimator 〈θ̌r , u〉 (say, with m = n/4) is

√
n-

consistent provided that rn ≤ cn for a sufficiently small constant c > 0. This fact easily fol-
lows from (5.24) of Corollary 5.1 in Section 5. This is also the case for a somewhat simpler
estimator (based on splitting the sample into two parts) considered earlier by Koltchinskii and
Lounici [20] (see Proposition 3). However, it is not clear whether asymptotically efficient es-
timators (in the sense of Theorem 3.3) of linear functionals 〈θr(�),u〉 of the eigenvector
θr(�) with

√
n-rate and optimal limit variance σr(�;u) exist when the condition rn = o(n)

does not hold. In this case, the linear term of the perturbation series, that determines the limit
variance σr(�;u), is no longer dominant, which makes the existence of such estimators un-
likely. However, asymptotically normal estimators of functionals 〈θr(�),u〉 might still exist
(but with a larger limit variance). It could be easier to develop such estimators in the case of
spiked covariance models rather than in the more general framework of the current paper. The
solution of this problem would rely on the tools of random matrix theory (see [28] as well
as the more recent paper [5]) rather than perturbation theory, and, possibly, it would require
the development of minimax lower bound techniques different from those employed in the
present paper.
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REMARK 3.2. It is not hard to develop similar asymptotically efficient estimators for
l-dimensional “functionals” of the form Aθr(�), where A is a linear operator from H

into R
l for a fixed (small) dimension l. This is equivalent to the problem of estimation of

(〈θr(�),u1〉, . . . , 〈θr(�),ul〉) for several linear functionals u1, . . . , ul ∈ H. The bias reduc-
tion method developed in this paper can be extended to this case and the proof of asymptotic
normality of the resulting estimators follows along the same lines as in the case when l = 1
with asymptotic covariance matrix equal to(

μr〈�Crui,Cruj 〉)i,j=1,...,p.

Similarly, our approach can be extended to linear functionals of multiple eigenvectors of
multiplicity 1 each, see, for example, (〈θr(�),u〉, 〈θs(�), v〉), u, v ∈ H. In this case, the
asymptotic covariance equals

− μrμs

(μr − μs)2

〈
θr(�), v

〉〈
θs(�),u

〉
.

In this case, the debiasing strategy in Theorem 3.3 can be adjusted by using the second and
third part oft the sample to estimate the bias for both θr(�) and θs(�).

However, note that when r(�) is large, the asymptotic normality of random vectors
n1/2(θ̌r − θr(�)) holds only in the sense of finite-dimensional distributions, not in the sense
of weak convergence in the Hilbert space H (indeed, the norm ‖θ̌r − θr(�)‖ is of order√

r(�)/n � 1/
√

n).

REMARK 3.3. Our method of bias reduction does not seem to have an easy extension to
the problem of estimation of linear functionals of spectral projections Pr for an eigenvalue of
multiplicity > 1. In part, this was a motivation for the first author to develop a more general
approach to bias reduction (a so called “bootstrap chain” method) and to study the problem of
efficient estimation for more general smooth functionals of covariance of the form 〈f (�),B〉,
where f is a smooth function on the real line (see [18]). So far, the asymptotic efficiency for
the resulting “bootstrap chain” estimators has been proved under more restrictive assumptions
on the underlying covariance �. In particular, it was assumed that H is a space of finite (high)
dimension p and that the spectrum of � is both upper and lower bounded away from 0 by
constants which implies that r(�)  p.

REMARK 3.4. Lemma 5.3 of Section 5 provides explicit bounds on the accuracy of the
normal approximation in Theorem 3.3. Using these bounds, it is possible to state somewhat
more complicated conditions under which the normal approximation holds if a = an → ∞ or
σ0 = σ

(n)
0 → 0 as n → ∞. In particular, the normal approximation (3.3) still holds uniformly

in S(r)(rn, an, σ
(n)
0 , u) provided that mn = o(n) and

a2
n

σ
(n)
0

(√
nrn

m2
n

log
m2

n

nrn
∨

√√√√n log2 m2
n

nrn

m2
n

)
→ 0 as n → ∞.

Finally, we show that σr(�;u) can be consistently estimated by σr(�̂;u), which allows us
to replace the standard deviation σr(�;u) in the normal approximation (3.3) by its empirical
version. This yields the following result that can be used for hypotheses testing of linear
functionals of θr . See Section 2 in the Supplementary Material [19] for its proof.

COROLLARY 3.2. Under the conditions of Theorem 3.3,

sup
�∈S(r)(rn,a,σ0,u)

sup
x∈R

∣∣∣∣P�

{√
n(〈θ̌r , u〉 − 〈θr(�),u〉)

σr(�̂;u)
≤ x

}
− �(x)

∣∣∣∣ n→∞→ 0.
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4. Proof of Theorem 3.1. We will prove the result for empirical eigenvectors θ̂r rather
than for θ̂ δ

r . The reduction to this case is based on Lemma 2.2 which immediately implies
that

sup
�∈S(r)(rn,a,σ0,u)

P�

{
θ̂ δ
r �= θ̂r

} ≤ e−βτ 2n.

Therefore, denoting

ξn(�) :=
√

n(〈θ̂ δ
r , u〉 − √

1 + br(�)〈θr(�),u〉)
σr(�;u)

and

ηn(�) :=
√

n(〈θ̂ ,
ru〉 − √

1 + br(�)〈θr(�),u〉)
σr(�;u)

,

we obtain

sup
�∈S(r)(rn,a,σ0,u)

sup
x∈R

∣∣P�

{
ξn(�) ≤ x

} − P�

{
ηn(�) ≤ x

}∣∣ ≤ e−βτ 2n n→∞→ 0.

Also, since ξn(�) ≤ 2
√

n‖u‖
σr (�;u)

and ηn(�) ≤ 2
√

n‖u‖
σr (�;u)

, we obtain that

sup
�∈S(r)(rn,a,σ0,u)

∣∣E�
(
ξn(�)

) −E�
(
ηn(�)

)∣∣
≤ sup

�∈S(r)(rn,a,σ0,u)

E�

∣∣(
ξn(�)

) − 
(
ηn(�)

)∣∣I (
θ̂ δ
r �= θ̂r

)

≤ 2

(
2
√

n‖u‖
σ0

)
e−βτ 2n → 0,

under Assumption 3.1.
We will prove more explicit bounds for the estimator θ̂r stated below in Lemma 4.8 that

immediately implies the result.
Our starting point is the first order perturbation expansion of the empirical spectral projec-

tion operator P̂r :

(4.1) P̂r = Pr + Lr(E) + Sr(E)

with a linear term Lr(E) = PrECr + CrEPr and a remainder Sr(E), where E := �̂ − �. It
was proved in [20] that, under the assumption

(4.2) E‖�̂ − �‖ ≤ (1 − γ )gr

2
for some γ ∈ (0,1), the bilinear form of the remainder Sr(E) satisfies the following concen-
tration inequality: for all u, v ∈H and for all t ≥ 1 with probability at least 1 − e−t

(4.3)
∣∣〈(Sr(E) −ESr(E)

)
u, v

〉∣∣ �γ

‖�‖2

g2
r

(√
r(�)

n
∨

√
t

n
∨ t

n

)√
t

n
‖u‖‖v‖.

Under the same assumption, it was also proved in [20] that the following representation holds
for the bias EP̂r − Pr of empirical spectral projections P̂r :

(4.4) EP̂r − Pr = Pr(EP̂r − Pr)Pr + Tr,

where the main term Pr(EP̂r − Pr)Pr is aligned with the spectral projection Pr and is of
order

(4.5)
∥∥Pr(EP̂r − Pr)Pr

∥∥ � ‖�‖2

g2
r

r(�)

n
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and the remainder Tr satisfies the bound

(4.6) ‖Tr‖�γ

mr‖�‖2

g2
r

√
r(�)

n

1√
n
.

Representation (4.4) is especially simple in the case when Pr is of rank 1 (mr = 1), which
also implies that P̂r is of rank 1. In this case, Pr = θr ⊗ θr , P̂r = θ̂r ⊗ θ̂r for unit eigenvectors
θr , θ̂r of covariance operators �, �̂, respectively, and

Pr(EP̂r − Pr)Pr = brPr

for a “bias parameter” br = br(�) = E〈θ̂r , θr〉2 −1 ∈ [−1,0]. Thus, it follows from (4.4) that

(4.7) EP̂r = (1 + br)Pr + Tr .

We obtain from (4.1) and (4.7) that

(4.8) P̂r − (1 + br)Pr = Lr(E) + Sr(E) −ESr(E) + Tr .

Denote

ρr(u) := 〈(
P̂r − (1 + br)Pr

)
θr , u

〉
, u ∈ H.

As in [20], the function ρr(u), u ∈ H will be used in what follows to control the linear forms
〈θ̂r − √

1 + brθr , u〉, u ∈ H. First, we need to derive some bounds on ρr(u).
The following lemma is an immediate consequence of (4.8), (4.3) and (4.6).

LEMMA 4.1. Suppose condition (4.2) holds for some γ ∈ (0,1). Then, for all u ∈ H and
for all t ≥ 1 with probability at least 1 − e−t

(4.9)
∣∣ρr(u) − 〈

Lr(E)θr , u
〉∣∣ �γ

‖�‖2

g2
r

(√
r(�)

n
∨

√
t

n
∨ t

n

)√
t

n
‖u‖.

We will need simple concentration and normal approximation bounds for 〈Lr(E)θr , u〉
given in the next lemma.

LEMMA 4.2. For all t ≥ 1 with probability at least 1 − e−t

(4.10)
∣∣〈Lr(E)θr , u

〉∣∣ � σr(�;u)

(√
t

n
∨ t

n

)
.

Moreover, if σr(�;u) > 0, then

(4.11) sup
x∈R

∣∣∣∣P
{√

n〈Lr(E)θr , u〉
σr(�;u)

≤ x

}
− �(x)

∣∣∣∣ � 1√
n
,

where � is the distribution function of standard normal r.v.

PROOF. Without loss of generality, assume that the space H is finite-dimensional (the
general case follows by a simple approximation argument). Since Lr(E) = PrECr + CrEPr

and Crθr = 0, we have〈
Lr(E)θr , u

〉 = 〈CrEPrθr , u〉 = 〈Eθr,Cru〉 = 〈E,θr ⊗ Cru〉.
Since E is self-adjoint, we obtain that

〈
Lr(E)θr , u

〉 = 1

2
〈E,θr ⊗ Cru + Cru ⊗ θr〉.
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Let Z,Z1, . . . ,Zn be i.i.d. standard normal vectors in H such that Xj = �1/2Zj . Then

E = �1/2

(
n−1

n∑
j=1

Zj ⊗ Zj −E(Z ⊗ Z)

)
�1/2.

Defining

D := 1

2
�1/2(θr ⊗ Cru + Cru ⊗ θr)�

1/2

= 1

2

(
�1/2θr ⊗ �1/2Cru + �1/2Cru ⊗ �1/2θr

)
,

we obtain that

〈
Lr(E)θr , u

〉 = n−1
n∑

j=1

(〈DZj ,Zj 〉 −E〈DZ,Z〉).
Clearly, 〈DZ,Z〉 d= ∑

k λkg
2
k , where {λk} are the eigenvalues of D and {gk} are i.i.d. standard

normal r.v. It follows that

E〈DZ,Z〉 = tr(D) = 0

and

Var
(〈DZ,Z〉) = 2

∑
k

λ2
k = 2‖D‖2

2 = σ 2
r (�;u).

We can now represent 〈Lr(E)θr , u〉 as follows:

〈
Lr(E)θr , u

〉 d= n−1
n∑

j=1

∑
k

λk

(
g2

k,j − 1
)
,

where {gk,j } are i.i.d. standard normal r.v. Using standard exponential bounds for sums of
independent ψ1 r.v. (see, e.g., [35], Proposition 5.16 or Theorem 3.1.9 in [14]), we obtain
that with probability at least 1 − e−t

∣∣∣∣∣n−1
n∑

j=1

∑
k

λk

(
g2

k,j − 1
)∣∣∣∣∣ �

(∑
k

λ2
k

)1/2
√

t

n
∨ sup

k

|λk| t
n
,

which implies that with the same probability

∣∣〈Lr(E)θr , u
〉∣∣ � ‖D‖2

√
t

n
∨ ‖D‖ t

n
.

Since ‖D‖ ≤ ‖D‖2 = 1
2σ 2

r (�;u), bound (4.10) follows.
To prove (4.11), we use the Berry–Esseen bound that implies

sup
x∈R

∣∣∣∣P
{∑n

j=1
∑

k λk(g
2
k,j − 1)√

n(2
∑

k λ2
k)

1/2
≤ x

}
− �(x)

∣∣∣∣ �
∑

k |λk|3
(
∑

k λ2
k)

3/2

1√
n
,

and therefore

sup
x∈R

∣∣∣∣P
{√

n〈Lr(E)θr , u〉
σr(�;u)

≤ x

}
− �(x)

∣∣∣∣ � ‖D‖3
3

‖D‖3
2

1√
n
� ‖D‖

‖D‖2

1√
n
� 1√

n
. �

The following bounds on ρr(u) immediately follow from (4.9) and (4.10).
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LEMMA 4.3. Suppose condition (4.2) holds for some γ ∈ (0,1). Then, for all u ∈ H and
for all t ≥ 1 with probability at least 1 − e−t

(4.12)
∣∣ρr(u)

∣∣ �γ σr(�;u)

(√
t

n
∨ t

n

)
+ ‖�‖2

g2
r

(√
r(�)

n
∨

√
t

n

)√
t

n
‖u‖.

Moreover, with the same probability

(4.13)
∣∣ρr(u)

∣∣ �γ

‖�‖
gr

√
t

n
‖u‖ + ‖�‖2

g2
r

(√
r(�)

n
∨

√
t

n

)√
t

n
‖u‖

and, for u = θr ,

(4.14)
∣∣ρr(θr)

∣∣ �γ

‖�‖2

g2
r

(√
r(�)

n
∨

√
t

n

)√
t

n
.

Note that we dropped the term t
n

in some of the expressions on the right hand side of the

above bounds (compare with (4.9)). This term is dominated by
√

t
n

for t ≤ n. Moreover, it

follows from the definition of ρr(u) that it is upper bounded by 2‖u‖. Since ‖�‖
gr

≥ 1, this
easily implies that, for t ≥ n, the right hand side of bound (4.13) (with a proper constant) is
larger than |ρr(u)|. Bound (4.14) follows from (4.9) since 〈Lr(E)θr , θr〉 = 0.

To study concentration and normal approximation of the linear form

〈θ̂r − √
1 + brθr , u〉, u ∈H,

it remains to prove that it can be approximated by 〈Lr(E)θr , u〉.

LEMMA 4.4. Suppose that for some γ ∈ (0,1) condition (4.2) holds and, in addition,

(4.15) 1 + br ≥ γ.

Then, for all u ∈ H and for all t ≥ 1, with probability at least 1 − e−t

∣∣〈θ̂r − √
1 + brθr , u〉 − 〈

Lr(E)θr , u
〉∣∣

�γ

‖�‖2

g2
r

(√
r(�)

n
∨

√
t

n
∨ t

n

)√
t

n
‖u‖.

(4.16)

PROOF. We use the following representation obtained in [20] (see (6.7) in [20]), which
holds provided that θ̂r and θr are properly aligned so that 〈θ̂r , θr〉 ≥ 0:

〈θ̂r − √
1 + brθr , u〉

= ρr(u)√
1 + br + ρr(θr)

(4.17)

−
√

1 + br√
1 + br + ρr(θr)(

√
1 + br + ρr(θr) + √

1 + br)
ρr(θr)〈θr , u〉

(it is clear from the proof given in [20] that 1 + br + ρr(θr) ≥ 0). Denote

νr := ρr(θr)

1 + br

.
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Then, it is easy to see that

〈θ̂r − √
1 + brθr , u〉 = ρr(u) − br/(1 + br) + νr

1 + νr + √
(1 + νr)/(1 + br)

ρr(u)

− νr

√
1 + br

1 + νr + √
1 + νr

〈θr , u〉.
(4.18)

Recall that (4.2) and (4.15) hold for some γ ∈ (0,1). If |νr | ≤ 1/2, then (4.18) easily implies
that

(4.19)
∣∣〈θ̂r − √

1 + brθr , u〉 − ρr(u)
∣∣ ≤ 1

γ

(|br | + |νr |)∣∣ρr(u)
∣∣ + |νr |

∣∣〈θr , u〉∣∣.
It also follows from (4.14) that, under condition (4.15),

(4.20) |νr |�γ

‖�‖2

g2
r

(√
r(�)

n
∨

√
t

n

)√
t

n

with probability at least 1 − e−t . On the other hand, bound (4.5) implies that

(4.21) |br |� ‖�‖2

g2
r

r(�)

n
.

It follows from (4.20) that for the condition |νr | ≤ 1/2 to hold with probability at least 1−e−t ,
it is enough to have

(4.22)
‖�‖2

g2
r

(√
r(�)

n
∨

√
t

n

)√
t

n
≤ cγ

for a small enough constant cγ > 0. Assume that (4.22) holds. Note also that it implies that

t � n and condition (4.2) and Theorem 2.1 imply that ‖�‖
gr

√
r(�)

n
� 1. It follows from (4.19),

(4.13), (4.20) and (4.21) that with probability at least 1 − 3e−t :∣∣〈θ̂r − √
1 + brθr , u〉 − ρr(u)

∣∣
�γ

[‖�‖2

g2
r

r(�)

n
+

(‖�‖2

g2
r

(√
r(�)

n
∨

√
t

n

)√
t

n

)
∧ 1

]
(4.23)

×
[‖�‖

gr

√
t

n
‖u‖ + ‖�‖2

g2
r

(√
r(�)

n
∨

√
t

n

)√
t

n
‖u‖

]

+ ‖�‖2

g2
r

(√
r(�)

n
∨

√
t

n

)√
t

n
‖u‖.

Using the facts that

‖�‖2

g2
r

r(�)

n
� ‖�‖

gr

√
r(�)

n
� 1,

that

‖�‖2

g2
r

t

n
� ‖�‖

gr

√
t

n
� 1

and that

‖�‖2

g2
r

√
r(�)

n

√
t

n
� ‖�‖

gr

(
r(�)

n

)1/4(
t

n

)1/4
≤ ‖�‖

gr

(√
r(�)

n
∨

√
t

n

)
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(that follow from condition (4.22)), we conclude that the last term

‖�‖2

g2
r

(√
r(�)

n
∨

√
t

n

)√
t

n
‖u‖

in the right-hand side of bound (4.23) is dominant. Hence, with probability at least 1 − e−t

(4.24)
∣∣〈θ̂r − √

1 + brθr , u〉 − ρr(u)
∣∣ �γ

‖�‖2

g2
r

(√
r(�)

n
∨

√
t

n

)√
t

n
‖u‖

provided that condition (4.22) holds. On the other hand, if

‖�‖2

g2
r

(√
r(�)

n
∨

√
t

n

)√
t

n
> cγ ,

then ∣∣〈θ̂r − √
1 + brθr , u〉 − ρr(u)

∣∣
≤ ∣∣〈θ̂r − √

1 + brθr , u〉∣∣ + ∣∣ρr(u)
∣∣

≤ (‖θ̂r‖ + √
1 + br‖θr‖)‖u‖ + (‖P̂r‖ + (1 + br)‖Pr‖)‖θr‖‖u‖

≤ 4‖u‖

�γ

‖�‖2

g2
r

(√
r(�)

n
∨

√
t

n

)√
t

n
‖u‖.

Thus, we proved that with probability at least 1 − e−t

(4.25)
∣∣〈θ̂r − √

1 + brθr , u〉 − ρr(u)
∣∣ �γ

‖�‖2

g2
r

(√
r(�)

n
∨

√
t

n

)√
t

n
‖u‖.

It remains to combine this with the bound (4.9) to complete the proof. �

The following result is a slightly improved version of Theorem 6 in [20].

LEMMA 4.5. Under conditions (4.2) and (4.15) for some γ ∈ (0,1), the following
bounds hold for all t ≥ 1 with probability at least 1 − e−t :

(4.26)
∣∣〈θ̂r − √

1 + brθr , u〉∣∣ �γ

‖�‖
gr

√
t

n
‖u‖

and

(4.27)
∣∣〈θ̂r − √

1 + brθr , θr〉
∣∣ �γ

‖�‖2

g2
r

(√
r(�)

n
∨

√
t

n

)√
t

n
.

PROOF. Indeed, it follows from (4.16) and (4.10) that, for some constants C,Cγ > 0
with probability at least 1 − e−t

∣∣〈θ̂r − √
1 + brθr , u〉∣∣

≤ Cσr(�;u)

(√
t

n
∨ t

n

)
+ Cγ

‖�‖2

g2
r

(√
r(�)

n
∨

√
t

n

)√
t

n
‖u‖.
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Since σr(�;u) � ‖�‖
gr

‖u‖, with the same probability

∣∣〈θ̂r − √
1 + brθr , u〉∣∣ ≤ C

‖�‖
gr

√
t

n
‖u‖ + Cγ

‖�‖2

g2
r

(√
r(�)

n
∨

√
t

n

)√
t

n
‖u‖.

We dropped the term t
n

present in bounds (4.16) and (4.10) since for t ≥ n (the only case
when it is needed), the right-hand side already dominates the left hand side (which is smaller

than 2‖u‖). Note that condition (4.2) and Theorem 2.1 imply that ‖�‖
gr

√
r(�)

n
≤ cγ for some

constant cγ > 0. Assuming that also ‖�‖
gr

√
t
n

≤ cγ , which implies that t � n, we obtain that

for some constant Cγ > 0 with probability at least 1 − e−t bound (4.26) holds. On the other

hand, if ‖�‖
gr

√
t
n

> cγ , then

∣∣〈θ̂r − √
1 + brθr , u〉∣∣ ≤ (‖θ̂r‖ + √

1 + br‖θr‖)‖u‖ ≤ 2‖u‖ �γ

‖�‖
gr

√
t

n
‖u‖,

implying again (4.26). For u = θr , 〈Lr(E)θr , u〉 = 0 and bound (4.16) implies that with prob-
ability at least 1 − e−t (4.27) holds. �

The following two lemmas will be used to derive normal approximation bounds for
〈θ̂r − √

1 + brθr , u〉 from the corresponding bounds for 〈Lr(E)θr , u〉 as well as to control
the risk for loss functions satisfying Assumption 3.1. We state them without proofs (which
are elementary).

LEMMA 4.6. For random variables ξ , η, denote

�(ξ ;η) := sup
x∈R

∣∣P{ξ ≤ x} − P{η ≤ x}∣∣
and

δ(ξ ;η) := inf
{
δ > 0 : P{|ξ − η| ≥ δ

} + δ
}
.

Then, for a standard normal r.v. Z,

�(ξ ;Z) ≤ �(η;Z) + δ(ξ ;η).

Under Assumption 3.1, for all A > 0∣∣E(ξ) −E(η)
∣∣ ≤ 4(A)�(ξ ;η) +E(ξ)I

(|ξ | ≥ A
) +E(η)I

(|η| ≥ A
)
.

LEMMA 4.7. Let ξ be a random variable such that for some τ1 ≥ 0 and τ2 ≥ 0 and for
all t ≥ 1 with probability at least 1 − e−t

|ξ | ≤ τ1
√

t ∨ τ2t.

Let  be a loss function satisfying Assumption 3.1. If 2c2τ2 < 1, then

(4.28) E2(ξ) ≤ 2e
√

2πc2
1e

2c2
2τ 2

1 + ec2
1

1 − 2c2τ2
.

Next we prove the normal approximation bounds for linear forms 〈θ̂r − √
1 + brθr , u〉.
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LEMMA 4.8. Suppose that conditions (4.2) and (4.15) hold for some γ ∈ (0,1) and also
that n ≥ 2r(�). Assume that, for some u ∈ H, σr(�;u) > 0. Let α ≥ 1. Then the following
bound holds: for some constants C,Cγ,α > 0,

sup
x∈R

∣∣∣∣P
{√

n〈θ̂r − √
1 + brθr , u〉

σr(�;u)
≤ x

}
− �(x)

∣∣∣∣
≤ Cn−1/2 + Cγ,α

σr(�;u)

‖�‖2

g2
r

(√
r(�)

n
log

n

r(�)
∨ log n

r(�)√
n

)
‖u‖

+
(

r(�)

n

)α

.

(4.29)

Moreover, under Assumption 3.1 on the loss , there exist constants C,Cγ ,Cγ,α > 0 such
that ∣∣∣∣E

(√
n〈θ̂r − √

1 + brθr , u〉
σr(�;u)

)
−E(Z)

∣∣∣∣
≤ c1e

c2A

[
Cn−1/2

+ Cγ,α

σr(�;u)

‖�‖2

g2
r

(√
r(�)

n
log

n

r(�)
∨ log n

r(�)√
n

)
‖u‖

+
(

r(�)

n

)α]
+ 2e3/2(2π)1/4c1e

c2
2τ 2

e−A2/2τ 2 + c1e
c2

2e−A2/4,

(4.30)

where

τ := Cγ

‖�‖‖u‖
grσr(�;u)

.

PROOF. We will use the first claim of Lemma 4.6 with

ξ :=
√

n〈θ̂r − √
1 + brθr , u〉

σr(�;u)
and η :=

√
n〈Lr(E)θr , u〉

σr(�;u)
.

It follows from bound (4.16) that, under conditions (4.2) and (4.15), for some Cγ > 0

δ(ξ ;η) ≤ inf
t≥1

{
Cγ

σr(�;u)

‖�‖2

g2
r

(√
r(�)

n
∨

√
t

n
∨ t

n

)√
t‖u‖ + e−t

}
.

Taking t := α log n
r(�)

with some α ≥ 1 easily yields an upper bound

δ(ξ ;η) ≤ Cγ,α

σr(�;u)

‖�‖2

g2
r

(√
r(�)

n
log

n

r(�)
∨ log n

r(�)√
n

)
‖u‖ +

(
r(�)

n

)α

.

Using bound (4.11) to control �(η;Z), we obtain from Lemma 4.6 that bound (4.29) holds
with some constants C,Cγ,α > 0. To prove the second statement, we use the second bound

of Lemma 4.6 with the random variable ξ :=
√

n〈θ̂r−√
1+brθr ,u〉

σr (�;u)
and η = Z. The following

exponential bound on ξ is an easy corollary of bound (4.26): for some constant Cγ > 0 and
for all t ≥ 1 with probability at least 1 − e−t

(4.31) |ξ | ≤ Cγ

‖�‖
grσr(�;u)

√
t‖u‖ = τ

√
t .
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Using bound (4.28) with τ1 = τ and τ2 = 0, we obtain

E2(ξ) ≤ 2e
√

2πc2
1e

2c2
2τ 2

1 + ec2
1 ≤ 4e

√
2πc2

1e
2c2

2τ 2
1 .

Therefore,

E(ξ)I
(|ξ | ≥ A

) ≤ E
1/22(ξ)P1/2{|ξ | ≥ A

} ≤ 2e3/2(2π)1/4c1e
c2

2τ 2
e−A2/2τ 2

.

We also have

E(Z)I
(|Z| ≥ A

) ≤ c1e
c2

2e−A2/4.

Using bound (4.29), we can now deduce bound (4.30) from the second statement of
Lemma 4.6. �

Lemma 4.8 immediately implies Theorem 3.1 (by passing to the limit as n → ∞ in (4.29)
and as n → ∞ and then A → ∞ in (4.30)).

5. Proof of Theorem 3.3. Recall that the estimator θ̌r is based on empirical eigenvec-

tors θ̂
δj ,j
r , j = 1,2,3 with parameters δj = τ‖�̂(j)‖ and with a proper choice of τ (as in

Lemma 2.2). These eigenvectors are in turn defined in terms of empirical spectral projec-

tions P̂
δj ,j
r of sample covariances �̂(j) (based on δj -clusters of its spectrum σ(�̂(j))). We

will, however, replace θ̌r by the estimator θ̃r defined in terms of empirical spectral projec-
tions P̂

(j)
r , j = 1,2,3, P̂

(j)
r being the orthogonal projection onto direct sum of eigenspaces

of �̂(j) corresponding to its eigenvalues λk(�̂
(j)), k ∈ �r . Since card(�r) = mr = 1, P̂

(j)
r =

θ̂
(j)
r ⊗ θ̂

(j)
r and we can define

d̂r := 〈θ̂ (1)
r , θ̂

(2)
r 〉

〈θ̂ (2)
r , θ̂

(3)
r 〉1/2

and θ̃r := θ̂
(1)
r

d̂r ∨ (1/2)
.

The reduction to this case is based on Lemma 2.2 (implying that P̂
δj ,j
r = P̂

(j)
r with a high

probability) and is straightforward (as in the proof of Theorem 3.1).
The rest of the proof is based on several lemmas stated and proved below.

LEMMA 5.1. Suppose that for some γ ∈ (0,1) condition (4.2) holds for the sample co-
variance �̂(2) based on m observations:

(5.1) E
∥∥�̂(2) − �

∥∥ ≤ (1 − γ )gr

2
.

Then, for all t ≥ 1 with probability at least 1 − e−t

(5.2)
∣∣∣〈θ̂ (1)

r , θ̂ (2)
r

〉 − √
1 + b

(n′)
r

√
1 + b

(m)
r

∣∣∣ �γ

‖�‖2

g2
r

(√
r(�)

m
∨

√
t

m

)√
t

m

and with the same probability

(5.3)
∣∣〈θ̂ (2)

r , θ̂ (3)
r

〉 − (
1 + b(m)

r

)∣∣ �γ

‖�‖2

g2
r

(√
r(�)

m
∨

√
t

m

)√
t

m
.

PROOF. Obviously, condition (5.1) holds also for the sample covariance �̂(2) (which is
based on a sample of the same size m). Moreover, it also holds for the sample covariance
�̂(1) based on n′ ≥ m observations since the sequence n �→ E‖�̂n − �‖ is nonincreasing
(see, e.g., Lemma 2.4.5 in [34]).
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The following representation is obvious:

〈
θ̂ (1)
r , θ̂ (2)

r

〉 = √
1 + b

(n′)
r

√
1 + b

(m)
r 〈θr , θr〉

+
√

1 + b
(m)
r

〈
θ̂ (1)
r −

√
1 + b

(n′)
r θr , θr

〉

+
√

1 + b
(n′)
r

〈
θ̂ (2)
r −

√
1 + b

(m)
r θr , θr

〉

×
〈
θ̂ (1)
r −

√
1 + b

(n′)
r θr , θ̂

(2)
r −

√
1 + b

(m)
r θr

〉
.

(5.4)

By bound (4.27), with probability at least 1 − e−t

(5.5)
∣∣∣〈θ̂ (1)

r −
√

1 + b
(n′)
r θr , θr

〉∣∣∣ �γ

‖�‖2

g2
r

(√
r(�)

n′ ∨
√

t

n′
)√

t

n′ .

Similarly, with probability at least 1 − e−t

(5.6)
∣∣∣〈θ̂ (2)

r −
√

1 + b
(m)
r θr , θr

〉∣∣∣ �γ

‖�‖2

g2
r

(√
r(�)

m
∨

√
t

m

)√
t

m
.

To bound the last term in the right-hand side of (5.4), we apply bound (4.26) to θ̂
(1)
r condi-

tionally on the second sample (similarly to the proof of Theorem 6 in [20]). This yields that
with probability at least 1 − e−t

∣∣∣〈θ̂ (1)
r −

√
1 + b

(n′)
r θr , θ̂

(2)
r −

√
1 + b

(m)
r θr

〉∣∣∣
�γ

‖�‖
gr

√
t

n′
∥∥∥θ̂ (2)

r −
√

1 + b
(m)
r θr

∥∥∥.
(5.7)

On the other hand, under the assumption that 〈θ̂r , θr〉 ≥ 0,∥∥∥θ̂ (2)
r −

√
1 + b

(m)
r θr

∥∥∥ ≤ ∥∥θ̂ (2)
r − θr

∥∥ +
∣∣∣√1 + b

(m)
r − 1

∣∣∣
=

√
2 − 2

〈
θ̂

(2)
r , θr

〉 + |b(m)
r |√

1 + b
(m)
r + 1

≤
√

2 − 2
〈
θ̂

(2)
r , θr

〉2 + ∣∣b(m)
r

∣∣
=

√
2 − 2

〈
P̂

(2)
r ,Pr

〉 + ∣∣b(m)
r

∣∣
= ∥∥P̂ (2)

r − Pr

∥∥
2 + ∣∣b(m)

r

∣∣.
≤ √

2
∥∥P̂ (2)

r − Pr

∥∥ + ∣∣b(m)
r

∣∣.
By a standard perturbation bound (see, e.g., [20]),

∥∥P̂ (2)
r − Pr

∥∥ ≤ 4
‖�̂(2) − �‖

gr

.

Thus,

(5.8)
∥∥∥θ̂ (2)

r −
√

1 + b
(m)
r θr

∥∥∥ ≤ 4
√

2
‖�̂(2) − �‖

gr

+ ∣∣b(m)
r

∣∣.
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Using the exponential bound (2.3) on ‖�̂(2) − �‖ and bound (4.21), we obtain that with
probability at least 1 − e−t

∥∥∥θ̂ (2)
r −

√
1 + b

(m)
r θr

∥∥∥
� ‖�‖

gr

(√
r(�)

m
∨ r(�)

m
∨

√
t

m
∨ t

m

)
+ ‖�‖2

g2
r

r(�)

m
.

(5.9)

Under assumption (5.1), we have ‖�‖
gr

√
r(�)
m

� 1, which implies ‖�‖2

g2
r

r(�)
m

� ‖�‖
gr

√
r(�)
m

. Thus,

the first term in the right-hand side of bound (5.9) is dominant. Moreover, we can drop the
term r(�)

m
and, for t ≤ m, we can also drop the term ‖�‖

gr

t
m

in the right-hand side. Since the

left-hand side of (5.9) is not larger than 2, for t > m, the term ‖�‖
gr

√
t
m

is larger (up to a

constant) than the left hand side. Thus, the term ‖�‖
gr

t
m

can be dropped for all the values of t

and the bound (5.9) simplifies as follows

(5.10)
∥∥∥θ̂ (2)

r −
√

1 + b
(m)
r θr

∥∥∥ � ‖�‖
gr

(√
r(�)

m
∨

√
t

m

)

and it still holds with probability at least 1 − e−t . It follows from bound (5.7) and (5.10) that
for all t ≥ 1 with probability at least 1 − 2e−t

∣∣∣〈θ̂ (1)
r −

√
1 + b

(n′)
r θr , θ̂

(2)
r −

√
1 + b

(m)
r θr

〉∣∣∣
�γ

‖�‖2

g2
r

(√
r(�)

m
∨

√
t

m

)√
t

n′ .
(5.11)

Taking into account that n′ ≥ m, it easily follows from representation (5.4) and bounds
(5.5), (5.6) and (5.11) that with probability at least 1 − e−t

∣∣∣〈θ̂ (1)
r , θ̂ (2)

r

〉 − √
1 + b

(n′)
r

√
1 + b

(m)
r

∣∣∣ �γ

‖�‖2

g2
r

(√
r(�)

m
∨

√
t

m

)√
t

m
,

which proves (5.2). The proof of bound (5.3) is similar. �

Define

�1 := 〈θ̂ (1)
r , θ̂

(2)
r 〉√

1 + b
(n′)
r

√
1 + b

(m)
r

− 1

and

�2 := 〈θ̂ (2)
r , θ̂

(3)
r 〉

1 + b
(m)
r

− 1.

Assuming that

(5.12) 1 + b(n′)
r ≥ (3/4)2 and 1 + b(m)

r ≥ (3/4)2,

we obtain that, for some constant Cγ > 0 and for t ≥ 1 on an event E of probability at least
1 − e−t

(5.13) |�1| ∨ |�2| ≤ Cγ

‖�‖2

g2
r

(√
r(�)

m
∨

√
t

m

)√
t

m
.
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Next, we have

d̂r = 〈θ̂ (1)
r , θ̂

(2)
r 〉

〈θ̂ (2)
r , θ̂

(3)
r 〉1/2

= 〈θ̂ (1)
r , θ̂

(2)
r 〉/((1 + b

(n′)
r )1/2(1 + b

(m)
r )1/2)

〈θ̂ (2)
r , θ̂

(3)
r 〉1/2/(1 + b

(m)
r )1/2

√
1 + b

(n′)
r

= 1 + �1√
1 + �2

√
1 + b

(n′)
r

=
√

1 + b
(n′)
r + 1 + �1 − √

1 + �2√
1 + �2

√
1 + b

(n′)
r ,

which implies ∣∣∣d̂r −
√

1 + b
(n′)
r

∣∣∣ ≤
√

1 + b
(n′)
r

|(1 + �1)
2 − (1 + �2)|√

1 + �2(1 + �1 + √
1 + �2)

≤ 2|�1| + �2
1 + |�2|√

1 + �2(1 + �1 + √
1 + �2)

.

(5.14)

Under the assumption that

(5.15)
‖�‖2

g2
r

(√
r(�)

m
∨

√
t

m

)√
t

m
≤ cγ

for a sufficiently small constant cγ > 0, bounds (5.14) and (5.13) imply that on the event E
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.

Moreover, on the same event E,

d̂r ≥
√

1 + b
(n′)
r − 2|�1| + �2

1 + |�2|√
1 + �2(1 + �1 + √
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4
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(5.18)

and also, using bound (4.21), we obtain that

|d̂r − 1| ≤
∣∣∣√1 + b

(n′)
r − 1

∣∣∣ + 2|�1| + �2
1 + |�2|√
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r
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(5.19)
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The key ingredient of the proof of Theorem 3.3 is the following lemma.

LEMMA 5.2. Suppose that, for some γ ∈ (0,1), conditions (5.1) and (5.12) hold. Then,
for all t ≥ 1 with probability at least 1 − e−t

∣∣〈θ̃r − θr , u〉 − 〈
Lr

(
�̂(1) − �

)
θr , u

〉∣∣
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‖�‖2

g2
r

(√
r(�)
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t

m
∨ t

m

)√
t

m
‖u‖.

(5.21)

PROOF. We use the following simple representation:

〈θ̃r − θr , u〉
=

〈
θ̂ (1)
r −

√
1 + b

(n′)
r θr , u

〉
(5.22)

+
(

1
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− 1
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θ̂ (1)
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√
1 + b

(n′)
r θr , u

〉
+

(√
1 + b

(n′)
r

d̄r

− 1
)
〈θr , u〉

that holds on the event E (where d̂r ≥ 1/2). Using bounds (5.18) and (5.20) that both hold
under assumption (5.15) on the event E as well as bound (4.26) (applied to θ̂

(1)
r with n = n′),

we obtain that with probability at least 1 − 2e−t
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It is easy to check that the last term in the right-hand side is dominant yielding the simpler
bound ∣∣∣〈θ̃r − θr , u〉 −

〈
θ̂ (1)
r −

√
1 + b

(n′)
r θr , u
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(5.23)

that holds under assumption (5.15) with probability at least 1 − e−t . Since the left-hand side
is bounded by 5‖u‖, bound (5.23) also holds trivially when

‖�‖2

g2
r

(√
r(�)

m
∨

√
t

m

)√
t

m
> cγ .

It remains to combine (5.23) with the bound (4.16) (applied to θ̂
(1)
r ) to complete the proof.

�

The following statement is an immediate consequence of Lemma 5.2 and Lemma 4.2.
As always, we dropped the terms t

n′ , t
m

from the bounds since the left-hand side is smaller
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that 3‖u‖ and, for t ≥ n′ or t ≥ m (the only cases when these terms might be needed), it is

dominated by the expression with
√

t
n′ ,

√
t
m

only.

COROLLARY 5.1. Suppose that, for some γ ∈ (0,1), conditions (5.1) and (5.12) hold.
Then, for all t ≥ 1 with probability at least 1 − e−t

(5.24)
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Lemma 5.2 implies the following statement. This, in turn, implies Theorem 3.3.

LEMMA 5.3. Suppose that m2 ≥ 2nr(�) and conditions (5.1) and (5.12) hold for some
γ ∈ (0,1). For a given u ∈ H, suppose that σr(�;u) > 0. Let α ≥ 1. Then the following
bounds holds: for some constants C,Cγ,α > 0,
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x∈R
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(5.25)

Moreover, denote

τ1 := Cγ
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and
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Suppose that Assumptions 3.1 on the loss  holds and c2τ2 ≤ 1/4. There exist constants
C,Cγ ,Cγ,α > 0 such that∣∣∣∣E
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(5.26)
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PROOF. The proof is similar to that of Lemma 4.8. To prove (5.25), we apply the first
bound of Lemma 4.6 to the random variables

ξ :=
√

n〈θ̃r − θr , u〉
σr(�;u)

, η := 〈Lr(�̂
(1) − �)θr, u〉
σr(�;u)

and use the bound of Lemma 5.2 with t = α log( m2

nr(�)
) to control δ(ξ, η).

To prove the bound (5.26), observe that, by bound (5.24), for all t ≥ 1 with probability at
least 1 − e−t

|ξ | ≤ τ1
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t ∨ τ2t.

Under assumption c2τ2 ≤ 1/4, bound (4.28) implies that
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Therefore,
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.

It remains to repeat the rest of the proof of the second statement of Lemma 4.8. �
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