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We suggest general methods to construct asymptotically uniformly valid
confidence intervals post-model-selection. The constructions are based on
principles recently proposed by Berk et al. (Ann. Statist. 41 (2013) 802–837).
In particular, the candidate models used can be misspecified, the target of
inference is model-specific, and coverage is guaranteed for any data-driven
model selection procedure. After developing a general theory, we apply our
methods to practically important situations where the candidate set of mod-
els, from which a working model is selected, consists of fixed design ho-
moskedastic or heteroskedastic linear models, or of binary regression models
with general link functions. In an extensive simulation study, we find that
the proposed confidence intervals perform remarkably well, even when com-
pared to existing methods that are tailored only for specific model selection
procedures.

1. Introduction. Fitting a statistical model to data is often preceded by a model selec-
tion step, and practically always has to face the possibility that the candidate set of models
from which a model is selected does not contain the true distribution. The construction of
valid statistical procedures in such situations is quite challenging, even if the candidate set of
models does contain the true distribution (cf. Leeb and Pötscher (2005, 2006, 2008), Kabaila
and Leeb (2006) and Pötscher (2009), and the references given in that literature), and has
recently attained a considerable amount of attention. In a Gaussian homoskedastic location
model and fitting possibly misspecified linear candidate models to data, Berk et al. (2013)
have shown how one can obtain valid confidence intervals post-model-selection for (nonstan-
dard) model-dependent targets of inference in finite samples (cf. also the discussion in Leeb,
Pötscher and Ewald (2015), and related results obtained for prediction post-model-selection
in Bachoc, Leeb and Pötscher (2019)). In this setup, their approach leads to valid confidence
intervals post-model-selection regardless of the specific model selection procedure applied.
This aspect is of fundamental importance, because many model selection procedures used in
practice are almost impossible to formalize: researchers typically use combinations of visual
inspection and numerical algorithms, and sometimes they simply select models that let them
reject many hypotheses, that is, they are hunting for significance. These often unreported and
informal practices of model selection prior to conducting the actual analysis may also play
a key role in the current crisis of reproducibility. Thus, to establish and popularize statistical
methods that are in some sense robust to ‘bad practice’ is highly desirable.

The methods discussed in Berk et al. (2013) are based on the assumption that the true distri-
bution is Gaussian and homoskedastic. Furthermore, they only consider situations where lin-
ear models are fit to data. It is of substantial interest to generalize this approach, and to obtain
generic methods for constructing confidence intervals post-model-selection that are widely
applicable beyond the Gaussian homoskedastic model considered in Berk et al. (2013). In the
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present article, we develop a general asymptotic theory for the construction of uniformly valid
confidence sets post-model-selection. These results are applicable whenever the estimation
error can be expanded as the sum of independent centered random vectors and a remainder
term that is negligible relative to the variance of the leading term. Such a representation typi-
cally follows from standard first order linearization arguments, and can therefore be obtained
in many situations.

Our confidence intervals can either be based on consistent estimators of the variance of the
previously mentioned sum, or, more importantly, if such estimators are not available (which
is usually the case when all working models are misspecified), can be based on variance es-
timators that consistently overestimate their targets. We also present results that allow one
to obtain such estimators in general and demonstrate their construction in specific applica-
tions, where they often coincide with well-known sandwich-type estimators. This overcomes
another limitation present in Berk et al. (2013), namely the assumption that there exists an
unbiased (and chi-square distributed) or uniformly consistent estimator of the variance of
the observations; cf. the discussion in Remark 2.1 of Leeb, Pötscher and Ewald (2015) and
in Appendix A of Bachoc, Leeb and Pötscher (2019). Our usage of variance estimators that
overestimate their targets, while leading to more conservative inference, renders the approach
applicable to the fully misspecified setting. Moreover, the suggested conservative estima-
tors usually have the property that their bias vanishes if the selected model is correct (cf.
Remark 2.7 and Section A.2.1 in the Supplementary Material (Bachoc, Preinerstorfer and
Steinberger (2019))).

Another important aspect of the results obtained is that they are valid uniformly over wide
classes of potential underlying distributions, which is particularly important as this guaran-
tees that the results provide a better description of finite sample properties than “pointwise”
asymptotic results (cf. Leeb and Pötscher (2003, 2005) and Tibshirani et al. (2018) for a
discussion of related issues in a model selection context).

We apply our general theory to three important modeling situations: First, we consider the
case where linear homoskedastic models are fit to non-Gaussian homoskedastic data. This
provides an extension of the results of Berk et al. (2013) to the non-Gaussian case, without
requiring a consistent variance estimator. Next, we study the problem of fitting heteroskedas-
tic linear models to non-Gaussian heteroskedastic data. This scenario necessitates a more
careful choice of variance estimators and leads to an extension of the influential results of
Eicker (1967) to the misspecified post-model-selection context. Our third application then
considers the problem of fitting binary regression models to binary data. In this case, also
the link function may be chosen in a data driven way. On a technical level, the third example
is quite different from the previous ones, because here nontrivial existence and uniqueness
questions concerning the targets of inference and the (quasi-) maximum likelihood estimators
have to be addressed.

Our confidence intervals obtained in these specific situations are particularly convenient
for practitioners, because they are structurally very similar to the confidence sets one would
use in practice following the naive and invalid (see, e.g., Leeb, Pötscher and Ewald (2015),
Bachoc, Leeb and Pötscher (2019)) approach that ignores that the model has been selected
using the same data set. The main difference of our construction to the naive approach is the
choice of a critical value: Quantiles from a standard normal or t-distribution are replaced by
so-called POSI-constants (cf. Berk et al. (2013) and Section 2.5 below). Thus, the procedures
are conceptually simple and easy to implement. Moreover, we provide mild and easily ver-
ifiable regularity conditions on observable quantities (e.g., the design or the link functions)
under minimal restrictions on the unknown data generating process.

Finally, in a series of numerical examples, we illustrate that the proposed confidence in-
tervals are valid also in small samples and in high dimension while their lengths appear to
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be practically reasonable when compared to naive (and invalid) procedures. Furthermore, we
compare our methods to those of Tibshirani et al. (2018) and Taylor and Tibshirani (2018),
and find that our intervals are often shorter than their competitors, even when we study the
exact same scenarios for which those competing methods were tailored for and even though
our confidence intervals offer much stronger theoretical guarantees.

The structure of the present article is as follows: We first develop a general asymptotic the-
ory for the construction of uniformly valid confidence sets post-model-selection in Section 2.
In Section 3, we apply our theoretical results to the three previously mentioned modeling
scenarios. Of course, the selection of examples in Section 3 is by no means exhaustive. But
besides covering three very important modeling frameworks, Section 3 serves as an illus-
tration of how the general theory developed in Section 2 can be applied. An outline of the
numerical results is presented in Section 4. Additional results, remarks and discussion, details
of the simulations, as well as all the proofs are collected in Sections A, B, C, D and E of the
Supplementary Material (Bachoc, Preinerstorfer and Steinberger (2019)).

1.1. Informal illustration of the proposed methodology. To provide the reader with a
concrete application of the general theory to be laid out in Section 2, we shall now informally
preview one of our applications of Section 3, that is, valid confidence intervals post-model-
selection in the case of fitting binary regression models to binary observations: Suppose we
observe the realization of a random n-vector Y with independent components Y1, . . . , Yn

taking only the values 0 or 1, and let X denote a fixed (nonrandom) n × p design matrix. We
hardly ever know whether the data follow any binary regression model. Oftentimes, however,
one has reason to believe that only a small number of the p columns from X, together with
an appropriate choice of the response function h from some finite set H, could provide a
“reasonable” description of the unknown mechanism generating the data. In such a situation,
the statistician would use some “model selection procedure” to select a subset M̂ ⊆ {1, . . . , p}
of columns (regressors) from X and a response function ĥ from H. Write M̂ = (M̂, ĥ). Any
such selection eventually leads to a data-dependent approximating model

(1.1) P(Yi = 1) ≈ ĥ
(
Xi[M̂]βM̂

)
, i = 1, . . . , n,

where Xi[M̂] is the ith row of the matrix X[M̂] resulting from X by keeping only those

columns whose indices are in M̂ , and βM̂ is that value in R|M̂| which realizes the “best
approximation” of the true distribution among all binary regression models with link function
ĥ−1 and design matrix X[M̂]. Note that βM̂ depends on M̂ and is thus data-dependent. Our
results in Section 3.3 allow one to make valid confidence statements about βM̂. Given α ∈
(0,1), our confidence intervals for the j th coordinate of βM̂ are of the form

CI(j)

α,M̂
:= β̂

(j)

M̂
± Bα ·

√
(ŜM̂)jj ,

with β̂M̂ the MLE based on the (quasi-)log-likelihood function in the selected model (1.1),

ŜM̂ a “sandwich-type” variance estimator based on a suggestion of Fahrmeir ((1990), page
491), and Bα a critical value (standard quantiles ignoring model selection would not be valid)
that, besides α, only depends on sample size n and on the full collection of potential candidate
models from which M̂ was selected (i.e., the range of M̂). The resulting intervals are asymp-
totically valid in the sense that their joint coverage probability P(β

(j)

M̂
∈ CI(j)

α,M̂
, for all j =

1, . . . , |M̂|) is asymptotically bounded below by 1 − α, and the convergence is uniform over
a large class of true unknown data generating distributions. Moreover, coverage is guaran-
teed for any model selection procedure, and the constant Bα is fast to compute, even for large
values of n and p, and also for large collections of candidate models.
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1.2. Related work. The present article is devised in the spirit of Berk et al. (2013), in the
sense that we aim at inference post-model-selection that is valid irrespective of the employed
model selection procedure. Very recently, Rinaldo et al. (2016) have investigated a classi-
cal sample spitting procedure that is also independent of the underlying selection method.
However, they consider only the i.i.d. case, thereby excluding, for instance, fixed design re-
gression. Several other authors have proposed inference procedures post-model-selection that
are tailored towards specific selection methods and for specific modeling situations. In the
context of fitting linear regression models to Gaussian data, methods that provide valid confi-
dence sets post-model-selection, and that are constructed for specific model selection proce-
dures (e.g., forward stepwise, least-angle-regression or the lasso) and for targets of inference
similar to those considered in the present article, have been recently obtained by Lee and
Taylor (2014), Fithian, Sun and Taylor (2015), Lee et al. (2016) and Tibshirani et al. (2016).
Tibshirani et al. (2018) extended the approach of Tibshirani et al. (2016) to non-Gaussian data
by obtaining uniform asymptotic results. Furthermore, valid inference post-model-selection
on conventional regression parameters under sparsity conditions was considered, among oth-
ers, by Belloni, Chernozhukov and Hansen (2011, 2014), van de Geer et al. (2014) and Zhang
and Zhang (2014).

2. Inference post-model-selection: A general asymptotic theory.

2.1. Framework, problem description and approach. Consider a situation where we ob-
serve a data set y ∈ Rn×� that is a realization of an unknown probability distribution Pn on
the Borel sets of the sample space Rn×�. We denote the ith row of the data vector (matrix)
y by yi ∈ R1×�, so that y = (y′

1, . . . , y
′
n)

′, and write Pi,n for the marginal distribution cor-
responding to that row. Throughout, we assume that the data generating distribution is of
product form, that is Pn = ⊗n

i=1 Pi,n. Suppose further that one wants to conduct inference on
Pn, and intends to use as a working model an element of Mn, a set consisting of d nonempty
sets of distributions M1,n, . . . ,Md,n on the Borel sets of Rn×�. Throughout d is fixed, that is,
does not depend on n. We emphasize that it is not assumed that Pn is contained in any of the
sets Mj,n for j = 1, . . . , d . That is, the candidate set Mn might be misspecified.

For each model M ∈ Mn one has to define a corresponding target of inference θ∗
M,n =

θ∗
M,n(Pn), say, which we take as given throughout the present section. Furthermore we as-

sume that for every Mj,n ∈ Mn the target is an element of a Euclidean space of finite dimen-
sion m(Mj,n) which does not depend on n. As an example in the case � = 1, consider the
situation where Pn has mean vector μn ∈ Rn and M ∈ Mn is given by the collection of all
n-dimensional normal distributions with covariance matrix proportional to identity and mean
XMβ , for different values of β ∈ Rm(M), and where XM is an n × m(M) matrix obtained by
selecting certain columns from a given fixed design matrix X ∈ Rn×p . In this setting, Berk
et al. (2013) consider the target θ∗

M,n(Pn) = (X′
MXM)−1X′

Mμn (cf. also Section 3 for more
on this and further examples). In the general case, θ∗

M,n will typically be the value of the
parameter that corresponds to the projection of Pn onto M w.r.t. some measure of closeness,
for example, the Kullback–Leibler divergence, or the Hellinger-distance. Note that such a
projection might not uniquely exist, or might not exist at all, and that in each application
sufficient conditions—on Pn and/or the candidate set Mn of models—need to be imposed to
obtain well defined targets. Note also that the target is model-specific, that is, it depends on
M. Lastly we emphasize that defining and working with such projections as targets of in-
ference in potentially misspecified models has a long-standing tradition in statistics, dating
back at least to Huber (1967), and we confer the reader to this strand of literature for further
discussion.

Given data y the statistician now has two problems to solve: (i) model selection, that
is, the statistician needs to choose an “appropriate” working model from the candidate set
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Mn; and (ii) statistical inference post-model-selection, that is, given the selected model, the
statistician typically wants to conduct inference on the target in this model. Note that this
target is random, as it depends on the data via the model selection procedure used. We do not
contribute anything new to how models can be selected from data. We take a model selection
procedure as given, and denote the model selection procedure used by M̂n : Rn×� → Mn

(measurable). That is, the quantity M̂n(y) denotes the selected model upon observing y. We
also assume that for every model M ∈ Mn an estimator θ̂M,n : Rn×� → Rm(M) (measurable)
of the corresponding target θ∗

M,n is available.

Summarizing, the statistician selects the model using M̂n, and estimates θ∗
M̂n,n

using θ̂M̂n,n
.

In this article, we address the question how valid confidence intervals can be constructed for
the coordinates of the target θ∗

M̂n,n
. Our approach is as follows:

1. Given α ∈ (0,1), we construct confidence intervals CI(j)
1−α,M for the j th component

θ
∗(j)
M,n of θ∗

M,n, for every j = 1, . . . ,m(M) and every M ∈ Mn such that

lim inf
n→∞ Pn

(
θ

∗(j)
M,n ∈ CI(j)

1−α,M for all j = 1, . . . ,m(M) and all M ∈ Mn

)
is not smaller than 1 − α.

2. For a model selection procedure M̂n, our suggested confidence intervals are then ob-
tained via

CI(j)

1−α,M̂n
for j = 1, . . . ,m(M̂n).

From the coverage property in Part 1, we obtain

lim inf
n→∞ Pn

(
θ

∗(j)

M̂n,n
∈ CI(j)

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

) ≥ 1 − α.

As already discussed in the Introduction, the fact that our approach does not restrict the
model selection procedure used is important. It is precisely this aspect that allows practi-
tioners to obtain valid confidence intervals post-model-selection in situations where a wide
variety of (formal or informal) mechanisms have been incorporated to select the model.

2.2. Discussion. The above framework is certainly somewhat abstract, but its generality
is necessary to achieve the scope of the present paper, which is the development of results
for the construction of confidence intervals post-model-selection that are widely applicable.
In particular, apart from allowing for a misspecified candidate set of models, the framework
allows the marginals Pi,n for i = 1, . . . , n to be nonidentical. This property is not just a
mere technical aspect, but is necessary if one wants to cover situations such as fixed-design
regression models.

Most importantly, we work with a sequence Pn of data generating mechanisms, the
marginals of which also depend on n. Again, this is not a technical nuisance. Rather, this as-
pect ensures that the results obtained can be used to construct uniformly valid confidence in-
tervals post-model-selection: Suppose Pn, the distribution that generated the data y, is known
to be an element of a set Pn. The set Pn describes the assumptions one is willing to im-
pose on the unknown distribution in a particular modeling scenario, and will typically be
large and potentially nonparametric. Suppose further that one wants to work with a candidate
set of models Mn (possibly misspecified, that is, Pn �

⋃
M∈Mn

M) and corresponding model
specific targets θ∗

M,n as above, and that the goal is to construct confidence sets post-model-
selection. Under weak assumptions on Pn, the general results developed in this paper allow
one to construct confidence intervals such that

lim inf
n→∞ Pn

(
θ

∗(j)

M̂n,n
∈ CI(j)

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

) ≥ 1 − α
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holds for any (measurable) model selection procedure M̂n, and for every sequence of distri-
butions Pn that satisfies Pn ∈ Pn for every n ∈ N. Certainly, this then implies

lim inf
n→∞ inf

Pn∈Pn

Pn

(
θ

∗(j)

M̂n,n
∈ CI(j)

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

) ≥ 1 − α,

that is, asymptotic validity of the constructed confidence sets uniformly over Pn. That the
development of results that hold uniformly over large classes of distributions is important, in
particular so in the context of inference post-model-selection, is well understood (see Leeb
and Pötscher (2003, 2005)). One recent article that studies uniform coverage properties post-
model-selection is Tibshirani et al. (2018). Merits of uniform results in contrast to pointwise
asymptotic results are discussed in their Section 1.1. Tibshirani et al. (2018) consider a setup
similar to the example we consider in Section 3.1 and for specific model selectors, but com-
pared to our results uniform validity is established only over substantially smaller sets of
distributions, and they need to impose stronger conditions on the design matrices, which rule
out some important cases our results allow for, for example, polynomial trends. See also
Section 4.1 for numerical results and comparisons.

2.3. Notation. Before we proceed to our general theory and the corresponding basic as-
sumption, we introduce some notation that is used throughout this article: A normal distribu-
tion with mean μ and (possibly singular) covariance matrix � is denoted by N(μ,�). For
α ∈ (0,1) and a covariance matrix � we denote by K1−α(�) the 1−α-quantile of the distribu-
tion of the supremum-norm ‖Z‖∞ of Z ∼ N(0,�). The correlation matrix corresponding to
a covariance matrix � is denoted by corr(�) = diag(�)†/2� diag(�)†/2, where diag(�) de-
notes the diagonal matrix obtained from � by setting all off-diagonal elements equal to 0, A†

denotes the Moore–Penrose inverse of a matrix A, A1/2 denotes the symmetric nonnegative
definite square root of a symmetric nonnegative definite matrix A, and where we abbreviate
[A†]1/2 by A†/2. The smallest and largest eigenvalue of a real symmetric matrix A is de-
noted by λmin(A) and λmax(A), respectively. For a vector v with coordinates v(1), . . . , v(l)

we also use the symbol diag(v) to denote the diagonal matrix with first diagonal entry v(1),
second v(2), and so on. The operator norm of a matrix A (w.r.t. the Euclidean norm) is de-
noted by ‖A‖, and the Euclidean norm of a vector v is denoted by ‖v‖. Furthermore, Aii ,
the ith diagonal element of a quadratic matrix A, is occasionally abbreviated as Ai . We also
identify the indicator function 1B of a set B with the set B itself, whenever there is no risk
of confusion. Weak convergence of a sequence of probability measures Qn to Q is denoted
by Qn ⇒ Q. The image measure induced by a random variable (or vector) x defined on a
probability space (F,F,Q) is denoted by Q ◦ x. If not stated otherwise, limits are taken as
n → ∞. For a sequence (an)n∈N, we say that a property holds eventually if there exists a
positive integer n0 such that the property holds for every an with n ≥ n0. The expectation op-
erator and the variance-covariance operator w.r.t. Pn is denoted by En and Vn, respectively;
and the expectation operator and the variance-covariance operator w.r.t. Pi,n is denoted by
Ei,n and Vi,n, respectively.

2.4. Main assumption. Our methods for constructing uniformly valid confidence inter-
vals post-model-selection are developed under a high-level condition imposed on the stacked
vector of estimators θ̂n = (θ̂ ′

M1,n
, . . . , θ̂ ′

Md ,n)
′ centered at the corresponding stacked vec-

tor of targets θ∗
n = (θ∗′

M1,n
, . . . , θ∗′

Md ,n)
′. In this section, we denote the dimension of θ̂n by

k := ∑d
j=1 m(Mj,n), which does not depend on n. The condition is as follows:
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CONDITION 1. There exist Borel measurable functions gi,n : R1×� → Rk for i =
1, . . . , n, and 	n : Rn×� →Rk , possibly depending on θ∗

n , such that

(2.1) θ̂n(y) − θ∗
n =

n∑
i=1

gi,n(yi) + 	n(y),

for y ∈ Rn×�, where, writing rn(y) := ∑n
i=1 gi,n(yi), it holds for every i ∈ {1, . . . , n} and

every j ∈ {1, . . . , k} that

(2.2) Ei,n

(
g

(j)
i,n

) = 0 and 0 <Vn

(
r(j)
n

)
< ∞.

Furthermore, for every coordinate j ∈ {1, . . . , k} we have

(2.3)
V−1

n

(
r(j)
n

) n∑
i=1

∫
R1×�

[
g

(j)
i,n

]2{∣∣g(j)
i,n

∣∣ ≥ εV
1
2
n

(
r(j)
n

)}
dPi,n → 0

for every ε > 0

and

Pn

(∣∣V−1/2
n

(
r(j)
n

)
	(j)

n

∣∣ ≥ ε
) → 0 for every ε > 0.

Clearly, an expansion as in Equation (2.1) of Condition 1 is satisfied in many applications,
and can typically be obtained by a standard linearization argument (see Section 3.3 for an ex-
ample and Remark A.7 in the Supplementary Material for further discussion). We emphasize
that the two last assumptions in Condition 1 are formulated in terms of rescaled summands,
which, in applications, can be exploited to circumvent restrictive compactness assumptions
on moments of the distribution generating the data or the design (e.g., in Sections 3.1 and 3.2
we do not need to restrict variance parameters to a compact set—as opposed to the conditions
used by, for example, Eicker (1967) or Tibshirani et al. (2018); and in Section 3.3, we do not
require the smallest singular value of the design matrix to diverge to infinity—as opposed to,
for example, Lv and Liu (2014)).

REMARK 2.1. The careful reader will have noticed, that the functions gi,n : R1×� →Rk

in Condition 1 do not depend on all of the observation matrix y ∈ Rn×�, but only on its ith
row yi ∈ R1×�. This is crucial. In the sequel, however, it will be convenient to also consider
gi,n as a function on the full sample space Rn×�. Thus, we sometimes identify gi,n with the
composition gi,n ◦ πi,n : Rn×� →Rk , where πi,n :Rn×� →R1×� is the coordinate projection
πi,n(y) = yi .

Before proceeding to the main results, we briefly highlight the most important consequence
of Condition 1 for our method of constructing confidence sets post-model-selection. The first
step of the approach outlined in Section 2.1 required the construction of confidence intervals
for each coordinate of the stacked vector of targets θ∗

n . Naturally, such confidence intervals
will be centered at the respective coordinates of θ̂n. Our construction of such intervals is based
on part one of the subsequent Lemma 2.2 which provides an asymptotic approximation to the
distribution

(2.4) Pn ◦ [
diag

(
Vn(rn)

)†/2(
θ̂n − θ∗

n

)]
.

One can not expect, in general, that the distribution in the previous display converges weakly
to a limiting distribution as n → ∞, simply because the correlations may not stabilize. How-
ever, under Condition 1 we can show that the distributions are “well approximated” by the
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sequence of Gaussian distributions N(0, corr(Vn(rn))). Being “well approximated” is under-
stood in the sense that

(2.5) dw

(
Pn ◦ [

diag
(
Vn(rn)

)†/2(
θ̂n − θ∗

n

)]
,N

(
0, corr

(
Vn(rn)

))) → 0.

Here dw denotes a distance metrizing weak convergence of probability measures on the Borel
sets of the respective Euclidean space the dimension of which is not shown in the notation
(cf. the discussion in Dudley ((2002), page 393) for specific examples). Note that in case
corr(Vn(rn)) is convergent this reduces to weak convergence. Furthermore, in the second
part of Lemma 2.2, and defining under Condition 1 the matrix

(2.6) Sn(y) :=
n∑

i=1

gi,n(yi)g
′
i,n(yi),

we show that a suitable approximation statement continues to hold if Vn(rn) is replaced by
Sn: the dw-distance between

(2.7) Pn ◦ [
diag(Sn)

†/2(
θ̂n − θ∗

n

)]
,

and the sequence of (random) Gaussian distributions N(0, corr(Sn)) converges to 0 in Pn-
probability. This latter property is instrumental for our approach to constructing covariance
estimators, as will be explained after the lemma.

LEMMA 2.2. Under Condition 1 the convergence (2.5) holds and, for every ε > 0, we
have

Pn

(
dw

(
Pn ◦ [

diag(Sn)
†/2(

θ̂n − θ∗
n

)]
,N

(
0, corr(Sn)

)) ≥ ε
) → 0.

Remarkably, the previous result is obtained without requiring a joint Lindeberg-type con-
dition on the random vectors gi,n, but only requires “marginal” Lindeberg-type conditions.
Further discussion on Condition 1 and on how it can be verified is provided in Section A.1.1
of the Supplementary Material (Bachoc, Preinerstorfer and Steinberger (2019)). Lemma 2.2
is proved in Section D.1 of the Supplementary Material using tightness arguments, a result in
Pollak (1972), and Raikov’s theorem (cf. the statement in Gnedenko and Kolmogorov (1954)
on page 143, originally published in Raikov (1938)).

At first sight, one might be tempted to think that one can now immediately use Sn as a
covariance estimator to construct confidence intervals as envisioned in Section 2.1. However,
we emphasize that Sn is in general not an estimator of Vn(rn). Typically gi,n depends on
θ∗
n , which is unknown, and thus Sn is infeasible. Hence, while Lemma 2.2 presents a first

step towards the construction of confidence sets post-model-selection, the construction of
suitable covariance estimators is another step that we need to address. We nevertheless note
that although Lemma 2.2 does not answer how such estimators can be obtained, it suggests
that in applications one might use as an estimator for Vn(rn) a “suitable” predictor for Sn, for
example, by using “suitable” predictors for the unobserved components gi,n. This is discussed
in detail in the following section.

2.5. Confidence intervals post-model-selection. In this subsection, we shall now present
our general asymptotic results for the construction of valid confidence intervals post-model-
selection under Condition 1. We consider two different situations: (i) a situation where a
consistent estimator of Vn(rn) is available; (ii) a situation where a consistent estimator of
Vn(rn) is not available, but it is possible to construct estimators that “consistently overesti-
mate” the diagonal entries of Vn(rn). Concrete examples of such consistent or “consistently
overestimating” estimators are also provided, based on approximating the summands gi,n

appearing in Condition 1.
Given M =Mj,n ∈ Mn we abbreviate ρ(M) := ∑j−1

l=1 m(Ml,n), where sums over an empty
index set are to be interpreted as 0.
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2.5.1. Confidence intervals based on consistent estimators of Vn(rn). Our first result
considers the construction of confidence intervals post-model-selection under Condition 1,
and under the additional assumption that it is possible to construct a consistent estimator Ŝn

of Vn(rn). The latter assumption is certainly very restrictive, due to possible misspecification
of the model, and is relaxed substantially in Section 2.5.2.

THEOREM 2.3. Let α ∈ (0,1), suppose Condition 1 holds, and let Ŝn :Rn×� →Rk×k be
a sequence of Borel-measurable functions such that

(2.8) Pn

(∥∥corr(Ŝn) − corr
(
Vn(rn)

)∥∥ + ∥∥diag
(
Vn(rn)

)−1 diag(Ŝn) − Ik

∥∥ ≥ ε
)

converges to 0 for every ε > 0, or equivalently, that for every ε > 0

(2.9) Pn

(∥∥corr(Ŝn) − corr(Sn)
∥∥ + ∥∥diag(Sn)

† diag(Ŝn) − Ik

∥∥ ≥ ε
) → 0.

Define for every M ∈ Mn and every j = 1, . . . ,m(M) the confidence interval

CI(j),est
1−α,M = θ̂

(j)
M,n ±

√
[Ŝn]ρ(M)+jK1−α

(
corr(Ŝn)

)
.

Then, Pn(θ
∗(j)
M,n ∈ CI(j),est

1−α,M for all M ∈ Mn and all j = 1, . . . ,m(M)) converges to 1 − α as

n → ∞. In particular, for every (measurable) model selection procedure M̂n, we have

(2.10) lim inf
n→∞ Pn

(
θ

∗(j)

M̂n,n
∈ CI(j),est

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

) ≥ 1 − α.

Theorem 2.3 is based on the assumption that an estimator Ŝn is available that consistently
estimates Vn(rn). Coming back to the discussion at the end of Section 2.4, the vectors gi,n(yi)

appearing in the definition of Sn are typically not observable, because they will depend on the
unknown target θ∗

n , that is, they are, more explicitly, of the form gi,n(yi, θ
∗
n ). In such cases

Sn is not a feasible candidate for Ŝn in the previous theorem, and therefore one will, in most
cases, naturally try to obtain predictors ĝi,n(y) for gi,n(yi) by replacing the unknown target
by its estimator θ̂n, that is, by setting ĝi,n(y) = gi,n(yi, θ̂n(y)). The subsequent proposition
now provides conditions on predictors ĝi,n(y), which, if satisfied, immediately allow the con-
struction of a consistent estimator Ŝn of Vn(rn) by replacing each gi,n(yi) in equation (2.6)
by its predictor ĝi,n(y). In the result the predictor ĝi,n(y) may be of the form gi,n(yi, θ̂n(y))

as discussed above, but the proposition is not restricted to that particular case. Again, the con-
ditions are assumptions concerning the large sample behavior of the marginals only, which
facilitates their verification in practice.

PROPOSITION 2.4. Suppose Condition 1 is satisfied, and let ĝi,n : Rn×� → Rk be Borel
measurable for i = 1, . . . , n and for every n. Suppose that for every j = 1, . . . , k and for
every ε > 0 it holds that

(2.11) Pn

(
n∑

i=1

(
g

(j)
i,n − ĝ

(j)
i,n

)2
/ n∑

i=1

(
g

(j)
i,n

)2 ≥ ε

)
→ 0,

or equivalently that

(2.12) Pn

(
n∑

i=1

(
g

(j)
i,n − ĝ

(j)
i,n

)2
/ n∑

i=1

Vn

(
g

(j)
i,n

) ≥ ε

)
→ 0.

Then the convergence in (2.9) is satisfied for Ŝn = ∑n
i=1 ĝi,nĝ

′
i,n.
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2.5.2. Confidence intervals based on estimators that consistently overestimate the diago-
nal entries of Vn(rn). Due to an asymptotically nonnegligible bias term arising from mis-
specification of the model, it is typically difficult to obtain an estimator Ŝn satisfying the
condition in Theorem 2.3 (see Remark 2.7 and Section A.2.1 in the Supplementary Mate-
rial (Bachoc, Preinerstorfer and Steinberger (2019)) for details). Nevertheless, it is often still
possible to construct estimators of the diagonal entries of the matrix Vn(rn) that, while pos-
sibly inconsistent, asymptotically overestimate their targets; for a corresponding constructive
result see Proposition 2.6 below. Similarly, it is in general not difficult to find an estimator of
K1−α(corr(Sn)) that consistently overestimates that quantity, see the discussion and the result
following Proposition 2.6 below concerning upper bounds on the function K1−α(·) over the
set of all correlation matrices (using this upper bound, although leading to wider confidence
intervals, also leads to substantial computational advantages). Based on such estimators it
is then possible to construct asymptotically valid confidence intervals post-model-selection,
even though the candidate set of models might be (severely) misspecified. This is the content
of the subsequent result, which, together with Proposition 2.6 below, is the main theoretical
result in this section.

THEOREM 2.5. Let α ∈ (0,1), and suppose Condition 1 is satisfied. For every n and
every j = 1, . . . , k let ν̂2

j,n ≥ 0 be an estimator of Vn(r
(j)
n ), and let K̂n ≥ 0 be an estimator of

K1−α(corr(Vn(rn))), such that the sequence

κn = K1−α(corr(Vn(rn)))

K̂n

max
j=1,...,k

√√√√ [Vn(rn)]j
ν̂2
j,n

,

satisfies

(2.13) Pn(κn ≥ 1 + ε) → 0 for every ε > 0

(implicitly including that Pn(κn is well defined) → 1) or, equivalently, that the condition in
(2.13) holds with κn replaced by

K1−α(corr(Sn))

K̂n

max
j=1,...,k

√√√√ [Sn]j
ν̂2
j,n

.

For every M ∈ Mn and every j = 1, . . . ,m(M), define the confidence interval

CI(j),oest
1−α,M = θ̂

(j)
M,n ±

√
ν̂2
ρ(M)+j,nK̂n.

Then, for every (measurable) model selection procedure M̂n, we have

lim inf
n→∞ Pn

(
θ

∗(j)

M̂n,n
∈ CI(j),oest

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

) ≥ 1 − α.

In the important special case where K̂n ≥ K1−α(corr(Vn(rn))) holds eventually, the condition
in equation (2.13) is implied by the condition that for every j = 1, . . . , k it holds that

(2.14) Pn

(√
[Sn]j /ν̂2

j,n ≥ 1 + ε
)

→ 0 for every ε > 0,

or equivalently, that for every j = 1, . . . , k it holds that

(2.15) Pn

(√[
Vn(rn)

]
j /ν̂

2
j,n ≥ 1 + ε

)
→ 0 for every ε > 0.
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The preceding theorem operates under the assumption that estimators are available that
consistently overestimate the diagonal entries of Vn(rn) and K1−α(corr(Vn(rn))). The fol-
lowing result now shows how such estimators for the diagonal entries of Vn(rn) can be ob-
tained. To construct an estimator K̂n that eventually satisfies K̂n ≥ K1−α(corr(Vn(rn))) (as
required for the special case of Theorem 2.5) one can numerically compute the upper bound
in Lemma 2.8 below. The subsequent result considers the case where the vectors gi,n from
Condition 1 are well approximated in the sense of the condition appearing in Proposition 2.4,
but where the approximating quantities are now unobservable due to nonstochastic additive
error terms. These additive error terms typically are bias terms due to misspecification of the
model. This is further discussed after the proposition.

PROPOSITION 2.6. Suppose Condition 1 is satisfied, and let g̃i,n :Rn×� →Rk and ĝi,n :
Rn×� → Rk be Borel measurable for i = 1, . . . , n and for every n. Suppose that for every
j = 1, . . . , k and for every ε > 0 the condition (2.11), or equivalently (2.12), is satisfied.
Suppose further that there exist real numbers a

(j)
i,n such that for y ∈ Rn×�

g̃
(j)
i,n (y) = ĝ

(j)
i,n (y) + a

(j)
i,n

holds for every n ∈ N, i ∈ {1, . . . , n} and j ∈ {1, . . . , k}. Then the statement in (2.15) is satis-
fied for ν̂2

j,n = ∑n
i=1[g̃(j)

i,n ]2 (j = 1, . . . , k).

The proposition is developed for situations where random variables g̃
(j)
i,n are observed, that

can be decomposed as the sum of unobserved random variables ĝ
(j)
i,n , which satisfy (2.11),

and unobserved real numbers a
(j)
i,n . In contrast to the situation in Proposition 2.4, now the

(unobservable) random variables ĝ
(j)
i,n can not be used for the construction of estimators. Nev-

ertheless, the proposition shows how suitable variance estimators can then still be constructed
based on the observed quantities g̃

(j)
i,n . Confidence intervals post-model-selection can then be

obtained via Theorem 2.5. Besides being suitable for situations where random variables sat-
isfying (2.11) are not observed (otherwise one could use Proposition 2.4 to obtain consistent
estimators), Proposition 2.6 is particularly geared towards the case where the nonstochastic
additive components ai,n are nonnegligible in the sense that

∑n
i=1[a(j)

i,n ]2

Vn(r
(j)
n )

�→ 0 holds for some j ∈ {1, . . . , k}.

For if the nonstochastic additive components are negligible in this sense, a consistent estima-
tor of Vn(rn) in the sense of (2.8) can be constructed.

REMARK 2.7. Using the bound (g
(j)
i,n − g̃

(j)
i,n )2 ≤ 2(g

(j)
i,n − ĝ

(j)
i,n )2 + 2[a(j)

i,n ]2, it is easy
to verify that if the nonstochastic additive components ai,n are negligible in the previously
defined sense, then g̃i,n satisfies the assumptions of ĝi,n appearing in Proposition 2.4. As a
consequence, the estimator S̃n = ∑n

i=1 g̃i,ng̃
′
i,n satisfies (2.8), and one can construct confi-

dence intervals based on this estimator as discussed in Theorem 2.3. Note that ν̂2
j,n = [S̃n]j .

Let us finally consider an upper bound on K1−α(�) as required in the special case of
Theorem 2.5 above. The bound we shall discuss is based on the quantity Bα(q,N), for q,N ∈
N, defined as the smallest t > 0 such that

(2.16) EG

(
min

(
1,

[
1 − FBeta,1/2,(q−1)/2

(
t2/G2)] · N)) ≤ α,
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where FBeta,1/2,(q−1)/2 is the cumulative distribution function of the Beta(1/2, (q − 1)/2)

distribution, and where G2 follows a chi-squared distribution with q degrees of freedom. The
quantity Bα(q,N) corresponds to the quantity K4 of Bachoc, Leeb and Pötscher (2019) in
the known variance case (for a discussion of numerical algorithms for obtaining Bα(q,N)

in practice we confer the reader to that reference). We have (Berk et al. (2013), Bachoc,
Leeb and Pötscher (2019)) that Bα(q,N) is larger than all the 1 − α quantiles of random
variables of the form maxi=1,...,N |v′

iε|, where v1, . . . , vN are column vectors of Rq with
‖vi‖ ≤ 1 and where ε ∼ N(0, Iq); furthermore, for fixed α and N the function q �→ Bα(q,N)

is monotonically increasing.
Asymptotic approximations of Bα(q,N) for large q and N are provided in Berk et al.

(2013), Zhang (2017) and Bachoc, Leeb and Pötscher (2019). In particular, as q,N → ∞,
Bα(q,N)[q(1 − N−2/(q−1))]−1/2 → 1, from Proposition 2.10 in Bachoc, Leeb and Pötscher
(2019), itself building on results from Berk et al. (2013) and Zhang (2017).

An often useful upper bound on K1−α(�) with � a k × k-dimensional correlation matrix
is provided in the following lemma:

LEMMA 2.8. For every α ∈ (0,1) and every k × k correlation matrix � we have
K1−α(�) ≤ Bα(rank(�), k).

In a particular application, it might of course be possible to obtain better upper bounds by
exploiting structural properties of the specific correlation matrix � at hand; cf. Section 3.1.
Using the upper bound of Lemma 2.8 can also be very useful in situations where the complex-
ity of computing K1−α(�) is prohibitive (see Section B.1.3 in the Supplementary Material
(Bachoc, Preinerstorfer and Steinberger (2019)) for an example).

3. Applications. In this section, we now apply the general results obtained in Section 2
to some important special cases that are frequently encountered in practice. We consider
situations of the following type:

1. The underlying distribution Pn is assumed to be an element of a set of distributions Pn.
2. A model M̂n is selected in a data-driven way from a candidate set Mn, which is poten-

tially misspecified, that is, Pn �
⋃

M∈Mn
M.

3. One aims at constructing confidence intervals for all coordinates of the model-specific
target parameter θ∗

M̂n,n
.

The scenarios we discuss in this section are all concerned with the case � = 1,1 that is, one
observes a realization of a random n-vector Yn = (Y1,n, . . . , Yn,n)

′ defined on some probabil-
ity space (�,A,P), whose distribution under P coincides with Pn ∈ Pn (we write E and V
to denote the expectation and variance-covariance operator with respect to P). In Section 3.1,
we consider the case where the candidate set Mn consists of fixed design homoskedastic lin-
ear models. In this framework, the model selection problem is equivalent to a subset-selection
problem of regressors. Here, the model-specific target we consider is the coefficient vector of
the projection of the mean vector μn = E(Yn) ∈ Rn onto the model-specific fixed regressor
matrix. In such a setup, confidence intervals post-model-selection have also been suggested
in Tibshirani et al. (2018), but for specific model selection methods. Our approach can also
be used to obtain confidence intervals in their setup, and requires less assumptions on the

1The case � > 1 is of interest, for example, in a regression problem with random design where one observes
a data matrix (yi , xi1, . . . , xip)ni=1 which is a realization of a probability distribution Pn on the sample space

Rn×(p+1).
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set of distributions over which uniformity is achieved and on the design matrices allowed. In
Section 3.2, we then discuss the case where Mn consists of fixed design heteroskedastic linear
models. While the model-specific target is the same as in the homoskedastic case, the con-
struction of confidence sets is more complicated as the heteroskedasticity needs to be taken
into account. The results of this section can be viewed as an extension of the influential results
of Eicker (1967) (see also White (1980)) to the potentially misspecified, post-model-selection
context. Comparable results do not exist to the best of our knowledge. Finally, in Section 3.3,
we consider the situation where Mn consists of binary regression models. We allow for sit-
uations where both the regressors and the link function are chosen in a data-driven way. In
each candidate model, the model-specific target vector is here obtained as a minimizer of
the Kullback–Leibler divergence. For numerical results concerning the methods discussed in
Sections 3.1 and 3.3 see Section 4 as well as Section B of the Supplementary Material.

3.1. Inference post-model-selection when fitting fixed design linear models to homoskedas-
tic data. One important application of our general theory is the case where homoskedastic
linear regression models are fit to data. The feasible set for the true underlying distribution Pn

we can allow for in this setup is denoted as P(lm)
n (δ, τ ), where δ > 0 and τ ≥ 1, and is defined

as follows: the distribution Pn of the random n-vector Yn = (Y1,n, . . . , Yn,n)
′ is an element

of P(lm)
n (δ, τ ) if and only if the n coordinates of Yn are independent, homoskedastic (i.e., the

variances of the coordinates are equal to some V(Yi,n) = σ 2
n ∈ (0,∞), for all i = 1, . . . , n),

and

max
i=1,...,n

[
E

(∣∣Yi,n −E(Yi,n)
∣∣2+δ)] 2

2+δ ≤ τσ 2
n .

Note that P(lm)
n (δ, τ ) is empty for δ > 0 and τ < 1, because then the inequality in the pre-

vious display can never be satisfied. Furthermore, observe that P(lm)
n (δ, τ ) contains the set

of n-variate spherical normal distributions with unrestricted mean vector if �((3 + δ)/2) ≤
(τ/2)1+δ/2√π , where �(·) denotes the Gamma-function. For such a pair (δ, τ ) the set
P(lm)

n (δ, τ ) thus contains the Gaussian model considered in Berk et al. (2013). Finally, note
that there is no restriction on the mean vector μn = E(Yn) ∈ Rn of elements of P(lm)

n (δ, τ ).
We are interested in a situation where one works with candidate sets consisting of ho-

moskedastic linear models. That is, a situation where one wants to conduct inference on the
mean vector μn of the underlying distribution Pn, and it is assumed by the practitioner that
μn is an element of span(Xn), the column span of a design matrix Xn ∈ Rn×p , with p not
depending on n, or it is assumed that μn is at least “well-approximated” by an element of
that linear space; and that the practitioner knows (and takes into account in the construc-
tion of the confidence sets) that the observations have identical variances (for a situation
where the observations are heteroskedastic see Section 3.2). In such a situation one then of-
ten tries to decide in a data-driven way which regressors to use, that is, one needs to solve a
subset-selection problem. We assume that we are given a nonempty set I = {M1, . . . ,Md} of
nonempty subsets of {1,2, . . . , p}, that does not depend on n. Given M ∈ I we shall denote
by Xn[M] the matrix obtained from Xn by striking all columns whose index is not an element
of M . We then consider for each j ∈ {1, . . . , d} a linear, homoskedastic candidate model Mj,n

with fixed design Xn[Mj ], that is, the distribution of a random vector z = (z1, . . . , zn)
′ is an

element of Mj,n if and only if there exists a β ∈ R|Mj | such that the random (residual) vector
z − Xn[Mj ]β has independent, homoskedastic coordinates with mean zero. Our candidate
set of models is then given by Mn = {Mj,n : j = 1, . . . , d}.

We assume that Xn satisfies the following condition, where we denote the ith row of Xn

by Xi,n:
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CONDITION X1. Eventually rank(Xn) = p, and for every M ∈ I ,

(3.1) max
i=1,...,n

Xi,n[M](Xn[M]′Xn[M])−1
Xi,n[M]′ → 0.

REMARK 3.1. Condition X1 particularly holds if rank(Xn) = p, eventually, and
maxi=1,...,n Xi,n(X

′
nXn)

−1X′
i,n → 0. Moreover, it also holds in case ‖Xi,n‖ is bounded and

λmin(
1
n
X′

nXn) is bounded away from 0, which is typically the case in sufficiently balanced
factorial designs, but Condition X1 is obviously much more general. For example, it also
covers the important cases of polynomial regressors, trigonometric regressors, or mixed poly-
nomial and trigonometric regressors (cf. the discussion in Eicker (1967), page 64). Finally,
we point out that the condition in equation (3.1) is classical, and is necessary for asymptotic
normality of the ordinary least-squares estimator in the fixed model M (see Huber (1973),
Arnold (1980)).

The model-specific target of inference is then (eventually) defined as follows: Given M ∈
Mn with a corresponding index set M , we let

(3.2) β∗
M,n = β∗

M,n(Pn) = (
Xn[M]′Xn[M])−1

Xn[M]′μn,

that is, β∗
M,n is the coefficient vector corresponding to the orthogonal projection of μn onto

span(Xn[M]).
We shall now describe how asymptotically uniformly valid confidence sets can be con-

structed post-model-selection for the target defined in equation (3.2) above: Given M ∈ Mn

with index set M , we estimate the corresponding target by the model-specific ordinary least-
squares estimator, that is, by

(3.3) β̂M,n(y) = (
Xn[M]′Xn[M])−1

Xn[M]′y;
let

σ̂ 2
M,n(y) = 1

n − m(M)

n∑
i=1

(
yi − Xi,n[M]β̂M,n(y)

)2
,

where m(M) here coincides with |M|, the cardinality of M , and define for α ∈ (0,1) and
j = 1, . . . ,m(M)

(3.4) CI(j),lm
1−α,M = β̂

(j)
M,n ±

√
σ̂ 2
M,n

[(
Xn[M]′Xn[M])−1]

jK1−α

(
corr(�n)

)
,

where the block-matrix �n is defined via its (s, t)th block of dimension |Ms |× |Mt | given by

En

[(
β̂Ms ,n − β∗

Ms ,n

)(
β̂Mt ,n − β∗

Mt ,n

)′]
= σ 2

n

(
Xn[Ms]′Xn[Ms])−1

Xn[Ms]′Xn[Mt ](Xn[Mt ]′Xn[Mt ])−1
,

for s, t ∈ {1, . . . , d}. Note that while �n depends on σ 2
n , corr(�n) is observed. Essentially, the

construction in (3.4) coincides with the confidence intervals of Berk et al. (2013). However,
there are two major differences. First of all, we here do not assume that the data are Gaus-
sian, which is why we resort to asymptotic results. This is also the reason why our constant
K1−α , the so called POSI constant, is the quantile of a maximum of Gaussian rather than
t-distributed random variables, as is the case in Berk et al. (2013). Furthermore, we simply
use the usual variance estimator σ̂ 2

M,n which, in general, is not unbiased or uniformly consis-
tent (due to potential misspecification) as required in Berk et al. (2013), but we still obtain
uniformly valid inference asymptotically. This shows that the restrictive assumption of Berk
et al. (2013), that there exists an unbiased or a uniformly consistent estimator for σ 2

n (cf.
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Proposition A.3 in the Supplementary Material, as well as the discussion in Remark 2.1 of
Leeb, Pötscher and Ewald (2015) and in Appendix A of Bachoc, Leeb and Pötscher (2019)),
is not needed for uniform asymptotic validity. If the estimator σ̂ 2

M,n is used in the construc-
tion of Berk et al. (2013), then their confidence intervals asymptotically coincide with our
procedure. We also point out that the classical variance estimator used here adapts to mis-
specification in the sense that it is consistent for σ 2

n if a first order correct model is selected
and it otherwise overestimates the target in the sense of Section 2.5.2 (cf. Remark 2.7, and
Section A.2.1 of the Supplementary Material, where it is also shown that uniformly consistent
estimators for σ 2

n do not exist).
It is also worth noting that up to the choice of the last multiplicative factor K1−α(corr(�n))

in the definition of the confidence intervals above, that is, the POSI constant, this is just the
usual confidence interval for the j th coordinate of the coefficient vector one would typically
use in practice working with homoskedastic linear models, and by following the naive way
of ignoring the data-driven model selection step. The crucial difference, however, is that the
naive approach is invalid (see, e.g., Leeb, Pötscher and Ewald (2015), Bachoc, Leeb and
Pötscher (2019)).

We now present the main result of this subsection, where we emphasize once more that the
(measurable) model selection procedure M̂n is data-driven and unrestricted, and that some,
or all of the candidate models in Mn may be misspecified,that is, P(lm)

n (δ, τ ) �
⋃

M∈Mn
M.

Nevertheless it is possible to construct an asymptotically uniformly valid confidence set for
the model-specific target vector β∗

M̂n,n
.

THEOREM 3.2. Let α ∈ (0,1), δ > 0 and τ ≥ 1, suppose Condition X1 holds, and let
M̂n be a (measurable) model selection procedure, that is, a measurable map from the sample
space Rn to Mn. Then

lim inf
n→∞ inf

Pn∈P(lm)
n (δ,τ )

Pn

(
β

∗(j)

M̂n,n
∈ CI(j),lm

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

) ≥ 1 − α.

The statement in Theorem 3.2 concerns simultaneous coverage of all coefficients of the
model-dependent target parameter. In some applications, it may be of interest to construct
confidence intervals only for single coefficients, that is, coefficients corresponding to a certain
regressor. Of course, as simultaneous coverage implies individual coverage, the confidence
intervals in the previous section achieve this goal a fortiori. However, shorter confidence in-
tervals can be constructed if one only wants to achieve individual coverage. This is discussed
in detail in Section A.2.2 of the Supplementary Material (Bachoc, Preinerstorfer and Stein-
berger (2019)).

3.2. Inference post-model-selection when fitting fixed design linear models to het-
eroskedastic data. The feasible sets for Pn we consider here again depend on two param-
eters δ > 0 and τ ≥ 1 but, compared to the set P(lm)

n (δ, τ ) defined above, we now drop the
requirement of homoskedasticity: the distribution of a random n-vector Yn = (Y1,n, . . . , Yn,n)

′
is an element of P(het)

n (δ, τ ) if and only if the n coordinates of Yn are independent, the vari-
ance σ 2

i,n = V(Yi,n) ∈ (0,∞) exists for every i = 1, . . . , n, and

max
i=1,...,n

[
E

(∣∣Yi,n −E(Yi,n)
∣∣2+δ)] 2

2+δ ≤ τ min
i=1,...,n

σ 2
i,n.

Here, we consider a situation where one works with candidate sets consisting of heteroskedas-
tic linear models, that is, where similar as in Section 3.1 one is interested in conducting in-
ference on μn = E(Yn) ∈ Rn, and it is assumed that μn is (well approximated by) an element
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of span(Xn), the column span of a design matrix Xn ∈ Rn×p with p fixed; but where it is
now taken into account that the observations may have different variances. We start with a
set I = {M1, . . . ,Md} as in Section 3.1, and we then define for each j ∈ {1, . . . , d} the linear,
heteroskedastic model Mj,n as follows: the distribution of a random vector z = (z1, . . . , zn)

′
is an element of Mj,n if and only if there exists a β ∈ R|Mj | such that the random (residual)
vector z−X[Mj ]β has independent coordinates with positive finite variances and mean zero.
The corresponding candidate set of models is then given by Mn = {Mj,n : j = 1, . . . , d}.

As in Section 3.1 we assume that Xn satisfies Condition X1, and define our model-specific
target of inference as in equation (3.2). Again, we estimate the corresponding target by the
model-specific ordinary least-squares estimator in (3.3). For variance estimation, we do no
longer use the estimator as defined in Section 3.1, but now take into consideration, that the
observations may be heteroskedastic. Therefore, we consider an approach based on estimators
suggested by Eicker (1967). As in Section 3.1, the variance estimators used here are not
uniformly consistent due to potential model misspecification, but overestimate their targets
in the sense of Section 2.5.2. Furthermore, in contrast to the construction of Section 3.1, the
construction of the confidence sets now needs to incorporate an upper bound for the POSI
constant K1−α(corr(�n)), because here �n = Vn[(β̂ ′

M1,n
, . . . , β̂ ′

Md ,n)
′], and also corr(�n), is

unobserved and can not be estimated consistently due to potential misspecification. Define
for every M ∈ Mn with corresponding index set M the Eicker-estimator S̃M,n as(

Xn[M]′Xn[M])−1
Xn[M]′ diag

(
û2

1,M, . . . , û2
n,M

)
Xn[M](Xn[M]′Xn[M])−1

,

where, for y ∈ Rn, we let ûM(y) = (û1,M(y), . . . , ûn,M(y))′ = y − Xn[M]β̂M,n(y), and de-
note the j th diagonal entry (j = 1, . . . ,m(M)) of S̃M,n by σ̂ 2

j,M,n. Finally, given α ∈ (0,1),
we define for each M ∈ Mn with corresponding index set M and for every j = 1, . . . ,m(M)

the confidence sets

CI(j),hlm
1−α,M = β̂

(j)
M,n ±

√
σ̂ 2

j,M,nBα

(
min(k,p), k

)
,

with k = ∑
M∈Mn

m(M), and where Bα is defined at the end of Section 2.5.2.
Note, similarly as in Section 3.1 above, that up to the choice of the last multiplicative

factor Bα(min(k,p), k), an upper bound for the corresponding POSI-constant, this is just the
usual confidence interval for the j th coordinate of the coefficient vector one would typically
use in practice working with heteroskedastic linear models by following the naive way of
ignoring the data-driven model selection step. Our construction delivers an adjustment to that
approach, which turns it, regardless of the (measurable) model selection procedure applied,
into an asymptotically valid statistical procedure. The main result of this subsection is as
follows.

THEOREM 3.3. Let α ∈ (0,1), δ > 0 and τ ≥ 1, suppose Condition X1 holds, and let
M̂n be a (measurable) model selection procedure, that is, a measurable map from the sample
space Rn to Mn. Then

lim inf
n→∞ inf

Pn∈P(het)
n (δ,τ )

Pn

(
β

∗(j)

M̂n,n
∈ CI(j),hlm

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

) ≥ 1 − α.

3.3. Inference post-model-selection when fitting binary regression models to binary data.
The feasible sets P(bin)

n (τ ) for Pn we consider here depend on a parameter τ ∈ (0,1/4) and
are defined as follows: the distribution of a random vector Yn = (Y1,n, . . . , Yn,n)

′ is an el-
ement of P(bin)

n (τ ) if and only if the n coordinates of Yn are independent, each coordinate
Yi,n takes on either 0 or 1, and V(Yi,n) ≥ τ . We consider a situation where binary regression
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models are fit to binary data generated under one of the elements Pn ∈ P(bin)
n (τ ). It is im-

portant to point out, however, that unlike other work on misspecified binary regression (e.g.,
Ruud (1983), Kubkowski and Mielniczuk (2017)), we here do not assume that the true data
generating process Pn is itself a binary regression model, but we consider the nonparametric
case where every observation Yi,n may have its own success rate pi,n = P(Yi,n = 1), with
the only restriction that V(Yi,n) = pi,n(1 − pi,n) ≥ τ . In binary regression, the maintained
modeling assumption is that the probability of a success on the ith observation (Yi,n = 1),
or equivalently its expectation, is given by h(Xi,nβ), for some β ∈ Rp , some response func-
tion h : R → (0,1) and where Xi,n is the ith row of a design matrix Xn ∈ Rn×p . Usually,
when h is invertible, h−1 is called the link function. Thus, unlike the previous two exam-
ples, here we also have to make a choice for the response function h, in addition to se-
lecting variables from Xn. Classical choices are the logit and the probit functions, but we
allow also for other choices of response functions h, as long as they belong to a finite set
H = {h1, . . . , hd1} of potential candidates, that does not depend on n. Together with the col-
lection I = {M1, . . . ,Md2} ⊆ 2{1,...,p} \ ∅ of candidate regressor subsets, we can define for
every j1 ∈ {1, . . . , d1} and j2 ∈ {1, . . . , d2} a candidate binary regression model M(j1,j2),n as
follows: the distribution of a random vector z = (z1, . . . , zn)

′ is an element of M(j1,j2),n if and
only if the n coordinates of z are independent, each coordinate zi takes on either 0 or 1, and
there exists a β ∈ R|Mj2 | such that the mean of zi equals hj1(Xi,n[Mj2]β) for i = 1, . . . , n.
Thus, our candidate set of size d = d1 · d2 is given by

Mn = {
M(j1,j2),n : j1 ∈ {1, . . . , d1}, j2 ∈ {1, . . . , d2}}.

We need to impose some regularity conditions on the possible response functions h ∈ H
and the design Xn. The conditions are formally stated as Conditions X2 and H, respectively,
in Section A.3 of the Supplementary Material, where additional discussion can be found.

Note that since the design matrix Xn ∈ Rn×p is fixed, a candidate model M ∈ Mn can be
identified with a pair M� (h,M) ∈ H×I . Estimating the parameter β ∈ R|M| of a candidate
model M ∈ Mn is usually done by numerically maximizing the likelihood. The (quasi-)log-
likelihood function for model M � (h,M) can be expressed as

�M,n(y,β) =
n∑

i=1

[
yiφ1

(
Xi,n[M]β) + (1 − yi)φ2

(
Xi,n[M]β)]

,

where φ1(γ ) = logh(γ ) and φ2(γ ) = log(1 − h(γ )), and y = (y1, . . . , yn)
′ ∈ {0,1}n, β ∈

R|M|. Whenever Condition H(iii) holds, we denote the matrix of negative second derivatives
of �M,n by

HM,n(y,β) = −∂2�M,n(y,β)

∂β∂β ′ = Xn[M]′DM,n(y,β)Xn[M],

where DM,n(y,β) is a diagonal matrix with ith diagonal entry equal to

−yiφ̈1
(
Xi,n[M]β) − (1 − yi)φ̈2

(
Xi,n[M]β)

.

Note that under Conditions X2(i) and H(iii), HM,n(y,β) is positive definite.
As our target of inference we take the model dependent vector β∗

M,n ∈ R|M| that maximizes
the expected log-likelihood β �→ En[�M,n(·, β)] under the true data generating distribution
Pn ∈ P(bin)

n (τ ). If β∗
M,n exists, then it is easy to see that it also minimizes the Kullback–

Leibler divergence between the true data generating distribution Pn and the class of distribu-
tions specified by the working model M ∈ Mn. Focusing on the Kullback–Leibler minimizer
has a longstanding tradition in the misspecification literature dating back at least to Huber
(1967) (see also White (1982) and the references given therein). For references more specific
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to generalized linear models see Fahrmeir (1990) and Lv and Liu (2014). That this target
uniquely exists in the present context of binary regression is the subject of the following
lemma.2

LEMMA 3.4. Suppose that rank(Xn) = p and H(i), (ii) hold. Then, for every M ∈ Mn

and for every Pn ∈ ⋃
δ>0 P(bin)

n (δ), there exists a unique vector β∗
M,n = β∗

M,n(Pn) ∈ Rm(M),
such that ∫

Rn
�M,n

(
y,β∗

M,n(Pn)
)
dPn(y) = sup

β∈Rm(M)

∫
Rn

�M,n(y,β) dPn(y).

Furthermore, it is well known that for some points in the sample space {0,1}n the MLE in
the binary regression model does not exist (see, e.g., Wedderburn (1976)). But those samples
have vanishing asymptotic probability. The following lemma establishes this asymptotic ex-
istence of the (quasi-) MLE β̂M,n in the present setting, along with uniform consistency. Its
proof is deferred to Section E.5 of the Supplementary Material (Bachoc, Preinerstorfer and
Steinberger (2019)).

LEMMA 3.5. Suppose that Conditions X2(i), (ii) and H(i), (ii), (iii) hold and fix τ ∈
(0,1/4). Then, for every n ∈ N, every M ∈ Mn and every Pn ∈ P(bin)

n (τ ), there exists a function
β̂M,n : {0,1}n →Rm(M) (depending only on n and M) and a set EM,Pn,n ⊆ {0,1}n, such that

�M,n

(
y, β̂M,n(y) + β

)
< �M,n

(
y, β̂M,n(y)

) ∀y ∈ EM,Pn,n,∀β �= 0

and

inf
M∈Mn

inf
Pn∈P(bin)

n (τ )

Pn(EM,Pn,n) −−−→
n→∞ 1.

Moreover, for the pseudo parameter β∗
M,n ∈ Rm(M) of Lemma 3.4, we have

lim sup
n→∞

sup
M∈Mn

Pn∈P(bin)
n (τ )

Pn

(∥∥(
Xn[M]′Xn[M])1/2(

β̂M,n − β∗
M,n(Pn)

)∥∥ > δ
) → 0,

as δ → ∞.

To construct asymptotically valid confidence intervals for the components of β∗
M,n, we

need an estimate of the asymptotic covariance matrix of β̂M,n. In the misspecified setting,
it is usually not possible to obtain a consistent estimator. We here follow the suggestion
of Fahrmeir ((1990), page 491) who proposed a sandwich-type estimator for misspecified
generalized linear models. This estimator fits with the general idea of Section 2.5.2. For
M ∈ Mn, M � (h,M), define

(3.5) S̃M,n = Ĥ−1
M,nXn[M]′ diag

(
û2

1,M, . . . , û2
n,M

)
Xn[M]Ĥ−1

M,n,

where ĤM,n(y) = HM,n(y, β̂M,n(y)),

ûi,M(y) = ḣ(γ̂i,n,M(y))

h(γ̂i,n,M(y))(1 − h(γ̂i,n,M(y)))

(
yi − h

(
γ̂i,n,M(y)

))

2A similar claim is made in Theorem 5 of Lv and Liu (2014) and its proof is deferred to Version 1 of the
arXiv preprint Lv and Liu (2010), where it appears to be the case that the existence issue has been ignored. For a
complete proof of our Lemma 3.4 see Section E.3 of the Supplementary Material.
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and γ̂i,n,M(y) = Xi,n[M]β̂M,n(y), and denote the j th diagonal entry (j = 1, . . . ,m(M)) of
S̃M,n by

(3.6) σ̂ 2
j,M,n.

Finally, given α ∈ (0,1), we define for each M ∈ Mn and for every j = 1, . . . ,m(M) the
confidence sets

CI(j),bin
1−α,M = β̂

(j)
M,n ±

√
σ̂ 2

j,M,nBα

(
min(k, n), k

)
,

with k = ∑
M∈Mn

m(M), and where Bα is defined as in (2.16).
These confidence intervals have the same basic structure as in Section 3.2, in the sense that

they use estimators σ̂ 2
j,M,n for the asymptotic variances that consistently overestimate their

respective target quantities and replace the usual Gaussian quantile by the correction constant
Bα(min(k, n), k) that adjusts for the effect of model selection. This leads to asymptotically
valid inference post-model-selection, as stated in the following theorem.

THEOREM 3.6. Let α ∈ (0,1) and τ ∈ (0,1/4), suppose Conditions X2 and H hold, and
let M̂n be a model selection procedure, that is, a map from the sample space {0,1}n to Mn.
Then

lim inf
n→∞ inf

Pn∈P(bin)
n (τ )

Pn

(
β

∗(j)

M̂n,n
∈ CI(j),bin

1−α,M̂n
∀j = 1, . . . ,m(M̂n)

) ≥ 1 − α.

REMARK 3.7. It is important to note that if one decides a priori to use only the canoni-
cal link function, which, in the present case of binary regression, corresponds to the logistic
response function h(c)(γ ) := eγ /(1 + eγ ), then Theorem 3.6 holds with the POSI-constant
Bα(min(k, n), k) decreased to Bα(min(k,p), k). See Corollary E.3 in Section E.7 of the Sup-
plementary Material (Bachoc, Preinerstorfer and Steinberger (2019)).

4. Simulation study. In this section, we present the main findings of an extensive simu-
lation study; see Section B of the Supplementary Material for details.

4.1. Comparison with Tibshirani et al. (2018) and with the naive intervals. We study
the setting of Section 3.1, where linear models are fit to homoskedastic data. Furthermore,
we address the well-specified case, where the true data generating process corresponds to
one of the candidate models. We consider observations of Yn = Xnβ + σu, where Xn is an
n × p matrix (which will be randomly generated in the simulations), β is a p × 1 vector, σ

is positive and u is an n × 1 vector with independent and identically distributed components
which is also independent of Xn. We consider the least angle regression (LAR) model selector
(Efron et al. (2004)) and compare the “POSI” confidence intervals of Section 3.1 with the
“TG” (truncated Gaussian) intervals developed in Tibshirani et al. (2018), and with “naive”
intervals that ignore the data driven model selection step. The TG intervals are specifically
tailored for the LAR model selector. The model M̂(k)

n consists of those variables that were
selected by running the LAR algorithm for k steps. This model selection setting has become
a benchmark for post-model-selection inference simulation studies (Tibshirani et al. (2016,
2018)). As in Tibshirani et al. (2018), we seek inference for the variable that is selected
in the final (kth) step of the LAR algorithm. More precisely, for k = 1,2,3, let M̂

(k)
n be

the set of the k selected variables. Let β∗
M̂(k)

n ,n
= (Xn[M̂(k)

n ]′Xn[M̂(k)
n ])−1Xn[M̂(k)

n ]′Xnβ (cf.

(3.2) with μn = Xnβ). Then, for the model selector k, the target of inference is the ĵk th
component of β∗

M̂(k)
n ,n

, corresponding to the variable added at step k of the LAR algorithm
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TABLE 1
Coverage proportion (cov.), median length (med.) and 90% quantile length (qua.) for the “POSI”, “TG” and
“naive” confidence intervals at nominal level 1 − α = 0.9. The design matrix is generated with independent

(upper half of the table) or correlated (lower half) columns. The errors u have normal (N), Laplace (L), uniform
(U) or skewed normal (SN) distributions. For each setting, the “POSI” (resp. “TG”, resp. “naive”) intervals

correspond to the first (resp. second, resp. third) row. The coverage proportions, median and quantile lengths are
given for each of the three targets for the three first steps of the LAR algorithm. The last column provides the

simultaneous coverage proportion of the three targets after step 3

Step 1 Step 2 Step 3 Simult.

u Cov. Med. Qua. Cov. Med. Qua. Cov. Med. Qua. Cov.

N 0.99 6.64 7.40 1.00 6.12 7.09 0.98 6.10 7.27 0.97
0.88 5.50 20.54 0.91 11.09 55.08 0.90 24.82 130.31 0.76
0.90 3.63 4.06 0.88 3.36 3.88 0.60 3.36 3.95 0.46

L 0.99 6.52 7.73 1.00 6.00 7.39 0.97 6.05 7.65 0.96
0.90 5.26 19.57 0.91 10.39 50.47 0.89 24.97 123.77 0.74
0.88 3.58 4.27 0.88 3.29 4.06 0.58 3.31 4.18 0.43

U 0.99 6.59 7.23 1.00 6.06 6.88 0.98 6.08 7.21 0.96
0.88 5.26 17.35 0.90 11.72 70.71 0.88 24.92 154.58 0.74
0.89 3.62 3.96 0.89 3.33 3.75 0.58 3.34 3.94 0.45

SN 1.00 6.53 7.52 0.98 5.98 7.11 0.98 5.99 7.23 0.96
0.90 5.24 25.65 0.88 11.35 57.75 0.89 23.41 153.79 0.73
0.90 3.59 4.13 0.87 3.30 3.90 0.57 3.31 3.94 0.44

N 0.99 6.50 7.39 1.00 8.31 13.27 1.00 11.32 16.87 0.99
0.90 8.38 36.72 0.88 65.69 401.53 0.88 107.03 683.69 0.73
0.71 3.31 3.78 0.82 4.24 6.81 0.83 5.77 8.55 0.49

L 0.98 6.36 7.65 1.00 8.24 13.04 1.00 11.12 16.50 0.98
0.89 7.42 41.62 0.90 52.19 344.65 0.91 99.07 625.88 0.76
0.69 3.25 3.90 0.84 4.18 6.73 0.82 5.66 8.42 0.49

U 0.98 6.48 7.04 1.00 8.22 12.75 1.00 11.23 16.73 0.98
0.89 7.52 38.75 0.89 52.25 309.02 0.91 95.25 652.63 0.77
0.71 3.30 3.60 0.83 4.19 6.46 0.82 5.73 8.53 0.49

SN 1.00 6.36 7.51 1.00 8.50 14.11 1.00 10.98 16.58 0.99
0.91 7.90 35.24 0.92 57.76 338.34 0.90 97.81 639.70 0.78
0.71 3.25 3.83 0.82 4.33 7.23 0.82 5.61 8.48 0.47

(ĵk ∈ M̂
(k)
n \ M̂

(k−1)
n with M̂

(0)
n = ∅). This target is discussed in Berk et al. (2013), Bachoc,

Leeb and Pötscher (2019) (in the general post-model-selection context) and in Tibshirani
et al. (2016). In particular, if the target is zero, then adding the regressor obtained from the
step k of the LAR procedure does not improve the approximation of the unknown mean Xnβ

(compared to the approximation obtained from the regressors from the k − 1 first steps of the
LAR procedure).

We set n = 50, p = 10, 1 − α = 0.9 and repeat N = 500 independent data generations,
model selections and confidence interval computations. The setup is the same as in Tibshirani
et al. (2018) (see Section B in the Supplementary Material for details). In Table 1, we report
the coverage proportions, the median lengths and the 90% quantiles of the lengths for each of
the nine procedures (“POSI”, “TG” and “naive” for k = 1,2,3), in different settings. We also
report the proportions of times where the three targets corresponding to the regressors se-
lected after step 3 of the LAR algorithm are simultaneously contained by the three respective
confidence intervals.

The “POSI” confidence intervals always have target-specific and simultaneous coverage
above the nominal level. The coverage proportions are large, which is so because these confi-
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dence intervals offer strong guarantees: they are valid for any model selection procedure, and
simultaneously over all the variables in the selected model. Turning to the “TG” confidence
intervals, we observe that these intervals have coverage probabilities approximately equal to
the nominal level when the three targets are considered separately, but their median lengths
are often larger and never much smaller than the lengths of the “POSI” intervals. Further-
more, the 90% quantiles are always larger for the “TG” intervals, for which they can be very
(and sometimes extremely) large. A theoretical explanation of this phenomenon was recently
given by Kivaranovic and Leeb (2018). In contrast, the confidence intervals suggested in this
paper are more robust, in the sense that their 90% quantile lengths are always less than twice
as large as their median lengths. Finally, the “naive” intervals always have the smallest length,
but can yield coverage proportions significantly below the nominal level. Hence, they are not
valid.

The numerical results of Table 1 seem to favor the “POSI” confidence intervals suggested
in this paper over the “TG” procedure. Indeed, we have seen that, even though the LAR
model selector is used, the “POSI” confidence intervals have larger coverage proportions,
remain valid when considered simultaneously, typically have smaller median lengths, and
never exhibit very large quantile lengths. On top of this, the “POSI” confidence intervals are
much more broadly applicable, as they have theoretical guarantees for any model selection
procedure.

One needs to mention here that Tibshirani et al. (2018) also discuss a bootstrap version of
their “TG” intervals. These bootstrap confidence intervals have similar coverage properties as
the “TG” intervals, but much smaller median width. Their width seems to be comparable to
the width of our “POSI” confidence intervals (cf. Tables 1 and 2 in Tibshirani et al. (2018)).
The discussion of advantages of the “POSI” method over the “TG” intervals of the preceding
paragraph (besides the comments concerning their smaller width) also applies to the “POSI”
method and the bootstrapped “TG” intervals. Furthermore, this suggests that our “POSI”
intervals could potentially be improved by using suitable bootstrap methods as well. However,
answering this question goes beyond the scope of the present article.

4.2. The case of ‘significance hunting’. In the same setting as above, we investigate a
different model selection procedure which we call “significance hunting” and which is closely
related to the SPAR procedure in Berk et al. (2013). We first sort all the possible candidate
models M ∈ Mn according to their penalized log-likelihood, and then select the model M̂ and
index ĵ that maximize the test statistics

∣∣β̂(j)
M,n

∣∣/
√

σ̂ 2
M,n

[(
Xn[M]′Xn[M])−1]

j ,

among the nbest models with largest penalized log-likelihood. The target of inference is now
the ĵ th coordinate of β∗

M̂,n
. We set n = 100, p = 5, 1 − α = 0.9 and consider two set-

tings for β . In the “zero” setting, we set β = (0, . . . ,0)′. In the “nonzero” setting, we set
β = (2,−1,0,0,1)′. We consider the values nbest = 5 and nbest = 20. The errors are normally
distributed. We consider the “POSI” and “naive” intervals (the “TG” ones are not designed
for this setting). In Table 2, the coverage proportions are significantly lower than in Table 1,
and closer to the nominal level for the “POSI” intervals. Hence, the confidence intervals sug-
gested in this paper may have conservative coverage proportions for some model selection
procedures (such as LAR) but this is somehow necessary, since there exist other model se-
lection procedures (such as “significance hunting”) for which the coverage proportions are
close to the nominal level. Also, in Table 2 the coverage proportions of the “naive” intervals
can become very small, even more so than in Table 1.
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TABLE 2
Coverage proportion (cov.), median lengths (med.) and 90% quantile lengths (qua.) of the “POSI” (P) and

“naive” (N) confidence intervals at level 1 − α = 0.9 for the “significance hunting” model selection procedure

Cov. Med. Qua.

nbest β P N P N P N

20 zero 0.88 0.50 4.99 3.34 5.83 3.85
nonzero 0.93 0.76 5.00 3.35 5.73 3.78

5 zero 0.92 0.59 4.87 3.25 5.35 3.55
nonzero 0.94 0.80 4.94 3.30 5.41 3.58

4.3. Further results. In Section B.1 of the Supplementary Material, we provide all the
details of the previous simulations as well as further discussions of the results. In Sec-
tion B.13, we also provide the results of an additional simulation study (for the LAR model
selector in linear regression) in the high-dimensional setting of Tibshirani et al. (2018)
(n = 50 and p = 1000). We find that the “POSI” and “TG” intervals remain valid, that the
length increase of the “POSI” intervals due to the high dimension is moderate, and that the
“POSI” intervals are shorter than the “TG” ones. The “naive” intervals fail dramatically in
this high-dimensional study.

In Section B.2 of the Supplementary Material, we also present simulations for the bi-
nary regression problem of Section 3.3, comparing our methods to a procedure suggested by
Taylor and Tibshirani (2018) and to naive intervals. Furthermore, we investigate the effect
of misspecification and we also consider the “significance hunting” procedure in the binary
regression case. The overall picture is similar to the results for the linear model, with the
additional aspect that the “POSI” intervals remain valid also under misspecification, whereas
the coverage probabilities of the methods of, for example, Taylor and Tibshirani (2018) can
be substantially below the nominal level.

5. Conclusion. We have presented a general theory for the construction of asymptoti-
cally valid confidence sets post-model-selection. Open questions that go beyond the scope
of this article, but are currently under investigation, include the extension of the approach
discussed here to dependent data; the applicability and performance of bootstrap procedures;
and the theoretical study of procedures in the spirit of Berk et al. (2013) in the challenging
situation when the number of models fit can grow with sample size.
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