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We present a novel binary convex reformulation of the sparse regression
problem that constitutes a new duality perspective. We devise a new cutting
plane method and provide evidence that it can solve to provable optimality the
sparse regression problem for sample sizes n and number of regressors p in
the 100,000s, that is, two orders of magnitude better than the current state of
the art, in seconds. The ability to solve the problem for very high dimensions
allows us to observe new phase transition phenomena. Contrary to traditional
complexity theory which suggests that the difficulty of a problem increases
with problem size, the sparse regression problem has the property that as the
number of samples n increases the problem becomes easier in that the solu-
tion recovers 100% of the true signal, and our approach solves the problem
extremely fast (in fact faster than Lasso), while for small number of sam-
ples n, our approach takes a larger amount of time to solve the problem, but
importantly the optimal solution provides a statistically more relevant regres-
sor. We argue that our exact sparse regression approach presents a superior
alternative over heuristic methods available at present.

1. Introduction. Given input data X = (x1, . . . , xn) ∈ Rn×p and response data Y =
(y1, . . . , yn) ∈ Rn, the problem of linear regression with a Tikhonov (1943) regularization
term and an explicit sparsity constraint is defined as

min
w

1

2γ
‖w‖2

2 + 1

2
‖Y − Xw‖2

2

s.t. ‖w‖0 ≤ k,

(1)

where γ > 0 is a given weight that controls the importance of the regularization term. The
number of regression coefficients needed to explain the observations from the input data is
limited to k by the �0-norm constraint on the regressor w. Tikhonov regularization helps to
reduce the effect of noise in the input data. Regularization and robustness are indeed known to
be intimately connected as shown for instance by Bertsimas and Fertis (2009), Xu, Caramanis
and Mannor (2009). Evidently in practice, both the sparsity parameter k and the Tikhonov
regularization term γ must ultimately be determined from the data. Cross validation has in
practice been empirically found to be an effective method to determine both hyperparameters.

Background. Problem (1) is a discrete optimization problem, which belongs to the class
of NP -hard problems. Motivated by the apparent difficulty of the sparse regression formula-
tion (1), much of the literature until recently has largely ignored the exact discrete formula-
tion and rather focused on heuristic approaches. Historically, the first heuristics methods for
sparse approximation seem to have arisen in the signal processing community (cf. the work of
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Mallat and Zhang (1993) and references therein) and typically are of an iterative thresholding
type. More recently, one popular class of sparse regression heuristics solve convex surrogates
to the sparse regression formulation (1). There is an elegant theory for such schemes promis-
ing large improvements over the more myopic iterative thresholding methods. Indeed, a truly
impressive amount of high-quality work Bühlmann and van de Geer (2011), Hastie, Tibshi-
rani and Wainwright (2015), Wainwright (2009) has been written on characterizing when
exact solutions can be recovered, albeit through making strong assumptions on the data.

One such heuristic based on a convex proxy related to our formulation and particularly
worthy of mention is the Elastic Net developed by Zou and Hastie (2005). One partic-
ular canonical form of the Elastic Net heuristic solves the proxy convex optimization
problem

min
w

1

2γ
‖w‖2

2 + 1

2
‖Y − Xw‖2

2

s.t. ‖w‖1 ≤ λ,

(2)

where the �1-norm constraint shrinks the regressor coefficients toward zero thus encouraging
sparse regressors for λ tending to zero. When disregarding the Tikhonov regularization term,
the popular Lasso heuristic introduced by Tibshirani (1996) is recovered. An important
factor in favor of heuristics such as Lasso and Elastic Net are their computational
feasibility and scalability. Indeed, problem (2) can be solved efficiently and mature software
implementations such as GLMNet by Friedman, Hastie and Tibshirani (2013) are available.

Despite all of the aforementioned positive properties, proxy based methods such as Lasso
and Elastic Net do have several innate shortcomings. These shortcomings are well
known in the statistical community, too. First and foremost, as argued in Bertsimas, King and
Mazumder (2016) they do not recover the sparsity pattern very well. Furthermore, the Lasso
leads to biased regression regressors, since the �1-norm penalizes both large and small coef-
ficients uniformly. In sharp contrast, the �0-norm sparsifies the regressor without conflating
the effort with unwanted shrinking. Second, Zhang, Wainright and Jordan (2014) show that
under widely believed complexity assumptions, the minimax prediction risk achieved by any
polynomial time algorithm is strictly larger than that achieved by an optimal exact algorithm
like the one derived in the current paper. This gives theoretical justification to a line of re-
search focused on nonpolynomial algorithms such as replacing the �1 norm in the Lasso
formulation by nonconvex sparsity-inducing penalties such as smoothly clipped absolute de-
viation (SCAD) (Fan and Li (2001)) and minimax concave penalty (MCP) (Zhang (2010)).
These methods lead to high accuracy and improved false alarm rates. However, the methods
of the current paper have higher scalability, equal accuracy and near optimal false alarm rates;
see Bertsimas, Pauphilet and Van Parys (2019) for a comprehensive review.

For a few decades the exercise of trying to solve the sparse regression problem (1) at a prac-
tical scale was branded hopeless. Bixby (2012) noted however that in the last 25 years the
computational power of Mixed Integer Optimization (MIO) solvers has increased at an aston-
ishing rate. Riding on the explosive improvement of MIO formulations, Bertsimas, King and
Mazumder (2016) achieved to solve the sparse regression problem (1) for problem instances
of dimensions n, p in the 1000s. Using a big-M formulation of the cardinality constraint, the
sparse regression problem (1) can indeed be transformed into the MIO problem

min
1

2γ
‖w‖2

2 + 1

2
‖Y − Xw‖2

2

s.t. w ∈ Rp, s ∈ Sp
k

−Msj ≤ wj ≤Msj , ∀j ∈ [p].

(3)
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With the help of the binary set Sp
k := {s ∈ {0,1}p : 1�s ≤ k}, the constraint in (3) ensures that

the regression coefficient wj is nonzero only if the selection variable sj = 1 for a sufficiently
large constant M. The constant M must be estimated from data as outlined in Bertsimas,
King and Mazumder (2016) to ensure the equivalence between the sparse regression problem
(1) and its MIO formulation (3). This MIO approach is significantly more scalable than the
leaps and bounds algorithm outlined in Furnival and Wilson (2000), largely because of the ad-
vances in computer hardware, the improvements in MIO solvers, and the specific warm-start
techniques developed by Bertsimas, King and Mazumder (2016). Even so, many problems of
practical size are still far beyond the scale made tractable through this approach.

A scalable perspective. Although a direct big-M formulation of the sparse regression
problem results in a well-posed MIO problem, the constant M needs to be chosen with care
as not to impede its numerical solution. The choice of this data dependent constant M indeed
affects the strength of the MIO formulation (3) and is critical for obtaining solutions quickly
in practice. Furthermore, as the regression dimension p grows, explicitly constructing the
MIO problem (3), let alone solving it, becomes burdensome. In order to develop an exact
scalable method to the sparse regression problem (1) capable of solving problem instances
of sample size n and regressor dimension in the 100,000s, a different perspective on sparse
regression is needed.

The big-M formulation (3) of the sparse linear regression problem (1) takes on a primal
perspective to regression. Like most exact as well as heuristic sparse regression formulations,
the big-M formulation (3) indeed tries to solve for the optimal regression coefficients w�

0 in
(1) directly. However, it is well known in the kernel learning community that often far deeper
results can be obtained if a dual perspective is taken. We show that this dual perspective can
be translated to a sparse regression context as well and offers a novel road to approach exact
sparse regression. Taking this new perspective, sparse regression problem (1) can be reduced
to a pure integer convex optimization problem avoiding the construction of any auxiliary
constants.

Crucially, a tailored cutting plane algorithm for the resulting Convex Integer Optimization
(CIO) problem renders solving the sparse regression problem (1) to optimality tractable for
problem instances with number of samples and regressors in the 100,000s. That is two orders
of magnitude better than the current state of art and impeaches the primary selling point of
heuristic approaches such as Elastic Net or Lasso. As we will discuss subsequently,
our cutting plane algorithm is often comparable or indeed even faster than the aforementioned
convex proxy heuristic approaches.

Phase transitions. Let the data come from Y = Xwtrue + E where E is zero mean noise
uncorrelated with the signal Xwtrue, then we define the accuracy and false alarm rate of a
certain solution w� in recovering the correct support as

A% := 100 × | supp(wtrue) ∩ supp(w�)|
k

and

F% := 100 × | supp(w�) \ supp(wtrue)|
| supp(w�)| .

Perfect support recovery occurs only then when w� tells the whole truth (A% = 100) and
nothing but the truth (F% = 0).

The ability to recover the support of the ground truth wtrue of the Lasso heuristic (2)
for some value of λ was shown by Donoho and Tanner (2009) to experience a phase transi-
tion. The phase transition described by Donoho and Tanner (2009) concerns the ability of the
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Lasso solution w�
1 to coincide in support with the ground truth wtrue. This accuracy phase

transition for the Lasso has been extensively studied in Bühlmann and van de Geer (2011),
Hastie, Tibshirani and Wainwright (2015), Wainwright (2009) and is considered well under-
stood by now. That being said, the assumptions made on the data needed for a theoretical
justification of such phase transition are quite stringent and often of limited practical nature.
For instance, Wainwright (2009) showed that for observations Y and independent Gaussian
input data X a phase transition occurs at the phase transition curve

(4) n1 = (
2k + σ 2)

log(p − k),

where σ presents the noise level corrupting the observations. In the regime n > n1, exact
recovery of the support occurs with high-probability, while on the other side of the transition
curve, the probability for successful recovery drops to zero. Nonetheless, this phase transition
from accurate discovery to statistical meaninglessness has been widely observed empirically
Donoho abd Stodden (2006), Donoho and Tanner (2009) even under conditions in which
these assumptions are severely violated.

For exact sparse regression (1) a similar phase transition has been observed by Zheng
et al. (2015) and Wang, Xu and Tang (2011), although this transition is far less studied from
a theoretical perspective than the similar transition for its heuristic counterpart. It is however
known that the accuracy phase transition for exact sparse regression must occur even sooner
than that of any heuristic approach. That is, exact sparse regression (1) yields statistically
more meaningful optima than for instance the convex Lasso heuristic (2) does. Recently,
Gamarnik and Zadik (2017), motivated by the results of the present paper, showed that when
the regression coefficients are binary, a phase transition occurs at

(5) n0 = 2k logp/ log
(

2k

σ 2 + 1
)
.

Empirical verification of this phase transition was historically hindered due to the lack of
exact scalable algorithms. Our novel cutting plane algorithm lifts this hurdle and opens the
way to show the benefits of exact sparse regression empirically.

More importantly, we present both theoretical justification and strong empirical evidence
that a computational phase transition occurs as well. Specifically, there is a phase transition
concerning our ability to solve the sparse regression problem (1) efficiently. In other words,
there is a phase transition in our ability to recover the true coefficients of the sparse regres-
sion problem and most surprisingly in our ability to find them fast. This complexity phase
transition does not seem to be reported before and sheds a new light on the complexity of
sparse linear regression. Contrary to traditional complexity theory which suggests that the
difficulty of a problem increases with size, the sparse regression problem (1) has the property
that for a small number of samples n < nt , our approach takes a large amount of time to solve
the problem. However, for a large number of samples n > nt , our approach solves the prob-
lem extremely fast and perfectly recovers the support of the true regressor wtrue fully. The
complexity phase transition occurs between the theoretically minimum amount of samples
n0 < nt needed by exact sparse regression, there remains some hardness to the problem after
all, but occurs crucially before nt < n1 the Lasso heuristic provides statically meaningful
regressors.

Lastly, recall that the accuracy phase transition (4) for Lasso and its counterpart (5) for
exact sparse regression are applicable only then when the true sparsity k is known. Evidently
in practice, the sparsity parameter k must ultimately be determined from the data. Most com-
monly, this is done using cross validation. Incorrect determination of this parameter most of-
ten leads to elevated false alarm rates. Crucially, we show that in this regard only exact sparse
regression experiences a phase transitions in its ability to select only the relevant features.
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Lasso always seems to favor adding irrelevant features in an attempt to improve its prediction
performance. We will show that exact regression is significantly better than Lasso in dis-
covering all true relevant features (A% = 100), while truly outperforming its ability to reject
the obfuscating ones (F% = 0).

Contributions and structure.

1. In Section 2, we propose a novel binary convex reformulation of the sparse regression
problem (1) that represents a new dual perspective to the problem. The reformulation does
not use the big-M constant present in the primal formulation (3). In Section 3, we devise
a novel cutting plane method and provide evidence that it can solve the sparse regression
problem for sizes of n and p in the 100,000s. That is two orders of magnitude than what was
achieved in Bertsimas, King and Mazumder (2016). The empirical computational results in
this paper do away with the long held belief that exact sparse regression for practical problem
sizes is a lost cause.

2. The ability to solve the sparse regression problem (1) for very high-dimensional prob-
lems allows us to observe properties of the problem that demonstrate new phase transition
phenomena. Specifically, we demonstrate experimentally in Section 4 that there is a thresh-
old nt such that if n ≥ nt , then w�

0 recovers the true support (A% = 100 for F% = 0) and
the time to solve problem (1) is seconds (for n and p in 100,000s) and it only grows only
linear in n. Remarkably, these times are less than the time to solve Lasso for similar sizes.
Moreover, if n < nt , then the time to solve problem (1) grows proportional to

(p
k

)
. In other

words, there is a phase transition in our ability to recover the true coefficients of the sparse
regression problem and most surprisingly in our ability to solve it. Contrary to traditional
complexity theory that suggests that the difficulty of a problem increases with dimension,
the sparse regression problem (1) has the property that for small number of samples n, our
approach takes a large amount of time to solve the problem, but most importantly the optimal
solution does not recover the true signal. However, for a large number of samples n, our ap-
proach solves the problem extremely fast and recovers A% = 100 of the support of the true
regressor wtrue. Significantly, the threshold nt for the phase transition for full recovery of ex-
act sparse regression is significantly smaller than the corresponding threshold n1 for Lasso.
Whereas Lasso tends to furthermore include many irrelevant features as well, exact sparse
regression furthermore achieves this full recovery at almost F% = 0 false alarm rate.

3. We are able to generalize in Section 5 our approach to sparse kernel regression. We
believe that this nonlinear approach can become a fierce and more disciplined competitor
compared to “black box” approaches such as neural networks.

Notation. Denote with [n] the set of integers ranging from one to n. The set Sp
k denotes

the set

Sp
k := {

s ∈ {0,1}p : 1�s ≤ k
}
,

which contains all binary vectors s selecting k components from p possibilities. Assume
that (y1, . . . , yp) is a collection of elements and suppose that s is an element of Sp

k , then ys

denotes the subcollection of yj where sj = 1. We use ‖x‖0 to denote the number of elements
of a vector x in Rp which are nonzero. Similarly, we use supp(x) = {s ∈ {0,1}p : si = 1 ⇐⇒
xi �= 0} to denote those indices of a vector x which are nonzero. Finally, we denote by Sn+
(Sn++) the cone of n × n positive semidefinite (definite) matrices.
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2. A convex binary reformulation of sparse linear regression. Sparse regression taken
at face value is recognized as a mixed continuous and discrete optimization problem. Indeed,
the sparse regressor w as an optimization variable in (1) takes values in a continuous subset
of Rp . The �0-norm sparsity constraint, however, adds a discrete element to the problem. The
support s of the sparse regressor w is discrete as it takes values in the binary set Sp

k = {s ∈
{0,1}p : 1�s ≤ k}. It should not come as a surprise then that the reformulation (3) developed
by Bertsimas, King and Mazumder (2016) formulates the sparse regression problem as a MIO
problem.

For the reasons outlined in the Introduction of this paper, we take a different approach to
the sparse regression problem (1) entirely. To that end, we first briefly return to the ordinary
regression problem for which any sparsity considerations are ignored and in which a linear
relationship between input data X and observations Y is determined through solving the least
squares regression problem

c := min
1

2γ
‖w‖2

2 + 1

2
‖Y − Xw‖2

2

s.t. w ∈ Rp.

(6)

We will refer to the previously defined quantity c as the regression loss. The quantity c does
indeed agree with the regularized empirical regression loss for the optimal linear regressor
corresponding to the input data X and response Y . We point out now that the regression loss
function c is convex as a function of the outer product XX�, and furthermore, show that it
admits an explicit characterization as a semidefinite representable function.

LEMMA 1 (The regression loss function c). The regression loss c admits the following
explicit characterizations:

c = 1

2
Y�(

In − X
(
Ip/γ + X�X

)−1
X�)

Y(7)

= 1

2
Y�(

In + γXX�)−1
Y.(8)

Furthermore, the regression loss c as a function of the kernel matrix XX� is conic repre-
sentable using the formulation

c
(
XX�) = min

{
η ∈ R+ :

(
2η Y�
Y In + γXX�

)
∈ Sn+1+

}
.(9)

PROOF. As the minimization problem (6) over w in Rp is an unconstrained Quadratic
Optimization Problem (QOP), the optimal value w� satisfies the linear relationship (Ip/γ +
X�X)w� = X�Y . Substituting the expression for the optimal linear regressor w� back into
optimization problem, we arrive at

c = 1

2
Y�Y − 1

2
Y�X

(
Ip/γ + X�X

)−1
X�Y

establishing the first explicit characterization (7) of the regression function c. The second
characterization (8) can be derived from the first with the help of the matrix inversion lemma
found in Hager (1989) stating the identity

(
In + γXX�)−1 = In − X

(
Ip/γ + X�X

)−1
X�.
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The Schur complement condition discussed at length in Zhang (2006) guarantees that as
In + γXX� is strictly positive definite, we have the equivalence

2η ≥ Y�(
In + γXX�)−1

Y ⇐⇒
(

2η Y�
Y In + γXX�

)
∈ Sn+1+ .

Representation (9) is thus an immediate consequence of expression (8) as well. �

We next establish that the sparse regression problem (1) can in fact be represented as a
pure binary optimization problem. The following result provides a novel perspective on the
sparse regression problem (1) and is of central importance in the paper.

THEOREM 1 (Sparse linear regression). The sparse regression problem (1) can be refor-
mulated as the nonlinear optimization problem

min
1

2
Y�

(
In + γ

∑
j∈[p]

sjKj

)−1
Y

s.t. s ∈ Sp
k ,

(10)

where the micro kernel matrices Kj in Sn+ are defined as the dyadic products

(11) Kj := XjX
�
j .

PROOF. We start the proof by separating the optimization variable w in the sparse re-
gression problem (1) into its support s := suppw and the corresponding nonzero entries ws .
Evidently, we can now write the sparse regression problem (1) as the bilevel minimization
problem

(12) min
s∈Sp

k

[
min

ws∈Rk

1

2γ
‖ws‖2

2 + 1

2
‖Y − Xsws‖2

2

]
.

It now remains to be shown that the inner minimum can be found explicitly as the objective
function of the optimization problem (10). Using Lemma 1, the minimization problem can
be reduced to the binary minimization problem mins{c(XsX

�
s ) : s ∈ Sp

k }. We finally remark
that the outer product can be decomposed as the sum

XsX
�
s = ∑

j∈[p]
sjXjX

�
j ,

thereby completing the proof. �

An alternative to the sparse regression problem (1) is to consider the penalized form of the
sparse regression problem:

min
w∈Rp

1

2
‖Y − Xw‖2

2 + 1

2γ
‖w‖2

2 + λ‖w‖0,(13)

in which the �0-norm constraint is migrated to the objective function. Analogously to The-
orem 1, we can show that problem (13) can be reformulated as the nonlinear optimization
problem

min
1

2
Y�

(
In + γ

∑
j∈[p]

sjKj

)−1
Y + λ · 1�s

s.t. s ∈ {0,1}p.
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While we do not need to prespecify k in problem (13), we need to specify the penalty λ

instead.
The optimization problem (10) is a pure binary formulation of the sparse regression prob-

lem directly over the support s instead of the regressor w itself. As the objective function
in (10) is convex in the vector s, problem (10) casts the sparse regression problem as a CIO
problem. Nevertheless, we will never explicitly construct the CIO formulation as such and
rather develop in Section 3 an efficient cutting plane algorithm. We finally discuss here how
the sparse regression formulation in Theorem 1 is related to kernel regression and admits an
interesting dual relaxation.

2.1. The kernel connection. In ordinary linear regression, a linear relationship between
input data X and observations Y is determined through solving the least squares regression
problem (6). The previous optimization problem is known as Ridge regression as well and
balances the least-squares prediction error with a Tikhonov regularization term. One can solve
the Ridge regression problem in the primal space—the space of parameters w—directly.
Ridge regression is indeed easily recognized to be a convex QOP. Ordinary linear regres-
sion problems can thus be formulated as QOPs of size linear in the number of regression
coefficients p.

Correspondingly, the big-M formulation (3) can be regarded as a primal perspective on the
sparse regression problem (1). Formulation (3) indeed attempts to solve the sparse regression
problem in the primal space of parameters w directly.

However, it is well known in the kernel learning community that far deeper results can
be obtained if one approaches regression problems from its convex dual perspective due to
Vapnik (1998). Indeed, in most of the linear regression literature the dual perspective is often
preferred over its primal counterpart. We state here the central result in this context to make
the exposition self-contained.

THEOREM 2 (Vapnik (1998)). The primal regression problem (6) can equivalently be
formulated as the unconstrained maximization problem

c = max −γ

2
α�Kα − 1

2
α�α + Y�α

s.t. α ∈ Rn,

(14)

where the kernel matrix K = XX� in Sn+ is a positive semidefinite matrix.

The dual optimization problem (14) is a convex QOP as well and, surprisingly, scales
only with the number of samples n and is insensitive to the input dimension p. This last
surprising observation is what gives the dual perspective its historical dominance over its
primal counterpart in the context of kernelized regression discussed in Schölkopf and Smola
(2002). When working with high-dimensional data for which the number of inputs p is vastly
bigger than the number of samples n, the dual optimization problem (14) is smaller and often
easier to solve.

For any i and j , the kernel matrix entry K(i, j) corresponds to the inner product between
input samples xi and xj in Rp . The matrix K is usually referred to as the kernel matrix or
Gram matrix and is always positive definite and symmetric. Since the kernel specifies the
inner products between all pairs of sample points in X, it completely determines the relative
positions of those points in the embedding space.

Our CIO formulation (10) of the sparse optimization problem (1) can be seen to take a dual
perspective on the sparse regression problem (1). That is, our novel optimization formulation
(10) is recognized as a subset selection problem in the space of kernels instead of regressors. It
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can indeed be remarked that when the sparsity constraint is omitted the kernel matrix reduces
to the standard kernel matrix

K = ∑
j∈[p]

XjX
�
j = XX�.

2.2. A second-order cone relaxation. Many heuristics approach the sparse regression
problem (1) through a continuous relaxation. Indeed, a continuous relaxation of the big-
M formulation (3) of the sparse regression problem is immediately recognized as the convex
QOP

min
w

1

2γ
‖w‖2

2 + 1

2
‖Y − Xw‖2

2

s.t. ‖w‖∞ ≤ M,‖w‖1 ≤ Mk

(15)

which Bertsimas, King and Mazumder (2016) recognized as a slightly stronger relaxation
than the Elastic Net (2). It thus makes sense to look at the continuous relaxation of
the sparse kernel optimization problem (10) as well. Note that both the big-M (15) and
Elastic Net (2) relaxation provide lower bounds to the exact sparse regression problem
(1) in terms of a QOP. However, neither of these relaxations are very tight. In Theorem 3,
we will indicate that a more intuitive and comprehensive lower bound based on our CIO
formulation (10) can be stated as a Second-Order Cone Problem (SOCP).

A naive attempt to state a continuous relaxation of the CIO formulation (10) in which
we would replace the binary set Sp

k with its convex hull would result in a large but convex
Semidefinite Optimization (SDO) problem. Indeed, the convex hull of the set Sp

k is the convex
polytope {s ∈ [0,1]p : 1�s ≤ k}. It is, however, folklore that large SDOs are notoriously
difficult to solve in practice. For this reason, we reformulate here the continuous relaxation
of (10) as a small SOCP for which very efficient solvers do exist. This continuous relaxation
provides furthermore some additional insight toward the binary formulation of the sparse
regression problem (1).

Using Theorem 2, we can equate the continuous relaxation of problem (10) to the follow-
ing saddle point problem:

(16) min
s∈conv(Sp

k )
max
α∈Rn

L(s,α) := −γ

2

∑
j∈[p]

sj · [
α�Kjα

] − 1

2
α�α + Y�α.

Note that the saddle point function L is linear in s for any fixed α and concave continuous in
α for any fixed s in the compact set conv(Sp

k ). It then follows (see Sion (1958)) that we can
exchange the minimum and maximum operators. By doing so, the continuous relaxation of
our CIO problem satisfies

min
s∈conv(Sp

k )
c

( ∑
j∈[p]

sjKj

)

= max
α∈Rn

−1

2
α�α + Y�α − γ

2
max

s∈conv(Sp
k )

∑
j∈[p]

sj · α�Kjα.(17)

The inner maximization problem admits an explicit representation as the sum of the k-largest
components in the vector with components α�Kjα ranging over j in [p]. It is thus worth
noting that this continuous relaxation has a discrete element to it. The continuous relaxation
of the MIO problem (10) can furthermore be written down as a tractable SOCP.
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THEOREM 3. The continuous relaxation of the sparse kernel regression problem (10)
can be reduced to the following SOCP:

min
s∈conv(Sp

k )
c

( ∑
j∈[p]

sjKj

)
= max −1

2
α�α + Y�α − 1�u − kt

s.t. α ∈ Rn, t ∈ R, u ∈ Rp
+,

2

γ
uj ≥ α�Kjα − 2

γ
t, ∀j ∈ [p].

(18)

PROOF. The continuous relaxation of the optimization problem (10) was already iden-
tified as the optimization problem (17). We momentarily focus on the inner maximization
problem in (17) and show it admits a closed-form expression. As the only constraint on the
(continuous) selection vector s is a knapsack constraint, the inner maximum is nothing but
the sum of the k-largest terms in the objective. Hence, we have

max
s∈conv(Sp

k )

∑
j∈[p]

sj · α�Kjα = max[k]
([

α�K1α, . . . , α�Kpα
])

,

where max[k] is defined as the convex function mapping its argument to the sum of its k-
largest components. Using standard linear optimization duality we have

max[k] (x) = max x�s = min kt + 1�u

s.t. s ∈ Rp
+ s.t. t ∈ R, u ∈ Rp

+
s ≤ 1,1�s = k uj ≥ xj − t,∀j ∈ [p],

where t and u are the dual variables corresponding to the constraints in the maximization
characterization of the function max[k]. Making use of the dual characterization of max[k] in
expression (17) gives us the desired result. �

COROLLARY 1 (Optimality conditions). The optimality of s�
1 and α�

1 in the continuous
relaxation in (17) is equivalent to the system of optimality conditions

s�
1 ∈ arg max

s∈conv(Sp
k )

∑
j∈[p]

sjα
��
1 Kjα

�
1, α

�
1 =

(
In + γ

∑
j∈[p]

s�
1,jKj

)−1
Y.

PROOF. A primal and dual optimal solution s�
1 and α�

1 satisfy the chain d(α�
1) =

mins∈conv(Sp
k ) L(s,α�

1) ≤ L(s�
1, α

�
1) ≤ maxα∈Rn L(α, s�

1) = c(s�
1) of inequalities. The re-

sult in Theorem 3 establishes d(α�
1) = c(s�

1) and hence the previous chain holds with
equalities. The equality L(s�

1, α
�
1) = maxα∈Rn L(α, s�

1) implies the second condition α�
1 ∈

arg maxα∈Rn L(α, s�
1) ⇐⇒α�

1 = (In+γ
∑

j∈[p] s�
1,jKj )

−1Y . L(s�
1, α�

1) = mins∈conv(Sp
k ) L(α�

1,

s) implies the theorem as the first stated condition is an immediate result of s�
1 ∈

arg mins∈conv(Sp
k ) L(s,α�

1) ⇐⇒ s�
1 ∈ arg maxs∈conv(Sp

k ) α
��
1 Kjα

�
1sj . �

The continuous relaxation (18) of the sparse regression problem (1) discussed in this sec-
tion is thus recognized as selecting the k-largest terms α�Kjα to construct the optimal dual
lower bound. We shall find that the dual offers an excellent warm start when attempting to
solve the sparse linear regression problem exactly. Furthermore, we will prove in Theorem 5
that our continuous relaxation is exact s�

1 = s�
0 with high probability when n ≥ n1.
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3. A cutting plane algorithm. We have formulated the sparse regression problem (1)
as a pure binary convex optimization problem in Theorem 1. Unfortunately, no commercial
solvers are available which are targeted to solve CIO problems of the type (10). In this section,
we discuss a tailored solver largely based on the algorithm described by Duran and Gross-
mann (1986). The algorithm is a cutting plane approach which iteratively solves increasingly
better MIO approximations to the CIO formulation (10). Furthermore, the cutting plane algo-
rithm avoids constructing the CIO formulation (10) explicitly which can prove burdensome
when working with high-dimensional data. We provide numerical evidence in Section 4 that
the algorithm described here is indeed extremely efficient.

3.1. Outer approximation algorithm. In order to solve the CIO problem (10), we follow
the outer approximation approach introduced by Duran and Grossmann (1986). The algo-
rithm described by Duran and Grossmann (1986) proceeds to find a solution to the CIO
problem (10) by constructing a sequence of MIO approximations based on cutting planes.
In pseudocode, it can be seen to construct a piece-wise affine lower bound to the convex
regression loss function c defined in equation (9).

At each iteration, the cutting plane added η ≥ c(st ) + ∇c(st )
�(s − st ) cuts off the current

binary solution st unless it happened to be optimal in (10). As the algorithm progresses, the
outer approximation function ct thus constructed

ct (s) := max
i∈[t] c(si) + ∇c(si)

�(s − si)

becomes an increasingly better approximation to the regression loss function c of interest.
Unless the current binary solution st is optimal, a new cutting plane will refine the feasible
region of the problem by cutting off the current feasible binary solution.

THEOREM 4 (Cutting plane method). The procedure described in Algorithm 1 terminates
after a finite number of cutting planes and returns the exact sparse regression solution w�

0 of
(1).

Despite the previous encouraging corollary of a result found in Fletcher and Leyffer
(1994), it nevertheless remains the case that from a theoretical point of view exponentially
many cutting planes need to be computed in the worst-case, potentially rendering our ap-
proach impractical. Furthermore, at each iteration a MIO problem needs to be solved. This
can be done by constructing a branch-and-bound tree (cf. Lawler and Wood (1966)), which
itself requires a potential exponential number of leaves to be explored. This complexity be-
havior is however to be expected as exact sparse regression is known to be an NP -hard

Algorithm 1: The outer approximation process

input : Y ∈ Rn, X ∈ Rn×p and k ∈ [1,p]
output: s�

0 ∈ Sp
k and w�

0 ∈ Rp

s1 ← warm start
η1 ← 0
t ← 1
while ηt < c(st ) do

st+1, ηt+1 ← arg mins,η{η ∈ R+s.t.s ∈ Sp
k , η ≥ c(si) + ∇c(si)

�(s − si),∀i ∈ [t]}
t ← t + 1

s�
0 ← st

w�
0 ← 0, w�

s�
0
← (Ik/γ + X�

s�
0
Xs�

0
)−1X�

s�
0
Y
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problem. Surprisingly, the empirical timing results presented in Section 4 suggests that the
situation is much more interesting than what complexity theory might suggest. In what re-
mains of this section, we briefly discuss three techniques to carry out the outer approximation
algorithm more efficiently than a naive implementation would.

In general, outer approximation methods are known as “multitree” methods because every
time a cutting plane is added, a slightly different MIO problem is to be solved anew by
constructing a branch-and-bound tree. Consecutive MIOs in Algorithm 1 differ only in one
additional cutting plane. Over the course of our iterative cutting plane algorithm, a naive
implementation would require that multiple branch and bound trees are built in order to solve
the successive MIO problems. We implement a “single tree” way of solving the iteration
Algorithm 1 by using dynamic constraint generation, known in the optimization literature as
either a lazy constraint or column generation method. Lazy constraint formulations described
in Barnhart et al. (1998) dynamically add cutting planes to the model whenever a binary
feasible solution is found. This saves the rework of rebuilding a new branch-and-bound tree
every time a new binary solution is found in Algorithm 1. Lazy constraint callbacks are a
relatively new type of callback. To date, the only commercial solvers which provide lazy
constraint callback functionality are CPLEX, Gurobi and GLPK.

In what follows, we discuss two additional tailored adjustments to the general outer ap-
proximation method which render the overall method more efficient. The first concerns an
efficient way to evaluate both the regression loss function c and its subgradient ∇c efficiently.
The second discusses a heuristic to compute a warm start s1 to ensure that the first cutting
plane added is of high quality, causing the outer approximation algorithm to converge more
quickly.

3.2. Efficient dynamic constraint generation. In the outer approximation method consid-
ered in this document to solve the CIO problem (10) linear constraints of the type

(19) η ≥ c(s̄) + ∇c(s̄)�(s − s̄)

at s̄ a given iterate, are considered as cutting planes at every iteration. As such constraints
need to be added dynamically, it is essential that we can evaluate both the regression loss
function c and its subgradient components efficiently.

LEMMA 2 (Derivatives of the optimal regression loss c). Suppose the kernel matrix K is
differentiable function of the parameter s. Then we have that the gradient of the regression
loss function c(K) = 1

2α�(K)�Y can be stated as

∇c(s) = −α�(K)� · γ

2

dK

ds
· α�(K),

where α�(K) maximizes (14), and hence is the solution to the linear system

α�(K) = (In + γK)−1Y.

We note that the naive numerical evaluation of the convex loss function c or any of its sub-
gradients would require the inversion of the regularized kernel matrix In + γ

∑
j∈[p] s̄jKj .

The regularized kernel matrix is dense in general and always of full rank. Unfortunately,
matrix inversion of general matrices presents work in the order of O(n3) floating point op-
erations and quickly becomes excessive for sample sizes n in the order of a few 1000s. Bear
in mind that such an inversion needs to take place for each cutting plane added in the outer
approximation Algorithm 1.

It would thus appear that computation of the regression loss c based on its explicit char-
acterization (8) is very demanding. Fortunately, the first explicit characterization (7) can be
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Algorithm 2: Regression function and subgradients

input : Y ∈ Rn, X ∈ Rn×p , s ∈ Sp
k and γ ∈ R++

output: c ∈ R+ and ∇c ∈ Rp

α� ← Y − Xs(Ik/γ + X�
s Xs)

−1X�
s Y

c ← 1
2Y�α�

for j in [p] do
∇cj ← −γ

2 (X�
j α�)2

used to bring down the work necessary to O(k3 + nk) floating point operations as we will
show now. Comparing equalities (7) and (8) results immediately in the identity

(20) α�

( ∑
j∈[p]

sjKj

)
= (

In − Xs

(
Ik/γ + X�

s Xs

)−1
Xs

)
Y.

The same result can also be obtained by applying the matrix inversion lemma stated in Hager
(1989) to the regularized kernel matrix by noting that the micro kernels Kj are rank one
dyadic products. The main advantage of the previous formula is the fact that it merely requires
the inverse of the much smaller capacitance matrix C := Ik/γ +X�

s Xs in Sk++ instead of the
dense full rank regularized kernel matrix in Sn++.

Using expression (20), both the regression loss function c and any of its subgradients can
be evaluated using O(k3 + nk) instead of O(n3) floating point operations. When the number
of samples n is significantly larger than k, the matrix inversion lemma provides a significant
edge over a vanilla matrix inversion. We note that from a statistical perspective this always
must be the case if there is any hope that sparse regression might yield statistically meaningful
results.

Pseudocode implementing the ideas discussed in this section is provided in Algorithm 2.

3.3. Efficient warm starts. Regardless of the initial selection s1, the outer approximation
Algorithm 1 will eventually return the optimal subset solution s�

0 to the sparse regression
formulation in Theorem 1. Nevertheless, to improve computational speed in practice it is
often desirable to start with a high-quality warm start rather than any arbitrary feasible point
in Sp

k .
As already briefly hinted upon, a high-quality warm start can be obtained by solving a

continuous relaxation. More specifically, we take as warm start to the outer approximation
algorithm the optimal solution s�

1 to the relaxed problem (18). An advantage of this formula-
tion is that its quality can be easily verified.

PROPOSITION 1. We have the following implication:

s�
1 ∈ SP

k =⇒ Alg.1 stops at c(s2) = c
(
s�

1
) = c

(
s�

0
)
.

PROOF. Evidently, c(s�
1) ≤ c(s) for all s ∈ Sp

k . Hence, s�
1 ∈ Sp

k implies immediately that
c(s�

1) = c(s�
0). Corollary 1 implies the existence of α�

1 = α�(
∑

j s�
1,jKj ) so that

s�
1 ∈ arg max

s∈Sp
k

∑
j∈[p]

sj · α��
1 Kjα

��
1 = arg min

s∈Sp
k

c
(
s�

1
) + ∇c

(
s�

1
)�(

s − s�
1
)
.

Thus, η2 = c(s�
1) terminating the algorithm at c(s2) = c(s�

1). �

This implies that the globalizing outer approximation Algorithm 1 only needs one cutting
plane to prove the optimality of the relaxed solution s�

1 = s� when it is exact.
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4. Scalability and phase transitions. To evaluate the effectiveness of the cutting plane
algorithm developed in Section 3, we report its ability to recover the correct regressors as
well as its running time. In this section, we present empirical evidence on two critically
important observations. The first observation is that our cutting plane algorithm scales to
provable optimality in seconds for large regression problems with n and p in the 100,000s.
That is two orders of magnitude larger than the known exact sparse regressor methods in
Bertsimas, King and Mazumder (2016) and takes away the main propelling justification for
heuristic approaches for many regression instances in practice. The second observation relates
to the fact that we observe phase transition phenomena in the three important properties which
characterize our exact sparse regression formulation: its ability to find all relevant features
(A%), its rejection of irrelevant features from the obfuscating bulk (F%), and the time (T ) it
takes to find an exact sparse regressor using our cutting plane Algorithm 1.

All algorithms in this document are implemented in Julia and executed on a stan-
dard Intel(R) Xeon(R) CPU E5-2690 @ 2.90GHz running CentOS release
6.7. All optimization was done with the help of the commercial mathematical optimization
distribution Gurobi version 6.5.

4.1. Data description. Before we present the empirical results, we first describe the prop-
erties of the synthetic data which shall be used throughout this section. The input and response
data are generated synthetically with the observations Y and input data X satisfying the linear
relationship

Y = Xwtrue + E.

The unobserved true regressor wtrue has exactly k-nonzero components at indices selected
uniformly without replacement from [f ]. Likewise, the nonzero coefficients in wtrue are
drawn uniformly at random from the set {−1,+1}. The observation Y consists of the sig-
nal S := Xwtrue corrupted by the noise vector E. The noise components Ei for i in [n] are
drawn independent identically distributed (i.i.d.) from a normal distribution N(0, σ 2) and
scaled to √

SNR = ‖S‖2/‖E‖2.

Evidently as the signal-to-noise ratio (SNR) increases, recovery of the unobserved true re-
gressor wtrue from the noisy observations can be done with higher precision.

We have yet to specify how the input matrix X is chosen. We assume here that the input
data samples X = (x1, . . . , xn) are drawn from an i.i.d. source with Gaussian distribution;
that is,

xi ∼ N(0,	) ∀i ∈ [n].
The variance matrix 	 will be parametrized by the correlation coefficient ρ ∈ [0,1) as
	(i, j) := ρ|i−j | for all i and j in [p]. As the ρ tends to 1, the columns of the data matrix
X become more alike which should impede the discovery of nonzero components of the true
regressor wtrue by obfuscating them with highly correlated look-a-likes. In the extreme case
in which ρ = 1, all columns of X are the same at which point there is no hope of discovering
the true regressor wtrue even in the noiseless case.

4.2. Scalability. We provide strong evidence that the cutting plane Algorithm 1 repre-
sents a truly scalable algorithm to the exact sparse regression problem (1) for n and p in the
100,000s. As many practical regression problems are within reach of our exact cutting plane
Algorithm 1, the need for convex surrogate regressors such as Elastic Net and Lasso
is greatly diminished.
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TABLE 1
A comparison between exact sparse regression using our cutting plane algorithm and the Lasso heuristic with

respect to their solution time in seconds applied to noisy (
√

SNR = 20) and lightly correlated data (ρ = 0.1)
explained by either k = 10, k = 20 or k = 30 relevant features. These problem instances are truly large scale as

for the largest instance counting n = 100,000 samples for p = 200,000 regressors a memory exception was
thrown when building the data matrices Y and X. Remarkably, even on this scale the cutting plane algorithm

can be significantly faster than the Lasso heuristic

Exact T [s] Lasso T [s]

n = 10k n = 20k n = 100k n = 10k n = 20k n = 100k

k = 10 p = 50k 21.2 34.4 310.4 69.5 140.1 431.3
p = 100k 33.4 66.0 528.7 146.0 322.7 884.5
p = 200k 61.5 114.9 NA 279.7 566.9 NA

k = 20 p = 50k 15.6 38.3 311.7 107.1 142.2 467.5
p = 100k 29.2 62.7 525.0 216.7 332.5 988.0
p = 200k 55.3 130.6 NA 353.3 649.8 NA

k = 30 p = 50k 31.4 52.0 306.4 99.4 220.2 475.5
p = 100k 49.7 101.0 491.2 318.4 420.9 911.1
p = 200k 81.4 185.2 NA 480.3 884.0 NA

We note that an effective regression must find all relevant features (A% = 100) while at
the same time reject those that are irrelevant (F% = 0). To separate both efforts, we assume
in this and the following section that true number k of nonzero components of the ground
truth wtrue is known. In this case, A% + F% = 100 which allows us to focus entirely on the
the accuracy of the obtained regressors. Evidently, in most practical regression instances k

needs to be inferred from the data as well. Incorrect determination of this number can indeed
lead to high false alarm rates. We will return to this important issue of variable selection and
false alarm rates at the end of the subsequent section.

For the sake of comparison, we will also come to discuss the time it takes to solve the
Lasso heuristic (2) as implemented by the GLMNet implementation of Friedman, Hastie
and Tibshirani (2013). Contrary to exact sparse regression, no direct way exists to obtain a
sparse regressor from solving the convex surrogate heuristic (2). In order to facilitate a fair
comparison, however, we shall take that Lasso regressor along a path of optimal solutions
in (2) for varying λ which is the least regularized but has exactly k nonzero coefficients as a
heuristic sparse solution.

In Table 1, we discuss the timing results for exact sparse linear regression as well as for
the Lasso heuristic applied to noisy (

√
SNR = 20) and lightly correlated (ρ = 0.1) synthetic

data. We do not report the accuracy nor the false alarm rate of the obtained solution as this
specific data is in the regime where exact discovery of the support occurs for both the Lasso
heuristic and exact sparse regression.

Remarkably, the timing results in Table 1 suggest that using an exact method does not
impede our ability to obtain the solution fast. The problem instances displayed are truly large
scale as indeed for the largest problem instance a memory exception was thrown when build-
ing the data matrices X and Y . In fact, even in this large scale setting our cutting plane
algorithm can be significantly faster than the Lasso heuristic. Admittedly though, the GLM-
Net implementation returns an entire solution path for varying λ instead of a single re-
gression model. Comparing though to the performance reported on exact sparse regression
approaches in Furnival and Wilson (2000) and Bertsimas, King and Mazumder (2016), our
method presents a potentially game changing speed up of at least two orders of magnitude.
The results in Table 1 thus do refute the widely held belief that exact sparse regression is not
feasible at large scales.
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4.3. Phase transition phenomena. We have established that the cutting plane Algorithm
1 scales to provable optimality for problems with number of samples and regressor dimension
in the 100,000s. Let us remark that for the results presented in Table 1, both the exact and
heuristic algorithms returned a sparse regressor with correct support and otherwise were of
similar precision. In cases where the data does not allow a statistically meaningful recovery
of the ground truth wtrue an interesting phenomenon occurs. We present and discuss in this
part of the paper three phase transition phenomena. The first will concern the statistical power
of sparse regression, whereas the second will concern our ability to find the optimal sparse
regressor efficiently. We will refer to the former transition as the accuracy transition, while
referring to the latter as the complexity transition. The false alarm phase transition is the
third phase transition phenomenon and relates to the ability of exact sparse regression to
reject irrelevant features from the obfuscating bulk. We will argue here using strong empirical
evidence that these transitions are in fact intimately related. Of all three phase transitions
discussed here, only the accuracy phase transition has previously received attention and is
also understood theoretically.

The accuracy phase transition describes the ability of the sparse regression formulation
(1) to uncover the ground truth wtrue from corrupted measurements alone. The corresponding
phase transition for the Lasso has been extensively studied in the literature by amongst
many others Bühlmann and van de Geer (2011), Hastie, Tibshirani and Wainwright (2015)
and Wainwright (2009) and is considered well understood by now.

As mentioned, with uncorrelated input data (ρ = 0) a phase transition occurs at the curve
(4). We prove that our continuous relaxation s�

1 defined in (18) experiences a similar phase
transition.

THEOREM 5 (Phase transition). Let γ = 1/n, ρ = 0 and suppose p − k > k. Then there
exists numerical constants c8 ∈ R++ and c9 ∈ R++ (independent of the problem parameters
n, k, p and σ 2) such that for samples n ≥ θn1 we have P[s� = s�

1 = strue] ≥ 1−c9 exp(−θ ·c8)

for all θ ≥ 1.

We refer for a proof of this novel result based on merely two standard concentration results
to the supplemental article Bertsimas and Van Parys (2019). In combination with Proposi-
tion 1, the previous theorem establishes that our exact method is as fast as the Lasso heuristic
when n > n1 and in this regime our outer approximation algorithm needs only one iteration
with high probability. A similar phase transition has been observed by Zheng et al. (2015)
and Wang, Xu and Tang (2011) for exact sparse regression as well, although this transition is
far less understood from a theoretical perspective than the similar transition for its heuristic
counterpart. Recently though, Gamarnik and Zadik (2017) have made some way and shown
that an all or nothing phase transition phenomena occurs for exact sparse regression with
binary coefficients as well.

THEOREM 6 (Gamarnik and Zadik (2017)). Let the data (ρ = 0) be generated as in
Section 4.1. Let ε > 0. Suppose k log k ≤ Cn, for some C > 0 for all k and n. Suppose
furthermore that k → ∞ and σ 2/k → 0. If n ≥ (1 − ε)n0, then with high probability

1

k

∥∥w�
0 − wtrue∥∥

0 → 0,

whereas when n ≤ (1 − ε)n0, then with high probability 1
k
‖w�

0 − wtrue‖0 → 1.

Although the following theorem holds for unregularized sparse regression (γ → ∞), the
same holds for other appropriately chosen values of the regularization parameter as well.
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FIG. 1. A comparison between exact sparse regression using our cutting plane algorithm and the approximate
Lasso heuristic on uncorrelated data (ρ = 0) with noise (

√
SNR = 20) counting p = 2000 regressors of which

only k = 10 are relevant. In the top panel we depict the time in minutes necessary to solve the sparse regression
problem using either method as a function of the number of samples. The panel below gives the corresponding
accuracy A% of the regressors as a function of the number of samples. The red vertical line at n1 = 152 samples
depicts the accuracy phase transition concerning the ability of the Lasso heuristic to recover the support of the
ground truth wtrue. The blue vertical line at nt = 125 does the same for exact sparse regression. The final panel
indicates the ability of both methods to reject obfuscating features in terms of the false alarm rate F%. It can thus
be seen that exact sparse regression does yields more statistically meaningful regressors (higher accuracy A% for
less false alarms F%) than the Lasso heuristic. Furthermore, a complexity phase transition can be recognized
as well all around nt .

Interestingly, Gamarnik and Zadik (2017) the proof technique of Theorem 6 might give ad-
ditional intuitive insight with regard to the phase transition phenomena with respect to the
statistical accuracy and computational complexity of exact sparse regression problem, which
we will now empirically report on.

In Figure 1, we show empirical results for noiseless uncorrelated synthetically generated
data with p = 2000 of which only k = 10 are relevant. The accuracy A% and false alarm
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rates F% using exact sparse regression as well as the Lasso and time T in minutes to obtain
either one are taken as the average values of fifty independent synthetic data sets. When the
optimal solution is not found in less than fifteen minutes we take the best solution found up
to that point. The error bars give an indication of one intersample standard deviation among
these fifty independent experiments. The colored horizontal lines indicate that the number of
samples n after which either method returned a full recovery (A% = 100) of the support of
the ground truth when both are given the correct number k of relevant sparse features. The
Lasso heuristic is empirically found to require approximately n = 180 samples to recover
the true support which corresponds rather well with the theoretically predicted n1 = 152 nec-
essary samples by Wainwright (2009). Unsurprisingly, the related accuracy phase transition
of exact sparse regression using Algorithm 1 is found empirically to occur at nt = 125 sam-
ples.

We now discuss the second transition which indicates that the time and the number of cuts
it takes to solve the sparse regression (1) using the cutting plane Algorithm 1 experiences
a phase transition as well. We have already shown in Theorem 5 that with high probability
the number of cuts is merely one if n > n1 and exact sparse regression is easy. We seem to
be the first to have seen this complexity phase transition likely due to the fact that scalable
algorithms for exact sparse regression have historically been lacking. Nevertheless, the fact
that the complexity of exact sparse regression might experience a phase transition has been
alluded to before. Contrary to traditional complexity theory which suggests that the difficulty
of a problem increases with problem size, the sparse regression problem has the property
that as the number of samples n > nt > n1 increases the problem becomes easier in that the
solution recovers 100% of the true signal, and our approach solves the problem extremely
fast (in fact faster than Lasso), while for small number of samples n < nt exact sparse
regression seems impractical. It should be remarked that as n0 ≈ 50 < nt there still remains
a region in which exact sparse regression is statistically relevant but computationally not
feasible. Furthermore, we have as of yet no theoretical justification for the efficacy of our
method in the region nt < n < n1.

In all the experiments conducted up to this point, we assumed that the number of nonzero
regressor coefficients k of the ground truth wtrue underlying the data was given. Evidently,
in most practical applications the sparsity parameter k needs to be inferred from the data as
well. In essence thus, any practical sparse regression procedure must pick those regressors
contributing to the response out of the obfuscating bulk. To that end, we introduced the false
alarm rate F% of a certain solution w� as the percentage of regressors selected which are in
fact unfitting. The ideal method would of course find all contributing regressors (A% = 100)
and not select any further ones (F% = 0). In practice clearly, a trade-off must sometimes be
made. The final phase transition will deal with the ability of exact sparse regression to reject
obfuscating irrelevant features using cross validation.

Historically, cross validation has been empirically found to be an effective way to infer
the sparsity parameter k from data. Hence, for both exact sparse regression and the Lasso
heuristic, we select that number of nonzero coefficients which generalizes best to the valida-
tion sets constructed using cross validation with regards to prediction performance. In case
of exact sparse regression, we let k range between one and twenty whereas the true unknown
number of nonzero regressors was in fact ten. The third plot in Figure 1 gives the false alarm
rate F% of both methods in terms of the number of samples n. As can be seen, the Lasso
heuristic has difficulty keeping a low false alarm rate with noisy data. Even in the region
where the Lasso heuristic is accurate (A%), it is not as sparse as hoped for. Exact sparse
regression does indeed yield sparser models as it avoids including regressors that do not con-
tribute to the observations.
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TABLE 2
Parameters describing the synthetic data used in Section 4.4. The starred values denote the nominal values of

each parameter

Sparsity k {10�,15,20}
Dimension p {5000�,10000,15000}
Signal-to-noise ratio

√
SNR {3,7,20�}

4.4. Parametric dependency. To investigate the effect of each of the data parameters even
further, we use synthetic data with the properties presented in Table 2. In order to be able to
separate the effect of each parameter individually, we present the accuracy A%, false alarm
rate F% and solution time T of our cutting plane algorithm as a function of the number of
samples n for each parameter value separately while keeping all other parameters fixed to
their nominal value. All results are obtained as the average values of twenty independent ex-
periments. The figures in the remainder of this section indicate that the accuracy, false alarm
and complexity phase transitions shown in Figure 1 persist for a wide variety of properties of
the synthetic data.

Feature dimension p. As both phase transition curves (4) and (5) depends only logarith-
mically on p, we do not expect the reported phase transitions to be very sensitive to the re-
gressor dimension either. Indeed, in Figure 2 only a minor influence on the point of transition
between statistically meaningful and efficient sparse regression to unreliable and intractable
regressors is observed as a function of p.

Sparsity level k. Figure 3 suggests that k has an important influence of the phase transi-
tion curve. The experiments suggest that there is a threshold ft such that if n/k ≥ ft , then
full support recovery (A% = 100,F% = 0) occurs and the time to solve problem (1) is in the

FIG. 2. The top panel shows the time it takes to solve the sparse regression problem using the cutting plane
method for data with p = 5000, 10,000 or 15,000 regressors as a function of n. When the optimal solution is
not found in less than ten minutes we take the best solution found up to that point. The bottom panels show the
accuracy A% and false alarm rate F%. Only a minor influence on the point of transition between statistically
meaningful and efficient sparse regression to unreliable and intractable regression is observed as a function of
the regression dimension p.
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FIG. 3. The top panel shows the time it takes to solve the sparse regression problem as a function of n using the
cutting plane method for data with p = 5000 regressors of which only k = 10, 15 or k = 20 are relevant. When
the optimal solution is not found in less than ten minutes we take the best solution found up to that point. The
bottom panels show the accuracy A% and false alarm rate F%. These results suggest that the quantity n/k is a
major factor in the phase transition curve of exact sparse regression.

order of seconds and only grows linear in n. Furthermore, if n/k < ft , then support recovery
A% drops to zero, false alarms F% surge, while the time to solve problem (1) grows combi-
natorially as

(p
k

)
. This observation is in line with the theoretical result (5), which predicts that

this threshold only depends logarithmically on the feature dimension p and the SNR which
we study subsequently.

Signal-to-noise ratio (SNR). From an information theoretic point of view, the SNR must
play an important role as well as reflected by the theoretical curve (5). Indeed, the statistical
power of any method is questionable when the noise exceeds the signal in the data. In Fig-
ure 4, this effect of noise is observed as for noisy data the phase transition occurs later than
for more accurate data.

4.5. A remark on complexity. The empirical results in this paper suggest that the tradi-
tional complexity point of view might be misleading toward a better understanding of the
complexity of the sparse regression problem (1). Theorem 5 and Proposition 1 establish that
in the region n > n1 the problem of exact sparse regression is with high-probability prov-
ably easy to solve. Thus contrary to traditional complexity theory which suggests that the
difficulty of a problem increases with dimension, the sparse regression problem (1) has the
property that for small number of samples n, our approach takes a large amount of time
to solve the problem. However, for a large number of samples n, our approach solves the
problem extremely fast and recovers 100% of the support of the true regressor wtrue.

5. The road toward nonlinear feature discovery. In this section, we discuss an ex-
tension of the sparse linear regression to the case of nonlinear regression by augmenting
the input data X with auxiliary nonlinear transformations. In fact, the idea of nonlinear re-
gression as linear regression to lifted data underpins kernel methods. Kernel methods can
in a primal perspective be viewed as Tikhonov regularization between the observations Y

and transformed versions ψ(xi) of the original data samples. The feature map ψ(·) encodes
which nonlinearities should be detected.
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FIG. 4. The top panel shows the time it takes to solve the sparse regression problem as a function of n using
the cutting plane method for data with signal-to-noise level

√
SNR = 3, 7 and 20. When the optimal solution is

not found in less than one minute we take the best solution found up to that point. The bottom panel shows the
accuracy A%.

To illustrate the idea, we augment each of the p original regressors with the following
nonlinear transformations:

(21) x,
√|x|, log |x|, x2, x3, cos(10πx), sin(x), tanh(2x).

The method could be made more general by allowing for nonlinear products between vari-
ables but we abstain from doing so for the sake of simplicity. To enforce a sparse regression
model, we demand that the final regressor can only depend on k different (potentially nonlin-
ear) features.

Instead of solving problem (1), we then solve its nonlinear version:

min
1

2γ
‖w̃‖2

2 + 1

2

∥∥Y − ψ(X)w̃
∥∥2

2

s.t. ‖w̃‖0 ≤ k,

(22)

where the matrix ψ(X) in Rn×f consists of the application of the transformations in (21)
to the input matrix X. The nonlinear sparse regression problem (22) can be dealt with in
an identical manner as its linear counterpart (1). Notice that the dimension of the nonlinear
regressor w̃ is potentially much larger than its linear counterpart w.

COROLLARY 2 (Sparse nonlinear regression). The sparse regression problem (22) can
be reformulated as the nonlinear optimization problem

min
s∈Sf

k

1

2
Y�

(
In + γ

∑
j∈[f ]

sjKj

)−1
Y,

where Kj := ψj(X)ψj (X)�.

Note that he only material difference between Corollary 2 and Theorem 1 is the definition
of kernel matrices Kj .
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TABLE 3
For the nonlinear model (23) and for a = 0, n = 200 suffice to identify the correct features. For a = 1, A% = 100

for n ≥ 200, but F% > 0

Quality w� n = 100 n = 200 n = 300 n = 400 n = 500

a = 0 (A%,F%) (100, 38) (100, 0) (100, 0) (100, 0) (100, 0)
a = 1 (A%,F%) (80, 50) (100, 17) (100, 17) (100, 28) (100, 17)

As an illustration of the nonlinear approach described above, consider observations and
data coming from the following nonlinear model:

(23) Y = 3
√|X4| − 2X2

2 + 4 tanh(2X3) + 3 cos(2πX2) − 2X1 + aX1X2 + E.

We assume that the input data X and noise E is generated using the method outlined in Sec-
tion 4.1. That is, the signal-to-noise ratio was chosen to be

√
SNR = 20 to simulate the effect

of noisy data. For simplicity, we assume the original data X to be uncorrelated (ρ = 0). An
additional 16 regressors are added to obfuscate the four relevant regressors in the nonlinear
model (23). The input data after the nonlinear transformations in (21) comprised a total of
f = 160 nonlinear features. We consider two distinct nonlinear models for corresponding
parameter values a = 0 and a = 1. Notice that for the biased case a = 1, the term aX1X2 will
prevent our nonlinear regression approach to find the true underlying nonlinear model (23)
exactly.

We state the results of our nonlinear regression approach applied to the nonlinear model
(23) for both a = 0 and a = 1 in Table 3. All reported results are the median values of five
independent experiments. Cross validation on k ranging between one and ten was used to
determine the number of regressors considered. Determining the best regressor for each k

took around ten seconds, thus making a complete regression possible in a little under two
minutes. As currently outlined though, our nonlinear regression approach is not sensitive to
nonlinearities appearing as feature products and consequently it will treat the term aX1X2
as noise. Hence, the number of underlying regressors we can ever hope to discover is five.
For a = 0, 200 samples suffice to identify the correct nonlinearities and features. For a = 1,
Table 3 reports an increased false alarm rate compared to a = 0.

The method proposed here serves only as an illustration. Of course, no method can as-
pire to discover arbitrary nonlinearities without sacrificing its statistical power. We believe
that this constitutes a promising new road toward nonlinear feature discovery in data. With
additional research, we believe that it can become a fierce and more disciplined competitor
toward the more “black box” approaches such as neural networks.

6. Conclusions. We presented a novel binary convex reformulation and a novel cutting
plane algorithm that solves to provable optimality exact sparse regression problems for in-
stances with sample sizes and regressor dimensions well in the 100,000s. This presents an
improvement of two orders of magnitude compared to known exact sparse regression ap-
proaches and takes away the computational edge attributed to sparse regression heuristics
such as the Lasso or Elastic Net.

The ability to solve sparse regression problems for very high dimensions allows us to
observe new phase transition phenomena. Contrary to complexity theory which suggests that
the difficulty of a problem increases with problem size, the sparse regression problem has
the property that as n increases, the problem becomes easier in that the solution perfectly
recovers the support of the true signal and our approach solves the problem extremely fast
(in fact faster than Lasso), whereas for small n, our approach takes a large amount of time
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to solve the problem. We further provide preliminary evidence that our methods open a new
road toward nonlinear feature discovery based on sparse selection from a potentially huge
amount of desired nonlinearities.

Acknowledgments. We would like to thank the Editor, Associate Editor and two review-
ers, whose comments improved the paper substantially.

The second author was supported by the Early Post.Mobility fellowship No. 165226 of the
Swiss National Science Foundation.

SUPPLEMENTARY MATERIAL

Supplement to “Sparse high-dimensional regression: Exact scalable algorithms and
phase transitions” (DOI: 10.1214/18-AOS1804SUPP; .pdf). Supplementary information.

REFERENCES

BARNHART, C., JOHNSON, E. L., NEMHAUSER, G. L., SAVELSBERGH, M. W. P. and VANCE, P. H. (1998).
Branch-and-price: Column generation for solving huge integer programs. Oper. Res. 46 316–329. MR1663050
https://doi.org/10.1287/opre.46.3.316

BERTSIMAS, D. and FERTIS, A. (2009). On the equivalence of robust optimization and regularization in statistics
Technical report, MIT, Cambridge, MA.

BERTSIMAS, D., KING, A. and MAZUMDER, R. (2016). Best subset selection via a modern optimization lens.
Ann. Statist. 44 813–852. MR3476618 https://doi.org/10.1214/15-AOS1388

BERTSIMAS, D., PAUPHILET, J. and VAN PARYS, B. (2019). Sparse regression: Scalable algorithms and empir-
ical performance. Statist. Sci. To appear.

BERTSIMAS, D. and VAN PARYS, B. (2019). Supplement to “Sparse high-dimensional regression: Exact scalable
algorithms and phase transitions.” https://doi.org/10.1214/18-AOS1804SUPP.

BIXBY, R. E. (2012). A brief history of linear and mixed-integer programming computation. Doc. Math. Extra
vol.: Optimization stories 107–121. MR2991475

BÜHLMANN, P. and VAN DE GEER, S. (2011). Statistics for High-Dimensional Data: Methods, Theory
and Applications. Springer Series in Statistics. Springer, Heidelberg. MR2807761 https://doi.org/10.1007/
978-3-642-20192-9

DONOHO, D. and STODDEN, V. (2006). Breakdown point of model selection when the number of variables
exceeds the number of observations. In International Joint Conference on Neural Networks 1916–1921. IEEE,
New York.

DONOHO, D. and TANNER, J. (2009). Observed universality of phase transitions in high-dimensional geometry,
with implications for modern data analysis and signal processing. Philos. Trans. R. Soc. Lond. Ser. A Math.
Phys. Eng. Sci. 367 4273–4293. MR2546388 https://doi.org/10.1098/rsta.2009.0152

DURAN, M. A. and GROSSMANN, I. E. (1986). An outer-approximation algorithm for a class of mixed-integer
nonlinear programs. Math. Program. 36 307–339. MR0866413 https://doi.org/10.1007/BF02592064

FAN, J. and LI, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J.
Amer. Statist. Assoc. 96 1348–1360. MR1946581 https://doi.org/10.1198/016214501753382273

FLETCHER, R. and LEYFFER, S. (1994). Solving mixed integer nonlinear programs by outer approximation.
Math. Program. 66 327–349. MR1297070 https://doi.org/10.1007/BF01581153

FRIEDMAN, J., HASTIE, T. J. and TIBSHIRANI, R. J. (2013). GLMNet: Lasso and elastic-net regularized gener-
alized linear models. R package version 1.9–5.

FURNIVAL, G. M. and WILSON, R. W. (2000). Regressions by leaps and bounds. Technometrics 42 69–79.
GAMARNIK, D. and ZADIK, I. (2017). High-Dimensional Regression with Binary Coefficients. Preprint. Avail-

able at arXiv:1701.04455.
HAGER, W. W. (1989). Updating the inverse of a matrix. SIAM Rev. 31 221–239. MR0997457 https://doi.org/10.

1137/1031049
HASTIE, T., TIBSHIRANI, R. and WAINWRIGHT, M. (2015). Statistical Learning with Sparsity: The Lasso

and Generalizations. Monographs on Statistics and Applied Probability 143. CRC Press, Boca Raton, FL.
MR3616141

LAWLER, E. L. and WOOD, D. E. (1966). Branch-and-bound methods: A survey. Oper. Res. 14 699–719.
MR0202469 https://doi.org/10.1287/opre.14.4.699

MALLAT, S. G. and ZHANG, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal
Process. 41 3397–3415.

https://doi.org/10.1214/18-AOS1804SUPP
http://www.ams.org/mathscinet-getitem?mr=1663050
https://doi.org/10.1287/opre.46.3.316
http://www.ams.org/mathscinet-getitem?mr=3476618
https://doi.org/10.1214/15-AOS1388
https://doi.org/10.1214/18-AOS1804SUPP
http://www.ams.org/mathscinet-getitem?mr=2991475
http://www.ams.org/mathscinet-getitem?mr=2807761
https://doi.org/10.1007/978-3-642-20192-9
http://www.ams.org/mathscinet-getitem?mr=2546388
https://doi.org/10.1098/rsta.2009.0152
http://www.ams.org/mathscinet-getitem?mr=0866413
https://doi.org/10.1007/BF02592064
http://www.ams.org/mathscinet-getitem?mr=1946581
https://doi.org/10.1198/016214501753382273
http://www.ams.org/mathscinet-getitem?mr=1297070
https://doi.org/10.1007/BF01581153
http://arxiv.org/abs/arXiv:1701.04455
http://www.ams.org/mathscinet-getitem?mr=0997457
https://doi.org/10.1137/1031049
http://www.ams.org/mathscinet-getitem?mr=3616141
http://www.ams.org/mathscinet-getitem?mr=0202469
https://doi.org/10.1287/opre.14.4.699
https://doi.org/10.1007/978-3-642-20192-9
https://doi.org/10.1137/1031049


SPARSE HIGH DIMENSIONAL REGRESSION 323

SCHÖLKOPF, B. and SMOLA, A. J. (2002). Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT press, Cambridge, MA.

SION, M. (1958). On general minimax theorems. Pacific J. Math. 8 171–176. MR0097026
TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267–288.

MR1379242
TIKHONOV, A. N. (1943). On the stability of inverse problems. Dokl. Akad. Nauk SSSR 39 195–198.
VAPNIK, V. (1998). The support vector method of function estimation. In Nonlinear Modeling 55–85. Springer,

Berlin.
WAINWRIGHT, M. J. (2009). Sharp thresholds for high-dimensional and noisy sparsity recovery using �1-

constrained quadratic programming (Lasso). IEEE Trans. Inform. Theory 55 2183–2202. MR2729873
https://doi.org/10.1109/TIT.2009.2016018

WANG, M., XU, W. and TANG, A. (2011). On the performance of sparse recovery via �p-minimization (0 ≤ p ≤
1). IEEE Trans. Inform. Theory 57 7255–7278. MR2883654 https://doi.org/10.1109/TIT.2011.2159959

XU, H., CARAMANIS, C. and MANNOR, S. (2009). Robustness and regularization of support vector machines.
J. Mach. Learn. Res. 10 1485–1510. MR2534869

ZHANG, F., ed. (2006). The Schur Complement and Its Applications. Numerical Methods and Algorithms 4.
Springer, New York. MR2160825 https://doi.org/10.1007/b105056

ZHANG, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty. Ann. Statist. 38 894–
942. MR2604701 https://doi.org/10.1214/09-AOS729

ZHANG, Y., WAINRIGHT, M. and JORDAN, M. (2014). Lower bounds on the performance of polynomial-time
algorithms for sparse linear regression. J. Mach. Learn. Res. 35 1–28.

ZHENG, L., MALEKI, A., WANG, X. and LONG, T. (2015). Does �p-minimization outperform �1-minimization?
Available at arXiv:1501.03704.

ZOU, H. and HASTIE, T. (2005). Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B.
Stat. Methodol. 67 301–320. MR2137327 https://doi.org/10.1111/j.1467-9868.2005.00503.x

http://www.ams.org/mathscinet-getitem?mr=0097026
http://www.ams.org/mathscinet-getitem?mr=1379242
http://www.ams.org/mathscinet-getitem?mr=2729873
https://doi.org/10.1109/TIT.2009.2016018
http://www.ams.org/mathscinet-getitem?mr=2883654
https://doi.org/10.1109/TIT.2011.2159959
http://www.ams.org/mathscinet-getitem?mr=2534869
http://www.ams.org/mathscinet-getitem?mr=2160825
https://doi.org/10.1007/b105056
http://www.ams.org/mathscinet-getitem?mr=2604701
https://doi.org/10.1214/09-AOS729
http://arxiv.org/abs/arXiv:1501.03704
http://www.ams.org/mathscinet-getitem?mr=2137327
https://doi.org/10.1111/j.1467-9868.2005.00503.x

	Introduction
	Background
	A scalable perspective
	Phase transitions
	Contributions and structure
	Notation

	A convex binary reformulation of sparse linear regression
	The kernel connection
	A second-order cone relaxation

	A cutting plane algorithm
	Outer approximation algorithm
	Efﬁcient dynamic constraint generation
	Efﬁcient warm starts

	Scalability and phase transitions
	Data description
	Scalability
	Phase transition phenomena
	Parametric dependency
	Feature dimension p
	Sparsity level k
	Signal-to-noise ratio (SNR)

	A remark on complexity

	The road toward nonlinear feature discovery
	Conclusions
	Acknowledgments
	Supplementary Material
	References

