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The stochastic gradient descent (SGD) algorithm has been widely used in
statistical estimation for large-scale data due to its computational and memory
efficiency. While most existing works focus on the convergence of the objec-
tive function or the error of the obtained solution, we investigate the problem
of statistical inference of true model parameters based on SGD when the
population loss function is strongly convex and satisfies certain smoothness
conditions.

Our main contributions are twofold. First, in the fixed dimension setup,
we propose two consistent estimators of the asymptotic covariance of the
average iterate from SGD: (1) a plug-in estimator, and (2) a batch-means
estimator, which is computationally more efficient and only uses the iterates
from SGD. Both proposed estimators allow us to construct asymptotically
exact confidence intervals and hypothesis tests.

Second, for high-dimensional linear regression, using a variant of the SGD
algorithm, we construct a debiased estimator of each regression coefficient
that is asymptotically normal. This gives a one-pass algorithm for comput-
ing both the sparse regression coefficients and confidence intervals, which is
computationally attractive and applicable to online data.

1. Introduction. Estimation of model parameters by minimizing an objective function
is a fundamental idea in statistics. Let x∗ ∈ R

d be the true d-dimensional model parameters.
In common models, x∗ is the minimizer of a convex objective function F(x) : Rd → R, that
is,

(1) x∗ = argmin
(
F(x) := Eζ∼�f (x, ζ ) =

∫
f (x, ζ )d�(ζ)

)
,

where ζ denotes the random sample from a probability distribution � and f (x, ζ ) is the loss
function.

A widely used optimization method for minimizing F(x) is the stochastic gradient descent
(SGD), which has a long history in optimization (see, e.g., Nemirovski et al. (2008), Polyak
and Juditsky (1992), Robbins and Monro (1951)). In particular, let x0 denote any given start-
ing point. SGD is an iterative algorithm, where the ith iterate xi takes the following form:

xi = xi−1 − ηi∇f (xi−1, ζi).(2)

The step size ηi is a decreasing sequence in i, ζi is the ith sample randomly drawn from the
distribution �, and ∇f (xi−1, ζi) denotes the gradient of f (x, ζi) with respect to x at x =
xi−1. The algorithm outputs either the last iterate xn, or the average iterate x̄n = 1

n

∑n
i=1 xi
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as the solution to the optimization problem in (1). When x̄n is adopted as the solution, the al-
gorithm is referred to as the averaged SGD (ASGD), and such an averaging step is known as
the Polyak–Ruppert averaging (Polyak and Juditsky (1992), Ruppert (1988)). SGD has many
computational and storage advantages over traditional deterministic optimization methods.
First, SGD only uses one pass over the data and the per-iteration time complexity of SGD is
O(d), which is independent of the sample size. Second, there is no need for SGD to store the
dataset, and thus SGD naturally fits in the online setting, where each sample arrives sequen-
tially (e.g., search queries or transactional data). Moreover, ASGD is known to achieve the
optimal convergence rate in terms of E(F (x̄n) − F(x∗)) with the rate of O(1/n) (Rakhlin,
Shamir and Sridharan (2012)) when F(x) is smooth and strongly convex. It has become the
prevailing optimization method for many machine learning tasks (Srebro and Tewari (2010)),
for example, training deep neural networks.

Based on the simple SGD template in (2), there are a large number of variants developed in
the optimization and statistical learning literature. Most existing works only focus on the con-
vergence in terms of the objective function or the distance between the obtained solution and
the true minimizer x∗ of (1). However, the statistical inference (e.g., constructing confidence
intervals) for each coordinate of x∗ based on SGD has largely remained unexplored. Infer-
ence is a core topic in statistics and a confidence interval has been widely used to quantify the
uncertainty in the estimation of model parameters. In this paper, we propose computationally
efficient methods to conduct the inference for each coordinate of x∗

j for j = 1,2, . . . , d based
on SGD. With the developed techniques, one can test if x∗

j = c for any number c, and tell a
range of values that x∗

j lies within it with a certain probability. These objectives cannot be
achieved by deriving deviation inequalities or generalization error bounds (see Section 1.1
for details).

The proposed methods are built on a classical result of ASGD, which characterizes the
limiting distribution of x̄n. In particular, let A = ∇2F(x∗) be the Hessian matrix of F(x) at
x = x∗ and S be the covariance matrix of ∇f (x∗, ζ ), that is,

(3) S = E
([∇f

(
x∗, ζ

)][∇f
(
x∗, ζ

)]T )
.

Note that E∇f (x∗, ζ ) = ∇F(x∗) = 0, provided the interchangeability of derivative and ex-
pectation. Ruppert (1988) and Polyak and Juditsky (1992) showed that when d is fixed and
F is strongly convex with a Lipschitz gradient, by choosing appropriately diminishing step
sizes,

√
n(x̄n − x∗) converges in distribution to a multivariate normal random vector, that is,

(4)
√

n
(
x̄n − x∗)⇒ N

(
0,A−1SA−1).

However, this asymptotic normality result itself cannot be used to provide confidence in-
tervals. To construct an asymptotically valid confidence interval (or equivalently, an asymp-
totically valid test that controls the type I error), we need to further construct a consistent
estimator of the asymptotic covariance of

√
nx̄n, that is, A−1SA−1. The standard covariance

estimator simply estimates A and S by their sample versions, and replaces the x∗ in A and S

by x̄n. However, this standard estimator cannot be constructed in an online fashion. In other
words, all the data is required to be stored to compute this estimator since x̄n can only be
known when the SGD procedure terminates. This requirement loses the advantage of SGD in
terms of data storage.

To address this challenge, we propose two approaches to estimate A−1SA−1 without the
need of storing the data. The first approach is the plug-in estimator. In particular, we propose
a thresholding estimator Ãn of A based on the sample estimate An = 1

n

∑n
i=1 ∇2f (xi−1, ζi).

Note that this is not the standard sample estimate since each term ∇2f (xi−1, ζi) is regarding
different SGD iterates xi−1 (in contrast to a single x̄n), and thus can be constructed online.
This construction facilitates the online computation of An, which does not need to store each
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xi and ζi . Together with the sample estimate Sn of S, the asymptotic covariance A−1SA−1 is
estimated by Ã−1

n SnÃ
−1
n , which is proven to be a consistent estimator (see Theorem 4.2).

However, the plug-in estimator requires the computation of the Hessian matrix of the loss
function f and its inverse, which is usually not available for legacy codes where only the
SGD iterates are available. Now a natural question arises: can we estimate the asymptotic
covariance only using the iterates from SGD without requiring additional information? We
provide an affirmative answer to this question by proposing a computationally efficient batch-
means estimator. Basically, we split the sequence of SGD iterates {x1, x2, . . . , xn} into M + 1
batches with batch size n0, n1, . . . , nM . The 0th batch is discarded since the iterates in that are
far from the optimum. The batch-means estimator is a “weighted” sample covariance matrix
that treats each batch-means as a sample.

The idea of batch-means estimator can be traced to Markov Chain Monte Carlo (MCMC),
where the batch-means method with equal batch size (see, e.g., Damerdji (1991), Fishman
(1996), Flegal and Jones (2010), Geyer (1992), Glynn and Iglehart (1990), Glynn and Whitt
(1991), Jones et al. (2006)) is widely used for variance estimation in a time-homogeneous
Markov chain. The SGD iterates in (2) indeed form a Markov chain, as xi only depends
on xi−1. However, since the step size sequence ηi is a diminishing sequence, it is a time-
inhomogenous Markov chain. Moreover, the asymptotic behavior of SGD and MCMC are
fundamentally different: while the former converges to the optimum, the latter travels er-
godically inside the state space. As a consequence of these important differences, previous
literature on batch-means methods is not applicable to our analysis. To address this challenge,
our new batch-means method constructs batches of increasing sizes. The sizes of batches are
chosen to ensure that the correlation decays appropriately among far-apart batches, so that
far-apart batch-means can be roughly treated as independent. In Theorem 4.3, we prove that
the proposed batch-means method is a consistent estimator of the asymptotic covariance. Fur-
ther, we believe this new batch-means algorithm with increasing batch sizes is of independent
interest since it can be used to estimate the covariance structure of other time-inhomogeneous
Markov chains.

As both the plug-in and the batch-means estimator provide asymptotically exact confi-
dence intervals, each of them has its own advantages:

1. The plug-in estimator has a faster convergence rate than the batch-means estimator (see
Theorem 4.2 and Corollary 4.5).

2. The plug-in estimator requires the computation of the Hessian matrix of the loss func-
tion and its inverse, which can be expensive to obtain for many applications. The batch-means
estimator does not require computing any of them. To establish the consistency result, the
plug-in estimator requires an additional Lipschitz condition over the Hessian matrix of the
loss function (see Assumption 4.1).

3. The plug-in estimator directly computes the entire estimator Ã−1
n SnÃ

−1
n for the purpose

of estimating diagonal elements of A−1SA−1. Furthermore, when d is large, storing Ãn and
Sn requires O(d2) bits, which is wasteful since only estimates of the diagonal elements of
A−1SA−1 are useful for the inference of each x∗

j for j = 1,2, . . . , d . Meanwhile, the batch-
means estimator is able to merely compute and store diagonals.

Practitioners may decide to choose between the plug-in and batch-means estimators based
on their tasks and computing resources. The plug-in estimator has a faster convergence rate,
which leads to better performance in practice. However, in some cases when the computation
and storage are limited, the batch-means estimator is able to provide an asymptotically exact
confidence interval with comparably good performance. Furthermore, the computation of
the Hessian matrix in the plug-in estimator is an “intrusive” requirement for SGD (Sullivan
(2015)), that is, it is not available for legacy codes where only the SGD iterates are computed.
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For example, if one has already obtained SGD iterates and wants to compute confidence
intervals afterward, a noninstructive method like batch-means can be directly applied. Such
a nonintrusive method that can operate with black-box SGD iterates is more desirable and
welcomed by practitioners, as it only uses the existing SGD iterates without the need to
change the original SGD code.

For the second part of our contribution, we further study the problem of confidence in-
terval construction for x∗ in high-dimensional linear regression based on SGD, where the
dimensionality d can be much larger than the sample size n. In a high-dimensional setup, it
is natural to solve a �1-regularized problem, minx F (x) + λ‖x‖1, where F(x) is defined in
(1). A popular approach to solve it is the proximal stochastic gradient approach (see, e.g.,
Ghadimi and Lan (2012) and references therein). However, due to the proximal operator (i.e.,
the soft-thresholding operator for �1-regularized problem), the distribution of the average iter-
ate x̄n no longer converges to a multivariate normal distribution. To address this challenge, we
use the recently proposed RADAR algorithm (Agarwal, Negahban and Wainwright (2012)),
which is a variant of SGD, together with the debiasing approach (Javanmard and Montanari
(2014), van de Geer et al. (2014), Zhang and Zhang (2014)). The standard debiasing method
relies on solving d convex optimization problems (e.g., nodewise Lasso in van de Geer et al.
(2014)) to construct an approximation of the inverse of the design covariance matrix. Each
deterministic optimization problem requires a per-iteration complexity O(nd), which is pro-
hibitive when n is large. In contrast, we adopt the stochastic RADAR algorithm to solve
these optimization problems, where each problem only requires one pass of the data with the
per-iteration complexity O(d). Moreover, since the resulting approximate inverse covariance
matrix from the stochastic RADAR is not an exact solution of the corresponding optimization
problem, the analysis of van de Geer et al. (2014), which heavily relies on the KKT condition,
is no longer applicable. We provide a new analysis to establish the asymptotic normality of
the obtained estimator of x∗ from the stochastic optimization algorithm.

1.1. Some related works on SGD. There is a large body of literature on stochastic gra-
dient approaches and their applications to statistical learning problems (see, e.g., Agarwal,
Negahban and Wainwright (2012), Ghadimi and Lan (2012), Nesterov and Vial (2008), Roux,
Schmidt and Bach (2012), Xiao (2010), Xiao and Zhang (2014), Zhang (2004) and references
therein). Most works on SGD focus on the convergence rate of the objective function instead
of the asymptotic distribution of the obtained solution. Thus, we only review a few closely
related works with results on distributions.

Back in 1960s, Fabian (1968) studied the distribution of SGD iterates. However, with-
out averaging, the asymptotic variance is inflated, and thus the resulting statistical inference
would have a reduced power even if the asymptotic is known. Bach and Moulines (2011),
Polyak and Juditsky (1992), Ruppert (1988) studied the averaged SGD (ASGD) and estab-
lished the asymptotic normality and efficiency of the estimators. However, these works do
not discuss the estimation of the asymptotic covariance.

A few works in the SGD literature (e.g., Nemirovski et al. (2008), Nesterov and Vial
(2008)) show large deviation results of Pr(‖x̄n − x∗‖2 > t) ≤ C(t) by combining the Markov
inequality with the expected deviation of x̄n to x∗. However, we note that large deviation
results cannot be used to obtain asymptotically exact confidence intervals, which refer to
the exact 1 − q coverage as n → ∞. That is, Pr(x∗ ∈ CIq) → 1 − q , where CIq denotes the
confidence interval. Deviation inequalities, which are unable to quantify the exact probability,
fail to provide the exact 1−q coverage and will lead to wider confidence intervals. Moreover,

note that the �2 bounds in the SGD literature are generally O(σ
√

d
n
) (where σ 2 is the variance

of the norm of the stochastic gradient) and do not imply a �∞ bound of size O( σ√
n
), whereas

a confidence interval for any single coordinate should be O( σ√
n
) (the O(·) notation here does
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not depend on d). Therefore, although d is fixed, �2-norm error bound results still lead to
conservative confidence intervals. Instead, we will use the central limit theorem that shows
lim Pr(|x̄n,j −x∗| < zq/2σ/

√
n) → 1−q , where zq/2 is the (1−q/2)-quantile of the standard

normal distribution. This allows us to construct an asymptotically exact confidence interval.
We also note that Toulis and Airoldi (2017) established the asymptotic normality for the

averaged implicit SGD procedure, which is an algorithm different from ASGD. Moreover,
this paper does not discuss the estimation of the asymptotic covariance, and thus their results
cannot be directly used to obtain the confidence intervals.

1.2. Notation and organization of the paper. As a summary of notation, throughout the
paper, we use ‖x‖p to denote the vector �p-norm of x, ‖x‖0 the number of nonzero en-
tries in x, ‖X‖ the matrix operator norm of X and ‖X‖∞ the elementwise �∞-norm of X

(i.e., ‖X‖∞ = maxi,j |Xij |). For a square matrix X, we denote its trace by tr(X). For a pos-
itive semidefinite (PSD) matrix A, let λmax(A) and λmin(A) be its maximum and minimum
eigenvalue. For a vector a of length d and any index subset J ⊆ {1, . . . , d}, we denote by
aJ the subvector of a with the elements indexed by J and a−J the subvector of a with the
elements indexed by {1, . . . , d}\J . Similarly, for a d1 × d2 matrix X and two index subsets
R ⊆ {1, . . . , d1} and J ⊆ {1, . . . , d2}, we denote by XR,J the |R| × |J | submatrix of X with
elements in rows in R and columns in J . When R = {1, . . . , d1} or J = {1, . . . , d2}, we de-
note XR,J by X·,J or XR,·, respectively. We use I to denote the identity matrix. The function
�(·) denotes the CDF of the standard normal distribution.

For any sequences {an} and {bn} of positive numbers, we write an � bn if an ≥ cbn holds
for all n large enough and some constant c > 0, an � bn if bn � an holds, and an � bn if
an � bn and an � bn.

The rest of the paper is organized as follows. In Section 2, we provide more background
of SGD and detailed results from Polyak and Juditsky (1992). In Section 3, we provide the
assumptions and some error bounds on SGD iterates. In Section 4, we propose the plug-
in estimator and batch-means estimator for estimating the asymptotic covariance of x̄n from
ASGD. In Section 5, we discuss how to conduct inference for high-dimensional linear regres-
sion. In Section 6, we demonstrate the proposed methods by simulated experiments. Further
discussions appear in Section 7 and all proofs are given in the Supplementary Material (Chen
et al. (2020)).

2. Background. In the classical work of Polyak and Juditsky (1992), the SGD method
was introduced in a form equivalent with (2) to facilitate the analysis. In particular, the itera-
tion is given by

(5) xn = xn−1 − ηn∇F(xn−1) + ηnξn,

where ξn := ∇F(xn−1) − ∇f (xn−1, ζn). The formulation (5) decomposes the descent into
two parts: ∇F(xn−1) represents the direction of population gradient which is the major driv-
ing force behind the convergence of SGD, and ξn is a martingale difference sequence under
Assumption 3.2 (see below). That is, En−1[ξn] = ∇F(xn−1) −En−1∇f (xn−1, ζn) = 0. Here
and in the sequel, En(·) denotes the conditional expectation E(·|Fn), where Fn is the σ -
algebra generated by {ζ1, . . . , ζn} (ζk is the kth sample). Let 
n := xn − x∗ be the error of
the nth iterate. It it noteworthy that by subtracting x∗ from both sides of (5), the recursion (5)
is equivalent to

(6) 
n = 
n−1 − ηn∇F(xn−1) + ηnξn,

which will be extensively used throughout the paper.
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Given the SGD recursion in the form of (6) and under suitable assumptions (see Section 3
below), Theorem 2 of Polyak and Juditsky (1992) shows that when the step size sequence
ηi = ηi−α , i = 1,2, . . . , n with α ∈ (1/2,1), we have

(7)
√

n · 
n ⇒ N
(
0,A−1SA−1) if α ∈

(
1

2
,1
)
,

where 
n = 1
n

∑n
i=1 
i = x̄n − x∗. Based on this limiting distribution result, we only need

to estimate the asymptotic covariance matrix A−1SA−1. Then we can form the confidence
interval x̄n,j ± zq/2σ̂jj , where σ̂jj is a consistent estimator of (A−1SA−1)jj and zq/2 is the
(1 − q/2)-quantile of the standard normal distribution (i.e., zq/2 = �−1(1 − q/2) and �(·)
is the CDF of the standard normal distribution). Therefore, the main purpose of the paper is
to provide consistent estimators of the asymptotic covariance matrix.

REMARK 2.1. In the model well-specified case, xn is an asymptotically efficient esti-
mator of the true model parameter x∗ according to (7). In particular, suppose ζ comes from
the probability distribution � with density px∗(ζ ) parameterized by x∗. If the loss function
f (x, ζ ) = − logpx(ζ ) is the negative log-likelihood, under certain regularity conditions, one
can show that

A = ∇2
E
[− logpx∗(ζ )

]= E
(−∇ logpx∗(ζ )

)(−∇ logpx∗(ζ )
)T = S = I

(
x∗).

Here, I = I (x∗) is the Fisher information matrix. Therefore, the limiting covariance matrix
A−1SA−1 = I−1 achieves the Cramér–Rao lower bound, which indicates that x̄n is asymp-
totically efficient. It is worth noting that the asymptotic normality result (7) does not require
that the model is well specified. In a model misspecified case, the asymptotic distribution of
x̄n is centered at x∗, where x∗ is the unique minimizer of F(x) and the asymptotic covariance
A−1SA−1 is of the so-called “sandwich covariance” form (e.g., see Buja et al. (2013)).

To illustrate this SGD recursion in (6) and the form of A and S, we consider the following
two motivating examples.

EXAMPLE 2.1 (Linear regression). Under the classical linear regression setup, let the
nth sample be ζn = (an, bn), where the input an ∈ R

d is a sequence of random vectors in-
dependently drawn from the same multivariate distribution and the response bn ∈ R follows
a linear model, bn = aT

n x∗ + εn. Here, x∗ ∈ R
d represents the true parameters of the linear

model, and {εn} are independently and identically distributed (i.i.d.) centered random vari-
ables, which are uncorrelated with an. For simplicity, we assume an and εn have all moments
being finite. Given ζn = (an, bn), the loss function at x is a quadratic one:

f (x, ζn) = 1

2

(
aT
n x − bn

)2
and the true parameters x∗ = argminx(F (x) := Ef (x, ζ )). Given the loss function, the SGD
iterates in (2) become, xn = xn−1 − ηnan(a

T
n xn−1 − bn). This can also be written in the form

of (5) as

xn = xn−1 − ηnA
n−1 + ηnξn, ξn := (
A − ana

T
n

)

n−1 + anεn,

where A = Eana
T
n is the population gram matrix of an. It is easy to find that

F(x) = 1

2

(
x − x∗)T A

(
x − x∗)+Eε2,

which implies that ∇F(x) = A(x − x∗) and ∇2F(x) = A for all x. As for matrix S, it is
given by S := E([∇f (x∗, ζ )][∇f (x∗, ζ )]T ) = Eε2

nana
T
n .
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EXAMPLE 2.2 (Logistic regression). One of the most popular applications for general
loss in statistics is the logistic regression for binary classification problems. In particular, the
logistic model assumes that the binary response bn ∈ {−1,1} is generated by the following
probabilistic model:

Pr(bn|an) = 1

1 + exp(−bn〈an, x∗〉) ,

where an is an i.i.d. sequence. The population objective function is given by F(x) =
Ef (x, ζn) = E log(1+exp(−bn〈an, x〉)). Let ϕ(x) := 1

1+exp(−x)
denote the sigmoid function,

we have ∇f (x, ζn) = −ϕ(−bn〈an, x〉)bnan. Moreover, we have the formulation of matrix A

and S as

(8) A = S = E
ana

T
n

[1 + exp(〈an, x∗〉)][1 + exp(−〈an, x∗〉)] .

3. Assumptions and error bounds. In this section, we provide the assumptions used in
the fixed-dimensional case and then provide some useful error bounds on 
n. We first make
the following standard assumption on the population loss function F(x).

ASSUMPTION 3.1 (Strong convexity and Lipschitz continuity of the gradient). Assume
that the objective function F(x) is continuously differentiable and strongly convex with pa-
rameter μ > 0, that is, for any x1 and x2,

F(x2) ≥ F(x1) + 〈∇F(x1), x2 − x1
〉+ μ

2
‖x1 − x2‖2

2.

Further, assume that ∇2F(x∗) exists, and ∇F(x) is Lipschitz continuous with a constant LF ,
that is, for any x1 and x2, ‖∇F(x1) − ∇F(x2)‖2 ≤ LF ‖x1 − x2‖2.

Note that the strong convexity of F(x) was adopted by Polyak and Juditsky (1992) (see
Assumption 4.1 in Polyak and Juditsky (1992)) to derive the limiting distribution of averaged
SGD, which serves as the basis of our work. In fact, the strong convexity of F(x) implies
λmin(A) = λmin(∇2F(x∗)) ≥ μ is an important condition for parameter estimation and in-
ference. There are recent works in optimization on relaxing the strong convexity assumption
(e.g., Bach and Moulines (2013)), but they were only able to obtain fast convergence rates in
terms of the objective value F(x̄n) − F(x∗).

We further assume that the martingale difference ξn satisfies the following conditions.

ASSUMPTION 3.2. The following hold for the sequence ξn = ∇F(xn−1) −
∇f (xn−1, ζn):

1. Assume that f (x, ζ ) is continuously differentiable in x for any ζ and ‖∇f (x, ζ )‖2 is
uniformly integrable for any x so that En−1ξn = 0.

2. The conditional covariance of ξn has an expansion around x = x∗: En−1ξnξ
T
n = S +

�(
n−1), and there exists constants �1 and �2 > 0 such that for any 
 ∈ R
d .∥∥�(
)

∥∥≤ �1‖
‖2 + �2‖
‖2
2,

∣∣tr(�(
)
)∣∣≤ �1‖
‖2 + �2‖
‖2

2.

Note that S is the covariance matrix of ∇f (x∗, ζ ) defined in (3).
3. There exists constants �3, �4 such that the fourth conditional moment of ξn is bounded

by En−1‖ξn‖4
2 ≤ �3 + �4‖
n−1‖4

2.
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For part 1, we note that our assumption on f (x, ζ ) guarantees that Leibniz’s integration
rule holds, that is, Eζ∼�∇f (x, ζ ) = ∇F(x) for all x. Therefore, we have En−1ξn = 0, which
implies that ξn is a martingale difference sequence. Assumption 3.2 is a mild condition over
the regularity and boundedness of the loss function. In fact, one can easily verify Assump-
tion 3.2 using the following lemma.

LEMMA 3.1. If there is a function H(ζ) with bounded fourth moment, such that the
Hessian of f (x, ζ ) is bounded by ∥∥∇2f (x, ζ )

∥∥≤ H(ζ)

for all x, and ∇f (x∗, ζ ) have a bounded fourth moment, then Assumption 3.2 holds

with �1 = 2
√
E‖∇f (x∗, ζ )‖2

2EH(ζ)2, �2 = 4EH(ζ)2, �3 = 8E‖∇f (x∗, ζ )‖4
2 and �4 =

64EH(ζ)4.

Although we consider the fixed-dimensional case, it is still of practical interest to inves-
tigate the dimension dependence in our results. The dimension dependence is rather com-
plicated since our results involve a number of constants in Assumption 3.1 and 3.2 that all
depend on the dimension d (e.g., LF , �1, �2, �3, �4, tr(S)). For example, tr(S) grows with
d . Moreover, the way it grows depends on how S is configured. Therefore, for the ease of
presentation, we define the following quantity:

(9) Cd := max
{
LF ,�

2
3
1 ,
√

�2,
√

�3,�
1
4
4 , tr(S)

}
.

In both linear and logistic regression, Cd increases linearly in d (see Section A in the Supple-
mentary Material). We will state our results in terms of this single quantity Cd . We also as-
sume ‖x0 − x∗‖2

2 = O(Cd), and there is a universal constant c such that the step size satisfies
ηiCd ≤ cμ for all i. Note that the choice of step sizes does not sacrifice much of generality
since when d is a constant, we could always ignore the first a few iterations, which is usually
considered as the “burn in” stage. Also, for the starting point x0, if all the components of
x0 − x∗ are bounded by a constant, it naturally satisfies ‖x0 − x∗‖2

2 = O(d).
In the sequel, we will impose Assumptions 3.1 and 3.2. In Section A of the Supplementary

Material, we show that Assumptions 3.1 and 3.2 hold on our motivating examples of linear
and logistic regression (see Examples 2.1 and 2.2). Under these assumptions, the classical
works (Polyak and Juditsky (1992), Ruppert (1988)) establish the asymptotic normality and
efficiency of the x̄n (see (4) and Remark 2.1). Moreover, we could obtain the following error
bounds on the SGD iterates.

LEMMA 3.2. Under Assumptions 3.1 and 3.2, if the step size is chosen to be ηn = ηn−α

with α ∈ (0,1), the iterates of error 
n = xn − x∗ satisfy the following:

E‖
n‖k
2 � n−kα/2(Ck/2

d + ‖
n0‖k
2
)
, k = 1,2,4.

The proof of Lemma 3.2 is provided in Section 3 of the Supplementary Material. A result
similar to Lemma 3.2 providing the convergence of ‖
n‖2 and ‖
n‖2

2 has been shown in
Bach and Moulines (2011) (see Theorem 1 therein). Here, we provide simpler bounds on
conditional moments of 
n and extend the results in Bach and Moulines (2011) to the fourth
moment bound, since we need to access the variance of a variance estimator. This result also
tells us how the error decorrelates in terms of the number of iterations. Our proof strategy is
similar to Bach and Moulines (2011) in that we setup up a recursive formula for the 
n term,
and then show it decays at a certain rate by leveraging the convexity of F(x).
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4. Estimators for asymptotic covariance. Following the inference procedures illus-
trated above, when d is fixed and n → ∞, it is essential to estimate the asymptotic covariance
matrix A−1SA−1. In this section, we will propose two consistent estimators, the plug-in es-
timator and the batch-means estimator.

4.1. Plug-in estimator. The idea of the plug-in estimator is to separately estimate A and
S by some Â and Ŝ and use Â−1ŜÂ−1 as an estimator of A−1SA−1. Since xi converges to
x∗, according to the definitions of A and S in (3), an intuitive way to construct Â and Ŝ is to
use the sample estimate

An := 1

n

n∑
i=1

∇2f (xi−1, ζi), Sn := 1

n

n∑
i=1

∇f (xi−1, ζi)∇f (xi−1, ζi)
T ,

as long as the information of ∇2f (xi−1, ζi) is available. It is worthwhile noting that each
summand in An and Sn involves different xi−1. Therefore, An and Sn can be computed in an
online fashion without the need of storing all the data.

Since we are interested in estimating A−1, it is necessary to avoid the possible singular-
ity of An from statistical randomness. Therefore, we propose to use thresholding estimator
Ãn, which is strictly positive definite. In particular, fix δ > 0, and let �Dn�

T be the eigen-
value decomposition of An, where Dn is a nonnegative diagonal matrix. We construct the
thresholding estimator Ãn:

Ãn = �D̃n�
T , (D̃n)i,i = max

{
δ, (Dn)i,i

}
.

By construction, it is guaranteed that Ãn is invertible. With the construction of Sn and Ãn in
place, we propose the plug-in estimator as Ã−1

n SnÃ
−1
n . Our goal is to establish the consistency

of the plug-in estimator, that is,

E
∥∥Ã−1

n SnÃ
−1
n − A−1SA−1∥∥−→ 0 as n → ∞.

Since this estimator relies on the Hessian matrix of the loss function, we need an additional
assumption to establish the consistency.

ASSUMPTION 4.1. There are constants L2 and L4 such that for all x,

E
∥∥∇2f (x, ζ ) − ∇2f

(
x∗, ζ

)∥∥≤ L2
∥∥x − x∗∥∥

2,∥∥E[∇2f
(
x∗, ζ

)]2 − A2∥∥≤ L4.
(10)

Moreover, we assume that for the choice of δ, we have λmin(A) > δ.

We note that it is easy to verify that (10) holds for the two motivating examples in Sec-
tion 2. For quadratic loss, the Hessian matrix at any x is A itself, and (8) gives the Hessian
for the logistic loss, which is Lipschitz in x and also bounded. In addition, according to As-
sumption 3.1, we have λmin(∇2F(x)) ≥ μ for any x, and thus λmin(A) ≥ μ. Therefore, a
valid choice of δ satisfying Assumption 4.1 always exists.

To track the dependence of our results on dimension, we assume L2 and L4 are also con-
trolled by Cd in (9) as L2 � C

3/2
d , L4 � C2

d . Lemmas A.1 and A.2 in the Supplementary
Material verify this requirement is satisfied in linear and logistic regression.

With this additional assumption, we first establish the consistency of the sample estimate
An and Sn in the following lemma.

LEMMA 4.1. Under Assumptions 3.1, 3.2 and 4.1, the following holds:

E‖An − A‖ � C2
dn− α

2 , E‖Sn − S‖� C2
dn− α

2 + C3
dn−α,

where α ∈ (0,1) is given in the step size sequence ηi = ηi−α , i = 1,2, . . . , n.



260 CHEN, LEE, TONG AND ZHANG

The proof of Lemma 4.1 is provided in Section C.1 of the Supplementary Material. Using
Lemma 4.1 and a matrix perturbation inequality for the inverse of a matrix (see Lemma C.1 in
Section C.2 of the Supplementary Material), we obtain the consistency result of the proposed
plug-in estimator Ã−1

n SnÃ
−1
n :

THEOREM 4.2 (Error rate of the plug-in estimator). Under Assumptions 3.1, 3.2 and 4.1,
the thresholded plug-in estimator initialized from any bounded x0 converges to the asymptotic
covariance matrix,

(11) E
∥∥Ã−1

n SnÃ
−1
n − A−1SA−1∥∥� ‖S‖(C2

dn− α
2 + C3

dn−α),
where α ∈ (0,1) is given in the step size sequence ηi = ηi−α , i = 1,2, . . . , n. When Cd is a
constant, the right-hand side of (11) is dominated by O(n− α

2 ).

REMARK 4.2. In practice, we usually do not need to perform the thresholding step,
since An is positive definite with high probability as An is close to A. The thresholding
step is mainly for obtaining the expected error bound in Theorem 4.2. In fact, without the
thresholding step, we are still able to the obtain the following error bound. In our numerical
experiments, we do not apply the thresholding procedure and the obtained An’s are always
invertible.

COROLLARY 4.3. Under Assumptions 3.1, 3.2 and 4.1, as n → ∞,∥∥A−1
n SnA

−1
n − A−1SA−1∥∥= Op

(‖S‖(C2
dn− α

2 + C3
dn−α)).

We also note that since the elementwise �∞-norm is bounded from above by the matrix op-
erator norm, we have Emaxij |(Ã−1

n SnÃ
−1
n − A−1SA−1)ij | converges to zero as n → ∞ ac-

cording Theorem 4.2. Therefore, (A−1SA−1)
1/2
jj can be estimated by σ̂ P

n,j = (Ã−1
n SnÃ

−1
n )

1/2
jj

for the construction of confidence intervals. In particular, we have the following corollary,
which shows that x̄n,j ± zq/2σ̂

P
n,j is an asymptotic exact confidence interval.

COROLLARY 4.4. Under the assumptions of Theorem 4.2, if the step size is chosen to be
ηi = ηi−α with α ∈ (1

2 ,1), when d is fixed and n → ∞,

Pr
(
x̄n,j − zq/2σ̂

P
n,j ≤ x∗

j ≤ x̄n,j + zq/2σ̂
P
n,j

)→ 1 − q.

Proof of Corollary 4.4 is given in Section D.5 of the Supplementary Material. Note that
while Theorem 4.2 holds for all α ∈ (0,1), the asymptotic normality in (7) holds only when
α ∈ (1

2 ,1). Thus, Corollary 4.4 requires that α ∈ (1
2 ,1).

4.2. Batch-means estimator. Although the plug-in estimator is intuitive, it requires the
computation of the Hessian matrix and its inverse, as well as an additional Assumption 4.1
on the Lipschitz condition of the Hessian matrix. In this section, we develop the batch-
means estimator, which only uses the iterates from SGD without requiring computation of
any additional quantities. Intuitively, if all iterates are independent and share the same dis-
tribution, the asymptotic covariance can be directly estimated by the sample covariance,
1
n

∑n
i=1(xi − x̄)(xi − x̄)T . Unfortunately, the SGD iterates are far from independent. To

understand the correlation between two consecutive iterates, we note that for sufficiently
large n such that xn−1 is close to x∗, by the Taylor expansion of ∇F(xn−1) at x∗, we have
∇F(xn−1) ≈ ∇F(x∗) + ∇2F(x∗)(xn−1 − x∗) = A
n−1, where ∇F(x∗) = 0 by the first-
order condition and A = ∇2F(x∗). Combining this with the recursion in (6), we have for
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sufficiently large n,

(12) 
n ≈ (Id − ηnA)
n−1 + ηnξn.

Based on (12), the strength of correlation between 
n and 
n−1 can be approximated by
‖Id − ηnA‖, which is very close to 1 as ηn � n−α . To address the challenge of strong corre-
lation among neighboring iterates, we split the entire sequence of iterates into batches with
carefully chosen batch sizes. In particular, we split n iterates of SGD {x1, . . . , xn} into M + 1
batches with sizes n0, n1, . . . , nM :

{xs0, . . . , xe0}︸ ︷︷ ︸
0th batch

, {xs1, . . . xe1}︸ ︷︷ ︸
1st batch

, . . . , {xsM , . . . , xeM
}︸ ︷︷ ︸

M th batch

.

Here, sk and ek are the starting and ending index of kth batch with s0 = 1, sk = ek−1 + 1,
nk = ek − sk + 1, and eM = n. We treat the 0th batch as the “burn-in stage.” More precisely,
the iterates {xs0, . . . , xe0} will not be used for constructing the batch-means estimator since
the step sizes are not small enough and the corresponding iterates in the 0th batch are far
away from the optimum. The batch-means estimator is given by the following:

(13)
1

M

M∑
k=1

nk(Xnk
− XM)(Xnk

− XM)T ,

where Xnk
:= 1

nk

∑ek

i=sk
xi is the mean of the iterates for the kth batch and XM :=

1
eM−e0

∑eM

i=s1
xi is the the mean of all the iterates except for the 0th batch.

Note that when batch sizes nk are predetermined, we may rewrite (13) in the following
form:

(14)
1

M

M∑
k=1

nkXnk
X

T

nk
+ n

M
XMX

T

M − 2

(
1

M

M∑
k=1

nkXnk

)
X

T

M.

Here, XM , 1
M

∑M
k=1 nkXnk

Xnk
and 1

M

∑M
k=1 nkXnk

can be updated recursively so that there
is no need to store all the batch-means {Xnk

}. In other words, the memory requirement for
the batch-means estimator is only O(d2) instead of O(Md2).

Intuitively, the reason why our batch-means estimator with increasing batch size can over-
come the strong dependence between iterates is as follows. Although the correlation between
neighboring iterates is strong, it decays exponentially for far-apart iterates. Roughly speaking,
by (12), for large j and k, the strength of correlation between 
j and 
k is approximately

(15)
k−1∏
i=j

‖Id − ηi+1A‖ ≈ exp

(
−λmin(A)

k−1∑
i=j

ηi+1

)
.

Therefore, the correlations between the batch-means Xnk
are close to zero if the batch sizes

are large enough, in which case different batch-means can be roughly treated as independent.
As a consequence, the sample covariance gathered from the batch-means will serve as a good
estimator of the true asymptotic covariance.

The remaining difficulty is how to determine the batch sizes. The approximation of corre-
lation given by (15) provides us a clear clue. If we want the correlation between two neigh-
boring batches to be on the order of exp(−cN), where N (with N → ∞) is a parameter
controlling the amount of decorrelation and c is a constant, we need

∑ek

i=sk
ηi � N for every

batch k. When ηi = ηi−α ,
∑ek

i=sk
ηi � (e1−α

k − e1−α
k−1 ), which leads to the following batch size

setting:

(16) ek = (
(k + 1)N

) 1
1−α , k = 0, . . . ,M,
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where ek is the ending point for the kth batch. There are two practical scenarios to apply the
proposed batch-means estimator:

• Total number of iterates n is given: Noting that eM = n, the decorrelation strength factor
N takes the following form:

(17) N = n1−α

M + 1
,

where M is the number of batches. Based on the result of Theorem 4.3 below, it is prefer-

able to take N = n
1−α

2 .
• When n is unknown (but sufficiently large): Given a target error bound ε, we pick an

N � ε−2. Then, we receive the online data and batch the SGD iterates according to (16).
When the number of batches M is sufficiently large (e.g., the upper bound in (18) below is
smaller than ε), we stop our SGD procedure and output the batch-means estimator.

Under this setting, the batch-means covariance estimator (13) is consistent as shown in the
following theorem.

THEOREM 4.3 (Error rate of the batch-means estimator). Under Assumptions 3.1 and
3.2, when d is fixed and the step size is chosen to be ηi = ηi−α with α ∈ (1

2 ,1), the batch-
means estimator initialized by any bounded x0 is a consistent estimator. In particular, for
sufficiently large N and M , we have

E

∥∥∥∥∥M−1
M∑

k=1

nk(Xnk
− XM)(Xnk

− XM)T − A−1SA−1

∥∥∥∥∥
� CdM− 1

2 + CdN− 1
2 + C

3
2
d (MN)−

α
4−4α + C2

dM−1 + C3
dM−1N

1−2α
1−α .(18)

As n → ∞, by (17), we can choose M,N → ∞, and thus the right- hand side of (18)
will converge to zero for any α ∈ (1/2,1), which shows the consistency of the proposed
covariance estimator. When d is fixed, Cd is a constant, and it is straightforward to see that

the right-hand side of (18) is dominated by Cd(M− 1
2 + N− 1

2 ). Therefore, according to (17)
(i.e., N(M + 1) = n1−α), we have the following Corollary 4.5 that suggests the optimal order
of M .

COROLLARY 4.5. Under Assumptions 3.1 and 3.2, when d is fixed and n is sufficiently

large, by choosing the step size ηi = ηi−α with α ∈ (1
2 ,1), M � n

1−α
2 and N � n

1−α
2 , we have

E

∥∥∥∥∥M−1
M∑

k=1

nk(Xnk
− XM)(Xnk

− XM)T − A−1SA−1

∥∥∥∥∥
� Cdn− 1−α

4 + C
3
2
d n− α

4 + C2
dn− 1−α

2 + C3
dn−α.(19)

When Cd is a constant, the right-hand side of (19) is dominated by O(n− 1−α
4 ).

As we will show in simulations in Section 6, wide choices between M = n0.2 to M =
n0.3 lead to reasonably good coverage rates when α is close to 1/2. Moreover, since α ∈
(1/2,1), the convergence rate n− 1−α

4 is slower than the rate of the plug-in estimator n− α
2 .

Although batch-means estimator has a slower convergence rate, the next corollary shows that
this method still constructs asymptotic exact confidence intervals.
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COROLLARY 4.6. Under the assumptions of Theorem 4.3, when d is fixed, n → ∞, and
the step size ηi = ηi−α with α ∈ (1

2 ,1), we have that

Pr
(
x̄n,j − zq/2σ̂

B
n,j ≤ x∗

j ≤ x̄n,j + zq/2σ̂
B
n,j

)→ 1 − q,

where σ̂ B
n,j := [M−1∑M

k=1 nk(Xnk
− XM)(Xnk

− XM)T ]1/2
j,j .

The proof is identical to the one of Corollary 4.4 and, therefore, omitted.

4.3. Intuition behind the proof. Now let us provide the main idea behind the proof of
Theorem 4.3. Recall that the SGD recursion in (6) can be approximated by (12): 
n ≈ (Id −
ηnA)
n−1 + ηnξn. We replace “≈” by the equal sign and define an auxiliary sequence Un:

(20) Un = Un−1 − ηnAUn−1 + ηnξn, U0 = 
0.

Note that 
n = Un in the linear model setting, but our proof applies to nonlinear models (e.g.,
generalized linear models). For a nonlinear model, the high-level idea of the proof consists
of two steps:

1. Establishing the consistency (and the rate of convergence) of the batch-means estimator
based on the sequence Un;

2. Quantifying the difference between 
n and Un, where 
n in (6) is the original sequence
of interest generated from SGD for general loss functions, and Un in (20) is its auxiliary linear
approximation sequence.

In fact, the sequence Un is the so-called “oracle iterate sequence,” which has also been con-
sidered in Polyak and Juditsky (1992). It can be written in a more explicit form:

(21) Un =
n∏

k=1

(I − ηkA)U0 +
n∑

m=1

n∏
k=m+1

(I − ηkA)ηmξm.

Given the sequence Un, we construct the batch-means estimator based on Un as
1
M

∑M
k=1 nk(Unk

− UM)(Unk
− UM)T , where Unk

and UM are defined as in (13) with xi

being replaced by Ui . The analysis of the batch-means estimator from Un is simpler than
that from SGD iterates xn since the expression of Un in (21) only involves the product of
matrices and the martingale differences ξm. In particular, we establish the consistency of the
batch-means estimator based on Un in the following lemma.

LEMMA 4.7. Under Assumptions 3.1 and 3.2, when d is fixed and the step size is chosen
to be ηi = ηi−α with α ∈ (1

2 ,1), the batch-means estimator based on the sequence Un with
any bounded U0 satisfies the following inequality for sufficiently large N and M :

E

∥∥∥∥∥M−1
M∑

k=1

nk(Unk
− UM)(Unk

− UM)T − A−1SA−1

∥∥∥∥∥
� CdM− 1

2 + CdN− 1
2 + C

3
2
d (MN)−

α
4−4α .

The proof of Lemma 4.7 is provided in Section D.3 of the Supplementary Material. With
Lemma 4.7 in place, to obtain the desired consistency result in Theorem 4.3, we only need
to study the difference between 
n and Un. In particular, let δn := 
n − Un. We have the
following recursion:

δn = 
n−1 − Un−1 − ηn∇F(xn−1) − ηnAUn−1

= δn−1 − ηnAδn−1 + ηn

(
A
n−1 − ∇F(xn−1)

)
.
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Notably, by replacing ξn in (20) with A
n−1 − ∇F(
n−1), δn follows a similar recursion
relationship to that of the sequence Un. Based on this observation, we show that δn is a se-
quence of small numbers, and hence 
n and Un are close to each other. Combining this with
Lemma 4.7, we will reach the conclusion in Theorem 4.3 (see Section D.4 in the Supplemen-
tary Material for the rigorous proof).

5. High-dimensional linear regression. In Sections 4.1 and 4.2, we assumed that the
dimension d is fixed while n → ∞. However in high-dimensional settings, it is often the case
that d � n or n = o(d). Below we consider a high-dimensional linear model bi = aT

i x∗ + εi ,
where x∗ is s-sparse (i.e., ‖x‖0 ≤ s) and let S = {j : x∗

j �= 0} be the support of true regression

coefficients. Each covariate ai ∈ R
d is an i.i.d. sub-Gaussian random vector from a common

population a with the covariance matrix A, and εi ∼ N(0, σ 2). For simplicity, we assume
that σ is known. For high-dimensional linear regression, one of the most popular estimators
is the Lasso estimator, denoted by x̂Lasso. That is,

x̂Lasso = 1

2n
argmin
x∈Rd

‖b − Dx‖2
2 + λ‖x‖1,

where D = [a1, . . . , an]T ∈ R
n×d is the design matrix, b = [b1, . . . , bn]T ∈ R

n×1 is the re-
sponse vector.

As suggested by earlier work (see, e.g., Belloni and Chernozhukov (2013), Bühlmann and
van de Geer (2011), Meinshausen, Meier and Bühlmann (2009), Wainwright (2009)), the
Lasso estimator can be used as a screening method to reduce the set of the variables to Ŝ,
a subset which contains the true support S with probability tending to 1. For example, by
choosing the regularization parameter λ as (2.12) in Belloni and Chernozhukov (2013) and
under certain assumptions, Belloni and Chernozhukov (2013) proved that S ⊆ Ŝ and |Ŝ\S|�
s with high probability (see Theorems 2 and 3 therein). When s is treated as a constant,
the selected model will be of fixed dimension. Based on the selected model, we are able to
directly apply our plug-in or batch-means estimator in Section 4 on Ŝ to conduct inference
for x∗

j for j ∈ Ŝ.
However, this approach has several limitations. First, the screening approach requires a

strong “beta-min” assumption. In particular, this assumption requires that minj∈S |x∗
j | >

maxj∈S |x̂Lasso,j − x∗
j |, or minj∈S |x∗

j | � √
s(logd)/n, for example, Belloni and Cher-

nozhukov (2013), Bühlmann and Mandozzi (2014), Bühlmann and van de Geer (2011). Other
screening methods (e.g., “Sure Independence Screening” (SIS) method (Fan and Lv (2008)))
also require a similar beta-min condition. However, since we are interested in inference of the
model parameters instead of the model selection, the “beta-min” condition should be avoid-
able. Second, the sparsity level s has to be treated as a constant to apply our theoretical results
of either the plug-in or batch-means estimator. Furthermore, when using Lasso as a screening
approach, it inevitably requires more than one pass of the data which does not fit our online
setting.

5.1. Debiasing approach. To relax the strong conditions when using the Lasso as
a screening approach, we propose a new approach for conducting inference for high-
dimensional linear regression that only uses one pass of the data. Our approach is based
on the following debiased Lasso estimator (Javanmard and Montanari (2014), van de Geer
et al. (2014), Zhang and Zhang (2014)),

x̂d
Lasso = x̂Lasso + 1

n
�̂DT (b − Dx̂Lasso),
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where �̂ is an estimator of the inverse covariance matrix of the design � = A−1. To construct
�̂, van de Geer et al. (2014) adopts the nodewise Lasso approach (see also Meinshausen and
Bühlmann (2006)), that is,

(22) γ̂ j = argmin
γ j∈Rd−1

1

2n

∥∥D·,j − D·,−j γ
j
∥∥2

2 + λj

∥∥γ j
∥∥

1,

where D·,j is the j th column of the design matrix D and D·,−j is the design submatrix
without the j th column. Further, one can estimate �j,j by

τ̂j = 1

n

(
D·,j − D·,−j γ̂

j )T D·,j .

Given γ̂ j and τ̂j , the matrix � is estimated by

(23) �̂ = T̂ Ĉ,

where T̂ := diag(1/τ̂1, . . . ,1/τ̂d) and

Ĉ :=

⎛⎜⎜⎜⎜⎝
1 −γ̂ 1

2 . . . −γ̂ 1
d

−γ̂ 2
1 1 . . . −γ̂ 2

d
...

...
. . .

...

−γ̂ d
1 −γ̂ d

2 . . . 1

⎞⎟⎟⎟⎟⎠ .

Note that in the existing literature, x̂Lasso and �̂ are obtained via deterministic convex op-
timization. Therefore, debiased Lasso approaches cannot be directly applied to the stochastic
setting in this work. To address this issue, we propose to compute the estimators for both
x∗ and � using the Regularization Annealed epoch Dual AveRaging (RADAR) algorithm
(Agarwal, Negahban and Wainwright (2012)), which is a variant of SGD. Similar to SGD,
RADAR computes the stochastic gradient on one data point at each iteration. Please refer
to Agarwal, Negahban and Wainwright (2012) for more details of the RADAR algorithm.
The reason why we use RADAR instead of the vanilla SGD is because RADAR provides
the optimal convergence rate in terms of the �1-norm. In particular, we apply RADAR to the
following �1-regularized problem:

(24) min
x∈Rd

E
(
b − aT x

)2 + λ‖x‖1

and let x̂n be the solution output from RADAR with n iterations. Similarly, we again use
stochastic optimization instead of deterministic optimization in the nodewise Lasso in (22),
that is, applying RADAR to the following optimization problem for each dimension 1 ≤
j ≤ d :

(25) γ̂ j = argmin
γ j∈Rd−1

E
∥∥aj − a−j γ

j
∥∥2

2 + λj

∥∥γ j
∥∥

1,

where aj is the j th coordinate of the population design vector a and a−j is the subvector of a

without the j th coordinate. Given γ̂ j from solving (25) via the iterative stochastic algorithm,
the inverse covariance estimator �̂ is constructed according to (23).

It is noteworthy that although the proposed �̂ is of the same form as the estimator for A−1

in van de Geer et al. (2014), our γ̂ j is different from the one in van de Geer et al. (2014).
More precisely, our γ̂ j is the output of a stochastic gradient-based algorithm, while van de
Geer et al. (2014) obtained γ̂ j from deterministic optimization in (22). With all these ingredi-
ents in place, we present the stochastic gradient based construction of the confidence interval
for x∗

j for j ∈ {1, . . . , d} in Algorithm 1. The hypothesis test can also be performed once the
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Algorithm 1 Stochastic optimization based confidence interval construction for high-
dimensional sparse linear regression

Inputs:
Regularization parameter λ � √

logd/n, and λj � √
logd/n for each

dimension j , the noise level σ , confidence level 1 − α.
for t = 1 to n do

Randomly sample the data (at , bt ) and update the design D ← [DT ,at ]T and response
b ← [bT , bt ]T .

Update xt by running one iteration of RADAR on the optimization problem (24) using
the stochastic gradient (aT

t xt−1 − bt )at ,
for j = 1 to d do

Update γ
j
t by running one iteration of RADAR on the optimization problem (25)

using the stochastic gradient (aT
t,−j γ

j
t−1 − at,j )at,−j .

end for
end for
Let x̂n = xn and γ̂ j = γ

j
n for j ∈ {1, . . . , d} be the final outputs.

Construct the debiased estimator x̂d with �̂ defined in (23).

(26) x̂d = x̂n + 1

n
�̂DT (b − Dx̂n).

Outputs:

The (1 − α) confidence interval for each x∗
j : x̂d

j ± zα/2σ
√

(�̂Â�̂)jj /n,

where Â = 1
n
DT D.

estimator of the asymptotic variance of x̂d
j is available (see Theorem 5.2). We note that the

proposed method is computationally more efficient than the methods based on determinis-
tic optimization. It only requires one pass of the data with the total per-iteration complexity
O(d2) (note that the nodewise Lasso needs to solve d optimization problems) and is applica-
ble to online data (in contrast to multiple passes of data with deterministic optimization used
in existing methods). The details of the algorithm are provided in Algorithm 1.

To provide the theoretical justification for Algorithm 1 in terms of constructing valid con-
fidence intervals, we make the following assumptions (which are similar to the assumptions
made in van de Geer et al. (2014)).

ASSUMPTION 5.1. The covariate a is a sub-Gaussian random vector with variance proxy
K2. The population covariance A has bounded eigenvalues,

0 < μ < λmin(A) < λmax(A) < LF .

Denote the set of parameters by B(s) = {x ∈ R
d; ‖x‖0 ≤ s and ‖x‖1 is bounded by a

constant}. The true regression parameter x∗ ∈ B(s) where s = o(
√

n/ logd). Moreover, the
inverse covariance � has sparse rows. In particular, define

sj = ∣∣{1 ≤ k ≤ d : k �= j,�j,k �= 0}∣∣.
We assume that maxj sj ≤ Cs for some constant C.

Under Assumption 5.1, we first present an �1-bound result as a corollary of Proposition 1
in Agarwal, Negahban and Wainwright (2012),
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PROPOSITION 5.1. Under Assumption 5.1 and using the same algorithm parameters as
Proposition 1 in Agarwal, Negahban and Wainwright (2012), there exists a constant c0, such

that x̂n in Algorithm 1 satisfies ‖x̂n − x∗‖1 ≤ c0s

√
logd

n
uniformly in x∗ ∈ B(s) with high

probability. Further, for each j = {1, . . . , d}, we have

∥∥γ̂ j + �−1
j,j (�j,−j )

T
∥∥

1 ≤ c0sj

√
logd

n

holds with high probability.

The proof of Proposition 5.1 is provided in Section E.1 of the Supplementary Material.
Let Px∗ be the distribution under the high-dimensional linear model bi = aT

i x∗ + εi . Given
Proposition 5.1, we state the inference result in the next theorem. We note that although the
statement of the following theorem is similar to Theorem 2.2 and Corollary 2.1 in van de
Geer et al. (2014), the proof is more technically involved. The main challenge is that the ex-
isting analysis in van de Geer et al. (2014) starts from the KKT condition of the deterministic
optimization for estimating �. However, we estimate � using the stochastic optimization,
and thus the corresponding KKT condition no longer holds. Please refer to the proof in Sec-
tion E.2 of the Supplementary Material for more detail.

THEOREM 5.2. Under Assumption 5.1, for suitable choices of λ � √
logd/n and λj �√

logd/n, we have for all j ∈ {1, . . . , d} and all z ∈ R,

sup
x∗∈B(s)

∣∣∣∣Px∗
( √

n(x̂d
j − x∗

j )

σ
√

(�̂Â�̂T )jj

≤ z

)
− �(z)

∣∣∣∣= op(1),

where x̂d is the debiased estimator defined in (25), �̂ is defined in (23) and the sample
covariance matrix Â = 1

n
DT D.

Theorem 5.2 shows that 1
σ
√

(�̂Â�̂T )jj

√
n(x̂d

j −x∗
j ) converges in distribution to N(0,1) uni-

formly for any x∗ ∈ B(s) and j ∈ {1,2, . . . , d}, which verifies the correctness of the asymp-
totic pointwise confidence interval in the output of Algorithm 1 for x∗

j . Given the uniform
convergence result in Theorem 5.2, we can construct p-values for each single component,
and further conduct multiple testing based on componentwise p-values. We also note that a
similar uniform convergence result has been established in Ning and Liu (2017) for a score
test approach (see Remark 4.6). It is also interesting to investigate the stochastic optimization
based score test as a future work.

6. Numerical simulations. In this section, we investigate the empirical performance of
the plug-in estimator and batch-means estimator of the asymptotic covariance matrix. We
consider both linear and logistic regression models, where {ai, bi} are i.i.d. samples with
ai ∼ N (0,�) and x∗ is the true parameter vector of the model. For both models, we consider
three different structures of the d × d covariance matric �:

• Identity: � = Id ;
• Toeplitz: �i,j = r |i−j |;
• Equi Corr: �i,j = r for all i �= j , �i,i = 1 for all i.

We report r = 0.5 for Toeplitz and r = 0.2 for equicorrelation (Equi Corr) covariance ma-
trices in the main paper. The experimental results on other settings of r are relegated to the
Section F of the Supplementary Material due to space limitations. The noise εn in linear re-
gression is set to i.i.d. N(0, σ 2) with σ = 1. The parameter α in the step size is chosen to
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be 0.501 (slightly larger than 0.5). All the reported results are obtained by taking the aver-
age of 500 independent runs. We consider the finite sample behavior of the plug-in estimator
and the batch-means estimator for the inference of each individual regression coefficient xj ,
j ∈ {1,2, . . . , d}.

6.1. Low-dimensional cases. In each case, we consider the sample size n = 105 and the
dimension d = 5, 20, 100, 200. For each model, the corresponding parameter x∗ is a d-
dimensional vector linearly spaced between 0 and 1. The thresholding scheme is not used for
the plug-in estimator. In fact, we observe that the obtained An is always invertible and the
results are stable without the thresholding. For the batch-means estimator (BM in short), we
consider three different choices of the number of batches: M = n0.2, M = n0.25 and M = n0.3.
Note that α = 0.501. As we suggested in Corollary 4.5, to achieve a better convergence rate,

the number of batches M is chosen around the optimal value n
1−α

2 ≈ n0.25.
We set the nominal coverage probability 1 − q to 95%. The performance of an estimator

is measured by the average coverage rate (Cov Rate) of the confidence intervals and the
average length (Avg Len) of the intervals for each individual coefficient. For each setting,
we also report the oracle length of the confidence interval with respect to the true covariance
matrix A−1SA−1 and the corresponding coverage rate when using the same center as the
BM.

For linear regression, the asymptotic covariance is A−1SA−1 = σ 2�−1 = �−1 and the

oracle interval length for each coordinate j will be
2zq/2(�

−1)jj√
n

. Table 1 shows the empirical
performance of the plug-in and BM under linear models with three different design covari-
ance matrices.

From Table 1, both the plug-in and BM achieve good performance. The plug-in gives
better average coverage rate than BM: the average coverage rates in all different settings are
nearly 95%. However, the average length of plug-in is usually larger than that of BM and the
corresponding oracle interval length. On the other hand, BM achieves about 92% coverage
rate when M = n0.25 or M = n0.3. We further consider the logistic regression. To provide an
oracle interval length based on the true asymptotic covariance A−1SA−1 = A−1, we estimate
A in (8) by its empirical version Â using one million fresh samples and the oracle interval

length of each coordinate j is computed as
2zq/2(Â

−1)jj√
n

. We provide the result in Table 2
for different design covariance matrices. From Table 2, the plug-in still achieves nearly 95%
average coverage rate. The BM achieves about 90% coverage rate and the average length is
usually smaller than the oracle length. Moreover, as d becomes larger, the interval lengths
for both estimators increase. Finally, the performance of BM is insensitive to the choice of
the number of batches M : different M’s lead to comparable coverage rates. There are two
reasons for the undercoverage of BM. First, the obtained center could deviate from x∗ that
introduces the bias. Second, the BM has a slower convergence rate as compared to the plug-in
(especially for the case of logistic regression). However, since the BM only uses the iterates
from SGD, it is computationally more efficient than the plug-in estimator which requires the
computation of the Hessian matrix Ãn and its inverse.

6.2. High-dimensional cases. In a high-dimensional setting, we consider the sample size
n = 100, and the dimension d = 500. The active set S0 = {1,2, . . . , s0}, where the cardinality
s0 = |S0| = 3 or 15. The non-zero regression coefficients {x∗

j }j∈S0 are from a fixed realization
of s0 i.i.d. uniform distribution U [0, c] with c = 2.

First, we consider the average coverage rate and the average length of the intervals for indi-
vidual coefficients corresponding to the variables in either S0 or Sc

0 where Sc
0 = {1, . . . , d}\S0.

Again, we set the nominal coverage probability 1 − q to 95%. Our experimental setup
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TABLE 1
Linear regression: The average coverage rate and length of confidence intervals, for the nominal coverage

probability 95%. The columns (BM: nc for c = 0.2, 0.25 and 0.3) correspond to the batch-means estimator with
M = nc number of batches. Cov Rate under “Oracle” refers to coverage rates when using the same center as

BM but with oracle interval lengths. Standard errors are reported in the brackets

BM

d Plug-in M = n0.2 M = n0.25 M = n0.3 Oracle

Identity �

Cov Rate (%) 5 95.68 (0.87) 90.28 (0.46) 93.68 (0.79) 91.64 (0.79) 87.44
Avg Len (×10−2) 1.49 (0.01) 1.39 (0.01) 1.47 (0.01) 1.43 (0.01) 1.24
Cov Rate (%) 20 94.99 (0.94) 91.30 (1.08) 93.92 (1.25) 92.95 (1.19) 88.24
Avg Len (×10−2) 1.44 (0.01) 1.35 (0.01) 1.41 (0.01) 1.38 (0.01) 1.24
Cov Rate (%) 100 95.04 (1.01) 90.75 (1.36) 93.15 (1.12) 92.37 (1.10) 87.89
Avg Len (×10−2) 1.41 (0.01) 1.32 (0.01) 1.35 (0.01) 1.35 (0.01) 1.24
Cov Rate (%) 200 94.75 (1.13) 90.49 (1.21) 92.97 (1.17) 91.97 (1.18) 88.12
Avg Len (×10−2) 1.39 (0.01) 1.30 (0.01) 1.31 (0.01) 1.32 (0.01) 1.24

Toeplitz �

Cov Rate (%) 5 95.24 (0.92) 91.16 (0.50) 94.28 (0.86) 93.04 (0.90) 88.31
Avg Len (×10−2) 1.83 (0.10) 1.74 (0.10) 1.82 (0.11) 1.78 (0.12) 1.53
Cov Rate (%) 20 94.84 (0.97) 90.97 (1.08) 93.75 (0.93) 92.77 (0.81) 87.26
Avg Len (×10−2) 1.81 (0.05) 1.71 (0.06) 1.78 (0.06) 1.76 (0.06) 1.58
Cov Rate (%) 100 95.01 (1.12) 90.36 (1.33) 91.83 (1.09) 91.52 (1.17) 89.11
Avg Len (×10−2) 1.77 (0.02) 1.67 (0.03) 1.67 (0.03) 1.69 (0.02) 1.60
Cov Rate (%) 200 94.69 (1.33) 90.01 (1.41) 91.65 (1.36) 91.24 (1.41) 89.43
Avg Len (×10−2) 1.74 (0.02) 1.62 (0.02) 1.62 (0.02) 1.62 (0.02) 1.60

Equi Corr �

Cov Rate (%) 5 94.80 (0.88) 90.92 (1.09) 93.60 (0.92) 92.32 (0.68) 86.79
Avg Len (×10−2) 1.60 (0.01) 1.46 (0.01) 1.55 (0.01) 1.52 (0.01) 1.31
Cov Rate (%) 20 95.10 (0.99) 91.15 (1.14) 93.66 (0.99) 92.78 (0.92) 88.04
Avg Len (×10−2) 1.59 (0.01) 1.47 (0.01) 1.54 (0.01) 1.51 (0.01) 1.36
Cov Rate (%) 100 94.93 (1.06) 90.86 (1.26) 93.19 (1.15) 92.29 (1.10) 87.15
Avg Len (×10−2) 1.56 (0.01) 1.47 (0.01) 1.52 (0.01) 1.50 (0.01) 1.38
Cov Rate (%) 200 94.49 (1.09) 90.57 (1.45) 92.45 (1.27) 91.91 (1.13) 87.22
Avg Len (×10−2) 1.51 (0.01) 1.45 (0.01) 1.49 (0.01) 1.49 (0.01) 1.38

follows directly from van de Geer et al. (2014), and we provide the oracle length of the
confidence intervals for comparison. For linear regression, the asymptotic covariance is
A−1SA−1 = σ 2�−1 = �−1 and the oracle interval length for each coordinate j will be
2zq/2(�

−1)jj√
n

. We provide the result in Table 3 for different design covariance matrices.
For high-dimensional linear regression, Algorithm 1 achieves good performance, espe-

cially in sparse settings (s0 = 3). From Table 3, the average coverage rate is about 90%. For
less sparse problems (s0 = 15), our method still achieves about 88% average coverage rate
for different design covariance matrices. The coverage rates of the obtained confidence in-
tervals on active sets S0 are slightly better than those on Sc

0. The average lengths on both
sets are slightly smaller than the oracle lengths. The performance of the cases with identity
design matrices are better than those with Toeplitz and equicorrelation design matrices (e.g.,
having smaller standard deviations). It is reasonable since it is easier to estimate the inverse
covariance matrix � when it is an identity matrix.

In Table 4, we also provide the results using the deterministic optimization (instead of the
stochastic RADAR) for constructing �̂ (van de Geer et al. (2014)). Both methods achieve



270 CHEN, LEE, TONG AND ZHANG

TABLE 2
Logistic regression: The average coverage rate and length of confidence intervals, for the nominal coverage

probability 95%. The columns (BM: nc for c = 0.2, 0.25 and 0.3) correspond to the batch-means estimator with
M = nc number of batches. Cov Rate under “Oracle” refers to coverage rates when using the same center as

BM but with oracle interval lengths. Standard errors are reported in the brackets

BM

d Plug-in M = n0.2 M = n0.25 M = n0.3 Oracle

Identity �

Cov Rate (%) 5 95.04 (1.13) 89.24 (1.55) 90.12 (1.70) 89.36 (1.97) 91.45
Avg Len (×10−2) 3.24 (0.41) 3.01 (0.26) 2.94 (0.25) 2.87 (0.23) 3.09
Cov Rate (%) 20 95.00 (1.34) 89.35 (2.00) 90.22 (1.67) 89.74 (2.11) 90.37
Avg Len (×10−2) 3.79 (0.27) 3.53 (0.25) 3.46 (0.23) 3.42 (0.22) 3.68
Cov Rate (%) 100 94.69 (1.06) 89.42 (1.66) 90.84 (1.68) 90.41 (2.01) 91.24
Avg Len (×10−2) 5.21 (0.26) 4.97 (0.24) 4.87 (0.23) 4.80 (0.24) 5.06
Cov Rate (%) 200 94.47 (0.91) 89.01 (1.41) 90.47 (1.49) 90.36 (1.74) 92.08
Avg Len (×10−2) 6.05 (0.29) 5.94 (0.26) 5.82 (0.27) 5.71 (0.25) 5.97

Toeplitz �

Cov Rate (%) 5 94.96 (1.58) 88.96 (2.32) 90.56 (2.06) 90.12 (2.04) 92.41
Avg Len (×10−2) 4.06 (0.34) 3.75 (0.28) 3.73 (0.27) 3.61 (0.25) 4.04
Cov Rate (%) 20 95.17 (1.23) 89.01 (1.93) 90.39 (1.88) 89.79 (1.81) 91.07
Avg Len (×10−2) 5.74 (0.29) 5.57 (0.25) 5.22 (0.23) 4.95 (0.22) 5.59
Cov Rate (%) 100 94.91 (0.89) 89.91 (1.74) 90.83 (1.81) 90.54 (1.97) 91.47
Avg Len (×10−2) 8.47 (0.37) 8.01 (0.28) 7.71 (0.26) 7.37 (0.25) 8.28
Cov Rate (%) 200 94.59 (1.04) 89.72 (1.81) 90.74 (1.93) 90.32 (2.02) 92.29
Avg Len (×10−2) 9.81 (0.41) 9.24 (0.34) 8.95 (0.31) 8.78 (0.29) 9.84

Equi Corr �

Cov Rate (%) 5 94.80 (1.66) 88.08 (1.46) 88.64 (1.73) 89.48 (1.51) 93.79
Avg Len (×10−2) 3.43 (0.35) 3.28 (0.28) 3.24 (0.25) 3.20 (0.24) 3.38
Cov Rate (%) 20 94.54 (1.73) 89.27 (1.33) 90.64 (1.60) 90.31 (2.10) 92.50
Avg Len (×10−2) 5.37 (0.31) 4.84 (0.26) 4.77 (0.24) 4.51 (0.21) 5.19
Cov Rate (%) 100 94.79 (1.08) 89.01 (1.70) 90.27 (1.76) 89.42 (2.01) 94.92
Avg Len (×10−2) 10.24 (0.51) 10.17 (0.47) 9.75 (0.42) 9.24 (0.40) 10.89
Cov Rate (%) 200 94.24 (1.09) 89.13 (1.44) 90.01 (1.92) 89.23 (1.79) 92.40
Avg Len (×10−2) 15.70 (0.62) 14.82 (0.57) 14.01 (0.55) 13.88 (0.52) 15.31

comparably reliable coverage rates. From Table 4, the average coverage rates are closer to
the nominal levels, better than those in Table 3. The undercovering in Table 3 is due to the
estimation error of the diagonals of �̂Â�̂ using stochastic optimization method. Based on
the computational and storage requirements, a practitioner may decide to use a one-pass
algorithm or a more accurate estimator under deterministic optimization.

7. Conclusions and future works. This paper presents two consistent estimators of the
asymptotic variance of the average iterate from SGD, especially a computationally more effi-
cient batch-means estimator that only uses iterates from SGD. With the proposed estimators,
we are able to construct asymptotically exact confidence intervals and hypothesis tests.

We further discuss statistical inference based on SGD for high-dimensional linear regres-
sion. An extension to generalized linear models is an interesting problem for future work.

The seminal work by Toulis and Airoldi (2017) develops the averaged implicit SGD proce-
dure and provides the characterization of the limiting distribution. It would be interesting to
establish the consistency of the batch-means estimator based on iterates from implicit SGD.
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TABLE 3
High-dimensional linear regression, the average coverage rate and length of confidence intervals, for the

nominal coverage probability 95%. Standard errors are reported in the brackets

Measure Identity � Toeplitz � Equi Corr �

S0 = {1,2,3}
Cov Rate S0(%) 91.93 (3.13) 91.40 (2.39) 90.20 (1.38)

Avg Len S0 0.387 (0.002) 0.401 (0.019) 0.360 (0.014)

Cov Rate Sc
0(%) 90.80 (1.79) 90.21 (1.98) 89.73 (1.96)

Avg Len Sc
0 0.386 (0.002) 0.417 (0.022) 0.384 (0.023)

Oracle Len 0.392 0.506 0.438

S0 = {1,2, . . . ,15}
Cov Rate S0 (%) 90.48 (1.73) 89.84 (2.61) 89.45 (0.87)

Avg Len S0 0.379 (0.002) 0.430 (0.024) 0.384 (0.020)

Cov Rate Sc
0 (%) 88.43 (2.30) 86.79 (2.10) 87.12 (1.36)

Avg Len Sc
0 0.360 (0.003) 0.425 (0.024) 0.383 (0.022)

Oracle Len 0.392 0.506 0.438

It is also interesting to relax the current assumptions and consider SGD for more challenging
optimization problems (e.g., nonconvex problems).
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TABLE 4
High-dimensional linear regression using nodewise lasso instead of RADAR for inference, the average coverage
rate and length of confidence intervals, for the nominal coverage probability 95%. Standard errors are reported

in the brackets

Measure Identity � Toeplitz � Equi Corr �

S0 = {1,2,3}
Cov Rate S0(%) 94.73 (1.42) 92.60 (1.95) 91.33 (1.99)

Avg Len S0 0.393 (0.001) 0.472 (0.011) 0.431 (0.007)

Cov Rate Sc
0(%) 96.13 (1.44) 95.17 (1.71) 95.92 (2.04)

Avg Len Sc
0 0.386 (0.001) 0.481 (0.014) 0.429 (0.011)

Oracle Len 0.392 0.506 0.438

S0 = {1,2, . . . ,15}
Cov Rate S0 (%) 91.80 (1.04) 91.07 (2.01) 90.33 (1.92)

Avg Len S0 0.399 (0.001) 0.512 (0.015) 0.424 (0.008)

Cov Rate Sc
0 (%) 95.75 (1.80) 93.17 (1.90) 94.11 (1.73)

Avg Len Sc
0 0.379 (0.001) 0.505 (0.016) 0.453 (0.008)

Oracle Len 0.392 0.506 0.438



272 CHEN, LEE, TONG AND ZHANG

SUPPLEMENTARY MATERIAL

Supplement to “Statistical inference for model parameters in stochastic gradient de-
scent” (DOI: 10.1214/18-AOS1801SUPP; .pdf). We provide the proofs of all the theorectial
results as well as additional simulation studies.
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