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We consider the problem of estimating a consensus community struc-
ture by combining information from multiple layers of a multi-layer network
using methods based on the spectral clustering or a low-rank matrix factoriza-
tion. As a general theme, these “intermediate fusion” methods involve obtain-
ing a low column rank matrix by optimizing an objective function and then
using the columns of the matrix for clustering. However, the theoretical prop-
erties of these methods remain largely unexplored. In the absence of statistical
guarantees on the objective functions, it is difficult to determine if the algo-
rithms optimizing the objectives will return good community structures. We
investigate the consistency properties of the global optimizer of some of these
objective functions under the multi-layer stochastic blockmodel. For this pur-
pose, we derive several new asymptotic results showing consistency of the
intermediate fusion techniques along with the spectral clustering of mean ad-
jacency matrix under a high dimensional setup, where the number of nodes,
the number of layers and the number of communities of the multi-layer graph
grow. Our numerical study shows that the intermediate fusion techniques out-
perform late fusion methods, namely spectral clustering on aggregate spectral
kernel and module allegiance matrix in sparse networks, while they outper-
form the spectral clustering of mean adjacency matrix in multi-layer networks
that contain layers with both homophilic and heterophilic communities.

1. Introduction. The study of multi-layer networks has received significant interest re-
cently, driven by its myriad of applications in neuroscience, economics, genetics and social
sciences [4, 12, 14, 19]. A multi-layer network is a powerful representation of relational data
with the nodes representing the entities of interest and the network layers representing the
multiple relations among those entities. While the term “multi-layer network” is often used
in a more general context, we focus our attention only on a network where the nodes are con-
nected only within a layer and there are no inter-layer edges (such networks are also called
“multiplex networks” in the literature).

A dynamic or time-varying network represents different states of a single network over
time. A dynamic network can also be represented as a multi-layer network, with the same
node in consecutive time period usually being linked by an edge to respect the time ordering
[2, 10, 19]. When appropriate for the application, for example, in the problem of consensus
community detection, we can ignore the time order and consider a time-varying network as a
regular multi-layer network with no inter-layer edges [5, 12].

The problem of consensus community detection in multi-layer and dynamic networks has
many important applications. Often in such networks one underlying community structure is
in force while the different layers of interactions are merely different manifestations of the
unobserved community structure. For example, in the multi-layer twitter networks in Greene
and Cunningham [11], ground truth community memberships can be attributed to the users
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(nodes) based on attributes more fundamental and independent of the observed twitter in-
teractions (e.g., political views, country of origin, football clubs), whereas the interactions
provide multiple sources of information about the same latent community structure. Com-
bining information from these multiple sources would then lead to enhanced performance in
the learning task. Moreover, different representations of the same phenomenon often provide
complimentary information, any one of which is not sufficient to describe the underlying
process (see Liu et al. [17] and the examples therein).

Even in situations where the hypothesis of a single constant community structure may not
be true, for example, in the analysis of dynamic brain networks, it is still often desirable to
obtain a consensus partition that does not vary over time, but is a static average partition
that remains in force throughout the experiment. Such an overall partition is crucial to ob-
tain stable modules of brain regions as baseline for computing measures of local and global
dynamism in the brain, for example, “flexibility” and “integration” in Bassett et al. [3] and
Braun et al. [5].

The present problem is also related to a more general class of problems that generally
goes under the theme of multi-view clustering and has received considerable attention over
the last decade, particularly in the computer science community. Numerous methods have
been proposed to combine information from multiple views of a multi-view relational data
for clustering. The goal is usually to leverage the diversity and often complimentary nature
of the information in different layers to outperform simply summing the layers or using any
one of the layers [17]. A great many of those methods use spectral clustering or a low rank
matrix factorization as a basis [9, 15, 17, 18, 22, 29, 34, 39].

The “linked matrix factorization” algorithm in Tang, Lu and Dhillon [34] and “RESCAL”
algorithm in Nickel, Tresp and Kriegel [22] approximate the adjacency matrices in each layer
of a multi-layer graph, or each slice of a three way tensor, with a low rank symmetric matrix
factorization. While one of the factors is shared the other one varies across layers or slices. Al-
though the algorithms employed in the two papers are quite different, the factorization in both
cases is computed by minimizing an identical joint Frobenius norm objective function. Dong
et al. [9] use similar common low rank matrix factorization ideas with a slightly different
objective function to obtain a “joint spectrum” of a multi-layer graph which is subsequently
used for clustering.

The co-regularized spectral clustering in [15] with centroid based co-regularization max-
imizes the combined normalized cut objective function over the Laplacian matrices from all
views of the data, subject to a smoothness penalty. This idea is similar to the evolutionary
spectral clustering used in Chi et al. [7] for clustering dynamic networks with a temporal
smoothness penalty, and is part of a general theme of co-regularization in multi-view ma-
chine learning [38]. The co-regularization framework was extended to “joint nonnegative
matrix factorization” using a Frobenius norm based objective function in Liu et al. [17]. See
Sun [32] and Xu, Tao and Xu [38] for surveys of multi-view learning methods.

However, there is a lack of theoretical understanding of the objective functions in these
spectral and matrix factorization based methods. Researchers often rely on simulations and
applications to specific datasets to compare the methods. However, this approach fails to
explore different scenarios that might arise in practice. For example, in multi-layer network
applications, the component layers might have very different sparsity, signal quality and node
degree distributions. Hence it is important to explore the utility of the methods under different
statistical models and asymptotic settings through a principled theoretical study.

In this article we investigate the consistency properties of various methods for community
detection under data generated from a multi-layer network model, the multi-layer stochastic
blockmodel (MLSBM) [1, 12, 23, 24, 26, 30, 36, 37]. We derive several asymptotic results to
show consistency of the global optimizers of co-regularized spectral clustering and orthogo-
nal linked matrix factorization under a high dimensional asymptotic setup where the number
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of nodes, the number of layers and the number of communities all grow. We use slight varia-
tions of the original algorithms to compute the solutions to the respective optimization prob-
lems. We note that both algorithms are not guaranteed to reach a global optimum. The present
paper is an attempt to prove goodness of the objective functions rather than the algorithms,
and is concerned with the following question: If it is possible to compute a global optimum
or approximate one reasonably, will the global solution be consistent under a random graph
model, namely the MLSBM?

In addition to the two methods mentioned above, we also consider two baseline methods
previously used in literature. The first method is performing spectral clustering [21, 28] on the
mean of the adjacency matrices from different layers of the multi-layer network. This method
has also been considered in Tang, Lu and Dhillon [34] and Dong et al. [9] as a baseline method
and is generally thought to be a simple but effective procedure [15]. In addition to including
this method in our numerical comparisons, we also study its asymptotic consistency under
MLSBM.

The second baseline method first computes a low dimensional spectral embedding (matrix
of eigenvectors corresponding to top eigenvalues) and creates a spectral kernel for each layer,
and then aggregates these kernel functions. A single layer community detection method is
then applied to this aggregate spectral kernel [34]. Another variation of this idea is to com-
pute the community assignments in each layer independently using a single layer method
(e.g., modularity or spectral clustering), and then create a “module allegiance matrix” on
which a single layer community detection method can be applied to compute the consensus
communities [5].

The rest of the article is organized as follows. Section 2 describes the methods and algo-
rithms considered in the article. Section 3 describes the MLSBM, defines mis-clustering rate
and proves correct recovery in the noiseless case. Section 4 describes the consistency results.
Section 5 contains a simulation study to numerically evaluate the methods. Section 6 gives
concluding remarks. All the proofs are given in the Supplementary Material [25].

2. Methods and algorithms. We define an undirected multi-layer network with M lay-
ers as a collection of graphs G = {G(1), . . . ,G(M)} over a common set of n vertices. The
vertices represent the entities/actors, while the layers represent different types of interactions
among the entities. For the layer of the mth type, we define the adjacency matrix A(m) cor-
responding to that layer as follows: A

(m)
ij = 1, if there is an edge of type m between nodes i

and j , and A
(m)
ij = 0, otherwise.

We define the vector of degrees of node i as di = {d(m)
i ;m = 1, . . . ,M}, where d

(m)
i =∑

j A
(m)
ij is its degree of the mth type. Then the normalized graph Laplacian matrix for the

mth layer can be defined as L(m) = (D(m))−1/2A(m)(D(m))−1/2, where D(m) is a diagonal
matrix with the degrees of the mth type of the nodes as elements, that is, D

(m)
ii = d

(m)
i . To-

gether the M adjacency matrices create the three-way n × n × M adjacency tensor of the
multi-layer network A = {A(1), . . . ,A(M)}. The corresponding Laplacian tensor is defined as
L = {L(1), . . . ,L(M)}. We denote the number of communities in the network by k. It will be
assumed to be known throughout the paper. We use the notations ‖ · ‖2, ‖ · ‖F and ‖ · ‖�

to denote the spectral (operator) norm, the Frobenius norm and the trace norm, respectively,
while tr(·) denotes the matrix trace. We will use sin�(U,V ) to denote the diagonal matrix
whose elements are sines of the principle angles between the subspaces U and V , spanned by
the columns of the matrices U and V respectively (Definition 1.5.3 in Stewart and Sun [31]).

We consider the following methods and algorithms for consensus clustering in multi-layer
networks. The first two methods are so called “intermediate fusion” techniques whereby the
multiple layers are integrated through a clustering objective function [17]. Such methods are
often preferred over “early” and “late” fusion techniques due to superior performance [40].
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2.1. Linked matrix factorization. The first of the intermediate fusion methods is the
linked matrix factorization (LMF) for clustering multiple graphs in Tang, Lu and Dhillon
[34]. Our adaptation of the method is slightly different from the one described in [34] in the
sense that we enforce the columns of the shared factor to be strictly orthonormal and conse-
quently drop the Frobenius norm regularization term (indeed this has been suggested in Tang,
Lu and Dhillon [34]). In our simulations, we found the performance of both methods to be
the same. To avoid confusion, we call our adaptation the orthogonal LMF (OLMF). Note
that LMF has the identical objective function as the RESCAL algorithm, which is a three-
way tensor factorization for learning in multi-relational data [22]. However the algorithm for
RESCAL is different from that of LMF.

The OLMF solves the following optimization problem on the adjacency tensor of a multi-
layer network:

(2.1)
[
P̂ ,

(
�̂(1), . . . , �̂(M))] = arg min

P T P=I

M∑
m=1

∥∥A(m) − P�(m)P T
∥∥2
F ,

where P ∈ R
n×k is a common factor matrix and �(m) ∈ R

k×k are M layer specific symmetric
factor matrices. This is equivalent to the following optimization problem (see the Supplemen-
tary Material [25] for a proof):

(2.2)
P̂ = arg max

P T P=I

M∑
m=1

∥∥P T A(m)P
∥∥2
F ,

�̂(m) = P̂ T A(m)P̂ , m = {1, . . . ,M}.
We will refer to the objective function in (2.2) as F(A,P ). While we require P to have

orthonormal columns, we do not put any constraint on the �(m) matrices, and specifically we
do not require them to be diagonal matrices. Note that in general [P̂ , �̂(m)] is not the solution
of the problem of finding the best at most rank k approximating matrix for L(m). Hence in
general, the matrices �̂(m) are not the diagonal matrices of singular values. Intuitively the
shared factor P is expected to capture the common characteristics of the nodes in a multi-
layer network including the latent community structure, while the different �(m) matrices
capture the layer/relation specific characteristics.

We propose a BFGS algorithm to solve the OLMF optimization problem, similar to the
algorithm in Tang, Lu and Dhillon [34]. The gradients are given by

∂O

∂P
:= −∑

m

(
I − PP T )

A(m)P�(m),

∂O

∂�(m)
:= −P T (

A(m) − P�(m)P T )
P, m = 1, . . . ,M,

where O denotes the objective function in (2.1). Once the algorithm converges, we cluster
the rows of the matrix P using the k-means algorithm. Since each row in P corresponds to
one of the nodes, this gives a community assignment for the nodes.

2.2. Co-regularized spectral clustering. The second intermediate fusion method we
study is the co-regularization based approach to multi-layer spectral clustering due to Ku-
mar, Rai and Daume [15]. The idea of co-regularization has also been previously applied to
various learning problems [38]. We adopt the centroid based co-regularization method from
Kumar, Rai and Daume [15] unchanged in the context of multi-layer networks. The method,
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applied to the adjacency tensor, is based on solving the following optimization problem:

(2.3)

[
Û (1), . . . , Û (M), Û∗] = arg max

U(m)T U(m)=I,∀m,

U∗T U∗=I

M∑
m=1

{
tr

(
U(m)T A(m)U(m))

+ γm tr
(
U∗T U(m)U(m)T U∗)}

,

where U(1), . . . ,U(M) and U∗ are n × k matrices with orthonormal columns. We denote U

as the tensor containing the matrices {U(1), . . . ,U(M)}. The objective function of the op-
timization problem in (2.3) is denoted as F(A,U,U∗). The optimization problem can be
easily solved by alternating eigen-decomposition of the matrices A(m) − γmU∗U∗T and∑

m γmU(m)U(m)T [15]. After the algorithm converges, consensus community assignments
for the nodes can be obtained by clustering the rows of the matrix Û∗ with the k-means
algorithm.

Note that the objective function contains two parts. The first part is the usual association
cut spectral clustering objective function for different layers. The second part is a penalty
function that seeks to maximize the cohesion between the eigenspaces obtained from differ-
ent layers. To see this, we have the following proposition that characterizes the second part
in terms of ‖ sin�(U(m),U∗)‖F , which measures the distance between the column spaces
spanned by U(m) and U∗ [31]. The proof of this proposition, along with all lemmas and
theorems, can be found in the Supplementary Material [25].

PROPOSITION 1. For U(m) and U∗ as defined above, we have

tr
(
U∗T U(m)U(m)T U∗) = k − 1

2

∥∥U∗U∗T − U(m)U(m)T
∥∥2
F

= k − ∥∥sin�
(
U(m),U∗)∥∥2

F .

The penalty function alone is maximized when all the subspaces are identical, since
‖ sin�(U(m),U∗)‖F is 0 when the subspaces spanned by U(m) and U∗ are identical [31].
Hence the objective function represents a trade-off between optimizing the community struc-
ture in each layer (which might be noisy) and maintaining similarity with the mean commu-
nity structure. The weights γm’s should be chosen to reflect both the desired trade-off between
these two competing goals and the relative importance of the different layers. In particular,
small values of γm’s will prevent sharing information across layers, which will result in esti-
mates of U(m) being the one that is best for its own layer and the U∗ simply being the matrix
of eigenvectors of

∑
m γmU(m)U(m)T . On the other hand, large values of γm’s will ensure the

U(m)’s try to achieve similarity with a common U∗ in expense of being sub-optimal for its
own layer.

2.3. Spectral clustering on mean adjacency matrix. The first of the two baseline proce-
dures we consider collapses the multi-layer network into a single layer network by taking the
mean of the adjacency matrices from each of the layers. The usual single layer spectral clus-
tering algorithm [21, 28] is then applied to the resultant matrix. This procedure can be thought
of as an “early integration” or “early fusion” technique, since data from multiple layers are
aggregated before any processing is made [40]. Spectral clustering on some form of the ag-
gregate matrix has appeared as a “baseline procedure” in Tang, Lu and Dhillon [34], Kumar,
Rai and Daume [15], Dong et al. [9] and Tang, Wang and Liu [33]. In particular, consensus
community detection proceeds through spectral clustering of the matrix Ā = 1

M

∑M
m=1 A(m).

Consistency results for this method under the stochastic block model (SBM) were derived in
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Han, Xu and Airoldi [12] in the scenario when the number of layers grows but the number of
nodes does not. Chen and Hero III [6] also derived phase transition results for a weighted ver-
sion of this method under a model they characterize as “multi-layer signal plus noise model.”

2.4. Aggregate spectral kernel and module allegiance matrix. The other baseline method
we consider is a “late fusion” technique, where we first compute the eigenvector matrices
U(m)’s corresponding to the top k eigenvalues from each of the M layers of the graph and
construct the aggregate spectral kernel matrix

Kn×n = 1

M

M∑
m=1

U(m)U(m)T .

However, instead of using kernel k-means to cluster the resulting matrix K as in Tang, Lu and
Dhillon [34] and Dong et al. [9], we apply spectral clustering to this matrix again to obtain
the community assignments. We call this method “aggregate spectral kernel.” This is in spirit
of clustering the “module allegiance matrix” described in Braun et al. [5], where community
assignment for each layer is first obtained using the Newman–Girvan modularity [20], and
subsequently an n × n module allegiance matrix is formed, each of whose elements counts
the number of times two nodes appear in the same module.

We use both the aggregate spectral kernel and the module allegiance matrix methods in
our numerical study. It is worth pointing out that these methods are distinct from the ma-
jority voting method described in [12, 23]. Although, much like the majority voting, these
methods process each layer separately and fuse information later, one advantage is that both
the aggregate spectral kernel and module allegiance matrix methods avoid the cumbersome
issue of label switching ambiguity. To see this, assume we have two community assignment
matrices Z1 and Z2 with Z1 = Z2P , where P is a permutation matrix, that is, Z2 gives the
same community assignments as Z1 but with its labels switched. However when we compute
the module allegiance matrix, we have Z1Z

T
1 = Z2PP T ZT

2 = Z2Z
T
2 . The same is true for

the aggregate spectral kernel. Intuitively, for each element they are concerned with whether
two nodes belong to the same community or not, irrespective of which community that is.
Hence they do not require solving a linear sum assignment problem as is required for major-
ity voting.

3. Models and mis-clustering. The multi-layer stochastic block model (MLSBM) is
a statistical model of multi-layer networks with a shared latent community structure [12,
13, 23]. We define the k block, M layer, n node MLSBM as follows. Each node of the
network is assigned a community label vector of length k, which takes the value of 1 at the
position corresponding to its community and 0 in all other positions. Let Z denote the n × k

community assignment matrix whose ith row Zi is the community label vector for the ith
node.

Given the community labels of two nodes, the edges between them in different layers are
formed independently following a Bernoulli distribution with a probability that depends only
on the community assignments and the relation the edge represents (i.e., type or layer of the
edge). Hence within a community the nodes have “stochastic equivalence” in the sense that
the probability of an edge formation (in any layer) with another node is the same for all the
nodes in a community. We further assume that there is at least one node in each community
which implies that there is at least one nonzero element in each column of Z.

The k block, M layer, n node MLSBM with parameters [Z,B= {B(1), . . . ,B(M)}] can be
written in the matrix form as

(3.1) E
(
A(m)) =A(m) = ZB(m)ZT , B(m) ∈ [0,1]k×k,Z ∈ {0,1}n×k,
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where the matrices B(m) are k × k nonnegative symmetric matrices of probabilities. For our
analysis we will assume varying constraints on the rank of B(m)’s. A similar rank based
constraint is a standard assumption in the analysis of spectral clustering for single layer SBM
as well [16, 28]. We will refer to the matrix A(m) as the population adjacency matrix for the
mth layer and the tensor A = {A(1), . . . ,A(m)} as the population adjacency tensor.

3.1. Correct recovery in the noiseless case. Before we can tackle consistency of the
methods, the first question that needs to be answered is whether a method can correctly re-
cover the community assignments from the true population adjacency tensor when there is
no sampling noise involved. The following lemma shows that OLMF, co-regularized spectral
clustering, spectral clustering of mean adjacency matrix, and aggregate spectral kernel, all
can correctly identify the node community labels from the population adjacency tensor of
MLSBM.

LEMMA 1. Let A = {A(1), . . . ,A(M)} be the three-way n×n×M population adjacency
tensor for MLSBM [Z,B] with each of the M slices A(m) ∈ R

n×n defined as in (3.1). Then
we have the following results:

(i) The optimization problem in (2.1) of orthogonal linked matrix factorization applied
to the tensor A has P̄ = ZQ−1/2, �̄(m) = Q1/2B(m)Q1/2, m = 1, . . . ,M , as the unique
solution up to an orthogonal matrix, where Q = ZT Z provided at least one of the B(m)’s is
full rank. Further ZiQ

−1/2 = ZjQ
−1/2 if and only if Zi = Zj .

(ii) The optimization problem in (2.3) of co-regularized spectral clustering applied to
the tensor A has Ū (m) = Zμ(m), m = 1, . . . ,M , Ū∗ = ZQ as the unique solution up to an
orthogonal matrix, where μ(m) and Q are invertible matrices provided each of the B(m)’s is
full rank. Further ZiQ = ZjQ if and only if Zi = Zj .

(iii) The matrix containing the eigenvectors corresponding to the k largest eigenvalues
of Ā = 1

M

∑M
i=1 A(m) is ZQ for some invertible matrix Q ∈ R

k×k provided the matrix
1
M

∑M
i=1 B(m) is full rank. Further ZiQ = ZjQ if and only if Zi = Zj .

(iv) Define K̄ = 1
M

∑M
i=1 Ū (m)Ū (m)T , where Ū (m) is the matrix of eigenvectors corre-

sponding to the largest k eigenvalues of A(m). The matrix containing the eigenvectors cor-
responding to the k largest eigenvalues of K̄ is ZQ for some invertible matrix Q ∈ R

K×K

provided each of the B(m)’s is full rank. Further ZiQ = ZjQ if and only if Zi = Zj .

We make two observations on the results of this lemma. First, note that in all of the above
methods, the matrix whose rows are clustered using k-means algorithm for community de-
tection has only k distinct rows. Moreover, two rows are identical if and only if they are
identical in the true community assignment matrix. This ensures that k-means algorithm in
each case will correctly cluster the rows. Second, the methods require various conditions on
the connectivity matrices B(m)’s. In particular, the spectral clustering on mean adjacency ma-
trix requires the aggregate connectivity matrix 1

M

∑M
i=1 B(m) to be full rank, which is also

related to the general issues associated with aggregating a multi-layer graph with diverse lay-
ers, explored from an information theoretical point in [23]. Third, the noiseless recovery in
co-regularized spectral clustering does not depend on what we choose for γm’s. This quite
counter-intuitive phenomenon is true because both parts of the objective function, the asso-
ciation cut and the penalty term, are separately maximized by the true communities, with the
penalty term achieving its global maximum irrespective of γm.
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3.2. Characterizing mis-clustering. Although Lemma 1 shows that the methods under
consideration can perfectly recover community labels from the true population adjacency ten-
sor, in reality we do not observe the true population tensor. Instead we observe a noisy sample
version of it. Consequently, community assignment using the methods will lead to some er-
ror. For a given benchmark community assignment and an estimated community assignment,
we define a mis-clustering rate as the proportion of nodes for which the assignments do not
agree. Let ē denote the vector of true community labels extracted from Z and ê denote the
vector of a candidate assignment. Then we define the mis-clustering rate

r = 1

n
inf
�

dH

(
ē,�(ê)

)
,

where �(·) is a permutation of the labels, dH (·, ·) is the Hamming distance between two
vectors, and inf denotes the infimum over all permutations in �.

Note that in each of the methods we consider, we obtain a low rank matrix with orthonor-
mal columns whose rows are then clustered using the k-means algorithm for community
detection. Hence we also need to relate this mis-clustering rate with the low rank matrices
obtained from the methods. For a method under consideration, let Ûn×k be the low rank
matrix with orthonormal columns it outputs, whose rows can subsequently be clustered to
estimate community assignment ê. Then we have the following relationship,

(3.2) r ≤ 8nmax

n

∥∥Û − Z
(
ZT Z

)−1/2
O

∥∥2
F ,

where O is an arbitrary orthogonal matrix and nmax is the number of nodes in the largest true
community [28].

4. Consistency results. In this section we investigate the asymptotic consistency of con-
sensus community detection using the methods outlined in Section 2. The asymptotic setup
we consider is as follows. We let both n and M grow, and assume no relationship between
their growth rate. However we will be most interested in the case when M grows faster than
n. This framework is particularly suitable for consensus community detection in dynamic
graphs, where the number of layers represents the number of temporal snapshots available to
us and can potentially be exponentially larger compared to the number of nodes. We also let
the number of communities k (which is assumed to be known in advance) to grow with both
n and M .

Before proceeding with the main results we prove the following theorem with two results
on a multi-layer graph with independent edges, the first of which extends the results contained
in Chung and Radcliffe [8] to multi-layer graph settings and the second one is a new result
using matrix Hoeffding bound [35].

THEOREM 1. Let G be a multi-layer graph with each edge being independent of all
other edges of all types. Let A = {A(1), . . . ,A(M)} be its adjacency tensor and let A =
{A1, . . . ,A(M)} denote the expected adjacency tensor. Further, let �m be the maximum ex-
pected degree for a node in layer m. Define �̄ = 1

M

∑M
m=1 �m and �̄′ = 1

M

∑M
m=1 �2

m. Then
we have the following results:

(i) For any ε > 0, if M�̄ > 4
9 log(2n/ε), then with probability at least 1 − ε,

∥∥∥∥ 1

M

∑
m

(
A(m) −A(m))∥∥∥∥

2
≤

√
4�̄ log(2n/ε)

M
.
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(ii) If 1
M

∑
m exp(− 4�m log(2Mn3)

2�m+2
√

4�m log(2Mn3)/3
) ≤ exp(− log(2Mn3)), then with probability

at least 1 − o(1) we have∥∥∥∥ 1

M

∑
m

(
A(m) −A(m))2

∥∥∥∥
2
≤ (logn)(3+δ)/2 log 2M√

M

√
�̄′ + �̄

for some δ > 0.

We note that for result (i) on mean adjacency matrix to hold, we only require the average
maximum expected degree per layer �̄ � log(2n/ε)/M . In comparison, a similar result for
adjacency matrix of a single graph in [8] (which (i) extends to multi-layer graph) requires
the maximum expected degree � � log(2n/ε). Hence the result holds for multi-layer graphs
where the individual layers are sparser on average. At first glance the density condition on
maximum expected degrees for result (ii) looks complicated. However, note that the condition
is satisfied, for example, by a choice of �m > 4

9 log(2n/ε) for each m with ε = 1
Mn2 , which

is the density condition for a similar result for the adjacency matrix of a single graph in [8].
The condition as in (ii) relaxes the requirement that each layer of the multi-layer network be
denser than a threshold, and hence one can have layers which are sparser as long as the layers
together satisfy the density condition.

Over the next few sections we use the results of Theorem 1 to prove consistency results for
co-regularized spectral clustering, OLMF and spectral clustering in mean adjacency matrix.
The common settings under which the results are proved are as follows. Let G be a multi-
layer network with M layers generated from the MLSBM with parameters [Z,B]. Let A be
its adjacency tensor. Let λ(m) denote the minimum in absolute value nonzero eigenvalue of
the mth layer population adjacency matrix and nmax denote the number of nodes in the largest
true community.

4.1. Consistency result for co-regularized spectral clustering.

THEOREM 2. Let [Û, Û∗] be the solution that maximizes the co-regularized spectral
clustering objective function in (2.3) applied to A, and rcoreg be the fraction of nodes mis-
clustered by a k-means procedure applied to Û∗. Assume M�̄ > 4

9 log(4n/ε) and all the

B(m)’s are of full rank. If we choose γm large enough such that γm >

√
M‖A(m)‖2

2√
4�̄ log(4n/ε)

for all m,

then for any ε > 0, with probability at least 1 − ε,

rcoreg ≤ 96nmaxk

n 1
M

∑
m

(λ(m))2

�m

√
�̄ log(4n/ε)

M
.

Several discussions on the results of Theorem 2 are in order. First, in the following lemma
we replace the deterministic condition on γm needed for consistency by a condition that holds
only with high probability but involves quantities that depend purely on observed network
statistics. Such a condition can then be easily verified in a given network.

LEMMA 2. Assume M�̄ > c log(2n/δ) where c and δ are positive constants. For each

m, if we choose each γm >

√
M‖A(m)‖2

2√
‖ 2

M

∑
m A(m)‖2 log(4n/ε)

, then for sufficiently large c, we have with

probability at least 1 − δ, γm >

√
M‖A(m)‖2

2√
4�̄ log(4n/ε)

for all m.
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Although correct recovery under the noiseless case does not require any condition on γm’s,
the consistency requires γm’s to be larger than a certain function of ‖A(m)‖2 and M . In the
typical case of sparse network layers that we will deal with, ‖A(m)‖2 	 logn/M , and then the
condition in Lemma 2 reduces to γm > O(‖A(m)‖2). Based on this result, in our simulations
in Section 5 we choose γ (m) to be a constant times max‖A(m)‖2, identically in each layer.

Second, since it is not immediately clear when the above bound will imply consistent com-
munity detection, we make some further assumptions to simplify the bound. In particular we
interpret the bound under a multi-layer extension of the four parameter stochastic blockmodel
introduced in Rohe, Chatterjee and Yu [28].

Co-regularized spectral clustering under four parameter MLSBM. We define a MLSBM
of M layers and n nodes with four parameters p = {p(1), . . . , p(M)},q = {q(1), . . . , q(M)}, k, s

as follows. In layer m, the connection probability within a community is p(m) and between
communities is q(m). We assume p(m) 
= q(m) but are of the same asymptotic order with re-
spect to n, for all m. The number of communities is k and all communities are of the same size
s = n/k. Hence nmax = s = n/k. We have the following lemma on the minimum eigenvalues
of the population adjacency matrices λ(m)’s.

LEMMA 3. For the four parameter MLSBM, λ(m) = s(p(m) − q(m)), for all m =
1, . . . ,M .

Let a(m) �m

n
= p(m) and b(m) �m

n
= q(m). Then λ(m) = �m

k
(a(m) − b(m)). Consequently, the

common asymptotic order of p(m) and q(m) is captured in the �m

n
term and a(m) 	 b(m) 	 1.

However, note that the difference a(m) − b(m) could still be very small. Define f (a,b) =
1
M

∑
m(a(m) − b(m))2. Then Theorem 2 implies

rcoreg �
n
k
k

n 1
M

∑
m

�m(a(m)−b(m))2

k2

√
�̄ log(4n/ε)

M

	 k2

1
M

∑
m �m(a(m) − b(m))2

√
�̄ log(4n/ε)

M
.

At this point we make a further assumption that �m 	 �̄ for all m. Then we have

rcoreg �
k2√log(4n/ε)√

M�̄f (a,b)
,

and community detection using this method is consistent as long as k = o((M�̄/ log(4n/

ε))1/4√f (a,b)). We also note that the upper bound on misclustering rate becomes smaller
as the number of layers M , the average density of the layers �̄ and a measure of community
signal f (a,b) increase.

We consider three growth regimes on the density of the component layers of the multi-
layer graph. In the first regime we assume the dense graph setting where the vectors p and q
do not change with n. This implies that �̄ 	 n and consequently

rcoreg �
k2

√
nM/ log(4n/ε)f (a,b)

.

Hence as long as k = o((nM/ log(4n/ε))1/4√f (a,b)), rcoreg → 0 with probability at least
1 − ε, and we have consistent community detection.
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In the second regime, we assume a semi-sparse setting where both p(m) and q(m) are of
the order of logn/n for all m. Then �̄ 	 logn and we have

rcoreg �
k2

f (a,b)

√
log(2n/ε)

M logn
	 k2

√
Mf (a,b)

.

This implies that in this setting, as long as k = o(M1/4√f (a,b)), rcoreg → 0, and we have
consistent community detection.

Finally in the sparse “constant degree” regime, where p(m) and q(m) are of the order of
1/n for all m, we have �m 	 1. Note that the density condition on the layers of the network
for Theorem 2(i) to hold is M�̄ � logn, which can be satisfied even in the constant degree
regime if M � logn. If this is satisfied, then we have from Theorem 2 that

rcoreg �
k2

f (a,b)

√
log(2n/ε)

M
	 k2

√
M/ log(2n/ε)f (a,b)

.

Hence consistent community detection is possible as long as k = o((M/ log(2n/ε))1/4 ×√
f (a,b)). Consequently, a large number of very sparse graphs can also lead to consistent

community detection, whereas in single layer networks consistent recovery is not possible in
the constant degree regime. This is also true for spectral clustering in mean adjacency matrix
as we will see in Theorem 4, and is along the lines of the results obtained in Paul and Chen
[23].

The next section develops similar results for the OLMF method.

4.2. Consistency result for orthogonal linked matrix factorization.

THEOREM 3. Let [P̂ , (�̂(1), . . . , �̂(M))] be the solution that minimizes the OLMF ob-
jective function in (2.1) applied to A, and rLMF be the fraction of nodes misclustered by a
k-means procedure applied to P̂ . If the assumption in part (ii) of Theorem 1 holds and at
least one of the B(m)’s is of full rank, then with probability at least 1 − o(1),

rOLMF ≤ 48nmaxk�̄
′1/2(�̄1/2 + �̄′1/4(log 2M)1/2(logn)2+ε/M1/4)

1
M

∑
m(λ(m))2n

.

This bound can also be simplified under the four parameter MLSBM defined earlier. Under
the four parameter MLSBM with �m’s all being of the same order, we have �m 	 �̄ and
�̄′ 	 �̄2. Then the bound in Theorem 3 simplifies to

rLMF � �̄3/2 + �̄3/2(log 2M)1/2(logn)2+ε/M1/4

1
M

∑
m

�2
m(a(m)−b(m))2

k2

	 k2(1 + (log 2M)1/2(logn)2+ε/M1/4)

�̄1/2f (a,b)

	 max
{

k2

�̄1/2f (a,b)
,
k2((log 2M)1/2(logn)2+ε)

M1/4�̄1/2f (a,b)

}
.

In the dense case where p(m)’s and q(m)’s remain constant with increasing n, �̄ 	 n and

rLMF � k2

min{n1/2f (a,b), (M/(log 2M)2)1/4(n/(logn)6)1/2f (a,b)} .
Hence consistent estimation is possible as long as k grows slower than the square root of the
term in the denominator.
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In the sparser case of �̄ 	 O(logn) we similarly have

rLMF � max
{

k2

(logn)1/2f (a,b)
,
k2((log 2M)1/2(logn)3/2+ε)

M1/4f (a,b)

}
,

and consistency for the OLMF method provided

k = o

(
min

{
(logn)1/4,

M1/8

(log 2M)1/4(logn)3/4+ε

}√
f (a,b)

)
.

4.3. Consistency results for mean adjacency matrix. The final result we prove provides
an upper bound on the mis-clustering rate for consensus community detection using the usual
single layer spectral clustering on the mean adjacency matrix.

THEOREM 4. Define Ā = 1
M

∑M
m=1 A(m) and let λĀ denote the minimum in absolute

value nonzero eigenvalue of the mean population adjacency matrix Ā = 1
M

∑M
m=1 A(m). Let

rav be the fraction of nodes misclustered by the spectral clustering algorithm applied to Ā. If
M�̄ > 4

9 log(2n/ε), and B̄ = 1
M

∑M
m=1 B(m) is of full rank (i.e., rank k), then with probability

at least 1 − ε,

rav ≤ 256nmaxk�̄ log(2n/ε)

(λĀ)2nM
.

To prove this result, we employ a proof technique using Theorem 1, which is different from
Han, Xu and Airoldi [12] and allows us to characterize the dependence of the misclustering
rate on the growth rates of various MLSBM parameters. While the concentration result in
Frobenius norm of Han, Xu and Airoldi [12] would imply consistent community detection
through spectral clustering in mean adjacency matrix for fixed k as long as n = o(M1/2), our
technique yields a nonasymptotic bound on the mis-clustering rate with direct dependence on
the number of communities, sparsity, signal to noise ratio along with n and M . We will next
analyze the nonasymptotic bound under a simplified model and different asymptotic growth
criteria on the above quantities.

Note the presence of λĀ in the denominator of the bound implies that the bound depends on
the eigen-gap of the mean adjacency matrix. To interpret the bound under the four parameter
MLSBM, we first prove the following lemma on the eigen-gap λĀ.

LEMMA 4. For the four parameter MLSBM, λĀ = s 1
M

∑
m(p(m) − q(m)).

Similar to previous cases, writing the result in terms of �̄, a(m), and b(m) we have λĀ =
1
M

∑
m

�m

k
(a(m) − b(m)) 	 �̄

k
1
M

∑
m(a(m) − b(m)). Define g(a,b) = ( 1

M

∑
m(a(m) − b(m)))2.

Then from Theorem 4 we have with probability at least 1 − ε,

rav �
n
k
k�̄ log(2n/ε)

( �̄
k
)2g(a,b)nM

	 k2

M�̄g(a,b)/ log(2n/ε)
.

This implies that rav → 0 as long as k = o(

√
M�̄g(a,b)/ log(2n/ε)), and we have con-

sistent community detection. We note that g(a,b) and �̄ are averages over the layers of
the corresponding quantities for single layer case. The above result then implies that with
increasing number of layers M , the upper bound on the misclustering rate gets smaller by
a factor of

√
M as compared to applying spectral clustering on any one of the layers sep-

arately as shown in Qin and Rohe [27] and Lei and Rinaldo [16] (the logn term does not
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appear in Lei and Rinaldo [16] due to tighter bound on ‖A − A‖2). We also note that the
denominator in the rate for rav contains the term g(a,b) = ( 1

M

∑
m(a(m) − b(m)))2 instead

of f (a,b) = 1
M

∑
m(a(m) − b(m))2, which appeared earlier in the rates of OLMF and co-

regularized spectral clustering. From Jensen’s inequality,

g(a,b) =
(

1

M

∑
m

(
a(m) − b(m)))2

≤ 1

M

∑
m

(
a(m) − b(m))2 = f (a,b),

with equality holding if and only if all the (a(m) − b(m))’s are equal. Hence equality holds if
the layers are of similar signal quality, and otherwise f (a,b) is larger than g(a,b). Hence
the goodness of the rate for spectral clustering in mean adjacency matrix depends on if the
aggregate of the layers has good signal quality or not. In the situation where some of the
layers in the multi-layer network contain heterophilic communities while the others contain
homophilic communities, then a(m) − b(m) is negative in some layers and positive in other
layers. In that case λĀ could be very small and performance guarantee on spectral clustering
of mean adjacency matrix become poor. These conclusions are in line with previous conclu-
sions from minimax rates and phase transitions of consistency thresholds in [23].

In the dense regime where the vectors p and q do not change with n, we have the
mis-clustering rate in spectral clustering in mean adjacency matrix is bounded by rav �

k2

nMg(a,b)/ log(2n/ε)
. In the semi-sparse regime where both p(m) and q(m) are of the order of logn

n

for all m, we have �̄ 	 logn and rav � k2

Mg(a,b)
. Finally, in the sparse constant degree regime

where both p(m) and q(m) are of the order of 1/n for all m, we have rav � k2

Mg(a,b)/ log(2n/ε)
.

5. Simulation studies. In this section, we numerically compare the performance of the
following methods through a principled simulation study: spectral clustering on mean adja-
cency matrix (Mean adj.), OLMF, co-regularized spectral clustering (Coreg spec), spectral
clustering on aggregate spectral kernel (SpecK) and the module allegiance matrix (Module
alleg.). Since the computational algorithms for both OLMF and Coreg Spec are only expected
to reach a local optimum, it is important to supply good initial conditions to them and also
take the best solution based on multiple initial conditions. We initialize the OLMF algorithm
with P being the community assignment matrix from a randomly chosen layer and �(m) be-
ing the matrix containing the top k eigenvalues of A(m) in the diagonal. For the co-regularized
spectral clustering algorithm we choose γ (m) as 4 max‖A(m)‖2 for all m, since the theoretical
results have indicated that γ (m) should be larger than ‖A(m)‖2 for each m.

For the first three simulations, we simulate networks from the MLSBM with the num-
ber of nodes n = 600 and the number of layers M = 5, under three different scenarios on
the connection probability matrices of different layers. The performances of the methods
are evaluated with increasing average degree of the multi-layer network since we would ex-
pect any reasonable method to perform better as the network gets denser. The number of
communities is fixed at 3 and we assume it to be known in advance. The fourth simulation
involves generating networks from MLSBM with varying number of layers and testing the
performance of the methods with increasing number of layers. The fifth and final simulation
considers the scenario where the multi-layer network contains layers with both heterophilic
and homophilic communities.

The evaluation criterion is the normalized mutual information (NMI) with the ground truth
community assignments which generate the network. The NMI is an information theoretic
measure of similarity between two vectors of community assignments, with 1 indicating a
perfect match and 0 indicating the vectors are random with respect to each other. The first
three experiments are replicated 40 times while the last two experiments are repeated 100
times, and the average performance across the repetitions is reported.
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The data are generated according to MLSBM as defined in (3.1) in the following fashion.
The community vector Zi for each node i is generated according to a multinomial distribution
with equal probability of being in any of the 3 communities. The block model matrices B(m)’s
in different layers are generated by the following scheme. Let δ be the vector of k diagonal
elements and ε be the vector of k2 −k off-diagonal elements. We generate half of the elements
of the ε vector from a uniform distribution U(a, b) within a short range [a, b] and the other
half is a replication of the first half such that the matrix is symmetric. The elements of δ are
generated from U(ρa,ρb), where ρ is the parameter that controls the signal to noise ratio
(SNR). We call an SNR of 2-3 as “strong” signal and an SNR which is only slightly greater
than 1 as “weak” signal.

Strong community signals. In the first simulation from MLSBM, we make all the layers
contain generally strong signals, but the exact SNR is randomly varied slightly so as to have
some variations in signal quality across the layers. The performance of various methods under
consideration is presented in Figure 1(a). Note that the layers are sparse at an average initially
which is evident from the low average degree per layer: an average degree of 6 in a layer of
600 nodes, which is about 1% degree density. The layers then become denser gradually and
reach about 2.5% degree density per layer. The performance of all the methods generally
increases with increasing average degree. We note that spectral clustering on mean adjacency
matrix, OLMF and co-regularized spectral clustering perform similarly throughout the range
of the simulation. The aggregate of spectral kernel and module allegiance matrix method
substantially underperform, especially in sparse multi-layer networks.

Mixed and ambiguous community signals. In this simulation, the component layers are
mixed in community signal quality in the following manner. We have three layers with strong
community signals and two layers where the community structure is ambiguous or almost
nonexistent due to weak signal to noise ratio. This scenario is very useful to test the robustness
of methods against possible variation or absence of community patterns in some of the layers.
The results are presented in Figure 1(b). The OLMF method performs the best over the entire
range of values of average degree, followed by co-regularized spectral clustering and spectral
clustering of mean adjacency matrix. The aggregate spectral kernel and module allegiance
matrix methods once again perform poorly when the average density in the layers is low,
but recover subsequently as the layers become denser. The spectral kernel method performs
better than the module allegiance matrix method in both the strong signals and mixed signals
scenarios.

FIG. 1. Performance of various methods with increasing average degree of nodes for data generated from
MLSBM with 600 nodes, 5 layers and 3 communities. (a) All layers have strong signals with some variations;
(b) the layers are mixed in terms of signal quality.
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FIG. 2. Performance of various methods with (a) increasing average degree of nodes for data generated from
MLSBM with 600 nodes, 5 layers and 3 communities, (b) increasing number of layers with 300 nodes and 6
communities, (c) increasing average degree of nodes with 600 nodes, 5 layers and 3 communities, where 3 layers
contain homophilic communities and the other 2 contain heterophilic communities. The labels in (b) and (c) are
shared for all figures.

Complementary information. The third scenario considers the so-called “complemen-
tary” principle of multiple views in multi-view learning [17]. In our case, this is equivalent
to the following: none of the layers alone is sufficient to describe the community structure
properly, but the layers can complement each other and together describe the community
patterns. For our simulation, we generate data from MLSBM with 600 nodes, 5 layers and
3 communities with the following setting. In each of the first 3 layers, two of the communi-
ties are difficult to distinguish from noise while the third community has an SNR of 3. The
fourth layer has two of the communities with high SNR and the fifth layer has the same two
communities with low SNR. The performance of the competing methods are presented in
Figure 2(a). We observe that both aggregate of spectral kernel and module allegiance matrix
method perform poorly in this scenario as compared to the intermediate fusion methods as
well as spectral clustering of mean adjacency matrix. This is expected since none of the layers
alone contain complete information about the community structure and hence the eigenspaces
computed separately are not very informative of the community structure. Consequently shar-
ing information while computing individual eigenspaces as well as a consensus eigenspace
is beneficial as opposed to a late fusion of individual eigenspaces. In addition, the OLMF
method appears to have a clear advantage in this scenario over both co-regularized spectral
clustering and spectral clustering of the mean adjacency matrix.

Increasing number of layers. This simulation setup tests the abilities of the methods to
recover the community structure with a small fixed number of nodes, but increasing number
of layers (and consequently more data). However, as is the case with many real world multi-
layer networks, not all of the layers are strongly informative of the community structure.
We fix n at 300, k at 6 and increase M from 3 to 18 in steps of 3. At every step, we add 3
layers to the multi-layer network, two of which have weak signal quality, while the third one
has a strong signal. The performance of the competing methods in this simulation with 100
repetitions is depicted in Figure 2(b). We observe that the accuracy of consensus community
detection in all the methods generally increases with increasing number of layers. As with the
previous scenarios, we observe that OLMF, co-regularized spectral clustering, and spectral
clustering of the mean adjacency matrix have more improvement in performance as compared
to aggregate of spectral kernel and module allegiance matrix methods.

Layers with heterophilic communities. Finally, we consider the scenario where some lay-
ers contain homophilic (assortative) communities while others contain heterophilic (disassor-
tative) communities. The layers with heterophilic communities have less density within the
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blocks as opposed to inter-block densities. Such interactions with disassortative communities
are commonly encountered in food webs and social networks. From our theoretical analysis
we expect the spectral clustering of mean adjacency matrix to perform poorly in this setting.
Intuitively, the mean adjacency matrix has strong inter-community edge density (in addition
to strong intra-community edge density) due to the layers with heterophilic communities and
consequently, the community structure is ambiguous and difficult to detect. However, the
community information is separately available in all the layers irrespective of whether the
communities in that layer are homophilic or heterophilic. Then one would hope, perhaps,
a different way of combining information from layers will yield the community structure
correctly.

Since the inter-block connection probabilities are higher than intra-block connection prob-
abilities in the layers with heterophilic communities, the eigenvalues corresponding to the
eigenvectors that contain the clustering information are all negative. Hence we need to mod-
ify some of the methods slightly for this scenario. For aggregate spectral kernel and module
allegiance methods, we choose the eigenvectors corresponding to the top k eigenvalues in ab-
solute value to form the Û (m) matrix in each layer. For co-regularized spectral clustering, we
update the Û (m) matrix during the alternating eigen-decomposition by selecting the vectors
corresponding to the top k eigenvalues in absolute value. The mean adjacency matrix and
OLMF methods do not require any change to be made, however, we make the following op-
tional modifications. For mean adjacency matrix during the eigen-decomposition, we choose
eigenvectors corresponding to the top k eigenvalues in absolute value of the mean adjacency
matrix, while for OLMF we only change the initialization of �(m) matrices to include the k

largest eigenvalues in absolute value as its diagonal.
We fix n at 600, k at 3, M at 5, and increase the average degree per layer from 8 to 32

(from about 1% to 4.5% in degree density). We make 3 of the 5 layers contain homophilic
communities by setting the ρ parameter (SNR) at 3, while we make the other two layers
contain heterophilic communities by setting ρ = 1/3 so that the elements of δ are smaller
than that of ε. The results are presented in Figure 2(c).

As expected from our theoretical results, we observe that the performance of spectral clus-
tering in mean adjacency matrix completely breaks down and is substantially worse than the
competing methods in this scenario. The other four methods behave similarly and the accu-
racy of community detection steadily increases with increasing degree density. This indicates
that all of those four methods are capable of extracting information relevant to the commu-
nity structure from layers with both homophilic and heterophilic communities and combining
them without nullifying the information.

We also note that the aggregate spectral kernel method performs slightly better compared
to the two intermediate fusion methods throughout the range of the simulation. We think this
is because of the following reason. The relatively higher average degree per layer in the sim-
ulated networks compared to, for example, that in Figure 1(a), means the recovery of the true
eigenspaces (which contain the information on community assignments) by spectral methods
in each of the layers becomes increasingly accurate irrespective of whether the communities
are homophilic or heterophilic [16, 27, 28]. This leads to better performance of the methods
that purely rely on combinations of those independently obtained eigenspaces. Hence the ag-
gregate spectral kernel itself becomes more effective than the intermediate fusion methods.
The intermediate fusion methods on the other hand, shares information while computing the
eigenspaces and the consensus eigenspace appears to underperform in the presence of layers
with both homophilic and heterophilic communities.

Discussion on the simulation results. Our simulations clearly show that in sparse net-
works the intermediate fusion of information based methods, OLMF and co-regularized
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spectral clustering, perform better than late fusion methods, aggregate of spectral kernel and
module allegiance matrix method. We think sharing information across layers while comput-
ing individual layer wise spectral embeddings increases the accuracy in each of them, and
hence the centroid is a more effective combination than aggregate spectral kernel or module
allegiance matrix type of combination. The spectral clustering of mean adjacency matrix per-
forms well in our simulations except the last scenario where the multi-layer network contains
layers with both homophilic and heterophilic communities, in which case its performance is
extremely poor. We also observe in our simulations that aggregate spectral kernel performs
better than module allegiance matrix. We think the performance in module allegiance suffers
because of additional noise introduced in discrete community assignments. Overall, we think
the intermediate fusion methods outperform or remain competitive to the baseline methods of
aggregate spectral kernel and spectral clustering in mean adjacency matrix in a wide variety
of scenarios.

6. Conclusions and discussions. In this paper we have analyzed a number of spectral
and matrix factorization based techniques for multi-view clustering in terms of their asymp-
totic consistency properties for community detection in multi-layer networks generated from
the MLSBM. We have considered a high dimensional asymptotic framework where both the
number of layers (M) and the number of nodes (n) of the multi-layer graph grow. The main
technical contribution of the article is to prove nonasymptotic error bounds for community
detection using the global optimal solutions of both co-regularized spectral clustering and
OLMF, and spectral clustering of the mean adjacency matrix in terms of model parameters
of the MLSBM. As an intermediate step we have proved two concentration inequalities on
two functions of adjacency matrices of a multi-layer network. We have further shown that
the above-mentioned methods enjoy consistency guarantees under some conditions on the
number of communities k, the maximum expected degrees of the layers �m’s and the signal
to noise ratios of the layers.

We have also compared five methods in terms of finite sample performance under data
generated from the MLSBM through a simulation study. We found both the co-regularized
spectral clustering and OLMF to be robust under varied scenarios. We also note from the sim-
ulations that widely popular methods where each layer is dealt separately and the results are
fused at a later state, such as aggregating spectral kernels or module allegiance matrix, do not
perform well in sparse networks when the individual layers do not contain sufficient informa-
tion to recover the community structure efficiently. However, the OLMF and co-regularized
spectral clustering perform well in those scenarios. We hypothesize that this is due to sharing
information across layers while computing the community structure solution at each layer.

Global optimizers. Throughout the paper we have studied the properties of the global
optimal solutions of the optimization problems under consideration. However, in the absence
of computational methods guaranteed to achieve the global optimal solutions, it is not known
whether such global optimum can ever be achieved under any circumstances. Indeed, the al-
gorithms we have used to compute the solutions in our simulation studies are approximate
algorithms that can at best reach a local optimum. To the best of our knowledge, no com-
putationally feasible algorithm exists that can compute the global optima of the intermediate
fusion objective functions with guarantees. We view the results obtained in this article as only
a first step in the direction of understanding the behavior of multi-view learning methods in
the context of community detection in multi-layer networks. In the future, we hope to inves-
tigate possibilities of obtaining algorithms with global optimum guarantees and extend the
results obtained here to such cases.

To assure ourselves that the solutions computed by the algorithms used here are not com-
pletely away from the global solutions, we conducted a simulation study. Although we do not
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FIG. 3. (a) Objective function value as the fraction of the global optimum with increasing number of iterations
for co-regularized spectral clustering. (b)–(c) Recovery of the true community structure from population adjacency
tensor in the presence of uninformative layers: (b) The number of uninformative layers is increased keeping their
densities fixed; (c) the density of the 3 uninformative layers are gradually increased. In both (b) and (c) there are
3 layers informative of the community structure.

know the true global optimum of the two optimization problems under study in real data sit-
uations, or even in simulated sample networks, we know the solutions for them theoretically
when they are applied to the population adjacency tensor. Hence we study the objective func-
tion values at convergence for the two methods applied to population adjacency tensors with
increasing degree density. Our first simulation verified that using the spectral clustering of
mean adjacency matrix as initial solution, the OLMF objective function is within 10−18 of 0
and the co-regularized spectral clustering objective function is within 10−12 of the true max-
imum across the range of the simulation. Our second simulation whose result is presented in
Figure 3(a), verified that starting from a random initial solution the objective function value
for co-regularized spectral clustering goes close to the true maximum with increasing number
of iterations eventually being equal to the true maximum.

Consensus community detection in the presence of noise. In this paper we have assumed
the presence of an underlying consensus community assignment for the multi-layer network
and focused on the problem of detecting such a structure. Indeed, Lemma 1, which shows that
the methods under study can correctly recover the community structure from the population
adjacency tensor (i.e., without sampling noise), is the crucial backbone of the paper on which
all results are based on. Here we analyze a scenario where the community structure is truly
present in some layers (perhaps a majority), while it is either absent or is different in the other
layers, and the task is to detect the community structure present in the majority of the layers.
Such scenarios have been previously considered in [30, 37]. Since this scenario is not the
focus of the paper, we will primarily analyze whether the methods are capable of recovering
the community structure from the population adjacency tensor of such a multi-layer SBM. Let
M1 layers contain the community structure of interest Z1 and M2 layers contain a different
community structure Z2 with M1 > M2. The community structure Z2 could put all vertices in
the same community (i.e., simply an Erdos–Renyi graph) or could be a community structure
that is different from Z1. We concentrate on the former case, where Z2 does not define any
community structure. We will study under what conditions the methods analyzed in this paper
will be able to detect the main community structure of interest Z1. Even for the M2 layers
with no community structure, we can write the population adjacency matrices as still being
created by Z1BZT

1 but with B having identical values in each entry and consequently of
rank 1.

The mean adjacency matrix can then be written as:

Ā = 1

M

M∑
m=1

A(m) = Z1

(
1

M

(
M1∑

m=1

B(m) + M2B
′
))

ZT
1 .



248 S. PAUL AND Y. CHEN

Nevertheless, we would require a similar condition as before, namely B̄ = 1
M

(
∑M1

m=1 B(m) +
M2B

′) will be full rank (i.e., rank k). Under this condition the spectral clustering procedure
in mean adjacency matrix can extract the true community structure from the population adja-
cency matrix.

An (simplified) extension of the four parameter MLSBM can be defined for this case as
follows: let a and b be diagonal and off-diagonal elements of B(m)’s in the first M1 layers with
a > b and c’s are the elements of B ′. From Lemma 4, the smallest non-zero eigenvalue of
B̄ = 1

M
(M1(a −b)Ik + (M1b+M2c)1k1T

k ) is M1
M

(a −b). Since a > b, the k ×k matrix B̄ has
k non-zero eigenvalues and consequently is of full rank. Then a spectral clustering algorithm
can recover the true community structure from the mean population adjacency matrix.

However, the noise plays a big role when we look at the sample adjacency matrices. Using
the simplified result of Theorem 4 under the four parameter MLSBM, we have consistency
as long as M�̄g(a, b)/ logn = ω(1) for a constant number of communities k. Now if we
assume all layers are of similar density, then �̄ does not change by adding Erdos–Renyi

graphs. However, g(a, b) = M2
1 (a−b)2

(M1+M2)
2 decreases as we increase M2. In the case of �̄ 	 logn,

we have M1(a − b)2 = ω(M) as a sufficient condition for consistency. This is in contrast to
the usual requirement of (a − b)2 = ω(1). On the other hand if we assume M1 and M2 are
fixed, but the density of the Erdos–Renyi layers gradually increases, then with the addition
of such dense but uninformative layers, �̄ increases, while g(a, b) remains the same. This
increases the upper bound and the method does not lead to consistent community detection
anymore.

Turning our attention to spectral kernel method, we will have ZT
1 (ZT

1 Z1)
−1ZT

1 as the spec-
tral kernels from the M1 layers. The matrices A(m) are of rank 1 for the other M2 layers and
let J (m)J (m)T , where J (m) are matrices with orthonormal columns, be the kernels for each
such m ∈ {1, . . . ,M2}. Then the aggregate spectral kernel is K = 1

M
(M1Z

T
1 (ZT

1 Z1)
−1ZT

1 +∑M2
m=1 J (m)J (m)T ). Since J (m)J (m)T is not associated with Z, the matrix Z cannot be ex-

tracted exactly from the kernel perfectly when M2 > 0. For small M2 we can still recover a
subspace close to the subspace spanned by Z and the error will be governed by the Davis–
Kahan theorem [31]. However, with M2 increasing eventually we will not be able to recover
the subspace at all.

For OLMF, P̄ = ZQ−1/2, �̄(m) = Q1/2B(m)Q1/2,m = 1, . . . ,M , is still a solution of the
optimization problem (2.2), and its uniqueness is ensured as long as at least one of the B(m)’s
in the first M1 layers is of full rank.

We verify these observations on the population adjacency tensor in a simulation study,
whose results are presented in Figure 3. In the first simulation (Figure 3(b)) we increase the
number of layers uninformative of the community structure from 2 to 7 while keeping the
number of informative layers fixed at 3. Spectral clustering on mean adjacency matrix con-
tinues to be able to recover the community structure perfectly. This behavior is replicated by
both OLMF and co-regularized spectral clustering methods. However, aggregate of spectral
kernel and module allegiance matrix approaches are not successful in recovering the correct
community structure in the presence of uninformative layers. In the second simulation (Fig-
ure 3(c)) we keep the number of informative and uninformative layers both fixed at 3 each,
and vary the density of the uninformative layers while keeping the density of the informative
layers fixed. As our theoretical analysis indicates, although the aggregate of spectral kernel
approaches fail to recover the community structure correctly, its performance is unaffected
by increasing density of the uninformative layers. Spectral clustering on mean adjacency ma-
trix, OLMF and co-regularized spectral clustering methods continue to be able to recover the
correct community structure and are unaffected by increasing density of the uninformative
layers.
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detection in multi-layer networks” (DOI: 10.1214/18-AOS1800SUPP; .pdf). The supple-
mentary file contains proofs of equivalence between problems (2.1) and (2.2), Proposition 1,
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