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Sparse partial least squares (SPLS) is widely used in applied sciences
as a method that performs dimension reduction and variable selection si-
multaneously in linear regression. Several implementations of SPLS have
been derived, among which the SPLS proposed in Chun and Keleş (J. R.
Stat. Soc. Ser. B. Stat. Methodol. 72 (2010) 3–25) is very popular and highly
cited. However, for all of these implementations, the theoretical properties
of SPLS are largely unknown. In this paper, we propose a new version of
SPLS, called the envelope-based SPLS, using a connection between enve-
lope models and partial least squares (PLS). We establish the consistency,
oracle property and asymptotic normality of the envelope-based SPLS es-
timator. The large-sample scenario and high-dimensional scenario are both
considered. We also develop the envelope-based SPLS estimators under the
context of generalized linear models, and discuss its theoretical properties in-
cluding consistency, oracle property and asymptotic distribution. Numerical
experiments and examples show that the envelope-based SPLS estimator has
better variable selection and prediction performance over the SPLS estimator
(J. R. Stat. Soc. Ser. B. Stat. Methodol. 72 (2010) 3–25).

1. Introduction. Consider the multivariate linear regression model

(1) Y = μ + βT (X − μX) + ε,

where Y ∈ R
r is the response vector, and X ∈ R

p is the stochastic predictor vector having
mean μX and covariance matrix �X. The errors ε ∈ R

r are independent of X, and have mean
0 and covariance matrix �Y|X. The intercept and the regression coefficients are denoted by
μ ∈ R

r and β ∈R
p×r .

Partial least squares (PLS) is introduced by Wold (1966) as an alternative method to or-
dinary least squares (OLS) for estimating β . It is the dominant method in chemometrics and
is now widely used in many other applied sciences such as econometrics and genetics. It is
known that PLS often has a better prediction performance compared to OLS, and the PLS
algorithms can be adapted directly to the n < p case, where n denotes sample size. Variable
selection is desirable in many applications to identify the predictors that have zero regression
coefficients, and has been studied in the context of PLS. A few variants of sparse partial least
squares (SPLS) have been proposed in the statistics, genetics and chemometrics communi-
ties, for example, Chun and Keleş (2010), Huang et al. (2004), Lê Cao et al. (2008), Lee
et al. (2011), etc. Among these works, Chun and Keleş (2010) used penalization to induce
sparsity and proposed an efficient optimization algorithm (see R package spls). This method
is very popular in statistics and applied sciences, and is the most cited among these works.
Despite advances in SPLS, the theoretical properties of the SPLS estimator are largely un-
known. This is because PLS was developed as an iterative moment-based algorithm. Because
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its development does not reference a population model, it is difficult to investigate its theo-
retical properties, and those of SPLS. As a result, it is hard to determine when PLS is more
advantageous than OLS, what are the limitations for PLS and how to improve PLS.

Recently Cook, Helland and Su (2013) built a connection between PLS with a recently
developed method called the envelope model. They showed that at the population level, PLS
and the envelope model have the same target parameter, but they use different algorithms for
estimation. This connection allows PLS to be studied in a traditional likelihood framework.

In this article, we develop a new version of SPLS, called the envelope-based SPLS, by
using the connection between PLS and the envelope model. Based on this connection, we
are able to investigate the theoretical properties of an envelope-based SPLS estimator:

√
n-

consistency, asymptotic normality and the oracle property are established for large sample
case; while rate of convergence and selection consistency are studied in the high-dimensional
case. Numerically, we find that the envelope-based SPLS estimator typically has variable se-
lection and prediction performances that are superior to the SPLS estimator (Chun and Keleş
(2010)) both in a small p large n scenario and a small n large p scenario. Specifically, we
find that SPLS (Chun and Keleş (2010)) is more advantageous than OLS when the material
part of the predictor has larger variability than the immaterial part. However, if the immaterial
part has larger variability, SPLS often has inferior performance in estimation and prediction
than OLS. The performance of the envelope-based SPLS estimator dominates the SPLS es-
timator in both cases: it has similar performance as SPLS when the material part has larger
variability, and it is superior to SPLS and OLS when the immaterial part has larger variability.

Generalized linear models are very useful when the response variables are binary, counts or
other nonnormal measurements. And variable selection is important when we want to identify
the predictors that do not affect the distribution of the response. In the current literature, SPLS
is developed only for binary and multinomial responses (Chung and Keleş (2010)), and no
theoretical results are available for those estimators. We develop the envelope-based SPLS
estimator when the conditional distribution of Y given X belongs to a natural exponential
family, with a general link function. The consistency and oracle properties of the estimator
are established. We compare the estimator with the SPLS estimator in the literature and the
OLS estimator, and find that the envelope-based SPLS estimator has better selection and
prediction performance in numerical experiments and examples.

The contributions of this article are three-fold. First, we propose an envelope-based SPLS
model in which the development of the theoretical properties of the estimator is feasible.
Second, we show that the model-based approach offers an alternative avenue to advance
SPLS. Currently, most developments of SPLS are algorithm-based. For example, generalized
sparse partial least squares (Chung and Keleş (2010)) is derived by embedding the SPLS
algorithm in the generalized linear model setting. It is difficult to develop such an algorithm in
some contexts, such as quantile regression or expectile regression. In contrast, the envelope-
based SPLS can be extended to other models by imposing the envelope assumption and a
sparsity assumption on the model parameters, which is easier in these contexts. Third, we
show that the manifold techniques in the proof can be generalized to other contexts where
model parameters are defined on a manifold. Since estimation of the envelope subspace is
performed by Grassmann manifold optimization, the study of the theoretical properties of
the envelope-based SPLS estimator involves manifold theory and techniques. Although Chen
and Huang (2012) and Chen, Zou and Cook (2010) studied problems that involve manifolds,
their techniques rely heavily on a specific form of the objective function, either the least
squares objective function or the trace function. The techniques developed in this article can
be applied to a general objective function.

The rest of the article is organized as follows. Section 2 is devoted to a review of PLS, the
envelope model and the connection between them. We introduce the envelope-based SPLS
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estimator and discuss its properties in Section 3. The envelope-based SPLS estimator for gen-
eralized linear models is developed in Section 4. Some concluding remarks are in Section 5.
Proofs and technical details are included in the Supplementary Material (Zhu and Su (2019)).

2. Review of PLS and envelopes.

2.1. PLS. PLS is a method based on predictor reduction. PLS first reduces X to a few
linear combinations WT X, where W ∈ R

p×d with d ≤ p. Considering WT X as the new
predictor vector, we regress Y on WT X by writing

Y = μW + βT
WWT (X − μX) + εW.

The OLS estimator of βW is β̂W = (WT SXW)−1WSXY, where SX ∈ R
p×p is the sample

covariance matrix of X and SXY ∈ R
p×r is the sample covariance matrix of X and Y. Then

the PLS estimator of β is β̂pls = Wβ̂W = PW(SX)β̂ols, where β̂ols denotes the OLS estimator
of β and PW(SX) denotes the projection matrix onto span(W) in the SX inner product. PLS
has a few variants, corresponding to different ways of obtaining W. One of the most popular
variants is SIMPLS proposed by De Jong (1993). In SIMPLS, a sequential algorithm is used
to obtain the columns of W. Let wk be the kth column in W, and Wk = (w1, . . . ,wk), k < d .
Then wk+1 is given by

(2)

wk+1 = arg max
w

(
wT �XY�T

XYw
)
,

subject to wT �XWk = 0 and wT w = 1.

Another popular variant is NIPALS (Wold (1975)), which has the same objective function
as SIMPLS but uses a different inner product in the constraints. Our discussion will focus
on SIMPLS, since SIMPLS is implemented as the standard PLS algorithm in software like
R, SAS and MATLAB. Results on SIMPLS can be extended in a straightforward manner to
NIPALS. The dimension of the reduction WT X, that is, d , is usually called the “number of
components,” and it is typically selected in a data-driven way, for example, cross validation.
This is illustrated in the simulations and data analysis in Sections 3.3 and 3.4.

In the high-dimensional scenario, the PLS algorithms can be easily adapted, but the esti-
mators can be inconsistent. Let β̂pls denote the PLS (SIMPLS or NIPALS) estimator of β .
Chun and Keleş (2010) showed that β̂pls is consistent if and only if p/n → 0. Therefore, it is
necessary to use SPLS if some predictors have zero coefficients.

2.2. The envelope model and its connection with PLS. The envelope model was orig-
inally developed in Cook, Lue and Chiaromonte (2010) to achieve efficient estimation in
multivariate linear regression. After its initial introduction, it was applied to more general
contexts, and new models were proposed to achieve even greater efficiency gains; see, for
example, Su and Cook (2011, 2012), Cook and Zhang (2015) and Khare, Pal and Su (2017).
In particular, a predictor envelope model was developed in Cook, Helland and Su (2013),
and this paper also established a connection between PLS and the predictor envelope model.
This connection allows PLS to be studied under the framework of envelope models. We
will review the envelope model in this context, and this will lead to the development of the
envelope-based SPLS model.

The predictor envelope model achieves efficient estimation by identifying the immaterial
information in the predictors. Let S be a subspace of Rp , and PS be the projection matrix
onto S . We decompose X into two parts: PSX and QSX, where QS = Ip − PS . Assume that
PSX and QSX satisfy the following two conditions: (i) Y is uncorrelated with QSX given
PSX, and (ii) QSX is uncorrelated with PSX. Then S is called a reducing subspace of �X
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containing B, where B = span(β) (Cook, Helland and Su (2013)). The �X-envelope of B,
denoted by E�X(B) or E for short, is defined as the smallest reducing subspace of �X that
contains B. In other words, E�X(B) is the smallest subspace that satisfies conditions (i) and
(ii). It can be shown that QEX is uncorrelated with PEX and Y. So QEX does not affect the
distribution of Y directly or indirectly. We refer to QEX and PEX as the immaterial part and
the material part of X, respectively.

For S = E�X(B), conditions (i) and (ii) are equivalent to the following two conditions: (a)
B ⊆ E�X(B) and (b) �X = PE�XPE + QE�XQE . We call (1) the predictor envelope model
if conditions (a) and (b) are imposed. The coordinate form of the predictor envelope model is

(3) Y = μ + ηT �T (X − μX) + ε, �X = ���T + �0�0�
T
0 ,

where β = �η, � ∈ R
p×d is an orthonormal basis of E�X(B), and �0 ∈ R

p×(p−d) is a com-
pletion of �. The integer d denotes the dimension of E�X(B), and 0 ≤ d ≤ p. The matrices
� ∈ R

d×d and �0 ∈ R
(p−d)×(p−d) are positive definite and η ∈ R

d×r carries the coordinates
of β with respect to �. If d = p, then (3) reduces to the standard model (1), and the envelope
estimator of β is the same as the standard estimator β̂ols. If d < p, the predictor envelope
model (3) states that B is contained in the subspace spanned by a few (not all) eigenvectors
of �X (Cook, Lue and Chiaromonte (2010)). Because that β and �X are independent param-
eters, when p increases, this happens with probability tending to 1 (Diaconis and Freedman
(1984)). When p is small or moderate, some dependence structures among the predictors nat-
urally satisfy conditions (a) and (b). For example, suppose that �X has the following structure
�X = MMT + cIp , where c > 0 is a constant and M ∈ R

p×k with k � p. This covariance
structure is commonly used in factor analysis, where most of the variation in X is explained
by a few factors. And the predictor envelope model (3) holds under this structure.

The estimator of E�X(B) is obtained by solving the following optimization problem:

(4) Ê�X(B) = arg min
S∈G(p,d)

log |PSSX|YPS | + log
∣∣PSS−1

X PS
∣∣,

where SX|Y = SX − SXYS−1
Y ST

XY is the sample covariance matrix of X given Y, and SY is
the sample covariance matrix of Y. The optimization is performed on G(p, d), which denotes
a p × d Grassmann manifold. A p × d Grassmann manifold is the set of all d-dimensional
subspaces in a p-dimensional space. Since the estimation of E�X(B) involves manifold opti-
mization, it can be slow in high-dimensional settings. To resolve this problem, we convert the
problem into a nonmanifold optimization through a reparameterization of � (Cook, Forzani
and Su (2016), Ma and Zhu (2013)). Since � has rank d , there exists d rows in �, say rows
i1, i2, . . . , id (1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ p), that form a d × d nonsingular matrix �1. If there
are multiple sets of d rows that form a nonsingular matrix, we take the set with the smallest
indices. The submatrix formed by the remaining p − d rows is denoted by �2. We define
A = �2�

−1
1 and GA = ��−1

1 . Then rows i1, i2, . . ., id in GA form an identity matrix, and the
remaining rows in GA constitute A. Note that A ∈ R

(p−d)×d characterizes E�X(B) since A
depends on � only through span(�). Under this parameterization, the optimization problem
in (4) is converted to the following unconstrained nonmanifold optimization problem:

(5) Â = arg min
A∈R(p−d)×d

{−2 log
∣∣GT

AGA
∣∣ + log

∣∣GT
ASX|YGA

∣∣ + log
∣∣GT

AS−1
X GA

∣∣}.
Cook, Forzani and Su (2016) discussed the methods to estimate the indices i1, i2, . . . , id and
obtain a

√
n-consistent initial value of A, as well as an algorithm to solve (5). Once we

get Â, �̂ can be taken as an orthonormal basis of ĜA. The envelope estimator of β is then
β̂env = P�̂(SX)β̂ols, where P�̂(SX) denotes the projection matrix onto span(�̂) in the SX inner
product. By the results of Cook, Helland and Su (2013), the envelope estimator β̂env is as
efficient as or more efficient than β̂ols.
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The predictor envelope model (3) has a close relationship with PLS. In the SIMPLS al-
gorithm, let Wk = span(Wk). Cook, Helland and Su (2013) showed that W1 ⊂ W2 ⊂ · · · ⊂
Wd = E�X(B) = Wd+1 ⊂ · · · ⊂ Wp . This indicates that the SIMPLS algorithm is estimat-
ing the target parameter E�X(B). While the predictor envelope model (3) estimates E�X(B)

through the optimization in (5), SIMPLS uses a moment-based iterative algorithm (2) to
obtain the estimator. Cook, Helland and Su (2013) showed that β̂env usually has a better per-
formance in estimation and prediction than β̂pls. If there is no immaterial part in X, then
d = p and E�X(B) =R

p . The envelope estimator β̂env reduces to the standard estimator β̂ols.
In the SIMPLS algorithm, we have W1 ⊂ W2 ⊂ · · · ⊂ Wp−1 ⊂ Wp = E�X(B), which yields
W = Ip . The SIMPLS estimator β̂pls also reduces to the standard estimator β̂ols.

3. Envelope-based SPLS.

3.1. Formulation. We first define active predictors and inactive predictors. In Chun and
Keleş (2010), a predictor variable is viewed active or inactive if the corresponding row in W
has nonzero elements or not. Based on the connection between PLS and the predictor enve-
lope model, we call a predictor inactive if the corresponding row in � consists of all zeros,
and we call a predictor active if the corresponding row in � is nonzero. Then without loss of
generality, we can write X = (XT

A,XT
I )T , where XA ∈R

pA denotes the active predictors and
XI ∈ R

pI denotes the inactive predictors. The subscripts A and I are attached to a quantity
if it is associated with active and inactive predictors. For example, pA and pI denote the
number of active and inactive predictors, and pA + pI = p. Then the basis for the predictor
envelope model (3) has the following sparse structure:

(6) � =
(
�A
0

)
.

We call (3) the sparse predictor envelope model if � has the sparse structure (3). Its estimator
of β is the envelope-based SPLS estimator, and we call it the E-SPLS estimator. Under the
sparse predictor envelope model, β = �η also has a sparse structure. And we denote the
coefficients for the active predictors by βA = �Aη. When d = p, there is no immaterial part
and no inactive predictors, and the E-SPLS estimators reduces to the OLS estimator. The
sparsity assumption (6) is quite common in dimension reduction literature (Chen and Huang
(2012), Chen, Zou and Cook (2010), Chun and Keleş (2010)). It basically means that the
conditional distribution of Y given X does not depend on these predictors.

The parameterization of A preserves the sparse structure of �, that is, a row in � consists
of all zeros if and only if the corresponding row in A consists of all zeros. Therefore, the
inactive predictors can be determined from the sparsity structure of A. This can be seen from
the definition of A. Recall that A = �2�

−1
1 . Let γ T

2,i denote the ith row in �2, and let aT
i

denote the ith row in A. Then we have γ T
2,i = aT

i �1, for i = 1, . . . , p − d . Because �1 is
nonsingular, aT

i = 0 if and only if γ T
2,i = 0. Suppose that the ith row in �2 corresponds to

the j th row in �. Then aT
i = 0 implies that the j th predictor is inactive; and vice versa. The

explanation is easiest to see in the following special case. If i1 = 1, i2 = 2, . . . , id = d , we
have

� =
(
�1
�2

)
=

(
Id

A

)
�1.

Then γ T
2,i = aT

i �1, for i = 1, . . . , p − d . Therefore, aT
i = 0 if and only if γ T

2,i = 0. Since
γ 2,i = γ i+d , where γ i+d denotes the (i + d)th row of �, then aT

i = 0 if and only if the
(i + d)th predictor is inactive.
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To make the E-SPLS estimator of β a sparse estimator, we induce the sparsity in A by
adding an adaptive group lasso penalty to the objective function in (5):

Â = arg min
A∈R(p−d)×d

−2 log
∣∣GT

AGA
∣∣ + log

∣∣GT
ASX|YGA

∣∣
+ log

∣∣GT
AS−1

X GA
∣∣ + λ

p−d∑
i=1

wi‖ai‖2,(7)

where ‖ · ‖2 is the norm of a vector, λ is the tuning parameter and the wi ’s are the adaptive
weights. Following Zou (2006), we set wi = 1/‖̂ai‖γ

2 , where γ is a tuning parameter and âi is
a

√
n-consistent estimator of ai , for example, the envelope estimator. The tuning parameter γ

can be chosen from a small candidate set such as {0.5,1,2,4,8} (Zou (2006)). The adaptive
group lasso penalty is also used in Chen and Huang (2012), Chen, Zou and Cook (2010), and
Su et al. (2016) to induce row-wise sparsity of a matrix, and it enjoys desirable properties
such as consistency and the oracle property. Su et al. (2016) compared this penalized method
with a hard-thresholding method in the context of the sparse envelope model, and concluded
that the penalized method outperforms the hard-thresholding method for variable selection.

If p grows to infinity with n, we denote p by pn. Let �X|Y = �X − �XY�−1
Y �T

XY. When
pn > n, SX and SX|Y are both singular. But S−1

X appears in the objective function (7) and S−1
X|Y

is needed in the estimation algorithm (cf. Algorithm 1 in the Supplementary Material). Then
we replace S−1

X and S−1
X|Y by alternative estimators of �−1

X and �−1
X|Y such as sparse permuta-

tion invariant covariance estimators (Rothman et al. (2008, SPICE)), sparse partial correlation
estimation (Peng et al. (2009, SPACE)), convex correlation selection method (Khare, Oh and
Rajaratnam 2015, CONCORD), lasso penalized D-trace estimation (Zhang and Zou (2014)),
etc. The consistency of the SPICE estimators of �−1

X and �−1
X|Y can be established without

any sparsity assumptions, while for the other methods we need to assume some sparsity struc-
ture in �−1

X and �−1
X|Y to establish consistency. In our case, �−1

X and �−1
X|Y are not necessarily

sparse. We then use the SPICE estimators S−1
X,spice and S−1

X|Y,spice, although the other methods
typically enjoy a convergence rate that is faster than that of SPICE due to the sparsity as-
sumptions. We obtain SX,spice and SX|Y,spice by taking the inverse of S−1

X,spice and S−1
X|Y,spice.

And the objective function is

Â = arg min
A∈R(pn−d)×d

−2 log
∣∣GT

AGA
∣∣ + log

∣∣GT
ASX|Y,spiceGA

∣∣
+ log

∣∣GT
AS−1

X,spiceGA
∣∣ + λ

pn−d∑
i=1

wi‖ai‖2.(8)

The optimizations of (7) and (8) are similar to the optimization problem discussed in Su
et al. (2016). To update each row in A, it takes O(pd + d3) flops. The details of the
estimation algorithm and computational complexity calculations are included in the Sup-
plementary Material. Once we have obtained Â from (7) or (8), Ê�X(B) = span(ĜA) and
�̂ is any orthonormal basis for Ê�X(B). Then the E-SPLS estimator of β and �X are

β̂ = �̂(�̂
T SX�̂)−1�̂

T SXY = P�̂(SX)β̂ols and ̂�X = P�̂SXP�̂ + Q�̂SXQ�̂ . The other con-

stituent parameters are estimated by μ̂X = X̄, μ̂ = Ȳ, η̂ = (�̂
T SX�̂)−1�̂

T SXY, �̂ = �̂
T SX�̂,

�̂ = �̂
T
0 SX�̂0 and ̂�Y|X = SY − β̂̂�Xβ̂

T
, where X̄ and Ȳ are the sample mean of X

and Y, and �̂0 is a completion of �̂. In the high-dimensional situation, β is estimated by
β̂ = �̂(�̂

T SX,spice�̂)−1�̂
T SXY.
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3.2. Theoretical properties. Because the E-SPLS estimator is derived from the sparse
predictor envelope model (3) and (6), its properties can be investigated through this model.
We investigate the consistency, asymptotic distribution or convergence rate of the E-SPLS
estimator in the scenario where p is fixed and n tends to infinity, as well as the scenario
where pn and n both tend to infinity.

We start with the case where p is fixed and n tends to infinity. Suppose that under (6),
rows i1, . . . , id in � constitute a nonsingular matrix �1, 1 ≤ ij ≤ pA for j = 1, . . . , d . Then
the first pA − d rows of A correspond to the nonzero rows in � but not in �1. This implies
that the first pA − d rows of A are nonzero and the rest rows of A are zero. Let λA =
λmax{w1, . . . ,wpA−d} and λI = λmin{wpA−d+1, . . . ,wp−d}.

THEOREM 1. Assume that the sparse predictor envelope model (3) and (6) holds, and
X has finite fourth moments. We further assume that

√
nλA → 0. Then there exists a local

minimizer Â of (7), such that Â is a
√

n-consistent estimator of A, and β̂ is a
√

n-consistent
estimator of β .

Theorem 1 establishes the
√

n-consistency of the E-SPLS estimator of A and β . Since
other estimators such as ̂�X and ̂�Y|X are smooth functions of Â, they are

√
n-consistent

estimators as well. Notice that the objective function for A (7) is derived from the normal
likelihood, but we do not need normality in order to obtain the

√
n-consistency of Â. If the

weights are taken as wi = 1/‖̂ai‖γ
2 for γ > 0, the condition

√
nλA → 0 is equivalent to

λ = o(n−1/2) or n1/2λ → 0. Theorem 2 further establishes the selection consistency of the
E-SPLS estimator.

THEOREM 2. Assume that the conditions in Theorem 1 hold, and further assume that√
nλI → ∞. Then P (̂ai = 0) → 1 for i = pA − d + 1, . . . , p − d .

Theorem 2 indicates that the inactive predictors are selected to be inactive with probability
tending to 1, and Theorem 1 indicates that the active predictors are selected to be active
asymptotically. The condition

√
nλI → ∞ is equivalent to n(1+γ )/2λ → ∞, if we use the

weights wi = 1/‖̂ai‖γ
2 . Here, γ usually takes value in {0.5,1,2,4,8} (Zou (2006), Chen

and Huang (2012)). Therefore, if n1/2λ → 0 and n(1+γ )/2λ → ∞, then the assumptions on
the tuning parameters in both Theorems 1 and 2 hold. But Theorem 1 only requires the
assumption n1/2λ → 0.

We next study the asymptotic variance of the E-SPLS estimator. In preparation, we first de-
fine the oracle predictor envelope estimator and study its properties. Suppose we possess the
oracle information, that is, we know in advance which predictors are active and which predic-
tors are inactive. We would then construct the oracle predictor envelope model by specifying

(9)

Y = μ + ηT �T

(
XA − μXA
XI − μXI

)
+ ε,

�X = ���T + �0�0�
T
0 ,

� =
(
�A
0

)
.

Notice that we still include XI in the oracle predictor envelope model even though we know
that its coefficients are zero. This is because inclusion of XI improves the estimation of βA.
To demonstrate this, we need to look more closely at the immaterial information. When �
has the sparse structure (6), �0 may have the block diagonal structure

(10)
(
�A,0 0

0 IpI

)
,
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where �A,0 ∈ R
pA×(pA−d) is a completion of �A. If �0 has this structure, we denote it by

�̃0. A general structure for �0 is �̃0O, where O ∈ R
(p−d)×(p−d) is an orthogonal matrix.

Then the immaterial part is QEX = P�̃0
X = (XT

AQ�A,XT
I )T . We see that the immaterial part

has two sources, one from the immaterial part in the active predictors Q�AXA and the other
from the inactive predictors XI . Under the basis �̃0, we denote the coordinates �0 as �̃0,
where

(11) �̃0 =
(

�̃0,A �̃0,AI
�̃0,IA �̃0,I

)
,

and �̃0,A ∈R
(pA−d)×(pA−d). We can see that the two sources Q�AXA and XI are correlated

with each other: Cov(Q�AXA,XI) = �A,0�̃0,AI�̃
T
0 if �̃0,AI �= 0. Therefore, the existence

of XI helps identify the immaterial part and lowers the cost of estimating E�X(B).
Mathematically, we can show that the presence of XI increases efficiency by compar-

ing the asymptotic variance of the estimators obtained by including or excluding XI . When
we include XI in the estimation, Proposition 1 in the Supplementary Material gives the
expression of the oracle predictor envelope estimator β̂A,O as well as its asymptotic vari-
ance when X and ε are normally distributed. We assume normality in this proposition
only to obtain an explicit form for the asymptotic variance. It can be proved that with-
out the normality assumption β̂A,O is a

√
n-consistent estimator as long as X has finite

fourth moments. A subscript “O” is attached to an estimator if it is based on the ora-
cle predictor envelope model. Let vec be the operator that stacks the columns of a matrix
into a column vector, and let �̃0,A|I = �̃0,A − �̃0,AI�̃

−1
0,I�̃0,IA. With the normality as-

sumption, the asymptotic variance of vec(β̂A,O) is denoted by VO , and VO = �Y|XA ⊗
�A�−1�T

A + (ηT ⊗ �A,0)T−1(η ⊗ �T
A,0), where ⊗ denotes the Kronecker product and

T = (η�−1
Y|XA

ηT + �−1) ⊗ �̃0,A + � ⊗ �̃
−1
0,A|I − 2Id ⊗ IpA−d . The asymptotic variance

VO contains two parts: �Y|XA ⊗ �A�−1�T
A is the asymptotic variance of vec(β̂A,O) if �A

is known, and (ηT ⊗�A,0)T−1(η⊗�T
A,0) is the cost for estimating E�X(B). If we exclude XI

in (9), and only use XA to construct the predictor envelope model, the asymptotic variance
of the estimator of vec(βA) is V2 = �Y|XA ⊗�A�−1�T

A + (ηT ⊗�A,0)T
−1
2 (η ⊗�T

A,0), and

T2 = (η�−1
Y|XA

ηT + �−1) ⊗ �̃0,A + � ⊗ �̃
−1
0,A − 2Id ⊗ IpA−d . Comparing VO and V2, we

see that the first part is exactly the same, but the cost of estimating E�X(B) differs. Specially,
since �̃0,A|I ≤ �̃0,A, T−1 ≤ T−1

2 . Notice that XI plays a role in T, but not in T2. Moreover,
the higher the correlation between XA and XI , the greater are the efficiency gains.

REMARK. In standard linear regression, if we possess the oracle information, we would
eliminate the inactive predictor; otherwise, we lose efficiency. But under the predictor enve-
lope model, retaining the inactive predictors actually improves the estimation efficiency.

A simulation is included in the Supplementary Material to provide some numerical support
of the remark.

Now we study the asymptotic distribution of the E-SPLS estimator.

THEOREM 3. Assume that the conditions in Theorem 2 hold. Then
√

n × {vec(β̂A) −
vec(βA)} is asymptotically normally distributed with mean 0 and variance the same as that
of β̂A,O .

Theorem 3 indicates that the E-SPLS estimator has the optimal estimation rate. Together
with Theorem 2, it shows that the E-SPLS estimator enjoys the oracle property: it correctly
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selects the inactive predictors with probability tending to 1, and estimates the coefficients of
the active predictors with the same efficiency as if the true model were known.

When pn → ∞ as n → ∞, we establish the convergence rate and selection consistency
of the E-SPLS estimator. Let s1 and s2 denote the number of nonzero off-diagonal elements
in the lower triangle of �−1

X and �−1
X|Y, and s = max{s1, s2}. We use ‖ · ‖F to denote the

Frobenius norm of a matrix. A random variable V with mean μV follows a sub-Gaussian
distribution with parameter σ 2 if E[et(V −μV )] ≤ exp(t2σ 2/2) for all t ∈ R. Let �Y|X,ii and
�X,ii denote the (i, i)th element in �Y|X and �X, and let εi and Xi denote the ith element
in ε and X. Let λA = λmax{w1, . . . ,wpA−d} and λI = λmin{wpA−d+1, . . . ,wp−d}.

THEOREM 4. Assume that the sparse predictor envelope model (3) and (6) holds, the
largest eigenvalue of �X is upper bounded by a constant k̄ and the smallest eigenvalue
of �X|Y is lower bounded by a constant k. Furthermore, assume each εi/

√
�Y|X,ii

follows a sub-Gaussian distribution with parameter σ 2
1 , i = 1, . . . , r , and each Xi/√

�X,ii follows a sub-Gaussian distribution with parameter σ 2
2 , i = 1, . . . , p. If λA =

o(
√

(pn + s) log(pn)/n), then there exists a local minimizer Â of (8), such that ‖Â − A‖F =
Op(

√
(pn + s) log(pn)/n), and the E-SPLS estimator of β converges at the same rate:

‖β̂ − β‖F = Op(
√

(pn + s) log(pn)/n).

Theorem 4 gives the convergence rate of the E-SPLS estimator. It is the same as that of
the SPICE estimator of �X and �X|Y, which are used in the objective function (8). Since
SPICE does not assume sparsity on �−1

X or �−1
X|Y, the total number of parameters under the

sparse predictor envelope model is p + r + d(r − pI) + p(p + 1)/2 + r(r + 1)/2, which
is of the order of p2. We can improve the convergence rate to a faster rate if we further
impose sparsity assumption on �−1

X , for example, assume that the total number of nonzero
off-diagonal elements is a fixed number or grows slower than n.

THEOREM 5. Assume that the conditions in Theorem 4 hold,√
(pn + s) log(pn)/n → 0 as n → ∞ and

√
(pn + s) log(pn)/n = o(λI).

Then P (̂ai �= 0) → 1 for i = 1, . . . , pA −d , and P (̂ai = 0, i = pA −d +1, . . . , pn −d) → 1.

Theorem 5 establishes the selection consistency of the E-SPLS estimator. When pn

grows with n, the E-SPLS estimator correctly identifies active and inactive predictors
with probability tending to 1. Regarding the tuning parameters, the condition λA =
o(

√
(pn + s) log(pn)/n) is equivalent to n1/2(pn + s)−1/2{log(pn)}−1/2λ → 0. With λI , the

range of λ depends on how fast min{wpA−d+1, . . . ,wpn−d} diverges. If min{wpA−d+1, . . . ,

wp−d} = Op(nv1p
v2
n ), where v1 > 0 and v2 > 0, then

√
(pn + s) log(pn)/n = o(λI) is equiv-

alent to n(1+2v1)/2p
v2
n (pn + s)−1/2{log(pn)}−1/2λ → ∞. If λ satisfies both conditions, then

the assumptions of the tuning parameters in both Theorems 4 and 5 hold. But Theorem 4
only requires that λ satisfy the former assumption.

3.3. Simulations. We investigate the numerical performance of the E-SPLS estimator
through simulation studies. In all simulations, we use the SPLS estimator (Chun and Keleş
(2010)) as a benchmark since it is the “state-of-art” method for variable selection in PLS. We
generated the data from the sparse predictor envelope model (3) and (6) with r = 3, p = 20,
pA = 4 and d = 2. The parameter �A was obtained by orthogonalizing a pA × d matrix
of independent standard normal random variates. The intercept μ was a vector of zeros,
μX = 0, and the elements in η were independent normal random variates with mean 0 and
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FIG. 1. Comparison of the estimation standard deviations of four estimators: line — marks the E-SPLS estima-
tor, line – · – marks the SPLS estimator, line – – marks the oracle predictor envelope estimator and line · · · marks
the OLS estimator. The horizontal lines mark the asymptotic standard deviation of the corresponding estimators.

variance 0.25. The covariance matrix �X followed the structure �X = ���T + �0�0�
T
0 ,

with � = 4Id and �0 being a diagonal matrix. The first pA−d diagonal elements of �0
were 0.36 and the rest of the diagonal elements were 1. The error covariance matrix was
�Y|X = MT M, where the elements in the matrix M ∈R

r×r were independent uniform (0,3)

random variates. We simulated 200 replications for each sample size from 50 to 1000, and
computed the OLS estimator, the SPLS estimator, the E-SPLS estimator and the oracle pre-
dictor envelope estimator. For each elements in βA, the estimation standard deviation was
obtained by computing the standard deviation of the 200 estimators. The results are summa-
rized in Figure 1. The trend of the solid line in Figure 1 agrees with the

√
n-consistency of the

E-SPLS estimator stated in Theorem 1. The standard deviation of the OLS estimator is 1.16
at sample size 50, which is about four times the standard deviation of the E-SPLS estimator.
The ratio of the asymptotic standard deviation of the OLS estimator versus the E-SPLS esti-
mator is 6.12. The SPLS estimator is more efficient than the OLS estimator, but it is not as
efficient as the E-SPLS estimator. The ratio of the standard deviation of the SPLS estimator
versus the E-SPLS estimator at sample size 1000 is 4.18. Since the asymptotic variance of the
SPLS estimator is unknown, we cannot compare the asymptotic standard deviations for SPLS
estimator and E-SPLS estimator. The difference between the E-SPLS estimator and the ora-
cle predictor envelope estimator diminishes when the sample size increases, which confirms
the oracle property stated in Theorem 3. We also studied the variable selection performance
of the E-SPLS estimator on true positive rate (TPR), true negative rate (TNR) and accuracy.
Accuracy takes value 1 when all the active and inactive predictors are correctly selected, and

TABLE 1
Comparison of selection performances of the E-SPLS estimator and the SPLS estimator

E-SPLS SPLS

Sample size TPR TNR Accuracy TPR TNR Accuracy

50 96.38% 96.16% 68.50% 69.25% 71.97% 3.00%
100 98.88% 98.78% 83.00% 75.88% 83.59% 9.00%
200 99.75% 99.50% 92.50% 84.62% 89.91% 27.00%
400 99.88% 99.88% 97.50% 87.75% 92.00% 43.00%

1000 100.00% 100.00% 100.00% 91.62% 92.91% 55.50%
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FIG. 2. Comparison of the MPE: Line — marks the E-SPLS estimator, line · · · marks the SIMPLS estimator,
and line – – marks SPLS estimator.

0 otherwise, TPR = p∗
A/pA, and TNR = p∗

I/pI where p∗
A and p∗

I denote the number of
correctly selected active and inactive predictors. The averages of TPR, TNR and accuracy
were computed for 200 replications and are summarized in Table 1. From Table 1, we notice
that the E-SPLS estimator has a better selection performance than the SPLS estimator. The
E-SPLS estimator has 100% accuracy when n = 1000, which confirms the selection consis-
tency stated in Theorem 2. We also conducted a simulation to investigate the performance of
the E-SPLS estimator under model violation. The results are included in Section D.2 in the
Supplementary Material.

Now we report a simulation that studies the prediction performance of the E-SPLS estima-
tor. We generated the data from the sparse predictor envelope model with n = 50, p = 200,
r = 3, pA = 5 and d = 3. The elements in η were independent normal random variates with
mean 0 and variance 25. We set � = Id and �0 to be a diagonal matrix. The error covari-
ance matrix was �Y|X = MT M, where the elements in M ∈ R

r×r were independent uniform
(0,4) random variates. The first pA − d elements of �0 were 9 and the remaining pI ele-
ments were 25. Note that in this setting, the variability of the immaterial part is larger than
the variability of the material part. We computed the mean prediction error (MPE) for each
d by five-fold cross-validation, repeated 50 times with random splits of the data. The results
are summarized in Figure 2. Since we have p > n in this setting, the OLS estimator cannot
be computed. We included the results from SIMPLS as a reference. From the plot, we notice
that the SIMPLS estimator and SPLS estimator are quite similar. The minimum MPE is 14.01
for SIMPLS and 13.94 for SPLS. The E-SPLS estimator has minimum MPE 5.69, which is a
59.18% reduction compared to the SPLS estimator. The selection performance of the E-SPLS
estimator is also superior to that of the SPLS estimator in this setting. Table 2 summarized
the average TPR, TNR and accuracy from 50 replications.

In the simulation setting that was used to generate Figure 2, we kept all the parameters
the same but changed the relative magnitude of � and �0. We set � = 36Id and �0 to be a

TABLE 2
Comparison of selection performances of the SPLS estimator

and E-SPLS estimator

TPR TNR Accuracy

SPLS 51.60% 29.85% 0.00%
E-SPLS 88.00% 100.00% 40.00%
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FIG. 3. Comparison of prediction errors: Line — marks the E-SPLS estimator, line · · · marks the SIMPLS
estimator, and line – – marks SPLS estimator.

diagonal matrix, with its first pA − d elements being 9 and other elements being 1. Then the
variability of the material part is larger than the variability of the immaterial part. The results
are summarized in Figure 3. The minimum MPE is 13.02 for the SIMPLS estimator, 5.83
for SPLS estimator and 6.02 for the E-SPLS estimator. The prediction performance of the
SPLS estimator and the E-SPLS estimator is about the same. We also compared the selection
performance of the SPLS estimator and the E-SPLS estimator, and the results are in Table 3.
The selection performances of the two estimators are also similar.

From the comparison, we notice that the performances of the SPLS and E-SPLS estimators
are similar when ‖�‖ > ‖�0‖, but the performance of the SPLS estimator tends to be inferior
to that of the E-SPLS estimator when ‖�‖ < ‖�0‖. This is because SPLS estimates E�X(B)

with directions that maximize the objective function in (2). If ‖�‖ < ‖�0‖, the objective
function in (2) tends to be large if a direction close to E�X(B)⊥ is picked. On the other hand,
the E-SPLS estimator is

√
n-consistent (Theorem 1), and its performance is quite stable in

both cases.

3.4. Data analysis.

SAT scores data. The SAT dataset (Ramsey and Schafer (2012)) contains the average
SAT score of the fifty states in the U.S. in 1982, as well as six variables that are used to
predict the average SAT score. The six variables are: percentage of the total eligible students
in the state who took the exam; the median income of families of the test takers; the average
number of years that the test takers had formal studies in social sciences, natural sciences and
humanities; the percentage of the test takers who attended public secondary schools; the total
state expenditure on secondary schools; and the median percentile ranking of the test takers
within their secondary school classes. We took the six variables and their cross-terms as our

TABLE 3
Comparison of selection performances of the SPLS estimator

and E-SPLS estimator

TPR TNR Accuracy

SPLS 98.40% 100.00% 92.00%
E-SPLS 99.60% 100.00% 98.00%
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FIG. 4. Comparison of the MPE: Line — marks the E-SPLS estimator and line – – marks the SPLS estimator.

predictors, so p = 21. We computed the MPE of the E-SPLS estimator for each d by five-fold
cross validation, repeated 50 times with random splits of the data, and compared the results
with those of the SPLS estimator in Figure 4. The MPE of the OLS estimator is 49.94. The
minimum MPE for the SPLS estimator is 38.92, and it is achieved at d = 16. The minimum
MPE for the E-SPLS estimator is 29.28 achieved at d = 3. Compared to the SPLS estimator,
the E-SPLS estimator reduced the MPE by 24.76%, and the E-SPLS estimator achieved this
reduction with a much smaller d .

Yeast cell cycle data. This data set was analyzed in Chun and Keleş (2010) to illustrate the
numerical performance of the SPLS estimator. The dataset contains measurements of binding
information of 106 transcription factors (TFs) and messenger ribonucleic acid (mRNA) lev-
els on 542 genes. TFs belong to a class of proteins called DNA binding proteins, and control
the rate at which DNA is transcribed into mRNA. The mRNA levels are measured on approx-
imately two cell cycles with 18 equally spaced time points from 0 minutes to 119 minutes.
Following Chun and Keleş (2010), we took the TFs as the predictors and the mRNA levels as
the responses. The goal is to identify the TFs that contribute to the variations of mRNA levels
in cell cycles. Out of the 106 TFs, 21 TFs are known and experimentally confirmed cell cy-
cle related TFs (Wang, Chen and Li (2007)). We computed the E-SPLS estimator, the SPLS
estimator and the SIMPLS estimator, and selected the dimension d for all three estimators by
cross validation. The E-SPLS estimator identified 20 active TFs including 10 confirmed TFs,
the SPLS estimator identified 32 active TFs including 10 confirmed TFs and the SIMPLS
estimator is nonsparse. Table 4 computes the probability of containing at least q confirmed
TFs from a group of Q randomly chosen TFs from a hypergeometric distribution. Chun and
Keleş (2010) used this criterion to demonstrate the selection performance of the SPLS esti-
mator, in which the Lasso was listed as a benchmark. We included the results for the Lasso

TABLE 4
Probability of containing at least q confirmed TFs

from Q randomly chosen TFs

Method Q q P(Q ≥ q)

Lasso 100 21 0.256
SPLS 32 10 0.049
E-SPLS 20 10 0.00065
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FIG. 5. Estimated coefficients for 10 yeast TFs selected by the E-SPLS estimator.

in Table 4 for completeness. The small probability of the E-SPLS estimator suggests that the
large number of confirmed TFs selected is not due to chance.

The E-SPLS estimator of the coefficients for the 10 confirmed TFs are in Figure 5. The
coefficients for many TFs such as FKH2, SWI4 exhibit periodical behaviors during the cell
cycles. The MPE for the E-SPLS, SPLS and SIMPLE estimators were computed and are
summarized in Figure 6. We notice that the SPLS estimator has a better prediction perfor-
mance than the SIMPLS estimator especially when d is large, while the E-SPLS estimator
dominates both the SPLS and SIMPLS estimators for all d . The minimum MPE is 3.050 for
the E-SPLS estimator, 3.399 for the SPLS estimator, 3.442 for the SIMPLS estimator and
3.869 for the OLS estimator.

4. Extension to generalized linear model. Now we derive the envelope-based sparse
PLS estimator under the context where the distribution of Y belongs to a natural exponential
family. Let f be the probability mass function or probability density function of Y . Consider

FIG. 6. Comparison of the MPE: Line — marks the E-SPLS estimator, line – – marks the SPLS estimator and
line · · · marks the SIMPLS estimator.
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the standard generalized linear model

(12)

log
(
f (Y |θ)

) = Yθ − b(θ) + c(Y ),

θ(ζ ) = (
b′)−1{

g−1(ζ )
}
,

ζ(α,β) = α + βT X,

where θ is the natural parameter, b(·) is the cumulant function, b′(·) is the derivative of b(·),
g(·) is a monotonic smooth link function (McCullagh and Nelder (1989, page 27)), (b′)−1(·)
and g−1(·) denote the inverse functions of b′(·) and g(·), and c(·) is some specific function.
The predictor X follows a distribution with mean μX and covariance matrix �X, where α ∈ R

and β ∈R
p are unknown parameters. Then under model (12), we have

E(Y |θ) = b′(θ) = g−1(
α + βT X

)
.

For simplicity, we focus on the natural exponential family where the dispersion parameter
is ignored. The natural exponential family includes many important distributions such as
binomial, Poisson and negative binomial, and provides useful models for binary outcomes,
counts or other non-Gaussian measurements.

PLS has been adapted to the generalized linear model and used for various applications.
Marx (1996) embeds the PLS algorithm into the iteratively reweighted steps in generalized
linear models. Ding and Gentleman (2005) applied PLS in two-group and multigroup clas-
sification problems. PLS is also used in Poisson regression (Park, Tian and Kohane (2002))
to study the link between gene expression and patient survival time. In the high-dimensional
scenario, sparse PLS estimators are derived to address variable selection in generalized linear
models. For example, Chung and Keleş (2010) developed a sparse version of a PLS-based
classification method, called sparse generalized partial least squares (SGPLS), and applied
the method to tumor classification with microarray gene expression data. However, the theo-
retical properties of these PLS or sparse PLS-based methods are largely unknown. Our goal
is to develop an envelope-based sparse PLS estimator with tractable theoretical properties
and good numerical performance on variable selection and prediction under the generalized
linear model.

The idea of the envelope model can be extended to the generalized linear model naturally.
Cook and Zhang (2015) derived an envelope estimator of β under the context of (12) but
with canonical link functions, and proved that this envelope estimator is asymptotically at
least as efficient as the standard estimator obtained by Fisher scoring. We can adapt this
idea to a general link function g. Cook and Zhang (2015) considered the �X-envelope on B,
denoted by E�X(B), where B = span(β). Let � ∈ R

p×d be an orthonormal basis of E�X(B)

and �0 ∈ R
p×(p−d) be a completion of �, where d is the dimension of E�X(B), d ≤ p. Then

the envelope model under the context of the generalized linear model (12) is

log
(
f (Y |θ)

) =Yθ − b(θ) + c(Y ), θ(ζ ) = (
b′)−1{

g−1(ζ )
}
,

ζ(α,�,η) =α + ηT �T X, �X = ���T + �0�0�
T
0 .

(13)

Under this envelope model, the coefficients can be written as β = �η, where η ∈ R
d carries

the coordinates of β with respect to �, and � ∈ R
d×d and �0 ∈ R

(p−d)×(p−d) carry the
coordinates of �X with respect to � and �0. When d = p, (13) reduces to (12). To obtain
an estimator for model (13), Cook and Zhang (2015) suggested an iterative algorithm. With
a fixed �, α̂ and η̂ can be obtained from the standard procedure like Fisher scoring with Y

being the response and �T X being the predictor vector. Given α̂ and η̂, Ê�X(B) is given by

Ê�X(B) = arg min
span(�)∈G(p,d)

−2

n

n∑
i=1

D
{
α̂ + η̂(�)T �T Xi

}
+ log

∣∣�T SX�
∣∣ + log

∣∣�T S−1
X �

∣∣,(14)
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where D(·) = C[(b′)−1{g−1(·)}] and C(θ) = Yθ − b(θ). We treat η̂ as a function of � and
write it as η̂(�) to emphasize this. The optimization (14) can be solved by the 1D algorithm
(Cook and Zhang (2016)) that estimates � columnwise using an analytical first derivative
and numerical second derivative of the objective function. The algorithm alternates between
(α,η) and � until convergence. The envelope estimator of β is then β̂ = �̂η̂.

Now we assume that under model (13), some predictors do not contain material informa-
tion and have no contribution to the material part �T X. These predictors are called inactive
predictors, and their corresponding rows in � are 0. The predictors that correspond to nonzero
rows in � are called active predictors. Without loss of generality, we write X = (XT

A,XT
I )T ,

where XA ∈ R
pA contains active predictors and XI ∈ R

pI contains inactive predictors. Then
� has a sparse structure as in (6). The sparse envelope model under generalized linear regres-
sion is

log
(
f (Y |θ)

) = Yθ − b(θ) + c(Y ),

θ(ζ ) = (
b′)−1{

g−1(ζ )
}
,

ζ(α,�,η) = α + ηT �T X,

�X = ���T + �0�0�
T
0 ,

� =
(
�A
0

)
,

(15)

where each row in �A ∈ R
pA×d is nonzero. The sparse envelope model (15) has the same

formulation as the envelope model (13) except that � has a sparse structure. Under the sparse
envelope model (15), the coefficients β also have a sparse structure β = (βT

A,0)T , where
βA = �Aη ∈ R

pA contains the coefficients for the active predictors. Model (15) extends the
sparse envelope-based partial least squares from standard linear regression to generalized lin-
ear regression, and we call its estimator the envelope-based sparse generalized partial least
squares (E-SGPLS) estimator. When d = p, there is no immaterial part and no inactive pre-
dictors and model (15) reduces to the standard generalized linear regression model (12).

To induce sparsity in the rows of �, we add a group-lasso penalty to the objective function
in (14). If γ T

i denotes the ith row of �, the objective function for � is

−2

n

n∑
i=1

D
(
α̂ + η̂(�)T �T Xi

) + log
∣∣�T SX�

∣∣
+ log

∣∣�T S−1
X �

∣∣ + p∑
i=1

λi‖γ i‖2,(16)

where λi ’s are the tuning parameters. We use a subgradient method to optimize (16) because
the objective function is not differentiable. With a fixed �, α and η can be obtained using
the Fisher scoring method with Y being the response and �T X being the predictor vector.
Then we alternate between (α,η) and � until convergence. The E-SGPLS estimator of β is
β̂ = �̂η̂, where �̂ and η̂ are the values at convergence.

Suppose we have oracle information on which predictors are active or inactive. Based on
the discussion in Section 3.2, the oracle model has the same form as model (15) except that
we know which rows in � are zero or nonzero. The estimator from the oracle model is called
the oracle estimator, and the oracle estimator of βA is denoted by β̂A,O .

Before we discuss the properties of the E-SGPLS estimator, we first introduce some nota-
tion. Let �A,0 ∈ R

pA×(pA−d) be a completion of �A, and let �̃0 be a block diagonal matrix
with diagonal blocks �A,0 and IpI . When �0 has the block diagonal structure �̃0, we denote
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the corresponding �0 by �̃0. And the structure of �̃0 follows (11). If S is a subspace, we
say that Ŝ is a

√
n-consistent estimator of S if PŜ is a

√
n-consistent estimator of PS . Let

λA = max{λ1, . . . , λpA} and λI = min{λpA+1, . . . , λp}.
THEOREM 6. Assume that the sparse envelope model (15) holds and X follows a normal

distribution. We further assume that
√

nλA → 0 as n → ∞:

(a)
√

n-consistency: The E-SGPLS estimators α̂ and β̂ are
√

n-consistent estimators of α

and β , and Ê�X(B) is a
√

n-consistent estimator of E�X(B).
(b) Selection consistency: If we further assume that

√
nλI → ∞ as n → ∞, then P(γ̂ i =

0) → 1 for i = pA + 1, . . . , p.
(c) Optimal estimation rate: Assume that the same conditions in (b) hold,

√
n
{
vec(β̂A) − vec(βA)

} d→ N(0,V),

where V is the same as the asymptotic variance of β̂A,O .

Theorem 6 establishes the
√

n-consistency, asymptotic normality, selection consistency
and optimal estimation rate of the E-SGPLS estimator. With the normality assumption on X,
we also have a closed form for the asymptotic variance V, which is included in the Supple-
mentary Material.

Now we report results on the numerical performance of the E-SGPLS estimator on esti-
mation, variable selection and prediction. We generated data from a logistic regression model
with the sparse envelope structure (15). We set pA = 4, pI = 6, d = 2 and varied the sample
size from 100 to 1000. The matrix �A was obtained by orthogonalizing a pA × d matrix of
independent standard normal random variates. We set α = 0.5, μX = 0, � to be a diagonal
matrix with diagonal elements 1 and 2, and �0 to be a diagonal matrix with the first pA − d

diagonal elements being 0.25 and the remaining diagonal elements being 0.09. The elements
in η were independent standard normal random variates. For each sample size, we generated
200 replications, and computed the standard logistic regression estimator, the E-SGPLS es-
timator and the oracle estimator for each replication. We calculated the estimation standard
deviation of each element in β for the standard logistic regression estimator, E-SGPLS es-
timator and the oracle estimator based on the 200 replications. The results for a randomly
selected element are summarized in Figure 7. Figure 7 also includes the asymptotic standard
deviation for each estimator. Compared to the standard logistic regression estimator, the E-
SGPLS estimator achieves substantial efficiency gains. The ratio of the asymptotic standard
deviation of the standard logistic regression estimator versus the E-SGPLS estimator is 4.77.
The difference between the E-SGPLS estimator and the oracle estimator becomes hard to
notice after sample size 200, which confirms the oracle property stated in Theorem 6.

We studied the selection performance of the E-SGPLS estimator using TPR, TNR and
accuracy as the criteria, which are defined in Section 3.3. We also computed these criteria
for the SGPLS estimator (Chung and Keleş (2010)) as a benchmark for comparison. The
results are summarized in Table 5. The accuracy of the E-SGPLS estimator tends to 1 as n

increases, which confirms the selection consistency stated in Theorem 6. Compared to the
SGPLS estimator, the E-SGPLS estimator has a better selection performance under all three
criteria.

We also compared the classification performance between the E-SGPLS estimator and the
SGPLS estimator in the context of logistic regression. We generated data from model (15),
and set n = 100, p = 20, pA = 4 and d = 2. The intercept α was 0.5, μX = 0 and η =
(3

√
2,3

√
2)T . The two columns of �A were (1/

√
2,1/

√
2,0,0)T and (0,0,1/

√
2,1/

√
2)T .

The matrix � was diagonal with diagonal elements 0.1 and 0.5, and �0 was a block diag-
onal matrix with the upper left block 9IpA−d and lower right block 4IpI . For each d , we
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FIG. 7. Standard deviations of three estimators: Line — marks the E-SGPLS estimator, line – – marks the
oracle estimator and line · · · marks the standard logistic regression estimator. The horizontal lines mark the
asymptotic standard deviation of the corresponding estimators (the lines for the E-SGPLS and oracle estimators
are identical).

computed the mean misclassification rate by the average of 50 independent five-fold cross
validation. The results are summarized in Figure 8. The minimal mean misclassification rate
is 29.84% for the SGPLS estimator, and it is achieved at d = 4. The minimal mean misclas-
sification rate is 24.40% for the E-SGPLS estimator, and it is achieved at d = 2. Compared
to the SGPLS estimator, the E-SGPLS estimator reduces the mean misclassification rate by
18.23%. Furthermore, it achieves this smaller misclassification rate with a smaller number of
components. The mean misclassification rate for the standard logistic regression estimator is
30.66%.

A simulation that demonstrates the performance of E-SGPLS estimator with a noncanoni-
cal link is included in the Supplementary Material.

Vertebral column data. The vertebral column data, publicly available on the UC Irvine
Machine Learning Repository (Lichman (2013)), contains measurements for 310 orthopaedic
patients. For each patient, six biomechanical features including pelvic incidence, pelvic
tilt, lumbar lordosis angle, sacral slope, pelvic radius and grade of spondylolisthesis were
recorded. These features were used to classify the patients into two categories: normal or ab-
normal (disc hernia or spondylolisthesis). These data were analyzed by a logistic model tree,
which combines the techniques of a decision tree and logistic linear regression, in Karabulut
and Ibrikci (2014). We performed the classification based on the E-SGPLS estimator and

TABLE 5
Comparison of selection performances of the E-SGPLS estimator and the SGPLS estimator

E-SGPLS SGPLS

n TPR TNR Accuracy TPR TNR Accuracy

100 88.90% 96.10% 62.50% 65.40% 86.40% 4.00%
200 97.60% 99.50% 93.50% 68.70% 89.50% 8.50%
300 99.80% 100.00% 99.50% 71.10% 92.20% 16.00%
400 99.60% 100.00% 99.00% 74.30% 90.50% 14.50%
500 100.00% 100.00% 100.00% 77.70% 93.10% 26.50%
1000 100.00% 100.00% 100.00% 79.10% 93.70% 30.00%
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FIG. 8. Comparison of the mean misclassification rate: Line — marks the E-SGPLS estimator, line −− marks
the SGPLS estimator.

the SGPLS estimator, and computed the mean misclassification rate from 50 independent
five-fold cross validation for each d . The results are displayed in Figure 9. The mean mis-
classification rate of the standard logistic regression estimator is 15.52%. The minimal mean
misclassification rate is 15.81% achieved at d = 3 for the SGPLS estimator, and 14.44%
achieved at d = 2 for the E-SGPLS estimator. The SGPLS estimator identifies lumbar lor-
dosis angle, sacral slope and grade of spondylolisthesis as inactive predictors, and E-SGPLS
identifies only one inactive predictor, lumbar lordosis angle. Comparing the misclassification
rate, the SGPLS has no advantage over the standard logistic regression estimator, maybe be-
cause the model it selected is overly sparse. Theorem 6 indicates that the E-SGPLS estimator
is selection consistent. In this example, it reduces the mean misclassification rate by 7.1%
compared to the standard logistic regression estimator.

Horseshoe crab mating data. This data is presented in Agresti (2013) to illustrate Poisson
regression. Horseshoe crabs are marine arthropods that live in shallow ocean waters. During
the breeding season, the female crabs come to the shore with a male attached to her back.
Often, there are multiple male crabs that cluster around the couple and fertilize the eggs.
Those male crabs are called satellites. The number of satellites depends on the characteristics

FIG. 9. Comparison of the mean misclassification rate: Line — marks E-SGPLS estimator, line −− marks the
SGPLS estimator.
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TABLE 6
MPE of the E-SGPLS estimators

d 1 2 3 4 5 6 7

E-SGPLS 9.07 9.37 9.97 10.17 10.18 10.18 10.17

of the female crab. This data set includes measurements on color, spine condition, weight
and carapace width and the number of satellites for 173 female crabs in the Gulf of Mexico.
We take the number of satellites as the response and other variables as predictors. Color
and spice conditions are categorical variables, and have four levels (light medium, medium,
dark medium, dark) and three levels (both good, one worn or broken, both worn or broken),
respectively. Since we did not find any sparse PLS method in this context, we compared the
E-SGPLS estimator with the standard Poisson regression estimator. The MPE for each d was
calculated by 50 five-fold cross validations. Note that when d = 7, the E-SGPLS estimator
reduces to the standard Poisson regression estimator. The results are summarized in Table 6.
The minimum MPE for the E-SGPLS estimator is 9.07 achieved at d = 1. Compared with the
standard Poisson regression estimator, the E-SGPLS estimator reduces the MPE by 10.82%.
The weight and carapace width of the female crab are identified as active predictors, while
the standard Poisson regression model gives large coefficients on the color of the female crab
and much smaller coefficients on the weight (cf. Table 7).

5. Discussion. In this paper, we developed the envelope-based sparse PLS model under
the linear model and generalized linear model. The techniques in this paper can be applied
to other contexts where PLS is relevant, for example, tensor regression and discriminant
analysis. A Bayesian version of this method is desirable if prior information is present. The
same idea and techniques can be generalized to semiparametric settings, such as quantile
regression and expectile regression.

Acknowledgments. We are grateful to the Editor, Associate Editor and two referees for
comments that helped us greatly improve the paper.

The first author was supported by a Fellowship from the Graduate School at the University
of Florida.

The second author was supported by NSF Grant DMS-1407460.

SUPPLEMENTARY MATERIAL

Supplemental document for “Envelope-based sparse partial least squares” (DOI:
10.1214/18-AOS1796SUPP; .pdf). The supplement provides details of estimation algorithm,
additional simulations and proofs for the theoretical results in the authors’ paper.

TABLE 7
Regression coefficients of the E-SGPLS model and standard Poisson regression model

Color 1 Color 2 Color 3 Spine 1 Spine 2 Weight Width

E-SGPLS 0 0 0 0 0 0.1555 0.0387
Poisson −0.2649 −0.5137 −0.5309 −0.1504 0.0873 0.0167 0.4965

https://doi.org/10.1214/18-AOS1796SUPP


ENVELOPE-BASED SPLS 181

REFERENCES

AGRESTI, A. (2013). Categorical Data Analysis, 3rd ed. Wiley Series in Probability and Statistics. Wiley Inter-
science, Hoboken, NJ. MR3087436

CHEN, L. and HUANG, J. Z. (2012). Sparse reduced-rank regression for simultaneous dimension reduction and
variable selection. J. Amer. Statist. Assoc. 107 1533–1545. MR3036414 https://doi.org/10.1080/01621459.
2012.734178

CHEN, X., ZOU, C. and COOK, R. D. (2010). Coordinate-independent sparse sufficient dimension reduction and
variable selection. Ann. Statist. 38 3696–3723. MR2766865 https://doi.org/10.1214/10-AOS826
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