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In sequential causal inference, two types of causal effects are of practical
interest, namely, the causal effect of the treatment regime (called the sequen-
tial causal effect) and the blip effect of treatment on the potential outcome
after the last treatment. The well-known G-formula expresses these causal
effects in terms of the standard parameters. In this article, we obtain a new
G-formula that expresses these causal effects in terms of the point observable
effects of treatments similar to treatment in the framework of single-point
causal inference. Based on the new G-formula, we estimate these causal ef-
fects by maximum likelihood via point observable effects with methods ex-
tended from single-point causal inference. We are able to increase precision
of the estimation without introducing biases by an unsaturated model impos-
ing constraints on the point observable effects. We are also able to reduce the
number of point observable effects in the estimation by treatment assignment
conditions.

1. Introduction. In many economic and medical practices, treatments are assigned or
observed in the form of a sequence to influence an observable outcome of interest, which
occurs after the last treatment of the sequence in a certain population. In addition to station-
ary observable covariates, there may often be time-dependent observable covariates between
treatments. From the observed data, the following causal effects of practical interest can be
estimated: the sequential causal effect and the blip effect of treatment. The sequential causal
effect is the causal effect of the treatment regime on the potential outcome, and the blip effect
is the causal effect of one treatment on the potential outcome given the history of previ-
ous treatments and potential covariates while setting the subsequent treatments at controls
(Robins [5])

Under the identifying condition, Robins [4, 5, 7] derived the well-known G-formula,
which expresses the sequential causal effect and the blip effect in terms of the standard param-
eters, that is, the conditional means of the observable outcome given all treatments and ob-
servable covariates. In the expression for the standard parameters, the treatment involves not
only the history of previous treatments and observable covariates as possible confounders but
also the subsequent treatments and observable covariates as posttreatment variables; there-
fore, the standard parameters are essentially all different and are all needed in the G-formula
(see the literature on the influence of the posttreatment variables, e.g., Robins [5]). Conse-
quently, based on the G-formula, the maximum-likelihood (ML) estimation of these causal
effects via standard parameters suffers from the curse of dimensionality and the null paradox
(Robins [4, 5, 7]). The curse of dimensionality implies that if a treatment sequence is long
and/or the number of observable covariates is large, a huge number of standard parameters
are needed in the ML estimation. The null paradox implies that an unsaturated model impos-
ing equalities between standard parameters is misspecified. As a result, it is highly difficult to
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improve the estimation in the usual framework of likelihood inference, where precision of the
estimation is increased by an unsaturated model and the number of model parameters is re-
duced in the estimation by treatment assignment conditions. Without a constraint on standard
parameters, the ML estimates may not be consistent if treatment sequences are long and/or
the number of observable covariates is large.

If the treatment sequence is short and the observable covariates are few, noticeably, the
aforementioned likelihood-based parametric method can be used to estimate the sequential
causal effect and the blip effect, although such methods are still subject to the null paradox
(Taubman et al. [11]). For more complicated cases, semiparametric methods are instead used,
such as the marginal structural model based on inverse probability weighting (Robins [6, 7])
and the G-estimation based on the structural nested mean model (Robins [5, 7]) and their
extensions, which are not based on the usual likelihood of the observed data, and thus yield
nonlikelihood-based estimates of these causal effects. Although these nonlikelihood-based
estimates are consistent, the likelihood-based estimates remain attractive because they reflect
the data-generating mechanism and are the most efficient.

In the framework of single-point causal inference (Rosenbaum and Rubin [8]), every treat-
ment in the treatment sequence has the point causal effect of treatment, which is defined as
the causal effect of the treatment on the final potential outcome given a history of previous
treatments and potential covariates. Under the assumption of strongly ignorable treatment as-
signments, namely, the identifying condition, the point causal effect of treatment is equal to
the point observable effect of treatment, which is defined as the effect of the treatment on the
observable outcome only given a history of previous treatments and observable covariates. In
the expression for the point observable effects, the treatment involves only a history of the
previous treatments and observable covariates as possible confounders but does not involve
the subsequent treatments and observable covariates, unlike the treatment in the expression
for the standard parameters. As a result, the point observable effect can be estimated by
ML without knowing the influences of the subsequent treatments and observable covariates.
Furthermore, the number of point observable effects can be reduced in the ML estimation
by treatment assignment conditions, such as the randomization in randomized trials or the
subclassification in observational studies (Rosenbaum and Rubin [8]). The precision of the
estimation can also be improved by an unsaturated model imposing constraints on the point
observable effects. As a result, the ML estimate of the point observable effect can remain
consistent even for a long treatment sequence and/or many observable covariates.

In an attempt to extend the methodology from single-point causal inference to sequential
causal inference, we derive the new G-formula, which expresses the sequential causal effect
and the blip effect in terms of the point observable effects instead of the standard parameters.
In Section 2, we express the sequential causal effect, the blip effect and the point causal
effect in terms of potential covariates and outcome. In Section 3, we derive the relationship
between these three causal effects. In Section 4, we use the obtained relationship to derive the
new G-formula under the identifying condition. In Section 5, we apply the new G-formula
to estimate the sequential causal effect and the blip effect via the point observable effects by
ML and compare our method with other methods in the literature. In Section 6, we conclude
the article with discussions on further applications of the new G-formula.

2. Causal effects arising from treatment regimes.

2.1. Notation for the treatment regime, potential covariates and potential outcome. Let
Gt be the treatment variable representing a certain rule under which treatments zt could
potentially be assigned at time t = 1, . . . , T . Suppose that every treatment could be applied
to each unit of the population. Assume that there is no interference between units and no
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representative treatment for any unit. For notational simplicity, we use one subpopulation
defined by stationary covariates of the population as our population, and henceforth do not
consider stationary covariates in the following development.

A treatment regime is a sequence of such treatment variables under which treatments
zt could potentially and consecutively be assigned at times t = 1, . . . , T , and it is denoted
by GT

1 = (G1, . . . ,GT ). A subregime from time t to s is denoted by Gs
t = (Gt , . . . ,Gs).

Under regime GT
1 , each unit could have a potential (time-dependent) covariate vector

Xt−1(G
t−1
1 ) between Gt−1 and Gt (t > 1) and a potential outcome Y(GT

1 ) of interest af-
ter the last treatment variable GT . Let Xt−1

1 (Gt−1
1 ) = {X1(G1),X2(G2

1), . . . ,Xt−1(G
t−1
1 )} be

an array of the potential covariates before Gt . Then the set {GT
1 ,XT −1

1 (GT −1
1 ), Y (GT

1 )} =
{G1,X1(G1), . . . ,GT −1,XT −1(G

T −1
1 ),GT ,Y (GT

1 )} represents a summary of all treat-
ment and potential variables in the temporal order. These variables have the realizations
(zT

1 ,xT −1
1 , y) = (z1,x1, . . . , zT −1,xT −1, zT , y).

Under random regime GT
1 = RT

1 , treatment zt is randomly assigned according to the con-
ditional distribution PRt

1{zt | zt−1
1 ,xt−1

1 } of the random treatment variable Rt given the history
(zt−1

1 ,xt−1
1 ). Let PR1(z1) = PR1(z1 | z1−1

1 ,x1−1
1 ) at t = 1. Throughout, we use P(·) to denote

the probability distribution of discrete potential variables or the density distribution of con-
tinuous potential variables and a superscript on P(·) to indicate the regime under which these
variables are generated.

Under deterministic regime GT
1 = DT

1 , treatment zt is deterministically assigned according
to the history (zt−1

1 ,xt−1
1 ), that is, PDt

1{zt | zt−1
1 ,xt−1

1 } = 1 if zt = z(zt−1
1 ,xt−1

1 ) and zero
otherwise. If each zt does not depend on (zt−1

1 ,xt−1
1 ), then DT

1 is a static regime; otherwise,
it is a dynamic regime. Noticeably, treatment zt in a dynamic regime often depends only
on part of (zt−1

1 ,xt−1
1 ). For mixed regimes, the treatments can be assigned deterministically

or randomly; for instance, GT
1 = (D1,RT

2 ), where the first treatment z1 is deterministically
assigned and the subsequent treatments zT

2 are randomly assigned.
Under regime GT

1 , the treatment and potential variables {GT
1 , XT −1

1 (GT −1
1 ), Y(GT

1 )} fol-
low the stochastic process described by

PGT
1
(
zT

1 ,xT −1
1 , y

) = PG1(z1)P
G1(x1 | z1) · · ·PGT

1
(
zT | zT −1

1 , zT −1
1

)
× PGT

1
(
y | zT

1 , zT −1
1

)
.

For deterministic treatment variable Gt = Dt , we still keep zt in the distribution despite a
slight abuse of notation. From this formula, we have the following remark, which will be
applied throughout the article.

REMARK. Under subregime GT
t given the same (zt−1

1 ,xt−1
1 ) of different Gt−1

1 , the

conditional distributions PGT
1 (zT

t ,xT −1
t , y | zt−1

1 ,xt−1
1 ) are identical; therefore we will not

specify subregime Gt−1
1 for (zt−1

1 ,xt−1
1 ) in the distribution, and hence denote the dis-

tributions by PGT
t (zT

t ,xT −1
t , y | zt−1

1 ,xt−1
1 ). Specifically, we use PGT

t (y | zt−1
1 ,xt−1

1 ) and
PGs

t (zs−1
t ,xs−1

t , zs | zt−1
1 ,xt−1

1 ).

2.2. Sequential causal effects, blip effects and point causal effects. In this article, we
study additive causal effects, although we believe that our method can be extended to nonad-
ditive causal effects. Consider the mean E{Y(GT

1 )} with respect to the distribution PGT
1 (y) of

the potential outcome Y(GT
1 ). The sequential causal effect of deterministic regimes GT

1 = AT
1

relative to GT
1 = BT

1 is according to Robins [4, 5, 7]

(1) sce
(
AT

1 ;BT
1

) = E
{
Y

(
AT

1
)} − E

{
Y

(
BT

1
)}

.
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We can extend the sequential causal effect from deterministic regimes to random regimes but
refrain from doing so for the sake of notational simplicity.

Consider the conditional mean E{Y(GT
t ) | zt−1

1 ,xt−1
1 } with respect to the conditional dis-

tribution PGT
t (y | zt−1

1 ,xt−1
1 ) of Y(GT

t ) given the history (zt−1
1 ,xt−1

1 ). Without a loss of gen-
erality, we take zt = 0 as the control treatment and zt > 0 as the active treatment. For two
static subregimes, GT

t = (Dt = zt ,DT
t+1 = 0) and GT

t = (Dt = 0,DT
t+1 = 0) given the history

(zt−1
1 , xt−1

1 ), the blip effect of treatment zt > 0 is according to Robins [4, 5, 7]

φ
(
zt−1

1 ,xt−1
1 ; zt

)
= E

{
Y

(
Dt = zt ,DT

t+1 = 0
) | zt−1

1 ,xt−1
1

}
− E

{
Y

(
Dt = 0,DT

t+1 = 0
) | zt−1

1 ,xt−1
1

}
,(2)

which at t = 1 is φ(z1) = E{Y(D1 = z1,DT
2 = 0)} − E{Y(DT

1 = 0)}.
For two mixed regimes, GT

t = (Dt = zt ,RT
t+1) and GT

t = (Dt = 0,RT
t+1) given (zt−1

1 ,

xt−1
1 ) where RT

t+1 is dependent on Dt and thus may be different in the two regimes, the point
causal effect of treatment zt > 0 is

θ
(
zt−1

1 ,xt−1
1 ; zt

)
= E

{
Y

(
Dt = zt ,RT

t+1
) | zt−1

1 ,xt−1
1

} − E
{
Y

(
Dt = 0,RT

t+1
) | zt−1

1 ,xt−1
1

}
,(3)

which at t = 1 is θ(z1) = E{Y(D1 = z1,RT
2 )} − E{Y(D1 = 0,RT

2 )}.
3. Relationship between causal effects. In the Appendix, we prove the following.

LEMMA 1. The conditional mean of the potential outcome Y(GT
t ) given the history

(zt−1
1 ,xt−1

1 ) satisfies

E
{
Y

(
GT

t

) | zt−1
1 ,xt−1

1

}
= E

{
Y

(
DT

t = 0
) | zt−1

1 ,xt−1
1

} +
T∑

s=t

E
{
φ

(
zs−1
t ,xs−1

t ; zs

) | zt−1
1 ,xt−1

1

}
,(4)

where the expectation in the summation is with respect to PGs
t (zs−1

t ,xs−1
t , zs | zt−1

1 ,xt−1
1 )

and φ(zs−1
t ,xs−1

t ; zs) is a shorthand for φ(zs−1
1 ,xs−1

1 ; zs) in the context of the conditional
expectation. We will use the shorthand throughout the article.

When t = 1, formula (4) becomes

E
{
Y

(
GT

1
)} = E

{
Y

(
DT

1 = 0
)} +

T∑
s=1

E
{
φ

(
zs−1

1 ,xs−1
1 ; zs

)}
.

Applying this expression to the deterministic regimes GT
1 = AT

1 and GT
1 = BT

1 and inserting
the obtained equalities into formula (1), we obtain the following.

PROPOSITION 1. In terms of the blip effects of treatments, the sequential causal effect is
expressed by

(5) sce
(
AT

1 ;BT
1

) =
T∑

s=1

E1
{
φ

(
zs−1

1 ,xs−1
1 ; zs

)} −
T∑

s=1

E2
{
φ

(
zs−1

1 ,xs−1
1 ; zs

)}
,

where E1(·) is an expectation with respect to PAs
1(zs−1

1 ,xs−1
1 , zs) and E2(·) to PBs

1(zs−1
1 ,xs−1

1 ,

zs).
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By applying formula (4) to mixed subregimes GT
t = (Dt = zt ,RT

t+1) and GT
t = (Dt =

0,RT
t+1) given the history (zt−1

1 ,xt−1
1 ), inserting the obtained equalities into (3) and using

the equality φ(zt−1
1 ,xt−1

1 ; zt = 0) = 0, we obtain the following.

PROPOSITION 2. In terms of the blip effects of treatments, the point causal effect is
expressed by

θ
(
zt−1

1 ,xt−1
1 ; zt

) = φ
(
zt−1

1 ,xt−1
1 ; zt

)
+

T∑
s=t+1

E1
{
φ

(
zs−1
t ,xs−1

t ; zs

) | zt−1
1 ,xt−1

1

}

−
T∑

s=t+1

E2
{
φ

(
zs−1
t ,xs−1

t ; zs

) | zt−1
1 ,xt−1

1

}
,(6)

where E1(·) is an expectation with respect to PGs
t (zs−1

t ,xs−1
t , zs | zt−1

1 ,xt−1
1 ) for GT

t = (Dt =
zt ,RT

t+1) and E2(·) for GT
t = (Dt = 0,RT

t+1).

In the Appendix, we also prove the following.

LEMMA 2. For deterministic subregime DT
t and mixed subregime (Dt ,RT

t+1) given the

history (zt−1
1 ,xt−1

1 ), the conditional mean of the potential outcome Y(DT
t ) given (zt−1

1 ,xt−1
1 )

satisfies

E
{
Y

(
DT

t

) | zt−1
1 ,xt−1

1

} = E
{
Y

(
Dt = 0,RT

t+1
) | zt−1

1 ,xt−1
1

} + θ
(
zt−1

1 ,xt−1
1 ; zt

)
+

T∑
s=t+1

E1
{
θ
(
zs−1
t ,xs−1

t ; zs

) | zt−1
1 ,xt−1

1

}

−
T∑

s=t+1

E2
{
θ
(
zs−1
t ,xs−1

t ; zs

) | zt−1
1 ,xt−1

1

}
,(7)

where E1(·) is an expectation with respect to PGs
t (zs−1

t ,xs−1
t , zs | zt−1

1 ,xt−1
1 ) for Gs

t = Ds
t and

E2(·) for Gs
t = (Ds−1

t ,Rs); noticeably, θ(zs−1
t ,xs−1

t ; zs) is a shorthand for θ(zs−1
1 ,xs−1

1 ; zs)

in the context of the conditional expectation like φ(zs−1
t ,xs−1

t ; zs) in Lemma 1.

When t = 1, formula (7) becomes

E
{
Y

(
DT

1
)} = E

{
Y

(
D1 = 0,RT

2
)} + θ(z1)

+
T∑

s=2

E1
{
θ
(
zs−1

1 ,xs−1
1 ; zs

)} −
T∑

s=2

E2
{
θ
(
zs−1

1 ,xs−1
1 ; zs

)}
.

Applying this expression to deterministic regimes DT
1 = AT

1 and DT
1 = BT

1 and then inserting
the obtained equalities into formula (1), we obtain the following.

PROPOSITION 3. Let a1 be the treatment assigned by A1 and b1 by B1. Then in terms of
the point causal effects of treatments, the sequential causal effect is expressed by

sce
(
AT

1 ;BT
1

) = θ(a1) − θ(b1)
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+
T∑

s=2

E1
{
θ
(
zs−1

1 ,xs−1
1 ; zs

)} −
T∑

s=2

E2
{
θ
(
zs−1

1 ,xs−1
1 ; zs

)}

−
T∑

s=2

E3
{
θ
(
zs−1

1 ,xs−1
1 ; zs

)} +
T∑

s=2

E4
{
θ
(
zs−1

1 ,xs−1
1 ; zs

)}
,(8)

where E1(·) is an expectation with respect to PGs
1(zs−1

1 ,xs−1
1 , zs) for Gs

1 = As
1, E2(·) for

Gs
1 = (As−1

1 ,Rs), E3(·) for Gs
1 = Bs

1 and E4(·) for Gs
1 = (Bs−1

1 ,Rs).

Applying formula (7) to static subregimes DT
t = (Dt = zt ,DT

t+1 = 0) and DT
t = (Dt =

0,DT
t+1 = 0) given the history (zt−1

1 ,xt−1
1 ), inserting the obtained equalities into formula (2)

and using the equality θ(zs−1
1 ,xs−1

1 ; zs = 0) = 0, we obtain the following.

PROPOSITION 4. In terms of the point causal effects, the blip effect is expressed by

φ
(
zt−1

1 ,xt−1
1 ; zt

) = θ
(
zt−1

1 ,xt−1
1 ; zt

)
−

T∑
s=t+1

E1
{
θ
(
zs−1
t ,xs−1

t ; zs

) | zt−1
1 ,xt−1

1

}

+
T∑

s=t+1

E2
{
θ
(
zs−1
t ,xs−1

t ; zs

) | zt−1
1 ,xt−1

1

}
,(9)

where E1(·) is an expectation with respect to PGs
t (zs−1

t ,xs−1
t , zs | zt−1

1 ,xt−1
1 ) for Gs

t = (Dt =
zt ,Ds−1

t+1 = 0,Rs) and E2(·) for Gs
t = (Ds−1

t = 0,Rs).

From Propositions 1 to 4, the following statements can be made. First, according to Propo-
sitions 2 and 4, the blip effects of treatments are one-to-one linear transformations of the
point causal effects of treatments. Second, according to Propositions 1 and 3, all sequential
causal effects can be expressed in terms of the blip effects or the point causal effects. Finally,
according to Propositions 1–4, these relationships between causal effects do not involve the
effects of potential covariates, which describe how the potential outcome changes with the
potential covariates. As a result of these statements, we only need to estimate the point causal
effect to estimate the sequential causal effect and the blip effect.

In the next section, we will use Propositions 1–4 to derive the new G-formula, which
expresses the sequential causal effect and the blip effect in terms of the point observable
effects.

4. New G-formula for causal effects.

4.1. Identifying condition. When treatments are consecutively and randomly assigned/
observed, the potential covariates and then the potential outcome are consecutively and ran-
domly observed, typically from sequential randomized experiments or observational stud-
ies. The observable treatments, covariates and outcome are denoted by (ZT

1 ,XT −1
1 , Y ).

Their realizations are the observed values (zT
1 ,xT −1

1 , y). The distribution of the observable
(ZT

1 ,XT −1
1 , Y ) is denoted by PO(zT

1 ,xT −1
1 , y), where the superscript O indicates that these

variables are observable. The standard parameter for the conditional distribution PO(y |
zT

1 ,xT −1
1 ) of Y given (zT

1 ,xT −1
1 ) is the conditional mean μ(zT

1 ,xT −1
1 ) = E(Y | zT

1 ,xT −1
1 ).

In sequential causal inference, we need to link the observable covariates and outcome
(XT −1

1 , Y ) under the observable treatments ZT
1 to the potential covariates and outcome
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{XT −1
1 (GT −1

1 ), y(GT
1 )} under regime GT

1 , which can be random or deterministic or mixed;
see Section 2.1 for the notation of these potential variables. To this end, Robins [4, 5, 7]
introduced the following.

THE IDENTIFYING CONDITION. (1) The consistency assumption: if the observed treat-
ments zT

1 are equal to realization of regime GT
1 , then the observed covariates xT −1

1 are equal
to realization of the potential covariates XT −1

1 (GT −1
1 ), and the observed outcome y is equal

to realization of the potential outcome Y(GT
1 ). (2) The assumption of no unmeasured con-

founders: given the observed history (zt−1
1 ,xt−1

1 ), treatment Zt satisfies

XT −1
t

(
GT −1

t

)
, Y

(
GT

t

)⊥Zt | zt−1
1 ,xt−1

1

for a deterministic or random or mixed regime GT
t given the observed (zt−1

1 ,xt−1
1 ), where

A⊥B | C means that A is conditionally independent of B given C. (3) The positivity assump-
tion: if PO(zt−1

1 ,xt−1
1 ) > 0, then PO(zt | zt−1

1 ,xt−1
1 ) > 0.

Under the identifying condition, a random regime GT
1 = RT

1 can be identified by

PRT
1
(
zT

1 ,xT −1
1 , y

) = PO(
zT

1 ,xT −1
1 , y

)
.

One can also use PO(zT
t ,xT −1

t , y | zt−1
1 ,xt−1

1 ) to identify PGT
t (zT

t ,xT −1
t , y | zt−1

1 ,xt−1
1 ),

where GT
t is deterministic or mixed. Here, we present the following three well-known formu-

las (10a)–(10c), which will be used to derive the new G-formula (e.g., see Robins [5] for the
proofs of these formulas). In Supplement I of Supplementary Material [13], we also sketch
the proofs. For mixed subregime Gs

t = (Ds−1
t ,Rs) given the history (zt−1

1 ,xt−1
1 ), we have

(10a) PGs
t
(
zs−1
t ,xs−1

t , zs | zt−1
1 ,xt−1

1

) = PO(
zs | zs−1

1 ,xs−1
1

) s−1∏
k=t

PO(
xk | zk

1,xk−1
1

)
.

For mixed subregime Gs
t = (Dt ,Rs

t+1) given (zt−1
1 ,xt−1

1 ), we have

(10b) PGs
t
(
zs−1
t ,xs−1

t , zs | zt−1
1 ,xt−1

1

) = PO(
zs−1
t+1 ,xs−1

t , zs | zt
1,xt−1

1

)
.

For deterministic regime Gs
t = Ds

t given (zt−1
1 ,xt−1

1 ), we have

(10c) PGs
t
(
zs−1
t ,xs−1

t , zs | zt−1
1 ,xt−1

1

) =
s−1∏
k=t

PO(
xk | zk

1,xk−1
1

)
.

4.2. Well-known G-formula. Under the identifying condition, Robins [4, 5, 7] derived
the following G-formula (11) or (12), which expresses the sequential causal effect or the blip
effect in terms of the standard parameters. Let aT

1 be the treatments assigned by deterministic
regime AT

1 and bT
1 by BT

1 . The G-formula for the sequential causal effect is then

(11) sce
(
AT

1 ;BT
1

) = E1
{
μ

(
aT

1 ,xT −1
1

)} − E2
{
μ

(
bT

1 ,xT −1
1

)}
,

where E1(·) is an expectation with respect to
∏T −1

t=1 PO(xt | zt
1,xt−1

1 ) for zT −1
1 = aT −1

1 and
E2(·) for zT −1

1 = bT −1
1 . The G-formula for the blip effect is

φ
(
zt−1

1 ,xt−1
1 ; zt

)
= E1

{
μ

(
zt

1, zT
t+1 = 0,xT −1

1

) | zt−1
1 ,xt−1

1

}
− E2

{
μ

(
zt−1

1 , zT
t = 0,xT −1

1

) | zt−1
1 ,xt−1

1

}
,(12)
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where E1(·) is an expectation with respect to
∏T −1

s=t PO(xs | zt−1
1 ,xt−1

1 , zs
t ,xs−1

t ) for zT −1
t =

(zt , zT −1
t+1 = 0) and E2(·) for zT −1

t = 0. The explicit expression of the G-formula (11) or (12)
in the form of summation or integration of the standard parameters is highly complex and
difficult to use to estimate the blip and sequential causal effects, which is well known in the
literature (Robins [4, 5, 7]) and discussed in the Introduction of this article.

4.3. New G-formula. Let μ(zt−1
1 ,xt−1

1 , zt ) = E(Y | zt−1
1 ,xt−1

1 , zt ) (1 ≤ t ≤ T ), where
the expectation is with respect to the conditional distribution PO(y | zt−1

1 ,xt−1
1 , zt ) given

(zt−1
1 ,xt−1

1 , zt ). At t = T , it is simply the standard parameter μ(zT −1
1 ,xT −1

1 , zT ) = μ(zT
1 ,

xT −1
1 ). As well known in single-point causal inference (e.g., Rosenbaum and Rubin [8]), the

point observable effect of treatment zt > 0 is

(13) ϑ
(
zt−1

1 ,xt−1
1 ; zt

) = μ
(
zt−1

1 ,xt−1
1 , zt

) − μ
(
zt−1

1 ,xt−1
1 , zt = 0

)
.

The subsequent treatments and covariates (zT
t+1,xT −1

t ) after zt do not appear in this expres-

sion; therefore, we can estimate ϑ(zt−1
1 ,xt−1

1 ; zt ) without knowing influences of these vari-
ables. Under the identifying condition, the point causal effect is equal to the point observable
effect, that is,

(14) θ
(
zt−1

1 ,xt−1
1 ; zt

) = ϑ
(
zt−1

1 ,xt−1
1 ; zt

)
.

Formula (14) can be considered the new G-formula for the point causal effect.
The new G-formula for the blip and sequential causal effects is given by

THEOREM 1. Under the identifying condition, the blip effect can be expressed in terms
of the point observable effects by

φ
(
zt−1

1 ,xt−1
1 ; zt

) = ϑ
(
zt−1

1 ,xt−1
1 ; zt

)
−

T∑
s=t+1

E1
{
ϑ

(
zs−1
t+1 = 0,xs−1

t ; zs

) | zt−1
1 ,xt−1

1 , zt

}

+
T∑

s=t+1

E2
{
ϑ

(
zs−1
t+1 = 0,xs−1

t ; zs

) | zt−1
1 ,xt−1

1 , zt = 0
}
,(15)

where E1(·) is an expectation with respect to PO(zs | zs−1
1 ,xs−1

1 )
∏s−1

k=t PO(xk | zk
1,xk−1

1 ) for
zs−1
t = (zt , zs−1

t+1 = 0) and E2(·) for zs−1
t = 0. The sequential causal effect is expressed in

terms of the point observable effects by

sce
(
AT

1 ;BT
1

) = ϑ(a1) − ϑ(b1)

+
T∑

s=2

E1
{
ϑ

(
as−1

1 ,xs−1
1 ;as

)} −
T∑

s=2

E2
{
ϑ

(
as−1

1 ,xs−1
1 ; zs

)}

−
T∑

s=2

E3
{
ϑ

(
bs−1

1 ,xs−1
1 ;bs

)} +
T∑

s=2

E4
{
ϑ

(
bs−1

1 ,xs−1
1 ; zs

)}
.(16)

Here, E1(·) is an expectation with respect to
∏s−1

k=1 PO(xk | zk
1,xk−1

1 ) for zs−1
1 = as−1

1
and E3(·) for zs−1

1 = bs−1
1 . In addition, E2(·) is an expectation with respect to PO(zs |

zs−1
1 ,xs−1

1 )
∏s−1

k=1 PO(xk | zk
1,xk−1

1 ) for zs−1
1 = as−1

1 and E4(·) for zs−1
1 = bs−1

1 .
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PROOF. According to (10a) and (14), we have that the expectation

E
{
θ
(
zs−1
t ,xs−1

t ; zs

) | zt−1
1 ,xt−1

1

}
with respect to PGs

t (zs−1
t ,xs−1

t , zs | zt−1
1 ,xt−1

1 ) for Gs
t = (Ds−1

t ,Rs} is equal to

E
{
ϑ

(
zs−1
t+1 ,xs−1

t ; zs

) | zt−1
1 ,xt−1

1 , zt

}
with respect to PO(zs | zs−1

1 ,xs−1
1 )

∏s−1
k=t PO(xk | zk

1,xk−1
1 ). Applying this equality to E1(·)

and E2(·) in (9) and using (14), we obtain (15). Similarly, we prove formula (16) by applying
(10a) and (10c) with t = 1 and (14) to (8). �

The converse form of (15) and an alternative form of (16) will be used in the next section
and are given by

THEOREM 2. Under the identifying condition, the point observable effect is expressed in
terms of the blip effects by

ϑ
(
zt−1

1 ,xt−1
1 ; zt

) = φ
(
zt−1

1 ,xt−1
1 ; zt

)
+

T∑
s=t+1

E1
{
φ

(
zs−1
t+1 ,xs−1

t ; zs

) | zt−1
1 ,xt−1

1 , zt

}

−
T∑

s=t+1

E2
{
φ

(
zs−1
t+1 ,xs−1

t ; zs

) | zt−1
1 ,xt−1

1 , zt = 0
}
,(17)

where the expectation E1(·) is with respect to PO(zs−1
t+1 ,xs−1

t , zs | zt
1,xt−1

1 ) and E2(·) to

PO(zs−1
t+1 ,xs−1

t , zs | zt−1
1 ,xt−1

1 , zt = 0). The sequential causal effect is expressed in terms of
the blip effects by

sce
(
AT

1 ;BT
1

) = φ(a1) − φ(b1)

+
T∑

s=2

E1
{
φ

(
as−1

1 ,xs−1
1 ;as

)} −
T∑

s=2

E2
{
φ

(
bs−1

1 ,xs−1
1 ;bs

)}
,(18)

where E1(·) is an expectation with respect to
∏s−1

k=1 PO(xk | zk
1,xk−1

1 ) for zs−1
1 = as−1

1 and
E2(·) for zs−1

1 = bs−1
1 . Formula (17)/(18) implies that the point observable effect/the sequen-

tial causal effect can be decomposed into the blip effects at times s = t, . . . , T / s = 1, . . . , T .

PROOF. According to (10b), we have that the expectation

E
{
φ

(
zs−1
t ,xs−1

t ; zs

) | zt−1
1 ,xt−1

1

}
with respect to PGs

t (zs−1
t ,xs−1

t , zs | zt−1
1 ,xt−1

1 ) for Gs
t = {Dt,Rs

t+1} is equal to the expecta-
tion

E
{
φ

(
zs−1
t+1 ,xs−1

t ; zs

) | zt−1
1 ,xt−1

1 , zt

}
with respect to PO(zs−1

t+1 ,xs−1
t , zs | zt

1,xt−1
1 ). Applying this equality to E1(·) and E2(·) in (6)

and using (14), we obtain (17). Similarly, we prove formula (18) by applying (10c) with t = 1
and (14) to (5). �

Wang and Yin [12] proved a special case of formulas (15) and (17) based on the condi-
tional probability PO(y | zT

1 ,xT −1
1 ) of Y given (zT

1 ,xT −1
1 ) and under a restrictive condition,

where (ZT
1 ,XT −1

1 ) need to be discrete. Their proof is highly complex and does not reflect the
underlying causal relationship given by formulas (6) and (9).
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5. Applications of the new G-formula.

5.1. Method of estimating the blip and sequential causal effects. Theorems 1 and 2 imply
that we can estimate both the blip and sequential causal effects via the point observable
effects. In the future work, we will study comprehensive applications of Theorems 1 and 2
in sequential causal inference. Here, we apply Theorem 2 to develop a method of estimation
with the following procedure. Suppose a data of observations (zT

i1,xT −1
i1 , yi), i = 1, . . . ,N

from identical and independently distributed random variables (ZT
i1,XT −1

i1 , Yi).
In the first stage, we estimate the point observable effects ϑ(zt−1

1 ,xt−1
1 ; zt ) by ML. We can

apply the assignment conditions of individual treatments to weaken the positivity assumption
in the identifying condition and only need to estimate fewer point observable effects that
correspond to fewer point causal effects (Rosenbaum and Rubin [8]).

In the second stage, we treat (17) of Theorem 2 as a regression model to estimate the blip
effects φ(zt−1

1 ,xt−1
1 ; zt ), where the response variable is the estimate ϑ̂(zt−1

1 ,xt−1
1 ; zt ) and

the explanatory variables are the (observed) proportions that correspond to the probabilities
PO(zs−1

t+1 ,xs−1
t , zs | zt

1,xt−1
1 ). Here, we can apply the structural nested mean model (SNMM),

which characterizes the blip effects by

φ
(
zt−1

1 ,xt−1
1 ; zt

) = f
(
zt−1

1 ,xt−1
1 , zt ;ϕ)

,

where f (·) is a deterministic function of (zt−1
1 ,xt−1

1 , zt ) indexed by a parameter vector ϕ

(Robins [5, 7]). Noticeably, there is no restriction on the form of SNMM. However, the di-
mension of the parametric vector ϕ is smaller than or equal to that of the estimated point
observable effects. SNMM plays two roles in estimating the blip effects. First, SNMM leads
to an unsaturated model for point observable effects. This unsaturated model is not necessar-
ily misspecified and so may improve precision of the estimation without causing bias. Sec-
ond, together with treatment assignment conditions, SNMM also makes it possible to identify
and estimate the blip effects via fewer point observable effects (see Petersen et al. [3] for a
description of the relationship between the positivity assumption and statistical modeling);
therefore, it is possible to avoid the curse of dimensionality in estimating the blip effects.
However, possible misspecification of SNMM may lead to bias in estimating the blip effects.
Possible violation of the identifying condition, in particular, the assumption of no unmea-
sured confounders, may lead to violation of (17), which in turn leads to bias in estimating the
blip effects.

In the third stage, we use the estimates φ̂(zt−1
1 ,xt−1

1 ; zt ) to estimate the sequential causal
effects sce(AT

1 ;BT
1 ) based on (18) of Theorem 2, where the probabilities PO(xk | zk

1,xk−1
1 )

for given zk
1 = ak

1 or bk
1 is estimated by ML. Because the covariates xT −1

1 are of secondary
interest compared to the outcome y, we can estimate these probabilities in a flexible manner,
for instance, via standard parameters.

Unfortunately, the estimation of these probabilities is subject to the curse of dimensional-
ity in the presence of a long treatment sequence and many covariates. Parametric models in
terms of standard parameters are frequently used to alleviate the curse of dimension in esti-
mating these probabilities, although such models are subject to the null paradox and may lead
to biases in estimating these probabilities and thus sce(AT

1 ;BT
1 ). In (18) replacing the proba-

bilities and blip effects by their estimates, we obtain the estimate for sce(AT
1 ;BT

1 ). When the
probabilities and the blip effects have too complex structures to apply (18), it may become
necessary to perform the Monte Carlo simulation to estimate sce(AT

1 ;BT
1 ). Denote the esti-

mates of the probabilities by P̂O(xk | zk
1,xk−1

1 ). Following Robins [7], we have the following
Monte Carlo algorithm:

• Step 1: for each v = (1, . . . , V ), do the following:
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– recursively for k = 1, . . . , T − 1, predict xk according to P̂O(xk | zk
1,xk−1

1 ) for zk
1 = ak

1
or zk

1 = bk
1.

– calculate �̂
AT

1
v = ∑T

s=1 φ̂(as−1
1 ,xs−1

1 ;as) and �̂
BT

1
v = ∑T

s=1 φ̂(bs−1
1 ,xs−1

1 ;bs).

• Step 2: calculate ŝce(AT
1 ;BT

1 ) = 1
V

∑V
v=1(�̂

AT
1

v − �̂
BT

1
v ).

Under special circumstances, we may further improve the estimation of the probabilities
PO(xk | zk

1,xk−1
1 ). For instance, when xk (k = 1, . . . , T − 1) are measurements of the same

type of covariates, we may sometimes have such conditions as PO(xk | zk
1,xk−1

1 ) = PO(xk |
xk−1
s , zk

s ) with 1 < s < k. Under these conditions, we estimate PO(xk | xk−1
s , zk

s ) even with-
out a parametric model. In such cases, the estimates for PO(xk | xk−1

s , zk
s ) is not necessarily

subject to biases and the curse of dimensionality, and neither is the estimate for sce(AT
1 ;BT

1 ).
Occasionally, the blip effects are not dependent on the time-dependent covariates, that is,

φ(zt−1
1 ,xt−1

1 ; zt ) = φ(zt−1
1 ; zt ). If both AT

1 and BT
1 are also static regimes, then (18) becomes

sce
(
AT

1 ;BT
1

) =
T∑

s=1

φ
(
as−1

1 ;as

) −
T∑

s=1

φ
(
bs−1

1 ;bs

)
,

which does not contain the probabilities PO(xk | zk
1,xk−1

1 ). In this case, we only need to
estimate φ(zt−1

1 ; zt ) to estimate sce(AT
1 ;BT

1 ). If the estimates for φ(zt−1
1 ; zt ) are not subject

to biases and the curse of dimensionality, neither is the estimate for sce(AT
1 ;BT

1 ).
In the fourth stage, we apply the bootstrap method to the first three stages to obtain the

interval estimates for the blip and sequential causal effects, which incorporates variability of
the treatments and covariates and outcome.

In the rest of the article, we will illustrate our method above via a theoretical example, a
simulation study and a medical example.

5.2. Theoretical example. Here, we consider the case in which treatments Zt = 0,1 and
covariates Xt−1 are discrete (t = 1, . . . , T ). The treatment assignment follows the first-order
Markov process, in which the assignment of zt only depends on the latest covariate xt−1.
Suppose that SNMM is of the form

(19)

⎧⎪⎪⎨⎪⎪⎩
φ

(
zt−1

1 ,xt−1
1 ; zt = 1

) = ϕ1, t ≤ T − 2,

φ
(
zT −2

1 ,xT −2
1 ; zT −1 = 1

) = ϕ2,

φ
(
zT −1

1 ,xT −1
1 ; zT = 1

) = ϕ3,

where ϕ1 is the blip effects of distant treatments, ϕ2 is the blip effects of intermediate treat-
ments, and ϕ3 is the blip effects of the latest treatments.

Despite the Markov process and SNMM, treatment zt still has xt−1 as a confounder and
xt as a posttreatment variable in the expression for the standard parameters μ(zT

1 ,xT −1
1 ).

Therefore, based on the well-known G-formula (11) or (12), the ML estimation of the blip
effects ϕ1, ϕ2, ϕ3 and the sequential causal effect sce(aT

1 ;bT
1 ) via the standard parameters

suffers from the null paradox and the curse of dimensionality in the case of a long treatment
sequence, as has been demonstrated in the literature (Robins [4, 5, 7]) and discussed in the
Introduction. In the following, we will estimate ϕ1, ϕ2, ϕ3 and sce(AT

1 ;BT
1 ) by applying our

method introduced in Section 5.1.
In the first stage, we estimate the point observable effects by ML as follows. As well known

in single-point causal inference (Rosenbaum and Rubin [8]), due to the assignment condition
of the Markov process, we weaken the positivity assumption in the identifying condition
by requiring 0 < PO(zt = 1 | xt−1) < 1 instead of 0 < PO(zt = 1 | zt−1

1 ,xt−1
1 ) < 1, and we

only need to estimate fewer point observable effects of zt = 1 in strata xt−1 instead of strata
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(zt−1
1 ,xt−1

1 ). Let μ(xt−1, zt ) = E(Y | xt−1, zt ) denote the conditional mean of the observable
outcome Y given the observed (xt−1, zt ). Then the point observable effect of zt = 1 in strata
xt−1, denoted by ϑ(xt−1), is

(20) ϑ(xt−1) = μ(xt−1, zt = 1) − μ(xt−1, zt = 0).

The number of ϑ(xt−1) is equal to that of strata xt−1 and does not depend on the length T of
treatment sequence; therefore, ϑ(xt−1) are estimable even for a long treatment sequence and
the typical size of a sample.

As described in Section 5.1, we will perform a regression of the ML estimate of the point
observable effect on the proportions of treatments and covariates in the second stage. Hence,
we are going to estimate the point observable effect conditional on covariates and treatments.
Let n(xt−1, zt ) be the number of observations in stratum (xt−1, zt ), and I (xt−1, zt ) be the set
of all indexes i such that (zi(t−1),xi(t−1)) = (zt−1,xt−1). Then, for common distributions,
such as the normal, Bernoulli and Poisson, the ML estimate of μ(xt−1, zt ) is simply the
average

μ̂(xt−1, zt ) =
∑

i∈I (xt−1,zt )
Yi

n(xt−1, zt )
.

For convenience, suppose the same variance σ 2 for Y given any {zT
1 ,xT −1

1 }. Then the variance
of μ̂(xt−1, zt ) is

var
{
μ̂(xt−1, zt )

} = σ 2

n(xt−1, zt )
.

If the variance is not the same, some minor loss of efficiency may occur in the ML estimation.
The ML estimates of the point observable effects and their variances are

ϑ̂(xt−1) = μ̂(xt−1, zt ) − μ̂(xt−1, zt = 0),

var
{
ϑ̂(xt−1)

} = var
{
μ̂(xt−1, zt )

} + var
{
μ̂(xt−1, zt = 0)

}
.

In Supplement I of Supplementary Material [13], we prove that under the Markov process,
the covariance between the estimated point observable effects at different times satisfies

(21) cov
{
ϑ̂(xt−1), ϑ̂(xs−1)

} = 0, t �= s.

Formula (21) will considerably simplify the regression in the second stage.
In the second stage, we estimate the blip effects by regression as follows. Intuitively, we

decompose the point observable effect ϑ(xt−1) into the blip effects ϕ1, ϕ2 and ϕ3 at times
s = t, . . . , T in stratum (xt−1, zt ) versus (xt−1, zt = 0) and obtain

(22) ϑ(xt−1) = ϕ1c
(1)(xt−1) + ϕ2c

(2)(xt−1) + ϕ3c
(3)(xt−1),

where

c(1)(xt−1) =
T −2∑
s=t

{
pr(zs = 1 | xt−1, zt = 1) − pr(zs = 1 | xt−1, zt = 0)

}
,

c(2)(xt−1) = pr(zT −1 = 1 | xt−1, zt = 1) − pr(zT −1 = 1 | xt−1, zt = 0),

c(3)(xt−1) = pr(zT = 1 | xt−1, zt = 1) − pr(zT = 1 | xt−1, zt = 0).

Noticeably, if t = T − 1, then c(1)(xT −2) = 0; if t = T , then c(1)(xT −1) = 0, c(2)(xT −1) = 0.
Conditional on treatments and covariates, c(1)(xt−1), c(2)(xt−1) and c(3)(xt−1) are constants,
which describe the proportion differences in distant, intermediate and the latest treatments in
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stratum (xt−1, zt = 1) versus stratum (xt−1, zt = 0), respectively. In Supplement I of Supple-
mentary Material [13], we derive this formula by applying the Markov process and (19) to
(17). Here, we see that the blip effects ϕ1, ϕ2 and ϕ3 are identifiable via the point observ-
able effects ϑ(xt−1). Formula (22) is indexed by only three parameters ϕ1, ϕ2 and ϕ3, and
thus an unsaturated model for all ϑ(xt−1) at t = 1, . . . , T . This unsaturated model reflects
the data-generating mechanism and is therefore not misspecified; therefore, bias does not oc-
cur in estimating the blip effects despite an unsaturated model. Like ϑ(xt−1), the number of
PO(zs = 1 | xt−1, zt ) does not depend on the length T of the treatment sequence; therefore,
the curse of dimensionality does not occur in the estimation of ϕ1, ϕ2 and ϕ3 as T increases.
Actually, more point observable effects ϑ(xt−1) will be observed as T increases, and thus
more information about ϕ1, ϕ2 and ϕ3 will be available, which improves the estimation.

We estimate c(1)(xt−1), c(2)(xt−1) and c(3)(xt−1) by ĉ(1)(xt−1), ĉ(2)(xt−1) and ĉ(3)(xt−1),
respectively, in which the probabilities PO(zs = 1 | xt−1, zt ) are replaced by the proportions
P̂O(zs = 1 | xt−1, zt ). Let � denote the vector with subvectors �t (t = 1, . . . , T ), where
the elements of �t are ϑ̂(xt−1). Let 	 denote the diagonal matrix with diagonal subma-
trices 	tt (t = 1, . . . , T ), where the diagonal elements of 	tt are var{ϑ̂(xt−1)}. Let X de-
note the design matrix with submatrices Xt1 (t = 1, . . . , T ), where the row vector of Xt1
is {ĉ(1)(xt−1), ĉ(2)(xt−1), ĉ(3)(xt−1)}. Based on (22) and using (21), we regress ϑ̂(xt−1) on
ĉ(1)(xt−1), ĉ(2)(xt−1) and ĉ(3)(xt−1) to obtain the ML estimates

(ϕ̂1, ϕ̂2, ϕ̂3)
′ = (

X′	−1X
)−1X′	−1�.

These ML estimates are consistent under certain weak conditions, even for long treatment
sequence and/or when many covariates are present, for example, the ϑ̂(xt−1), ĉ(1)(xt−1),
ĉ(2)(xt−1) and ĉ(3)(xt−1) have their variances approaching zero as the sample size approaches
infinity. Such conditions are required even in single-point causal inference.

In the third stage, we estimate the sequential causal effect as follows. We replace the blip
effect ϕ1 by ϕ̂1, ϕ2 by ϕ̂2, ϕ3 by ϕ̂3, and the probabilities PO(·) by the estimates P̂O(·) in
formula (18) and obtain

ŝce
(
AT

1 ;BT
1

)
= ϕ̂1

{
I (a1 = 1) − I (b1 = 1)

}
+ ϕ̂1

[
T −2∑
t=2

∑
xt−1

1

at

t−1∏
k=1

P̂O(
xk | ak

1,xk−1
1

) −
T −2∑
t=2

∑
xt−1

1

bt

t−1∏
k=1

P̂O(
xk | bk

1,xk−1
1

)]

+ ϕ̂2

[ ∑
xT −2

1

aT −1

T −2∏
k=1

P̂O(
xk | ak

1,xk−1
1

) − ∑
xT −2

1

bT −1

T −2∏
k=1

P̂O(
xk | bk

1,xk−1
1

)]

+ ϕ̂3

[ ∑
xT −1

1

aT

T −2∏
k=1

P̂O(
xk | ak

1,xk−1
1

) − ∑
xT −1

1

bT

T −2∏
k=1

P̂O(
xk | bk

1,xk−1
1

)]
,

where I (a1 = 1) equals one if a1 = 1 is true and zero otherwise, and similarly for I (b1 = 1).
If P̂O(xk | zk

1,xk−1
1 ) is only the proportion of xk in stratum (zk

1,xk−1
1 ) in the data, then it

may not be a consistent estimate of PO(xk | zk
1,xk−1

1 ) for a long treatment sequence due to
the curse of dimensionality, nor may ŝce(AT

1 ;BT
1 ) be a consistent estimate for sce(AT

1 ;BT
1 ).

If P̂O(xk | zk
1,xk−1

1 ) is obtained by a parametric model in terms of standard parameters, it
possesses a higher efficiency and so does ŝce(AT

1 ;BT
1 ). However, P̂O(xk | zk

1,xk−1
1 ) is biased

due to the null paradox, and so is ŝce(AT
1 ;BT

1 ).
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However, the estimation of PO(xk | zk
1,xk−1

1 ) can be improved without introducing bias
under certain circumstances. For instance, when zk and xk (k = 1, . . . , T − 1) are repeated
measurements of the same treatment variable and covariates, we may have such conditions
as PO(xk | zk

1,xk−1
1 ) = PO(xk | xk−1, zk). In this case, P̂O(xk | xk−1, zk) is consistent even for

long treatment sequences, and so is ŝce(AT
1 ;BT

1 ).
We notice that∑

xt−1
1

t−1∏
k=1

P̂O(
xk | zk

1,xk−1
1

) = ∑
x1

· · · ∑
xt−1

t−1∏
k=1

P̂O(
xk | zk

1,xk−1
1

) = 1.

Therefore, for two static regimes AT
1 = aT

1 and BT
1 = bT

1 , we have

ŝce
(
AT

1 ;BT
1

) = ϕ̂1

T −2∑
t=1

{
I (at = 1) − I (bt = 1)

}
+ ϕ̂2

{
I (aT −1 = 1) − I (bT −1 = 1)

}
+ ϕ̂3

{
I (aT = 1) − I (bT = 1)

}
,

which does not contain the estimates P̂O(xk | zk
1,xk−1

1 ). As a result, if ϕ̂1, ϕ̂2 and ϕ̂3 are
consistent for a long treatment sequence, then so is ŝce(AT

1 ;BT
1 ).

In the last stage, we apply the bootstrap method to the first three stages to obtain interval
estimates for ϕ1, ϕ2, ϕ3 and sce(AT

1 ;BT
1 ).

The method described in this subsection can be readily extended to higher-order Markov
processes, where the assignments of treatments are dependent on a finite history of treatments
and discrete covarates or finite numbers of intervals of the values of continuous covariates
and to more general forms of SNMM, where the blip effects are indexed by more than three
parameters.

5.3. Simulation study. The treatment sequence has a length of T = 3. The treatments are
dichotomous with Zt = 0,1 (t = 1,2,3). Between treatments Zt−1 and Zt (t > 1), there is
a time-dependent covariate vector Xt−1 = (0,0), (0,1), (1,0), (1,1). After the last treatment
Z3, there is an outcome Y of interest. The treatment assignment follows the Markov process
described in the previous subsection, that is, the assignment of z2 depends only on x1 and
that of z3 only on x2. According to (20), there are a total of nine point observable effects:
one ϑ of z1 = 1, four ϑ(x1) of z2 = 1 with x1 = (0,0), (0,1), (1,0), (1,1) and four ϑ(x2) of
z3 = 1 with x2 = (0,0), (0,1), (1,0), (1,1).

We suppose that two structural nested mean models SNMM1 and SNMM2 are available.
In SNMM1, there are nine blip effects: one blip effect of z1 = 1 denoted by ϕ, four blip
effects of z2 = 1 depending only on x1 = (0,0), (0,1), (1,0), (1,1) and denoted by ϕ(x1),
and four blip effects of z3 = 1 depending only on x2 = (0,0), (0,1), (1,0), (1,1) and denoted
by ϕ(x2). In SNMM2, it is further required that ϕ(x1) = ϕ(x2) if x1 = x2; therefore, there
are four different blip effects for both z2 = 1 and z3 = 1 in addition to one blip effect for
z1 = 1. In Supplement II of Supplementary Material [13], we construct three data-generating
mechanisms for the normal, dichotomous and Poisson outcomes. From each of the three data-
generating mechanisms, we generate a total of 1000 data sets, each having 400 independent
observations on (Z3

1,X2
1, Y ).

In the simulation, we apply five methods to estimate the blip and sequential causal effects.
Methods (i) and (ii) are constructed using our method described in Section 5.1. In method (i),
we impose SNMM1 and estimate nine blip effects. In method (ii), we impose SNMM2 and
thus estimate five different blip effects. Method (iii) is constructed using the well-known G-
formula (11) or (12) (Taubman et al. [11]); method (iv) is constructed using the marginal
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structural model based on inverse probability weighting (Robins [6, 7]); method (v) is con-
structed using the G-estimation based on SNMM1 (Robins [5, 7]). In methods (iii), (iv) and
(v), we estimate nine blip effects compared to four in method (ii). In Supplement II of Sup-
plementary Material [13], we describe methods (i)–(v) and the simulation in detail.

Methods (i) and (ii) need only nine point observable effects to estimate all blip and se-
quential causal effects. As described in Supplement II of Supplementary Material [13],
method (iii) needs 128 standard parameters to estimate these causal effects; method (iv)
needs 32 parameters and a specification of the stabilized weights to estimate the blip ef-
fects and only sequential causal effects of static regimes without excessive programming;
and method (v) needs 18 parameters and a specification of the variability of pseudo outcomes
to estimate only the blip effects without excessive programming. The result of the simulation
is presented in Table 1, from which the following comparisons can be made between these
methods.

Regarding the estimates for the blip and sequential causal effects, the following observa-
tions can be made. First, all methods yield unbiased estimates for the blip effects of z3 = 1
(columns (f)–(i) in Table 1). Noticeably, methods (i), (iii), (iv) and (v) yield nearly the same
estimates due to the setting of the simulation. Second, methods (i), (ii), (iv) and (v) yield un-
biased estimates for the blip effects of z1 = 1 and z2 = 1 (columns (a)–(e) in Table 1) and two
sequential causal effects (columns (j) and (k) in Table 1), whereas method (iii) yields esti-
mates of certain biases for these causal effects indicating slow convergence of these estimates
to the true values.

The following interesting observations can be made for variances in the estimates of the
blip and sequential causal effects as well as actual coverage probabilities for the confidence
intervals of these causal effects. First, methods (i), (iii), (iv) and (v) yield nearly the same
variances and coverage probabilities for the blip effects of z3 = 1 (columns (f)–(i) in Ta-
ble 1) due to the setting of the simulation. Second, method (i) achieves considerably smaller
variances and more accurate coverage probabilities than methods (iii) and (iv) do for the
blip effects of z1 = 1 and z2 = 1 (columns (a)–(e) in Table 1) and two sequential causal
effects (columns (j) and (k) in Table 1). Third, method (ii) achieves the smallest variances
of all methods and nearly the nominal coverage probabilities, which implies that an unsat-
urated model may improve the estimation without causing biases. Fourth, method (v) has
even smaller variances than method (i), although method (i) is based on ML and theoretically
yields the variance bounds under SNMM1. As shown in Supplement II of Supplementary
Material [13], this result is due to an inadequate evaluation of the variability of pseudo out-
comes in method (v). With a correct specification of this variability, method (v) is equivalent
to method (i). Method (i), however, does not need a specification of this variability.

Additionally, we have constructed a misspecified model for the standard parameters
μ(z3

1,x2
1) in which equalities are imposed between these parameters and then applied

method (iii) to estimate the blip and sequential causal effects by ML in the simulation. We
have observed the null paradox, that is, the biases for the ML estimates of these causal effects
(see discussion in the Introduction and references therein). The result is not shown here, al-
though the SAS code is given in Supplement II of Supplementary Material [13] for interested
readers.

5.4. Medical example. Some HIV-infected gay or bisexual men are users of recreational
drugs such as cocaine. Of medical interest is the distant influence of the recreational drug
on the CD4 count when the drug is used repeatedly. Our data is a subset of the data from
Multicenter AIDS Cohort Study and involves 256 participants who were seronegative at en-
try and seroconverted during the follow-up period (Zeger and Diggle [14]). Here, we apply
our method and three methods in the literature to this data. These methods estimate the blip



T
H

E
N

E
W

G
-FO

R
M

U
L

A
153

TABLE 1
Simulation study of the causal effects in Section 5.3: average estimate (estimate), variance estimate (variance) and actual coverage probability (coverage) of the 95% bootstrap

percentile confidence interval. 1000 data sets are used, each having 400 units. The bootstrap percentile confidence interval is obtained using 1000 bootstrap data sets

True value and (estimate, variance, coverage)’ of the causal effect

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Normal outcome

True value 3 −4 −5 5 4 −4 −5 5 4 3 2/3

Method (i) 2.89 −3.93 −4.99 4.88 3.89 −3.98 −5.04 5.02 4.03 2.87 0.57
0.73 0.68 1.80 2.42 2.15 2.01 2.68 2.58 2.72 2.30 1.09

93.90 96.80 95.60 94.70 96.20 95.20 95.10 95.20 95.30 94.90 94.50

Method (ii) 2.94 −3.96 −4.97 4.95 3.96
(b) (c) (d) (e)

2.92 0.62
0.69 0.62 1.27 1.35 1.18 2.27 0.96

94.50 94.70 94.80 94.60 94.60 95.10 94.40

Method (iii) 2.11 −4.20 −4.70 5.22 2.46 −3.98 −5.04 5.02 4.03 2.79 0.33
3.79 0.49 4.23 4.34 7.47 2.01 2.68 2.58 2.72 5.12 3.14

93.70 86.80 92.60 93.70 71.60 94.80 94.90 95.40 95.70 93.10 93.40

Method (iv) 3.05 −4.08 −5.02 4.96 3.64 −3.98 −5.04 5.02 4.03 3.17
3.06 0.67 2.16 2.90 3.02 2.01 2.68 2.58 2.72 5.14

92.90 91.50 94.60 93.30 93.20 94.80 94.90 95.40 95.70 94.30

Method (v) 2.89 −3.96 −4.99 4.84 3.89 −3.98 −5.04 5.02 4.03
0.71 0.58 1.40 1.93 2.06 2.01 2.68 2.58 2.72

93.80 96.10 95.80 94.20 96.10 94.80 94.90 95.40 95.70
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TABLE 1
(Continued)

True value and (estimate, variance, coverage)’ of the causal effect

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Dichotomous outcome

True value 0.2 −0.15 0.15 0.1 −0.1 −0.15 0.15 0.1 −0.1 0.117 0.225

Method (i) 0.195 −0.149 0.136 0.094 −0.101 −0.156 0.147 0.098 −0.099 0.106 0.218
0.003 0.010 0.011 0.013 0.012 0.010 0.011 0.011 0.012 0.010 0.004

95.20 96.70 95.80 94.10 96.30 95.90 94.10 94.80 95.50 95.30 95.50

Method (ii) 0.198 −0.153 0.141 0.096 −0.100
(b) (c) (d) (e)

0.108 0.220
0.003 0.005 0.006 0.006 0.005 0.009 0.004

95.10 96.30 95.00 95.20 94.90 95.00 95.60

Method (iii) 0.170 −0.152 0.153 0.110 −0.103 −0.156 0.147 0.098 −0.099 0.109 0.198
0.015 0.023 0.031 0.034 0.024 0.010 0.011 0.011 0.012 0.018 0.014

92.40 96.30 89.30 91.40 93.40 95.60 94.40 94.90 95.10 93.00 93.50

Method (iv) 0.198 −0.137 0.147 0.102 −0.086 −0.156 0.147 0.098 −0.099 0.113
0.016 0.024 0.030 0.034 0.025 0.010 0.011 0.011 0.012 0.016

93.10 95.70 92.40 93.50 93.10 95.60 94.40 94.90 95.10 94.40

Method (v) 0.197 −0.147 0.143 0.104 −0.099 −0.156 0.147 0.098 −0.099
0.003 0.011 0.011 0.013 0.012 0.010 0.011 0.011 0.012

95.10 96.30 95.70 94.10 95.20 95.70 94.40 94.80 95.10
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TABLE 1
(Continued)

True value and (estimate, variance, coverage)’ of the causal effect

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Poisson outcome

True value 2 4 3 −3 −4 4 3 −3 −4 2 3.67

Method (i) 1.95 3.94 2.97 −2.95 −3.96 4.02 3.03 −3.00 −3.97 1.98 3.63
0.18 0.81 0.79 0.86 0.65 0.65 0.59 0.74 0.57 0.67 0.27

95.90 96.00 95.80 96.00 96.60 95.60 95.10 94.30 94.70 95.80 96.00

Method (ii) 1.97 3.98 2.99 −2.97 −3.96
(b) (c) (d) (e)

2.00 3.63
0.17 0.36 0.37 0.43 0.30 0.65 0.27

95.00 94.70 95.20 94.80 95.30 94.90 94.90

Method (iii) 1.66 3.40 3.07 −2.77 −4.41 4.02 3.02 −3.00 −3.97 1.96 3.18
1.52 2.55 1.72 2.71 1.56 0.65 0.59 0.74 0.57 1.97 1.62

95.00 81.80 93.90 89.60 87.80 95.80 95.70 94.30 94.50 94.40 94.30

Method (iv) 2.01 3.99 2.98 −3.00 −4.03 4.02 3.02 −3.00 −3.97 2.04
0.89 1.58 1.38 1.70 1.30 0.65 0.59 0.74 0.57 1.10

95.30 92.90 94.10 92.90 93.80 95.80 95.70 94.30 94.50 95.10

Method (v) 1.95 3.96 2.97 −2.97 −3.96 4.02 3.02 −3.00 −3.97
0.18 0.72 0.62 0.69 0.58 0.65 0.59 0.74 0.57

95.10 94.60 94.30 95.00 95.10 95.80 95.70 94.30 94.50

• Three outcome types: normal, dichotomous and Poisson outcomes.
• Nine blip effects: (a) ϕ; (b) ϕ{x1 = (0,0)}; (c) ϕ{x1 = (0,1)}; (d) ϕ{x1 = (1,0)}; (e) ϕ{x1 = (1,1)}; (f) ϕ{x2 = (0,0)}; (g) ϕ{x2 = (0,1)}; (h) ϕ{x2 = (1,0)}; (i) ϕ{x2 = (1,1)}.
• Two sequential causal effects sce(A3

1;B3
1): (j) A3

1 = (1,1,1) and B3
1 = (0,0,0); (k) A3

1 = (1,0,A3) and B3
1 = (0,0,0) where A3 = 1 when x2 = (0,0) or (0,1) and A3 = 0

otherwise.
• Five estimation methods: method (i) our method without constraint on (a)–(i); method (ii) our method with constraint (b) = (f), (c) = (g), (d) = (h), (e) = (i); method (iii) the
parametric method based on the well-known G-formula; method (iv) the marginal structural model based on inverse probability weighting; method (v) the G-estimation based on
SNMM1. Empty cells imply that they are not easily estimable by the method.
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TABLE 2
Medical study of the causal effects of recreational drugs on CD4 count in Section 5.4: estimate, bootstrap

variance estimate (variance) and 95% bootstrap percentile confidence interval (95% CI). The variance and
confidence intervals are estimated using 1000 bootstrap data sets

(Estimate, variance, 95% CI)’ of the causal effect

(a) (b) (c) (d)

Method (i) 0.044 0.082 0.126 0.083
0.004 0.004 0.007 0.004

(−0.080, 0.162) (−0.034, 0.197) (−0.027, 0.289) (−0.047, 0.211)

Method (iii) −0.147 0.082 −0.126 −0.128
0.050 0.004 0.050 0.049

(−0.667, 0.192) (−0.036, 0.212) (−0.664, 0.209) (−0.664, 0.198)

Method (iv) 0.032 0.121 0.110
0.019 0.012 0.009

(−0.246, 0.304) (−0.067, 0.384) (−0.069, 0.295)

Method (v) 0.045 0.082
0.004 0.004

(−0.072, 0.159) (−0.035, 0.212)

• Outcome: the logarithm of CD 4 count after drug use z2.
• Two blip effects: (a) the blip effect of z1 = 1; (b) the blip effect of z2 = 1.

• Two sequential causal effects sce(A2
1,B2

1): (c) A2
1 = (1,1) and B2

1 = (0,0); (d) A2
1 = (1,A2) and B2

1 = (0,0)

where A2 = 1 when x11 = 0 and A2 = 0 otherwise.
• Four estimation methods: method (i) our method; method (iii) the parametric method based on the well-known
G-formula; method (iv) the marginal structural model based on inverse probability weighting; method (v) the
G-estimation based on SNMM. Empty cells imply that they are not easily estimable by the method.

effects separately at different times and are similar to methods (i), (iii) and (iv) and (v) in the
simulation study of the previous subsection; therefore, we still refer to them as methods (i),
(iii), (iv) and (v). Thus, method (i) is constructed using our method described in Section 5.1;
method (iii) is constructed using the well-known G-formula (11) or (12) (Taubman et al.
[11]); method (iv) is constructed using the marginal structural model based on inverse prob-
ability weighting (Robins [6, 7]); method (v) is constructed using the G-estimation based on
SNMM (Robins [5, 7]).

Our treatment variables are two consecutive drug uses Z1 and Z2, and both are di-
chotomized. The outcome Y is the logarithm of CD4 count after Z2. We wish to estimate
the blip and sequential causal effects. Using method (i), we model the point observable ef-
fects and find that the relevant covarates are two earlier CD4 counts, X01 before Z1 and X11
between Z1 and Z2, and both are dichotomized as high versus low. Given the small sample
of this study, we assume a simple SNMM: the blip effects φ(x01) of z1 = 1 are the same for
all x01; the blip effects φ(x01, z1, x11) of z2 = 1 are the same for all (x01, z1, x11). Using two
covariates X01 and X11 and two treatment variables Z1 and Z2, we readily apply methods (i),
(iii), (iv) and (v) to estimate the blip and sequential causal effects.

The analysis is presented in detail in Supplement III of Supplementary Material [13]. The
result is presented in Table 2, which shows that method (i) estimates all the blip and sequential
causal effects while achieving the smallest variances. Furthermore, method (i) estimates these
causal effects via only two point observable effects of z1 = 1 and z2 = 1.

6. Conclusions. In the framework of causal inference based on the concept of potential
variables, there are two major parts: one part expressing the causal effect in terms of poten-
tial variables and another part linking the potential variables, and thus the causal effect to
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observed data by a certain treatment assignment mechanism satisfying the identifying condi-
tion. Neyman [10] and Rubin [9] and others pointed out that the separation of the two parts
clarifies the relationship between causal effects and observed data.

There are also these two parts in sequential causal inference of this article. In the first part,
we not only express the blip and sequential causal effects in terms of potential variables in
Section 2.2 but also obtain the relationship between these causal effects in Section 3. This
relationship turns out to be simple and useful expressions of one another, as described by
Propositions 1–4. In the second part, we obtain the new G-formula, which links the blip and
sequential causal effects to observed data via the point observable effect under the identifying
condition, as described in Theorems 1 and 2 of Section 4.3. Based on the new G-formula, we
are able to estimate the blip and sequential causal effects via the point observable effects in
the framework of the likelihood-based inference, as described in Section 5.1.

Given a relatively simple setting of the simulation and medical example, our method shows
certain advantages over the parametric method based on the well-known G-formula (Taub-
man et al. [11]) in terms of efficiency and modeling conditions. However, the semiparamet-
ric methods, such as the marginal structural model based on inverse probability weighting
(Robins [6, 7]) and the G-estimation based on SNMM (Robins [5, 7]) and their extensions,
are able to deal with complex problems under different premises.

To conclude the article, we discuss possible applications of the new G-formula to three
difficult statistical problems. The first problem concerns observational studies with numerous
covariates including time-dependent ones. In observational studies of single-point treatment
with numerous covariates, the treatment assignment is often approximated by a number of
subrandomized trials called subclasses (Rosenbaum and Rubin [8]). In observational studies,
the assignments of treatment sequence may be approximated by the first-order Markov pro-
cess in which the assignment of each treatment depends only on the latest subclasses. Based
on the new G-formula, we believe that the approximate first-order Markov process can be
used to estimate the point observable effects and then the blip and sequential causal effects.

The second problem arises when the likelihood of the observed data cannot be specified.
In single-point causal inference, semiparametric and nonparametric approaches can be used
to estimate the point observable effect (e.g., McCullagh and Nelder [2]). Recall that the new
G-formula is true without specific assumptions for the probability model. Therefore, in se-
quential causal inference based on the new G-formula, we believe that semiparametric and
nonparametric approaches can be used to estimate the point observable effects and then the
blip and sequential causal effects.

The third problem concerns the missing time-dependent covariates between treatments in
the sequence. In single-point causal inference, the likelihood-based methods are used, such
as the expectation-maximization algorism or multiple imputation method, to deal with the
missing covariates when estimating the point observable effect (Little and Rubin [1]). In se-
quential causal inference based on the new G-formula, the missing time-dependent covariates
are only the problems for relevant treatments. We believe that the likelihood-based methods
can be used to address the problems in estimating the point observable effects of relevant
treatments.

APPENDIX

A.1. Proof of formula (4). For notational simplicity, we only prove (4) when t = 1, that
is,

(23) E
{
Y

(
GT

1
)} = E

{
Y

(
DT

1 = 0
)} +

T∑
s=1

E
{
φ

(
zs−1

1 ,xs−1
1 ; zs

)}
,
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where the expectation for φ(zs−1
1 ,xs−1

1 ; zs) is with respect to PGs
1(zs−1

1 ,xs−1
1 , zs). However,

interested readers may readily extend the proof to the case of t > 1.
Let Qs = E{Y(Gs

1,DT
s+1 = 0)} for T ≥ s ≥ 0. Noticeably, QT = E{Y(GT

1 )} and Q0 =
E{Y(DT

1 = 0)}. Then we write QT as the following telescoping sum:

QT = QT − QT −1 + QT −1 − · · · + Qs − Qs−1 + Qs−1 − · · · + Q1 − Q0 + Q0.

By rewriting

Qs = E
[
E

{
Y

(
DT

s+1 = 0
) | zs−1

1 ,xs−1
1 , zs

}]
,

Qs−1 = E
[
E

{
Y

(
DT

s+1 = 0
) | zs−1

1 ,xs−1
1 , zs = 0

}]
,

we obtain

Qs − Qs−1 = E
[
E

{
Y

(
DT

s+1 = 0
) | zs−1

1 ,xs−1
1 , zs

}
− E

{
Y

(
DT

s+1 = 0
) | zs−1

1 ,xs−1
1 , zs = 0

}]
,

where the outer expectation is with respect to PGs
1(zs−1

1 ,xs−1
1 , zs).

We rewrite (2) at t = s as

φ
(
zs−1

1 ,xs−1
1 , zs

)
= E

{
Y

(
DT

s+1 = 0
) | zs−1

1 ,xs−1
1 , zs

} − E
{
Y

(
DT

s+1 = 0
) | zs−1

1 ,xs−1
1 , zs = 0

}
.

Inserting this expression into Qs − Qs−1, we obtain

Qs − Qs−1 = E
{
φ

(
zs−1

1 ,xs−1
1 ; zs

)}
.

Now, by inserting these Qs − Qs−1 (s = T , . . . ,1) and Q0 = E{Y(DT
1 = 0)} into QT above,

we obtain formula (23), which is (4) when t = 1.

A.2. Proof of formula (7). For notational simplicity, we only prove (7) when t = 1, that
is,

E
{
Y

(
DT

1
)} = E

{
Y

(
D1 = 0,RT

2
)} + θ(z1)

+
T∑

s=2

E1
{
θ
(
zs−1

1 ,xs−1
1 ; zs

)} −
T∑

s=2

E2
{
θ
(
zs−1

1 ,xs−1
1 ; zs

)}
,(24)

where E1(·) is an expectation with respect to PGs
1(zs−1

1 ,xs−1
1 , zs) for Gs

1 = Ds
1 and E2(·)

for Gs
1 = (Ds−1

1 ,Rs). However, interested readers may readily extend the proof to the case
of t > 1. Let Ws = E{Y(Ds

1,RT
s+1)} for T ≥ s ≥ 1. Then we write WT = E{Y(DT

1 )} as the
following telescoping sum:

WT = WT − WT −1 + WT −1 − · · · + Ws − Ws−1 + Ws−1 − · · · + W2 − W1 + W1.

We rewrite Ws as

Ws = E
[
E

{
Y

(
RT

s+1
) | zs−1

1 ,xs−1
1 , zs

}]
= E

[
E

{
Y

(
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s+1
) | zs−1

1 ,xs−1
1 , zs

} − E
{
Y

(
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s+1
) | zs−1

1 ,xs−1
1 , zs = 0

}]
+ E

[
E

{
Y

(
RT

s+1
) | zs−1

1 ,xs−1
1 , zs = 0

}]
.

We rewrite (3) at t = s as

θ
(
zs−1

1 ,xs−1
1 ; zs

)
= E

{
Y

(
RT

s+1
) | zs−1

1 ,xs−1
1 , zs

} − E
{
Y

(
RT

s+1
) | zs−1

1 ,xs−1
1 , zs = 0

}
.
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Inserting this into Ws , we obtain

Ws = E1
{
θ
(
zs−1

1 ,xs−1
1 ; zs

)} + E
[
E

{
Y

(
RT

s+1
) | zs−1

1 ,xs−1
1 , zs = 0

}]
,

where E1(·) is an expectation with respect to PDs
1(zs−1

1 ,xs−1
1 , zs).

Then we rewrite Ws−1 = E{Y(Ds−1
1 ,Rs,RT

s+1)} as

Ws−1 = E
[
E

{
Y

(
RT

s+1
) | zs−1

1 ,xs−1
1 , zs

}]
and follow the same procedure above to obtain

Ws−1 = E2
{
θ
(
zs−1

1 ,xs−1
1 ; zs

)} + E
[
E

{
Y

(
RT

s+1
) | zs−1

1 ,xs−1
1 , zs = 0

}]
,

where E2(·) is an expectation with respect to PGs
1(zs−1

1 ,xs−1
1 , zs) for Gs

1 = (Ds−1
1 ,Rs).

Therefore, we have

Ws − Ws−1 = E1
{
θ
(
zs−1

1 ,xs−1
1 ; zs

)} − E2
{
θ
(
zs−1

1 ,xs−1
1 ; zs

)}
.

We also rewrite W1 = E{Y(D1,RT
2 )} as

W1 = E
{
Y

(
D1,RT

2
)} − E

{
Y

(
D1 = 0,RT

2
)} + E

{
Y

(
D1 = 0,RT

2
)}

= θ(z1) + E
{
Y

(
D1 = 0,RT

2
)}

,

where z1 is the treatment assigned by D1. Now, by inserting these Ws − Ws−1 (s = T , . . . ,2)
and W1 into WT , we obtain formula (24), which is (7) when t = 1.
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SUPPLEMENTARY MATERIAL

Supplement to “New G-formula for the sequential causal effect and blip effect of
treatment in sequential causal inference” (DOI: 10.1214/18-AOS1795SUPP; .zip). The
material includes the following three sections:

Supplement I: Proofs for formulas (10a), (10b), (10c), (21), (22).
Supplement II: Description of the simulation study in Section 5.3.
Supplement III: Description of the medical example in Section 5.4.

In addition, the material contains the SAS code for Supplement II as well as the SAS code
and data for Supplement III.
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