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The problem of variable clustering is that of estimating groups of sim-
ilar components of a p-dimensional vector X = (X1, . . . ,Xp) from n inde-
pendent copies of X. There exists a large number of algorithms that return
data-dependent groups of variables, but their interpretation is limited to the
algorithm that produced them. An alternative is model-based clustering, in
which one begins by defining population level clusters relative to a model
that embeds notions of similarity. Algorithms tailored to such models yield
estimated clusters with a clear statistical interpretation. We take this view
here and introduce the class of G-block covariance models as a background
model for variable clustering. In such models, two variables in a cluster are
deemed similar if they have similar associations will all other variables. This
can arise, for instance, when groups of variables are noise corrupted versions
of the same latent factor. We quantify the difficulty of clustering data gen-
erated from a G-block covariance model in terms of cluster proximity, mea-
sured with respect to two related, but different, cluster separation metrics. We
derive minimax cluster separation thresholds, which are the metric values be-
low which no algorithm can recover the model-defined clusters exactly, and
show that they are different for the two metrics. We therefore develop two
algorithms, COD and PECOK, tailored to G-block covariance models, and
study their minimax-optimality with respect to each metric. Of independent
interest is the fact that the analysis of the PECOK algorithm, which is based
on a corrected convex relaxation of the popular K-means algorithm, provides
the first statistical analysis of such algorithms for variable clustering. Ad-
ditionally, we compare our methods with another popular clustering method,
spectral clustering. Extensive simulation studies, as well as our data analyses,
confirm the applicability of our approach.

1. Introduction. The problem of variable clustering is that of grouping similar compo-
nents of a p-dimensional vector X = (X1, . . . ,Xp). These groups are referred to as clusters.
In this work, we investigate the problem of cluster recovery from a sample of n independent
copies of X. Variable clustering has had a long history in a variety of fields, with important
examples stemming from gene expression data [19, 23, 41] or protein profile data [8]. The
solutions to this problem are typically algorithmic and entirely data based. They include ap-
plications of K-means, hierarchical clustering, spectral clustering or versions of them. The
statistical properties of these procedures have received a very limited amount of investigation.
It is not currently known what probabilistic cluster models on X can be estimated by these
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popular techniques, or by their modifications. More generally, model-based variable cluster-
ing has received a limited amount of attention. One net advantage of model-based clustering is
that population-level clusters are clearly defined, offering both interpretability of the clusters
and a benchmark against which one can check the quality of a particular clustering algorithm.

In this work, we propose the G-block covariance model as a flexible model for variable
clustering and show that the clusters given by this model are uniquely defined. We then moti-
vate and develop two algorithms tailored to the model, COD and PECOK, and analyze their
respective performance in terms of exact cluster recovery, for minimally separated clusters,
under appropriately defined cluster separation metrics.

1.1. The G-block covariance model. Our proposed model for variable clustering sub-
sumes that the covariance matrix � of a centered random vector X ∈ Rp follows a block,
or near-block, decomposition, with blocks corresponding to a partition G = {G1, . . . ,GK}
of {1, . . . , p}. This structure of the covariance matrix has been observed to hold, empirically,
in a number of very recent studies on the parcelation of the human brain, for instance, [18,
20, 25, 40]. We further support these findings in Section 7, where we apply the clustering
methods developed in this paper, tailored to G-block covariance models, for the clustering of
brain regions.

To describe our model, we associate, to a partition G, a membership matrix A ∈ Rp×K

defined by Aak = 1 if a ∈ Gk , and Aak = 0 otherwise.
(A) The exact G-block covariance model. In view of the above discussion, clustering the

variables (X1, . . . ,Xp) amounts to find a minimal (i.e., coarsest partition) G∗, such that two
variables belong to the same cluster if they have the same covariance with all other variables.
This implies that the covariance matrix � of X decomposes as

(1.1) � = AC∗At + �,

where A is relative to G∗, C∗ is a symmetric K × K matrix and � a diagonal matrix. When
a such a decomposition exists with the partition G∗, we say that X ∈ Rp follows an (exact)
G∗-block covariance model.

(i) G-Latent model. Such a structure arises, for instance, when components of X that be-
long to the same group can be decomposed into the sum between a common latent variable
and an uncorrelated random fluctuation. Similarity within group is therefore given by asso-
ciation with the same unobservable source. Specifically, the exact block-covariance model
(1.1) holds, with a diagonal matrix �, when

(1.2) Xa = Zk(a) + Ea,

with Cov(Zk(a),Ea) = 0, Cov(Z) = C∗, and the individual fluctuations Ea are uncorre-
lated, and thus E has diagonal covariance matrix �. The index assignment function k :
{1, . . . , p} → {1, . . . ,K} is defined by Gk = {a : k(a) = k}. In practice, this model is used
to justify the construction of a single variable that represents a cluster, the average of Xa ,
a ∈ Gk , viewed as an observable proxy of Zk(a). For example, a popular analysis approach
for fMRI data, called region-of-interest (ROI) analysis [36], requires averaging the obser-
vations from multiple voxels (a imaging unit for a small cubic volume of the brain) within
each ROI (or cluster of voxels) to produce new variables, each representing a larger and in-
terpretable brain area. These new variables are then used for downstream analyses. From this
perspective, model (1.2) can be used in practice (see, e.g., [7]) as a building block in a data
analysis based on cluster representatives, which in turn requires accurate cluster estimation.
Indeed, data-driven methods for clustering either voxels into regions or regions into func-
tional systems, especially based on the covariance matrix of X, is becoming increasingly
important; see, for example, [18, 20, 37, 40]. Accurate data-driven clustering methods also
enable studying the cluster differences across subjects [17] or experimental conditions [22].
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(ii) The Ising block model. The Ising block model has been proposed in [10] for modeling
social interactions, for instance, political affinities. Under this model, the joint distribution of
X ∈ {−1,1}p , a p-dimensional vector with binary entries, is given by

(1.3) f (x) = 1

κα,β

exp
[

β

2p

∑
a∼b

xaxb + α

2p

∑
a�b

xaxb

]
,

where the quantity κα,β is a normalizing constant, and the notation a ∼ b means that the
elements are in the same group of the partition. The variables Xa may for instance represent
the votes of U.S. senators on a bill [6]. For parameters α > β , the density (1.3) models the fact
that senators belonging to the same political group tend to share the same vote. By symmetry
of the density f , the covariance matrix � of X decomposes as an exact block covariance
model � = AC∗At + � where � is diagonal. When all groups G∗

k have identical size, we
have C∗ = (ωin − ωout)IK + ωoutJ and � = (1 − ωin)I , where the K × K matrix J has all
entries equal to 1, and IK denotes the K × K identity matrix, and the quantities ωin, ωout
depend on α, β , p.

(B) The approximate G-block model. In many situations, it is more appealing to group
variables that nearly share the same covariance with all the other variables. In that situation,
the covariance matrix � would decompose as

(1.4) � = ACAt + � where � has small off-diagonal entries.

Such a situation can arise, for instance, when Xa = (1 + δa)Zk(a) + Ea , with δa = o(1) and
the individual fluctuations Ea are uncorrelated, 1 ≤ a ≤ p.

1.2. Our contribution. We assume that the data consist in i.i.d. observations X(1), . . . ,

X(n) of a random vector X with mean 0 and covariance matrix �. This work is devoted to
the development of computationally feasible methods that yield estimates Ĝ of G∗, such that
Ĝ = G∗, with high probability, when the clusters are minimally separated, and to characterize
the minimal value of the cluster separation from a minimax perspective. The separation be-
tween clusters is a key element in quantifying the difficulty of a clustering task as, intuitively,
well-separated clusters should be easier to identify. We consider two related, but different,
separation metrics, that can be viewed as canonical whenever � satisfies (1.4). Although all
of our results allow, and are proved, for small departures from the diagonal structure of � in
(1.1), our main contribution can be best seen when � is a diagonal matrix. We focus on this
case below, for clarity of exposition. The case of � being a perturbation of a diagonal matrix
is treated in Section 6.

When � is diagonal, our target partition G∗ can be easily defined. It is the unique min-
imal (with respect to partition refinement) partition G∗ for which there is a decomposition
� = AC∗At + �, with A associated to G∗. We refer to Section 2 for details. We observe in
particular, that maxc �=a,b |�ac −�bc| > 0 if and only if Xa and Xb belong to different clusters
in G∗.

This last remark motivates our first metric MCOD based on the following COvariance
Difference (COD) measure:

(1.5) COD(a, b) := max
c �=a,b

|�ac − �bc| for any a, b = 1, . . . , p.

We use the notation a
G∗∼ b whenever a and b belong to the same group G∗

k , for some k, in

the partition G∗, and similarly a
G∗
� b means that there does not exist any group G∗

k of the
partition G∗ that contains both a and b. We define the MCOD metric as

(1.6) MCOD(�) := min
a

G∗
� b

COD(a, b).
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The measure COD(a, b) quantifies the similarity of the covariances that Xa and Xb have,
respectively, with all other variables. From this perspective, the size of MCOD(�) is a natural
measure for the difficulty of clustering when analyzing clusters with components that are
similar in this sense. Moreover, note that this metric is well defined even if C∗ of model (1.1)
is not semipositive definite.

Another cluster separation metric appears naturally when we view model (1.1) as arising
via model (1.2), or via small deviations from it. Then clusters in (1.1) are driven by the latent
factors, and intuitively they differ when the latent factors differ. Specifically, we define the
“within-between group” covariance gap

(1.7) 	
(
C∗) := min

j<k

(
C∗

kk + C∗
jj − 2C∗

jk

)= min
j<k

E
[
(Zj − Zk)

2],
where the second equality holds whenever (1.2) holds. In the latter case, the matrix C∗, which
is the covariance matrix of the latent factors, is necessarily semipositive definite. Further, we
observe that 	(C∗) = 0 implies Zj = Zk a.s. Conversely, we prove in Corollary 2.3 of Sec-
tion 2 that if the decomposition (1.1) holds with 	(C∗) > 0, then the partition related to A

is the partition G∗ described above. An instance of 	(C∗) > 0 corresponds to having the
within group covariances stronger than those between groups. This suggests the usage of this
metric 	(C∗) for cluster analysis whenever, in addition to the general model formulation
(1.1), we also expect clusters to have this property, which has been observed, empirically, to
hold in applications. For instance, it is implicit in the methods developed by [18] for creat-
ing a human brain atlas by partitioning appropriate covariance matrices. We also present a
neuroscience-based data example in Section 7.

Formally, the two metrics are connected via the following chain of inequalities, proved
in Lemma B.1 of Section 2 of the Supplementary Material [14], and valid as soon as the
size of the smallest cluster is larger than one, � and C∗ is semipositive definite (for the last
inequality)

(1.8) 2λK

(
C∗)≤ 	

(
C∗)≤ 2MCOD(�) ≤ 2

√
	
(
C∗) max

k=1,...,K

√
C∗

kk.

The first inequality shows that conditions on 	(C∗) are weaker than conditions on the min-
imal eigenvalue λK(C∗) of C∗. In order to preserve the generality of our model, we do not
necessarily assume that λK(C∗) > 0, as we show that, for model identifiability, it is enough
to have the weaker condition 	(C∗) > 0, when the two quantities differ.

The second inequality in (1.8) shows that 	(C∗) and MCOD(�) can have the same order
of magnitude, whereas the third inequality shows that they can also differ in order, and 	(C∗)
can be as small as MCOD2(�) for small values of these metrics, which is our main focus.
This suggests that different statistical assessments, and possibly different algorithms, should
be developed for estimators of clusters defined by (1.1), depending on the cluster separation
metric. To substantiate this intuition, we first derive, for each metric, the rate below which no
algorithm can recover exactly the clusters defined by (1.1). We call this the minimax optimal
threshold for cluster separation, and prove that it is different for the two metrics. We call an
algorithm that can be proved to recover exactly clusters with separation above the minimax
threshold a minimax optimal algorithm.

Theorem 3.1 in Section 3 shows that, for K ≥ 3 and for some numerical constant c > 0,
no algorithm can estimate consistently clusters defined by (1.1) uniformly over covariance
matrices fulfilling

MCOD(�) ≥ c

√
log(p)

n
.
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Theorem 3.2 in Section 3 shows that optimal separation distances with respect to the metric
	(C∗) are sensitive to the size of the smallest cluster,

m∗ = min
1≤k≤K

∣∣G∗
k

∣∣.
Indeed, there exists a numerical constant c > 0, such that no algorithm can estimate consis-
tently clusters defined by (1.1) uniformly over covariance matrices fulfilling

(1.9) 	
(
C∗)≥ c

(√
log(p)

nm∗ ∨ log(p)

n

)
.

The first term will be dominant whenever the smallest cluster has size m∗ < n/ log(p), which
will be the case in most situations. The second term in (1.9) becomes dominant whenever
m∗ > n/ log(p), which can also happen when p scales as n, and we have a few balanced
clusters.

The PECOK algorithm is tailored to the 	(C∗) metric, and is shown in Theorem 5.3 to be
near-minimax optimal. For instance, for balanced clusters, there exists a constant c′ such that

exact recovery is guaranteed when 	(C∗) ≥ c′(
√

K∨logp
m∗n + K∨log(p)

n
). This differs by fac-

tors in K from the 	(C∗)-minimax threshold, for general K , whereas it is of optimal order
when K is a constant, or grows as slowly as logp. A similar discrepancy between minimax
lower bounds and the performance of polynomial-time estimators has also been pinpointed
in network clustering via the stochastic block model [16] and in sparse PCA [9]. It has been
conjectured that, when K increases with n, there exists a gap between the statistical bound-
ary, that is, the minimal cluster separation for which a statistical method achieves perfect
clustering with high probability, and the polynomial boundary, that is, the minimal cluster
separation for which there exists a polynomial-time algorithm that achieves perfect cluster-
ing. Further investigation of this computational trade-off is beyond the scope of this paper
and we refer to [16] and [9] for more details.

However, if we consider directly the metric MCOD(�), and its corresponding, larger,
minimax threshold, we derive the COD algorithm, which is minimax optimal with respect to
MCOD(�) when K ≥ 3. In view of (1.8), it is also minimax optimal with respect to 	(C∗),
whenever there exist small clusters, the size of which does not change with n. The description
of the two algorithms and theoretical properties are given in Sections 4 and 5, respectively,
for exact block covariance models. Companions of these results, regarding the performance
of the algorithms for approximate block covariance models are given in Section 6, in Theo-
rem 6.2 and Theorem 6.5, respectively.

Table 1 gives a snapshot of our results, which for ease of presentation, correspond to the
case of balanced clusters, with the same number of variables per cluster. We stress that neither
our algorithms, nor our theory, is restricted to this case, but the exposition becomes more
transparent in this situation.

TABLE 1
Algorithm performance relative to minimax thresholds of each metric

Metric Minimax threshold PECOK COD

d1 =: 	(C∗)

√
logp
mn + logp

n Minimax optimal w.r.t. d1
when K = O(log(p)).

Minimax optimal w.r.t. d1
when m is constant.

d2 =: MCOD(�)

√
logp

n when K ≥ 3 Minimax optimal w.r.t. d2
when m > n/ log(p) and

K = O(logp).

Minimax optimal w.r.t. d2
when K ≥ 3.
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In this table, m denotes the size of the smallest cluster in the partition. The performance
of COD under d1 follows from the second inequality in (1.8), whereas the performance of
PECOK under d2 follows from the last inequality in (1.8). The overall message transmitted
by Table 1 and our analysis is that, irrespective of the separation metric, the COD algorithm
will be most powerful whenever we expect to have at least one, possibly more, small clusters,
a situation that is typically not handled well in practice by most of the popular clustering al-
gorithms; see [12] for an in-depth review. The PECOK algorithm is expected to work best for
larger clusters, in particular when there are no clusters of size one. We defer more comments
on the relative numerical performance of the methods to the discussion Section 8.3.

We emphasize that both our algorithms are generally applicable, and our performance
analysis is only in terms of the most difficult scenarios, when two different clusters are al-
most indistinguishable and yet, as our results show, consistently estimable. Our extensive
simulation results confirm these theoretical findings.

We summarize below our key contributions.

(1) An identifiable model for variable clustering and metrics for cluster separation. We
advocate model-based variable clustering, as a way of proposing objectively defined and
interpretable clusters. We propose identifiable G-block covariance models for clustering, and
prove cluster identifiability in Proposition 2.2 of Section 2.

(2) Minimax lower bounds on cluster separation metrics for exact partition recovery. Two
of our main results are Theorem 3.2 and Theorem 3.1, presented in Section 3, in which
we establish, respectively, minimax limits on the size of the 	(C∗)-cluster separation and
MCOD(�)-cluster separation below which no algorithm can recover clusters defined by
(1.1) consistently, from a sample of size n on X. To the best of our knowledge, these are the
first results of this type in variable clustering.

(3) Variable clustering procedures with guaranteed exact recovery of minimally separated
clusters. The results of (1) and (2) provide a much needed framework for motivating variable
clustering algorithm development and for clustering algorithm assessments.

In particular, they motivate a correction of a convex relaxation of the K-means algo-
rithm, leading to our proposed PECOK procedure, based on Semidefinite Programing (SDP).
Theorem 5.3 shows it to be near-minimax optimal with respect to the 	(C∗) metric. The
PECOK–	(C∗) pairing is natural, as 	(C∗) measures the difference of the “within clus-
ter” signal relative to the “between clusters” signal, which is the idea that underlies K-means
type procedures. To the best of our knowledge, this is the first work that explicitly shows what
model-based clusters of variables can be estimated via K-means style methods, and assesses
theoretically the quality of estimation. Moreover, our work shows that the results obtained in
[10], for the block Ising model, can be generalized to arbitrary values of K and unbalanced
clusters.

The COD procedure is a companion of PECOK for clusters given by model (1.1), and is
minimax optimal with respect to the MCOD(�) cluster separation when K ≥ 3, as estab-
lished in Theorem 3.1. Another advantage of COD is of computational nature, as SDP-based
methods, although convex, can be computationally involved.

(4) Comparison with corrected spectral variable clustering methods. In Section 5.4, we
connect PECOK with another popular algorithm, spectral clustering. Spectral clustering is
less computationally involved than PECOK, but the theoretical guaranties that we can offer
for it are weaker.

1.3. Organization of the paper. The rest of the paper is organized as follows:
Sections 1.4 and 1.5 contain the notation and distributional assumptions used throughout

the paper.
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For clarity of exposition, Sections 2–5 contain results established for model (1.1), when
is � a diagonal matrix. Extensions to the case when � has small off-diagonal entries are
presented in Section 6.

Section 2 shows that we have a uniquely defined target of estimation, the partition G∗.
Section 3 derives the minimax thresholds on the separation metrics 	(C∗) and MCOD(�),

respectively, for estimating G∗ consistently.
Section 4 is devoted to the COD algorithm, and its analysis.
Section 5 is devoted to the PECOK algorithm and its analysis.
Section 5.4 analyzes spectral clustering for variable clustering, and compares it with

PECOK.
Section 6 contains extensions to approximate G-block covariance models.
Section 7 presents their application to the clustering of putative brain areas using a real

fMRI data.
Section 8 contains a discussion of our results and overall recommendations regarding the

usage of our methods. Given the space constraints, all proofs and simulation results are in-
cluded in the Supplementary Material.

The implementation of PECOK can be found at http://github.com/martinroyer/pecok/ and
that of COD at http://CRAN.R-project.org/package=cord.

1.4. Notation. We denote by X the n×p matrix with rows corresponding to observations
X(i) ∈ Rp , for i = 1, . . . , n. The sample covariance matrix �̂ is defined by

�̂ = 1

n
XtX = 1

n

n∑
i=1

X(i)(X(i))t .
Given a vector v and q ≥ 1, |v|q stands for the �q norm. For a generic matrix M : |M|q

denotes its the entrywise �q norm, ‖M‖op denotes its operator norm and ‖M‖F refers to the
Frobenius norm. We use M:a , Mb:, to denote the ath column or, respectively, bth row of a
generic matrix M . The bracket 〈·, ·〉 refers to the Frobenius scalar product. Given a matrix M ,
we denote supp(M) its support, that is, the set of indices (i, j) such that Mij �= 0. I denotes
the identity matrix. We define the variation seminorm of a diagonal matrix D as |D|V :=
maxa Daa −mina Daa . We use B � 0 to denote a symmetric and positive semidefinite matrix.

Throughout this paper will make use of the notation c1, c2, . . . to denote positive constants
independent of n, p, K , m. The same letter, for instance c1 may be used in different state-
ments and may denote different constants, which are made clear within each statement, when
there is no possibility for confusion.

We use [p] to denote the set {1, . . . , p}. We use the notation a
G∼ b whenever a, b ∈ Gk ,

for the same k. Also, m = mink |Gk| stands for the size of the smallest group of the partition
G.

The notation � and � is used for whenever the inequalities hold up to multiplicative
numerical constants.

1.5. Distributional assumptions. For a p-dimensional random vector Y , its Orlicz norm

is defined by ‖Y‖ψ2 = supt∈Rp:‖t‖2=1 inf{s > 0 : E[e(Zt t)/s2 ≤ 2]}. Throughout the paper, we
will assume that X follows a sub-Gaussian distribution. Specifically, we use the following.

ASSUMPTION 1 (Sub-Gaussian distributions). The exists L > 0 such that the random
vector �−1/2X satisfies ‖�−1/2X‖ψ2 ≤ L.

Our class of distributions includes, in particular, that of bounded distributions, which may
be of independent interest, as example (ii) illustrates. We will therefore also specialize some
of our results to this case, in which case we will use directly:

http://github.com/martinroyer/pecok/
http://CRAN.R-project.org/package=cord
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ASSUMPTION 1-BIS (Bounded distributions). There exists M > 0 such that
maxi=1,...,p |Xi | ≤ M almost surely.

Gaussian distributions satisfy Assumption 1 with L = 1. A bounded distribution is also
sub-Gaussian, but the corresponding quantity L can be much larger than M , and sharper
results can be obtained if Assumption 1-bis holds.

2. Cluster identifiability in G-block covariance models. To keep the presentation fo-
cused, we consider in Sections 2–5 the model (1.1) with � diagonal. We treat the case cor-
responding to a diagonally dominant � in Section 6 below. In the sequel, it is assumed that
p > 2.

We observe that if the decomposition (1.1) holds for a partition G, it also holds for any
subpartition of G. It is natural therefore to seek the smallest (coarsest) of such partitions,
that is the partition with the least number of groups for which (1.1) holds. Since the parti-
tion ordering is a partial order, the smallest partition is not necessarily unique. However, the
following lemma shows that uniqueness is guaranteed for our model class.

LEMMA 2.1. Consider any covariance matrix �:

(a) There exists a unique minimal partition G∗ such that � = ACAt + � for some diag-
onal matrix �, some membership matrix A associated to G∗ and some matrix C.

(b) The partition G∗ is given by the equivalence classes of the relation

(2.1) a ≡ b if and only if COD(a, b) := max
c �=a,b

|�ac − �bc| = 0.

PROOF. If decomposition � = ACAt + � holds with A related to a partition G, then
we have COD(a, b) = 0 for any a, b belonging to the same group of G. Hence, each group
Gk of G is included in one of the equivalence class of ≡. As a consequence, G is a finer
partition than G∗ as defined in (b). Hence, G∗ is the (unique) minimal partition such that
decomposition � = ACAt + � holds. �

As a consequence, the partition G∗ is well defined and is identifiable. Next we discuss
the definitions of MCOD and 	 metrics. For any partition G, we let MCOD(�,G) :=
min

a
G
�b

COD(a, b), where we recall that the notation a
G
� b means that a and b are not in a

same group of the partition G. By definition of G∗, we notice that MCOD(�,G∗) > 0 and
the next proposition shows that G∗ is characterized by this property.

PROPOSITION 2.2. Let G be any partition such that MCOD(�,G) > 0 and the decom-
position � = ACAt + � holds with A associated to G. Then G = G∗.

The proofs of this proposition and the following corollary are given in Section B of
the Supplementary Material [14]. In what follows, we use the notation MCOD(�) for
MCOD(�,G∗).

In general, without further restrictions on the model parameters, the decomposition � =
ACAt + � with A relative to G∗ is not unique. If, for instance � is the identity matrix I ,
then G∗ is the complete partition (with p groups) and the decomposition (1.1) holds for any
(C,�) = (λI, (1 − λ)I) with λ ∈ R.

Recall that m∗ := min |G∗
k | stands for the size of the smallest cluster. If we assume that

m∗ > 1 (no singleton), then � is uniquely defined. Besides, the matrix C in (1.1) is only
defined up to a permutation of its rows and columns. In the sequel, we denote C∗ any of
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these matrices C. When the partition contains singletons (m∗ = 1), the matrix decomposition
� = ACAt +� is made unique (up to a permutation of row and columns of C) by putting the
additional constraint that the entries �aa corresponding to singletons are equal to 0. Since the
definition of 	(C) is invariant with respect to permutation of rows and columns, this implies
that 	(C∗) is well defined for any covariance matrix �.

For arbitrary �, 	(C∗) is not necessarily positive. Nevertheless, if 	(C∗) > 0, then G∗ is
characterized by this property.

COROLLARY 2.3. Let G be a partition such that m = mink |Gk| ≥ 2, the decomposition
� = ACAt + � holds with A associated to G and 	(C) > 0. Then G = G∗.

As pointed in (1.7), in the latent model (1.2), 	(C∗) is equal to the square of the minimal
L2-norm between two latent variables. So, in this case, the condition 	(C∗) > 0 simply
requires that all latent variables are distinct.

3. Minimax thresholds on cluster separation for perfect recovery. Before developing
variable clustering procedures, we begin by assessing the limits of the size of each of the two
cluster separation metrics below which no algorithm can be expected to recover the clusters
perfectly. We denote by m∗ = mink |G∗

k | the size of the smallest cluster of the target partition
G∗ defined above. For 1 ≤ m ≤ p/2 and η > 0, we define M(m,η) as the set of covariance
matrices � fulfilling MCOD(�) > η|�|∞ and whose associated partition G∗ has groups of
equal size m∗ ≥ m. Similarly, for τ > 0, we define D(m, τ) as the set of covariance matrices
� fulfilling 	(C∗) > τ |�|∞ and whose associated partition G∗ has groups of equal size
m∗ ≥ m. We use the notation P� to refer to the normal distribution with covariance �.

THEOREM 3.1. There exists a positive constant c1 such that, for any 1 ≤ m ≤ p/3 and
any η such that

(3.1) 0 ≤ η < η∗ := c1

√
log(p)

n
,

we have infĜ sup�∈M(m,η) P�(Ĝ �= G∗) ≥ 1/7, where the infimum is taken over all possible
estimators.

When 2 ≤ m = p/2, the same result holds but with the Condition (3.1) replaced by

(3.2) 0 ≤ η < η∗ := c1

[√
log(p)

np
∨ log(p)

n

]
.

We also have the following.

THEOREM 3.2. There exist positive constants c1–c3 such that the following holds for
any 2 ≤ m ≤ p/2. For any τ such that

(3.3) 0 ≤ τ < τ∗ := c1

[√
log(p)

n(m − 1)
∨ log(p)

n

]
,

then infĜ sup�∈D(m,τ) P�[Ĝ �= G∗] ≥ 1/7, where the infimum is taken over all estimators.
Conversely, there exists a procedure Ĝ satisfying sup�∈D(m,τ)P�[Ĝ �= G∗] ≤ c3/p for

any τ such that

τ > τ ∗ := c2

[√
log(p)

n(m − 1)
∨ log(p)

n

]
.
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Theorems 3.2 and 3.1 show that if either metric falls below the thresholds in (3.3) and (3.1)
or (3.2), respectively, the estimated partition Ĝ, irrespective of the method of estimation,
cannot achieve perfect recovery with high probability uniformly over the set M(m,η) or
D(m, τ). The proofs are given in Section C of the Supplementary Material [14]. We note
that the 	(C∗) minimax threshold takes into account the size m∗ of the smallest cluster and,
therefore, the required cluster separation becomes smaller for large clusters. This is not the
case for the second metric, as soon as there are at least 3 groups. The proof of (3.1) provides
an example where we have K = 3 clusters, that are very large, of size m∗ = p/3 each, and
where the MCOD(�) threshold does not decrease with m∗.

Theorem 3.2 also provides a matching upper bound for the minimax threshold. Unfor-
tunately, the procedure achieving this bound has an exponential computational complexity
(see Section C.3 in the Supplementary Material [14] for further details and Section 5 for a
near-minimax optimal algorithm with polynomial computational complexity).

4. COD for variable clustering.

4.1. COD procedure. We begin with a procedure that can be viewed as natural for model
(1.1). It is based on the following intuition. Two indices a and b belong to the same cluster of
G∗, if and only if COD(a, b) = 0, with COD defined in (2.1). Equivalently, a and b belong
to the same cluster when

sCOD(a, b) =: max
c �=a,b

|cov(Xa − Xb,Xc)|√
var(Xb − Xa)var(Xc)

= max
c �=a,b

∣∣cor(Xa − Xb,Xc)
∣∣= 0,

where sCOD stands for scaled COvariance Differences. In the following, we work with this
quantity, as it is scale invariant. It is natural to place a and b in the same cluster when the
estimator ŝCOD(a, b) is below a certain threshold, where

(4.1)

ŝCOD(a, b) := max
c �=a,b

∣∣ĉor(Xa − Xb,Xc)
∣∣

= max
c �=a,b

∣∣∣∣ �̂ac − �̂bc√
(�̂aa + �̂bb − 2�̂ab)�̂cc

∣∣∣∣.
We estimate the partition Ĝ according to the simple COD algorithm explained below. The

algorithm does not require as input the specification of the number K of groups, which is
automatically estimated by our procedure. Step 3(c) of the algorithm is called the “or“ rule,
and can be replaced with the “and” rule below, without changing the theoretical properties of
our algorithm,

Ĝl = {j ∈ S : ŝCOD(al, j) ∨ ŝCOD(bl, j) ≤ α
}
.

The numerical performance of these two rules are also very close through simulation studies,
same as we reported on a related COD procedure on correlations [13]. Due to these small
differences, we will focus on the “or” rule for the sake of space. The algorithmic complexity
for computing �̂ is O(p2n) and the complexity of COD is O(p3), so the overall complexity
of our estimation procedure is O(p2(p ∨ n)). The procedure is also valid when � has very
small off-diagonal entries, and the results are presented in Section 6.

THE COD ALGORITHM.

• Input: �̂ and α > 0
• Initialization: S = {1, . . . , p} and l = 0
• Repeat: while S �= ∅
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1. l ← l + 1
2. If |S| = 1 Then Ĝl = S

3. If |S| > 1 Then
(a) (al, bl) = argmina,b∈S,a �=b ŝCOD(a, b)

(b) If ŝCOD(al, bl) > α Then Ĝl = {al}
Else Ĝl = {j ∈ S : ŝCOD(al, j) ∧ ŝCOD(bl, j) ≤ α}

4. S ← S \ Ĝl

• Output: the partition Ĝ = (Ĝl)l=1,...,k

4.2. Perfect cluster recovery with COD for minimax optimal MCOD(�) cluster sepa-
ration. Theorem 4.1 shows that the partition Ĝ produced by the COD algorithm has the
property that Ĝ = G∗, with high probability, as soon as the separation MCOD(�) between
clusters exceeds a constant times the threshold (3.1) of Theorem 3.1 of the previous section.

THEOREM 4.1. Under the distributional Assumption 1, there exist numerical constants
c1, c2 > 0 such that, if

α ≥ c1L
2

√
log(p)

n

and MCOD(�) > 3α|�|∞, then we have exact cluster recovery with probability 1 − c2/p.

We recall that for Gaussian data the constant L = 1. The proof is given in Section D.1 of
the Supplementary Material [14].

We observe that while the COD algorithm succeeds to recover G∗ at the minimax separa-
tion rate (3.1) when K ≥ 3, it does not offer guaranties at the minimax separation rate (3.2)
when K = 2. In this last case (K = 2), we observe that

1

2
	
(
C∗)≤ MCOD(�) ≤ 	

(
C∗),

so the metric MCOD(�) is equivalent to 	(C∗) and we refer to the Section 5 for an optimal
algorithm.

4.3. A data-driven calibration procedure for COD. The performance of the COD algo-
rithm depends on the value of the threshold parameter α. Whereas Theorem 4.1 ensures that a
good value for α is the order of

√
logp/n, its optimal value depends on the actual distribution

(at least through the sub-Gaussian norm) and is unknown to the statistician. We propose be-
low a new, fully data dependent, criterion for selecting α, and the corresponding partition Ĝ,
from a set of candidate partitions G. This criterion is based on data splitting. Let us consider
two independent subsamples of the original sample, D1 and D1, each of size n/2.

We denote by Ĝ(1) a collection of partitions computed from D1, for instance via the COD
algorithm with a varying threshold α. For any a < b, we use Di , i = 1,2, to calculate, re-
spectively,

	̂
(i)
ab =: [Ĉor

(i)
(Xa − Xb,Xc)

]
c �=a,b, i = 1,2.

Since 	ab := [Cor(Xa − Xb,Xc)]c �=a,b equals zero if and only if a
G∼ b, we want to select

a partition G such that 	̂
(2)
ab 1

a
G
�b

is a good predictor of 	ab. To implement this principle,

it remains to evaluate 	ab independently of 	̂
(2)
ab . For this evaluation, we propose to reuse
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sample D1 which has already been used to build the family of partitions Ĝ(1). More precisely,
we select Ĝ ∈ Ĝ(1) by minimizing the data-splitting criterion H:

Ĝ ∈ argmin
G∈Ĝ(1)

H(G) with H(G) =: ∑
a<b

[∣∣	̂(2)
ab 1

a
G
�b

− 	̂
(1)
ab

∣∣2∞].
The following proposition assesses the performance of Ĝ. We need the following addi-

tional assumption.

(P1) If Cor(Xa − Xb,Xc) = 0, then E Ĉor(Xa − Xb,Xc) = 0.

In general, the sample correlation is not an unbiased estimator of the population level cor-
relation. Still, (P1) is satisfied when the data are normally distributed or in a latent model
(1.2) when the noise variables Ea have a symmetric distribution. The next proposition pro-
vides guaranties for criterion H, averaged over D2, and denoted by E(2)[H(G)]. The proof is
given in Section D.2 of the Supplementary Material [14].

PROPOSITION 4.2. Assume that the distributional Assumption 1 and (P1) hold. Then
there exists a constant c1 > 0 such that, when MCOD(�) > c1|�|∞L2√log(p)/n, we have

(4.2) E(2)[H(G∗)]≤ min
G∈Ĝ(1)

E(2)[H(G)
]
,

both with probability larger than 1 − 4/p and in expectation with respect to P(1).

Under the condition MCOD(�) > c1|�|∞L2√log(p)/n, Theorem 4.1 ensures that G∗
belongs to Ĝ(1) with high probability, whereas (4.2) suggests that the criterion is minimized
at G∗.

If we consider a data-splitting algorithm based on ĈOD(a, b) instead of ŝCOD(a, b), then
we can obtain a counterpart of Proposition 4.2 without requiring the additional assumption
(P1). Still, we favor the procedure based on ŝCOD(a, b) mainly for its scale-invariance prop-
erty.

5. Penalized convex K-means: PECOK.

5.1. PECOK algorithm. Motivated by the fact that the COD algorithm is minimax op-
timal with respect to the MCOD(�) metric for K ≥ 3, but not necessarily with respect to
the 	(C∗) metric (unless the size of the smallest cluster is constant), we propose below an
alternative procedure, that adapts to this metric. Our second method is a natural extension of
one of the most popular clustering strategies. When we view the G-block covariance model
as arising via the latent factor representation in (i) in the Introduction, the canonical clus-
tering approach would be via the K-means algorithm [30], which is NP-hard [5]. Following
Peng and Wei [34], we consider a convex relaxation of it, which is computationally feasible
in polynomial time. We argue below that, for estimating clusters given by (1.1), one needs to
further tailor it to our model. The statistical analysis of the modified procedure is the first to
establish consistency of variable clustering via K-means type procedures, to the best of our
knowledge.

The estimator offered by the standard K-means algorithm, with the number K of groups
of G∗ known, is

(5.1) Ĝ ∈ argmin
G

crit(X,G) with crit(X,G) =
p∑

a=1

min
k=1,...,K

‖X:a − X̄Gk
‖2,

and X̄Gk
= |Gk|−1∑

a∈Gk
X:a .
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For a partition G, let us introduce the corresponding partnership matrix B by

(5.2) Bab =
⎧⎪⎨⎪⎩

1

|Gk| if a and b are in the same group Gk ,

0 if a and b are in a different groups.

We observe that Bab > 0 if and only if a
G∼ b. In particular, there is a one-to-one corre-

spondence between partitions G and their corresponding partnership matrices. It is shown in
Peng and Wei [34] that the collection of such matrices B is described by the collection O of
orthogonal projectors fulfilling tr(B) = K , B1 = 1 and Bab ≥ 0 for all a, b.

Theorem 2.2 in Peng and Wei [34] shows that solving the K-means problem is equivalent
to finding the global maximum

(5.3) B̄ = argmax
B∈O

〈�̂,B〉,

and then recovering Ĝ from B̄ .
The set of orthogonal projectors is not convex, so, following Peng and Wei [34], we con-

sider a convex relaxation C of O obtained by relaxing the condition “B orthogonal projector,”
by “B positive semidefinite,” leading to

(5.4) C :=

⎧⎪⎪⎨⎪⎪⎩B ∈ Rp×p :
• B � 0 (symmetric and positive semidefinite)
• ∑a Bab = 1, ∀b

• Bab ≥ 0, ∀a, b

• tr(B) = K

⎫⎪⎪⎬⎪⎪⎭ .

Thus, the (uncorrected) convex relaxation of K-means is equivalent with finding

(5.5) B̃ = argmax
B∈C

〈�̂,B〉.

To assess the relevance of this estimator, we first study its behavior at the population level,
when �̂ is replaced by � in (5.5). Indeed, if the minimizer of our criterion does not recover
the true partition at the population level, we cannot expect it to be consistent, even in a large
sample asymptotic context (fixed p, n goes to infinity). We recall that |�|V := maxa �aa −
mina �aa .

PROPOSITION 5.1. Assume that 	(C∗) > 2|�|V /m∗. Then B∗ = argmaxB∈O〈�,B〉. If
	(C∗) > 7|�|V /m∗, then B∗ = argmaxB∈C〈�,B〉.

For 	(C∗) large enough, the population version of convexified K-means recovers B∗. The
next proposition illustrates that the condition 	(C∗) > 2|�|V /m∗ for population K-means is
in fact necessary.

PROPOSITION 5.2. Consider the model (1.1) with

C∗ =
⎡⎣α 0 0

0 β β − τ

0 β − τ β

⎤⎦ , � =
⎡⎣γ+ 0 0

0 γ− 0
0 0 γ−

⎤⎦ and

∣∣G∗
1
∣∣= ∣∣G∗

2
∣∣= ∣∣G∗

3
∣∣= m∗.

The population maximizer B� = argmaxB∈O〈�,B〉 is not equal to B∗ as soon as 2τ =
	(C∗) < 2

m∗ |�|V .
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The two propositions above are proved in Section A.1 in the Supplementary Material [14].
As a consequence, when � is not proportional to the identity matrix, the population minimiz-
ers based on K-means and convexified K-means do not necessary recover the true partition
even when the “within-between group” covariance gap is strictly positive. This undesirable
behavior of K-means is not completely unexpected as K-means is a quantization algorithm
which aims to find clusters of similar width, instead of “homogeneous” clusters. Hence, we
need to modify it for our purpose.

This leads us to suggesting a population level correction in Proposition 5.1. Indeed, as a
direct Corollary of Proposition 5.1, we have

B∗ = argmin
B∈C

〈� − �,B〉,

as long as 	(C∗) > 0. This suggests the following PEnalized COnvex K-means (PECOK)
algorithm, in three steps. The main step 2 produces an estimator B̂ of B from which we
derive the estimated partition Ĝ. We summarize this below.

THE PECOK ALGORITHM.

Step 1. Estimate � by �̂.

Step 2. Estimate B∗ by B̂ = argmax
B∈C

(〈�̂,B〉 − 〈�̂,B〉).
Step 3. Estimate G∗ by applying a clustering algorithm to the columns of B̂.

The required inputs for Step 2 of our algorithm are: (i) �̂, the sample covariance matrix;
(ii) �̂, the estimator produced at Step 1; and (iii) K , the number of groups. Our only require-
ment on the clustering algorithm applied in Step 3 is that it succeeds to recover the partition
G∗ when applied to true partnership matrix B∗. The standard K-means algorithm [30] seeded
with K distinct centroids, kmeans++ [4] or any approximate K-means as defined in (5.13) in
Section 5.4, fulfill this property.

We view the term 〈�̂,B〉 as a penalty term on B , with data dependent weights �̂. There-
fore, the construction of an accurate estimator �̂ of � is a crucial step for guaranteeing the
statistical optimality of the PECOK estimator.

5.2. Construction of �̂. Estimating � before estimating the partition itself is a nontrivial
task, and needs to be done with care. We explain our estimation below and analyze it in
Proposition A.10 in Section A.5. We show that this estimator of � is appropriate whenever
� is a diagonal matrix (or diagonally dominant, with small off-diagonal entries). For any
a, b ∈ [p], define

(5.6) V (a, b) := max
c,d∈[p]\{a,b}

|(�̂ac − �̂ad) − (�̂bc − �̂bd)|√
�̂cc + �̂dd − 2�̂cd

,

with the convention 0/0 = 0. Guided by the block structure of �, we define

b1(a) := argmin
b∈[p]\{a}

V (a, b) and b2(a) := argmin
b∈[p]\{a,b1(a)}

V (a, b),

to be two elements ”close” to a, that is, two indices b1 = b1(a) and b2 = b2(a) such that the
empirical covariance difference �̂bic − �̂bid , i = 1,2, is most similar to �̂ac − �̂ad , for all
variables c and d not equal to a or bi , i = 1,2. It is expected that b1(a) and b2(a) either
belong to the same group as a, or belong to some ”close” groups. Then our estimator �̂ is a
diagonal matrix, defined by

(5.7) �̂aa = �̂aa + �̂b1(a)b2(a) − �̂ab1(a) − �̂ab2(a) for a = 1, . . . , p.
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Intuitively, �̂aa should be close to �aa + �b1(a)b2(a) − �ab1(a) − �ab2(a), which is equal to
�aa in the favorable event where both b1(a) and b2(a) belong to the same group as a.

In general, b1(a) and b2(a) cannot be guaranteed to belong to the same group as a. Never-
theless, these two surrogates b1(a) and b2(a) are close enough to a so that |�̂aa − �aa| to be
at most of the order of |�|∞√

log(p)/n in �∞-norm, as shown in Proposition A.10 in Sec-
tion A.5 of the Supplementary Material [14]. A slightly simpler estimator of � was proposed
in Appendix A of a previous version of this work [15], but a bound on |�̂aa − �aa| for that
estimator contains a factor proportional to |�|∞, which is not desirable, and can be avoided
by (5.7). In the next subsection, we show that our proposed �̂ leads to perfect recovery of
G∗, via PECOK, under minimal separation conditions.

Note that PECOK requires the knowledge of the true number K of groups. When the
number K of groups itself is unknown, we can modify the PECOK criterion by adding a
penalty term as explained in a previous version of our work [15], Section 4. Alternatively,
we propose in Section G of Supplementary Material [14] selection via a simple data-splitting
procedure.

5.3. Perfect cluster recovery with PECOK for near-minimax 	-cluster separation. We
show in this section that the PECOK estimator recovers the clusters exactly, with high prob-
ability, at a near-minimax separation rate with respect to the 	(C∗) metric.

THEOREM 5.3. There exist c1, c2, c3 three positive constants such that the following
holds. Let �̂ be any estimator of �, such that |�̂ − �|V ≤ δn,p with probability 1 − c1/p.
Then, under Assumption 1, and when L4 log(p) ≤ c3n and

(5.8) 	
(
C∗)≥ cL

[
‖�‖∞

{√
logp

m∗n
+
√

p

nm∗2 + log(p)

n
+ p

nm∗
}

+ δn,p

m∗
]
,

then B̂ = B∗ and Ĝ = G∗, with probability higher than 1 − c1/p. Here, cL is a positive
constant that only depends on L in Assumption 1. In particular, if �̂ is the estimator (5.7),
the same conclusion holds with probability higher than 1 − c2/p when

(5.9) 	
(
C∗)≥ cL‖�‖∞

{√
logp

m∗n
+
√

p

nm∗2 + log(p)

n
+ p

nm∗
}
.

The proof is given in Section A.3 of the Supplementary Material [14].

REMARK 1. We left the term δn,p explicit in (5.8) in order to make clear how the es-
timation of � affects the cluster separation 	(C∗) metric. Without a correction (i.e., taking
�̂ = 0), the term δn,p/m∗ equals |�|V /m∗ which is nonzero (and does not decrease in a high-
sample asymptotic) unless � has equal diagonal entries. This phenomenon is consistent with
the population analysis in the previous subsection. Display (5.9) shows that the separation
condition can be much decreased with the correction. In particular, for balanced clusters, that
is when m∗ = p

K
, exact recovery is guaranteed when

(5.10) 	
(
C∗)≥ cL

[√
K ∨ logp

m∗n
+ K ∨ logp

n

]
,

for an appropriate constant cL > 0. In view of Theorem 3.2, when m∗ ≥ cp/ log(p) the rate
is minimax optimal, since in this case K = p/m∗ = O(log(p)). When m∗ = o(p/ log(p)),
the number K of clusters grows faster than log(p), and we possibly lose a factor K/ log(p)

relative to the optimal rate.
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As discussed in the Introduction, this gap is possibly due to a computational barrier and
we refer to [16] for a discussion in the related stochastic block model.

Bounded variables X also follow a sub-Gaussian distribution. Nevertheless, the corre-
sponding sub-Gaussian norm L may be large and Theorem 5.3 can sometimes be improved,
as in Theorem 5.4 below, proved in Section A.3 of the Supplementary Material [14].

THEOREM 5.4. There exist c1, c2, c3 three positive constants such that the following
holds. Let �̂ be any estimator of �, such that |�̂ − �|V ≤ δn,p with probability 1 − c1/p.
Then, under Assumption 1-bis, and

(5.11) 	
(
C∗)≥ c2

[
M‖�‖1/2∞

√
p log(p)

nm∗2 + M2 p log(p)

nm∗ + δn,p

m∗
]
.

Then B̂ = B∗ and Ĝ = G∗, with probability higher than 1 − c1/p.

When we choose �̂ as in (5.7), the term δn,p/m∗ can be simplified as under Assump-
tion 1; see Proposition A.10 in Section A.5 of the Supplementary Material [14]. For balanced
clusters, m∗ = p

K
, Condition (5.11) can be simplified in

	
(
C∗)≥ c2

[
M‖�‖1/2∞

√
K log(p)

nm∗ + M2 K log(p)

n
+ δn,p

m∗
]
.

In comparison to (5.10), the condition does no longer depend on the sub-Gaussian norm L,
but the term K ∨ log(p) has been replaced by K log(p).

REMARK 2. For the Ising block model (1.3) with K balanced groups, we have M = 1
and p = m∗K , C∗ = (ωin − ωout)IK + ωoutJ and � = (1 − ωin)IK . As a consequence, no
diagonal correction is needed, that is we can take �̂ = 0, and since |�|V = 0, we have δn,p =
0. Then, for K balanced groups, condition (5.11) simplifies to

(ωin − ωout)� K

√
log(p)

np
+ K log(p)

n
.

In the specific case K = 2, we recover (up to numerical multiplicative constants) the optimal
rate proved in [10]. Our procedure and analysis provide a generalization of these results, as
they are valid for general K and Theorem 5.4 also allows for unbalanced clusters.

5.4. A comparison between PECOK and spectral clustering. In this section, we dis-
cuss connections between the PECOK algorithm introduced above and spectral clustering,
a method that has become popular in network clustering.

First we recall the premise of spectral clustering, adapted to our context. For G∗-block
covariance models as (1.1), we have � − � = AC∗At . Let U be the p × K matrix collecting
the K leading eigenvectors of � − �. It has been shown (see, e.g., Lemma 2.1 in Lei and
Rinaldo [28]) that a and b belong to the same cluster if and only if Ua: = Ub: and if and only
if [UUt ]a: = [UUt ]b:. When used for variable clustering, uncorrected spectral clustering
consists in applying a clustering algorithm, such as K-means, on the rows of the p × K-
matrix obtained by retaining the K leading eigenvectors of �̂.

SC ALGORITHM.

1. Compute V̂ , the matrix of the K leading eigenvectors of �̂

2. Estimate G∗ by applying a (rotation invariant) clustering method to the rows of V̂ .
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Arguing as in Peng and Wei [34], we have the following.

LEMMA 5.5. SC algorithm is equivalent to the following algorithm:

Step 1. Find B = argmax{〈�̂,B〉 : tr(B) = K,I � B � 0}.
Step 2. Estimate G∗ by applying a (rotation invariant) clustering method to the rows of B .

The connection between (unpenalized) PECOK and spectral clustering now becomes clear.
The (unpenalized) PECOK estimator B̃ defined in (5.5) involves the calculation of

(5.12) B̃ = argmax
B

{〈�̂,B〉 : B1 = 1,Bab ≥ 0, tr(B) = K,B � 0
}
.

Since the matrices B involved in (5.12) are doubly stochastic, their eigenvalues are smaller
than 1, and hence (5.12) is equivalent to B̃ = argmaxB{〈�̂,B〉 : B1 = 1,Bab ≥ 0, tr(B) =
K,I � B � 0}. Note then that B can be viewed as a less constrained version of B̃ , in which
C is replaced by C = {B : tr(B) = K,I � B � 0}, where we have dropped the p(p + 1)/2
constraints given by B1 = 1, and Bab ≥ 0. The proof of Lemma 5.5 shows that B = V̂ V̂ t ,
so, contrary to B̂ , the estimator B is (almost surely) never equal to B∗. Below, we adapt the
arguments of [28] in order to provide some guarantees for a corrected version of spectral
clustering.

In view of this connection between spectral clustering and unpenalized PECOK and of
the fact that the population justification of spectral clustering deals with the spectral decom-
position of � − �, we propose the following corrected version of the algorithm, based on
�̃ := �̂ − �̂.

CSC ALGORITHM.

1. Compute Û , the matrix of the K leading eigenvectors of �̃ := �̂ − �̂

2. Estimate G∗ by clustering the rows of Û , via an η-approximation of K-means (5.13).

For η > 1, an η-approximation of K-means is a clustering algorithm producing a partition
Ĝ such that

(5.13) crit
(
Û t , Ĝ

)≤ η min
G

crit
(
Û t ,G

)
,

with crit(·, ·) the K-means criterion (5.1). Although solving K-means is NP-Hard [5], there
exist polynomial time approximate K-means algorithms; see Kumar et al. [26]. As a conse-
quence of the above discussion, the first step of CSC can be interpreted as a relaxation of the
program associated to the PECOK estimator B̂ .

To simplify the presentation of the results for CSC procedure, we assume in the follow-
ing that all the groups have the same size |G∗

1| = · · · = |G∗
K | = m∗ = p/K . We emphasize

that this information is not required by either PECOK or CSC, or in the proof of Proposi-
tion 5.6 below. We only use it here for simplicity. We denote by SK the set of permutations
on {1, . . . ,K} and we denote by

L
(
Ĝ,G∗)= min

σ∈SK

K∑
k=1

|G∗
k \ Ĝσ(k)|

m∗

the sum of the ratios of miss-assigned variables with indices in G∗
k . In the previous sections,

we studied perfect recovery of G∗, which would correspond to L(Ĝ,G∗) = 0. We give below
conditions under which L(Ĝ,G∗) ≤ ρ, for an appropriate quantity ρ < 1. We begin with a
general theorem pertaining to partial partition recovery by CSC, under a “signal-to-noise
ratio” involving the smallest eigenvalue λK(C∗) of C∗.
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PROPOSITION 5.6. Let Re(�) = tr(�)/‖�‖op denote the effective rank of �. There exist
cη,L > 0 only depending on η and L and a numerical constant c1 such that the following holds
under Assumption 1. For any 0 < ρ < 1, if

(5.14) λK

(
C∗)≥ cη,L

√
K‖�‖op

m∗√ρ

√
Re(�) ∨ log(p)

n
,

then L(Ĝ,G∗) ≤ ρ, with probability larger than 1 − c1/p.

The proof extends the arguments of [28], initially developed for clustering procedures in
stochastic block models, to our context. Specifically, we relate the error L(Ĝ,G∗) to the
noise level, quantified in this problem by ‖�̃ − AC∗At‖op. We then employ the results of
[24] to show that this operator norm can be controlled, with high probability, which leads to
the conclusion of the theorem.

As n goes to infinity, the right-hand side of Condition (5.14) goes to zero, and CSC is
therefore consistent in a large sample asymptotic. In contrast, we emphasize that (uncor-
rected) SC algorithm is not consistent as can be shown by a population analysis similar to
that of Proposition 5.2.

We observe that 	(C∗) ≥ 2λK(C∗), so we can compare the lower bound (5.14) on λK(C∗)
to the lower-bound (5.10) on 	(C∗). To further facilitate the comparison between CSC and
PECOK, we discuss both the conditions and the conclusion of this theorem in the simple
setting where C∗ = τIK and � = Ip . Then the cluster separation measures coincide up to a
factor 2, 	(C∗) = 2λK(C∗) = 2τ .

COROLLARY 5.7 (Illustrative example: C∗ = τIK and � = Ip). There exist three posi-
tive numerical constants cη,L, c′

η,L and c3 such that the following holds under Assumption 1.
For any 0 < ρ < 1, if

(5.15) ρ ≥ cη,L

[
K2

n
+ K log(p)

n

]
and τ ≥ c′

η,L

[
K2

ρn
∨ K√

ρnm∗
]
,

then L(Ĝ,G∗) ≤ ρ, with probability larger than 1 − c3/p.

Recall that Theorem 5.3 above states that when Ĝ is obtained via the PECOK algorithm,

and if τ �
√

K∨logp
m∗n + log(p)∨K

n
, then L(Ĝ,G∗) = 0, or equivalently, Ĝ = G∗, with high

probability. We can therefore provide the following comparison (we refer to Section G of the
Supplementary Material [14] for a numerical comparison):

• When τ �
√

K∨logp
m∗n + log(p)∨K

n
, and under the additional condition that n � (K ∨

log(p))2/K , CSC algorithm satisfies L(Ĝ,G∗) ≤ K2/(K ∨ log(p)). So, for K =
o(log(p)) and for a large enough sample size n � (log(p))2/K , the fraction of misclassi-

fied variables by CSC is vanishing as O(K/ log(p)) for τ �
√

logp
m∗n + log(p)

n
. This guaranty

is slightly weaker than for PECOK which ensures exact recovery in this setting. This
discrepancy may be an artifact of the proof technique. Very recent works [1, 31] (released
during the reviewing process of this paper) present reconstruction error bounds tighter than
those of [28], for (variants of) spectral clustering, when applied to two parameter SBMs,
for network data, not the type of data analyzed in this work.
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• When we move away from the case C∗ = τIK , the guaranties for CSC can degenerate.
For instance, when � = I and C∗ = τIK + αJ , with J being the matrix with all entries
equal to one, as in the Ising block model discussed on page 126. Notice that in this case
we continue to have 	(C∗) = 2λK(C∗) = 2τ . Then, for a given, fixed, value of ρ and K

fixed, condition (5.14) requires a cluster separation at least

τ � α
√

log(p)√
nρ

,

which is independent of m∗, unlike the condition τ �
√

K∨logp
m∗n + log(p)∨K

n
for PECOK.

This unpleasant feature is induced by the inflation of ‖�̃ − AC∗At‖op with α. Again,
this weakness in the guarantees may be an artifact of the proof, which relies on the Davis–
Kahan inequality for controlling the alignment between the sample eigenvectors associated
with the K largest eigenvalues and their population counterpart.

All the results of this section are proved in Section E of the Supplementary Material [14].

6. Approximate G-block covariance models. In the previous sections, we have proved
that under some separation conditions, COD and PECOK procedures are able to exactly
recover the partition G∗. However, in practical situations, the separation conditions may not
be met. Besides, if the entries of � have been modified by an infinitesimal perturbation, then
the corresponding partition G∗ would consist of p singletons.

As a consequence, it may be more realistic and more appealing from a practical point of
view to look for a partition G[K] with K < |G∗| groups such that � is close to a matrix of
the form ACAt + � where � is diagonal and A is associated to G[K]. This is equivalent
to considering a decomposition � = ACAt + � with � nondiagonal, where the nondiagonal
entries of � are small. In the sequence, we write R = � − Diag(�) for the matrix of the
off-diagonal elements of � and D = Diag(�) for the diagonal matrix given by the diagonal
of �.

In the next subsection, we discuss under which conditions the partition G[K] is identifiable
and then, we prove that COD and PECOK are able to recover these partitions.

6.1. Identifiability of approximate G-block covariance models. When � is allowed to
be not exactly equal to a diagonal matrix, we encounter a further identifiability issue, as a
generic matrix � may admit many decompositions � = ACAt +�. In fact, such a decompo-
sition holds for any membership matrix A and any matrix C if we define � = � − ACAt . So
we need to specify the kind of decomposition that we are looking for. For K being fixed, we
would like to consider the partition G with K clusters that maximizes the distance between
goups (e.g., MCOD(�,G)) while having the smallest possible noise term |R|∞. Unfortu-
nately, such a partition G does not necessarily exist and is not necessarily unique. Let us
illustrate this situation with a simple example.

EXAMPLE. Assume that � is given by

� =
⎡⎣2r 0 0

0 2r 0
0 0 2r

⎤⎦+ Ip,

with r > 0, with the convention that each entry corresponds to a block of size 2. Considering
partitions with 2 groups and allowing � to be nondiagonal, we can decompose � using
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different partitions. For instance,

� =
⎡⎣2r 0 0

0 r r

0 r r

⎤⎦
︸ ︷︷ ︸

=A1C1A
t
1

+
⎡⎣0 0 0

0 r −r

0 −r r

⎤⎦+ Ip

︸ ︷︷ ︸
=�1

=
⎡⎣r r 0

r r 0
0 0 2r

⎤⎦
︸ ︷︷ ︸

=A2C2A
t
2

+
⎡⎣ r −r 0
−r r 0
0 0 0

⎤⎦+ Ip

︸ ︷︷ ︸
=�2

.

Importantly, the two decompositions correspond to two different partitions G1 and G2 and
both decompositions have |Ri |∞ = r and MCOD(�,Gi) = 2r = 2|R|∞, for i = 1,2. In ad-
dition, no decomposition � = ACAt + D + R with associated partition in 2 groups, satisfies
MCOD(�,G) > 2r or |R|∞ < r . As a consequence, there is no satisfying way to define
a unique partition maximizing MCOD(�,G), while having |R|∞ as small as possible. We
show below that the cutoff MCOD(�,G) > 2|R|∞ is actually sufficient for partition identi-
fiability.

For this, let us define Pj (�,K), j = {1,2} as the set of quadruplets (A,C,D,R) such that
� = ACAt +D +R, with A a membership matrix associated to a partition G with K groups
with mink |GK | ≥ j , and D and R defined as above. Hence P1 corresponds to partitions
without restrictions on the minimum group size. For instance, singletons are allowed. In
contrast, P2 only contains partitions without singletons. We define

ρ1(�,K) = max
{
MCOD(�,G)/|R|∞ :

(A,C,D,R) ∈ P1(�,K) and G associated to A
}
,

ρ2(�,K) = max
{
	(C)/|R|∞ : (A,C,D,R) ∈ P2(�,K)

}
.

We view ρ1 and ρ2 as respective measures of “purity” of the block structure of �.

PROPOSITION 6.1. (i) Assume that ρ1(�,K) > 2. Then, there exists a unique parti-
tion G such that there exists a decomposition � = ACAt + �, with A associated to G and
MCOD(�,G) > 2|R|∞. We denote by G1[K] this partition.

(ii) Assume that ρ2(�,K) > 8. Then there exists a unique partition G with mink |Gk| ≥
2, such that there exists a decomposition � = ACAt +�, with A associated to G and 	(C) >

8|R|∞. We denote by G2[K] this partition.
(iii) In addition, if both ρ1(�,K) > 2 and ρ2(�,K) > 8, then G1[K] = G2[K].
The conditions ρ1(�,K) > 2 and ρ2(�,K) > 8 are minimal for defining uniquely the

partition G1[K]. For ρ1, this has been illustrated in the example above the proposition. For
ρ2, we provide a counter example when ρ2(�,K) = 8 in Section B.3 of the Supplementary
Material [14]. The proof of Proposition 6.1. is given in Section B.2 of [14].

The conclusion of Proposition 6.1 does essentially revert to that of Proposition 2.2 of
Section 2 as soon as |R|∞ is small enough respective to the cluster separation sizes. Denoting
K∗ the number of groups of G∗, we observe that G1[K∗] = G∗ and G2[K∗] = G∗ if m∗ ≥
2. Besides, ρ1(�,K) = ρ2(�,K) = 0 for K > K∗. For K < K∗ and when G1[K] (resp.,
G2[K]) are well defined, then the partition G1[K] (resp., G2[K]) is coarser than G∗. In other
words, G1[K] is derived from G∗ by merging groups G∗

k thereby increasing MCOD(�,G)

(resp., 	(C)) while requiring |R|∞ to be small enough.
We point out that, in general, there is no unique decomposition � = ACAt + � with A

associated to G2[K], even when mink |G2[K]k| ≥ 2. Actually, it can be possible to change
some entries of C and R, while keeping C + R, 	(C) and |R|∞ unchanged.
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6.2. The COD algorithm for approximate G-block covariance models. We show below
that the COD algorithm is still applicable if � has small departures from a block structure.
We set λmin(�) for the smallest eigenvalue of �.

THEOREM 6.2. Under the distributional Assumption 1, there exist numerical constants

c1, c2 > 0 such that the following holds for all α ≥ c1L
2
√

logp
n

. If, for some partition G and
decomposition � = ACAt + R + D, we have

(6.1) |R|∞ ≤ λmin(�)

2
√

2
α and MCOD(�,G) > 3α|�|∞,

then COD recovers G with probability higher than 1 − c2/p.

The proof is given in Section D.1 of the Supplementary Material [14]. If G satisfies the
assumptions of Theorem 6.2, then it follows from Proposition 6.1 that G = G1[K] for some
K > 0. First consider the situation where the tuning parameter α is chosen to be of the or-
der

√
log(p)/n. If MCOD(�,G∗) ≥ 3α|�|∞, then COD selects G∗ with high probability.

If MCOD(�,G∗) is smaller than this threshold, then no procedure is able to recover G∗
with high probability (Theorem 3.1). Nevertheless, COD is able to recover a coarser parti-
tion G1[K] whose corresponding MCOD metric MCOD(�,G) is higher than the threshold
3α|�|∞ and whose matrix R is small enough. For larger α, then COD recovers a coarser
partition G (corresponding to G1[K] with a smaller K) whose corresponding approximation
|R|∞ is allowed to be larger.

6.3. The PECOK algorithm for approximate G-block covariance models. In this sub-
section, we investigate the behavior of PECOK under the approximate G-block models. The
number K of groups being fixed, we assume that ρ2(�,K) > 8 so that G2[K] is well de-
fined. We shall prove that PECOK recovers G2[K] with high probability. By abusing the
notation, we denote in this subsection G∗ for the target partition G2[K], B∗ for the associ-
ated partnership matrix and (A,C∗,D,R) ∈ P2(�,K) any decomposition of � maximizing
	(C)/|R|∞.

Similar to Proposition 5.1, we first provide sufficient conditions on C∗ under which a
population version of PECOK can recover the true partition.

PROPOSITION 6.3. If, 	(C∗) >
7|D|V +2‖R‖op

m
+ 3|R|∞, then B∗ = argminB∈C〈�,B〉.

COROLLARY 6.4. If 	(C∗) > 3|R|∞ + 2‖R‖op
m

, then B∗ = argminB∈C〈� − D,B〉.
In contrast to the exact G-block model, the cluster distance 	(C∗) now needs to be larger

than |R|∞ for the population version to recover the true partition. The |R|∞ condition is fact
necessary as discussed in Section 6.1. In comparison to the necessary conditions discussed in
Section 6.1, there is an additional ‖R‖op/m term. The proofs are given in Section A.2 in the
Supplementary Material [14].

We now examine the behavior of PECOK when we specify the estimator �̂ to be as in (5.7).
Note that in this approximate block covariance setting, the diagonal estimator �̂ is in fact an
estimator of the diagonal matrix D. In order to derive deviation bounds for our estimator �̂,
we need the following diagonal dominance assumption.

ASSUMPTION 2 (diagonal dominance of �). The matrix � = D + R fulfills

(6.2) �aa ≥ 3 max
c:c �=a

|�ac|
(
or equivalently Daa ≥ 3 max

c:c �=a
|Rac|

)
.
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The next theorem states that PECOK estimator B̂ recovers the groups under similar con-
ditions to that of Theorem 5.3 if R is small enough. The proof is given in Section A.3 of the
Supplementary Material [14].

THEOREM 6.5. There exist c1, c2, cL, c′
L four positive constants such that the following

holds. Under Assumptions 1 and 2, and when L4 log(p) ≤ c1n and

(6.3)

|R|∞ +
√|R|∞|D|∞ + ‖R‖op

m

≤ cL‖�‖op

{√
logp

mn
+
√

p

nm2 + log(p)

n
+ p

nm

}
we have B̂ = B∗ and Ĝ = G∗, with probability higher than 1 − c2/p, as soon as

(6.4) 	
(
C∗)≥ c′

L

[
‖�‖op

{√
logp

mn
+
√

p

nm2 + log(p)

n
+ p

nm

}]
.

So, as a long as |R|∞ and ‖R‖op are small enough so that (6.3) are satisfied, PECOK
algorithm will correctly identify the target partition G∗ at the 	-(near) optimal minimax
level (6.4). A counterpart of Theorem 6.5 for Assumption 1-bis is provided in Section A.3 of
the Supplementary Material [14].

7. Data analysis. Using functional MRI data, [37] found that the human brain putative
areas are organized into clusters, sometimes referred to as networks or functional systems.
We use a publicly available fMRI data set to illustrate the clusters recovered by different
methods. The data set was originally published in [39] and is publicly available from Open
fMRI (https://openfmri.org/data-sets) under the accession number ds000007. We will focus
on analyzing two scan sessions from subject 1 under a visual-motor stop/go task (task 1).
Before performing the analysis, we follow the preprocessing steps suggested by [39], and we
follow [37] to subsample the whole brain data using p = 264 putative areas; see Section A.3
of the Supplementary Material [14] for details. This subject was also scanned in two separate
sessions, and each session yielded n = 180 samples for each putative area.

We apply our data-splitting approach described in Section 4.3 to these two-session data.
Using the first scan session data only, we first estimate Ĝ using COD and COD-CC on a
fine grid of α = c

√
log(p)/n where c = 0.5,0.6, . . . ,3. For a fair comparison, we set K in

PECOK to be the same as the resulting K’s found by COD. We then use the second session
data to evaluate the loss H(G) given in Section 4.3. Among our methods (COD, COD-CC

and PECOK), COD yields the smallest loss when K = 142. We thus first focus on illustrating
the COD clusters here. Table 2 lists the largest cluster of putative areas recovered by COD
and their functional classification based on prior knowledge. Most of these areas are classified
to be related to visual, motor and task functioning, which is consistent with the implication
of our experimental task that requires the subject to perform motor responses based on visual
stimuli. Figure 1(a) plots the locations of these coordinates on a standard brain template. It
shows that our COD cluster appears to come mostly from approximately symmetric locations
from the left and right hemisphere, though we do not enforce this brain function symmetry in
our algorithm. Note that the original coordinates in [37] are not sampled with exact symmetry
from both hemispheres of the brain, and thus we do not expect exact symmetric locations in
the resulting clusters based on these coordinates.

Because there are no gold standards for partitioning the brain, we follow common practice
and use a prediction criterion to further compare the clustering performance of different meth-

https://openfmri.org/data-sets
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TABLE 2
MNI coordinates (X, Y , Z, in mm) of the largest COD group and their functioning classification

X Y Z Function X Y Z Function

40 −72 14 visual −7 −21 65 motor
−28 −79 19 visual −7 −33 72 motor

20 −66 2 visual 13 −33 75 motor
29 −77 25 visual 10 −46 73 motor
37 −81 1 visual 36 −9 14 motor
47 10 33 task −53 −10 24 motor

−41 6 33 task −37 −29 −26 uncertain
38 43 15 task 52 −34 −27 uncertain

−41 −75 26 default −58 −26 −15 uncertain
8 48 −15 default −42 −60 −9 attention

22 39 39 default −11 26 25 saliency

ods. For a fair comparison, we also estimate Ĝ using K-means, HC and spectral clustering on
the same resulting K’s found by COD. The prediction criterion is as follows. We first com-
pute the covariance matrices Ŝ1 and Ŝ2 from the first and second session data respectively.
For a grouping estimate Ĝ, we use the following loss to evaluate its performance:

(7.1)
∥∥Ŝ2 − Υ (Ŝ1, Ĝ)

∥∥
F ,

where block averaging operator Υ (R,G) produces a G-block structured matrix based on Ĝ.
For any a ∈ Gk and b ∈ Gk′ , the output matrix entry [Υ (R,G)]ab is given by

[
Υ (R,G)

]
ab =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

|Gk|−1(|Gk| − 1
)−1 ∑

i,j∈Gk,i �=j

Rij if a �= b and k = k′,

|Gk|−1|Gk′ |−1
∑

i∈Gk,j∈Gk′
Rij if a �= b and k �= k′,

1 if a = b.

FIG. 1. (a) Plot of the coordinates of the largest COD cluster overplayed over a standard brain template. The
coordinates are shown as red balls. (b) Comparison of COD, COD-CC, PECOK, K-means, HC and SC using
the Frobenius prediction loss criterion (7.1) where the groups are estimated by these methods, respectively.
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In essence, this operator smooths over the matrix entries with indices in the same group, and
one may expect that such smoothing over variables in the true cluster will reduce the loss
(7.1) while smoothing over different clusters will increase the loss.

Figure 1(b) compares the prediction loss values under different group sizes for each
method. This shows that our data-splitting approach for COD indeed selects a value K = 142
that is immediately next to a slightly larger one (K = 206), the latter having the smallest pre-
diction loss, near the bottom plateau. However, the differences are almost negligible. This
suggests that our data-splitting criterion, which comes with theoretical guarantees, also pro-
vides good prediction performance in this real data example, while selecting a slightly smaller
K , as desired, since this makes the resulting clusters easier to describe and interpret.

Regardless of the choice of K or α, Figure 1(b) also shows that COD almost always
yields the smallest prediction loss for a wide range of K , while PECOK does slightly better
when K is between 5 and 10. Though COD-CC has large losses for medium or small K , its
performance is very close to the best performer COD near K = 146. Kmeans in this example
is the closest competing method, while the other two methods (HC and SC) yield larger losses
across the choices of K .

8. Discussion. In this section, we discuss some related models and give an overall rec-
ommendation on the usage of our methods.

8.1. Comparison with stochastic block model. The problem of variable clustering that
we consider in this work is fundamentally different from that of variable clustering from
network data. The latter, especially in the context of the Stochastic Block Model (SBM), has
received a large amount of attention over the past years, for instance [2, 16, 21, 27–29, 33].
The most important difference stems from the nature of the data: the data analyzed via the
SBM is a p × p binary matrix A, called the adjacency matrix, with entries assumed to have
been generated as independent Bernoulli random variables; its expected value is assumed to
have a block structure. In contrast, the data matrix X generated from a G-block covariance is
a n × p matrix with real entries, and rows viewed as i.i.d copies of a p-dimensional vector X

with mean zero and dependent entries. The covariance matrix � of X is assumed to have (up
to the diagonal) a block structure.

Need for a correction. Even though the analysis of the methods in our setting would differ
from the SBM setting, we could have applied available clustering procedures tailored for
SBMs to the empirical covariance matrix �̂ = XtX/n by treating it as some sort of weighted
adjacency matrix. It turns out that applying verbatim the spectral clustering procedure of Lei
and Rinaldo [28] or the SDP such as the ones in [3] would lead to poor results. The main
reason for this is that, in our setting, we need to correct both the spectral algorithm and
the SDP to recover the correct clusters (Section 5). Second, the SDPs studied in the SBM
context (such as those of [3]) do not handle properly groups with different and unknown
sizes, contrary to our SDP. To the best of our knowledge, our SDP (without correction) has
only been independently studied by Mixon et al. [32] in the context of Gaussian mixtures.

Analysis of the SDP. As for the mathematical arguments, our analysis of the SDP in our on
covariance-type model differs from that in mean-type models partly because of the the pres-
ence of nontrivial cross-product terms. Instead of relying on dual certificates arguments as
in other work such as [35], we directly investigate the primal problem and combine different
duality-norm bounds. The crucial step is the Lemma A.3 in the Supplementary Material [14]
which allows to control the Frobenius inner product by a (unusual) combination of �1 and
spectral control. In our opinion, our approach is more transparent than dual certificates tech-
niques, especially in the presence of a correction �̂ and allows for the attainment of optimal
convergence rates.
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8.2. Extension to other models. The general strategy of correcting a convex relaxation of
K-means can be applied to other models. In [38], one of the authors has adapted the PECOK
algorithm to the clustering problem of mixture of sub-Gaussian distributions. In particular, in
the high-dimensional setting where the correction plays a key role, [38] obtains sharper sepa-
ration conditions dependencies than in state-of-the-art clustering procedures [32]. Extensions
to model-based overlapping clustering are beyond the scope of this paper, but we refer to [11]
for recent results.

8.3. Practical recommendations. Based on our extensive simulation studies, we con-
clude this section with general recommendations on the usage of our proposed algorithms.

If p is moderate in size, and if there are reasons to believe that no singletons exist in a
particular application, or if they have been removed in a pre-processing step, we recommend
the usage of the PECOK algorithm, which is numerically superior to existing methods: exact
recovery can be reached for relatively small sample sizes. COD is also very competitive, but
requires a slightly larger sample size to reach the same performance as PECOK. The con-
straint on the size of p reflects the existing computational limits in state-of-the art algorithms
for SDP, not the statistical capabilities of the procedure, the theoretical analysis of which
being one of the foci of this work.

If p is large, we recommend COD-type algorithms. Since COD is optimization-free, it
scales very well with p, and only requires a moderate sample size to reach exact cluster re-
covery. Moreover, COD adapts very well to data that contains singletons and, more generally,
to data that is expected to have many inhomogeneous clusters.
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