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Sliced inverse regression (SIR) is an innovative and effective method for
sufficient dimension reduction and data visualization. Recently, an impressive
range of penalized SIR methods has been proposed to estimate the central
subspace in a sparse fashion. Nonetheless, few of them considered the sparse
sufficient dimension reduction from a decision-theoretic point of view. To ad-
dress this issue, we in this paper establish the minimax rates of convergence
for estimating the sparse SIR directions under various commonly used loss
functions in the literature of sufficient dimension reduction. We also discover
the possible trade-off between statistical guarantee and computational perfor-
mance for sparse SIR. We finally propose an adaptive estimation scheme for
sparse SIR which is computationally tractable and rate optimal. Numerical
studies are carried out to confirm the theoretical properties of our proposed
methods.

1. Introduction. Due to the rapid development of data collection technology in a variety
of areas including biology, financial econometrics and signal processing, etc., the increasing
dimension of predictors poses a great challenge for traditional multivariate modelling. How-
ever, in most cases, the useful signal contributing to the response lies in a small set of linear
combinations of the predictors. To characterize such a phenomenon, sufficient dimension re-
duction provides a statistical framework through seeking a low-dimensional linear predictor
that captures a full regression relationship. For regression problems involving a univariate
response Y and a p-dimensional predictors X ∈ R

p , if there exists a predictor subspace S
such that

Y ⊥⊥ X|PSX,

where ⊥⊥ stands for independence and P(·) represents the projection matrix with respect to
the standard inner product, then S is called a dimension reduction space. Under very mild
conditions, such as given in Cook (1996) and Yin, Li and Cook (2008), the intersection of
all such spaces is itself a dimension reduction space. In this case, we call the intersection the
central subspace for the regression of Y on X, and denote it by SY |X . And its dimension,
d = dim(SY |X), is usually much smaller than the original predictor’s dimension p. Let β ∈
R

p×d be a matrix with column vectors composed by a basis of SY |X . Then β ′X carries all
information that X has about Y , where A′ denotes the transpose of a matrix A. The dimension
is then reduced from p to d as the predictor X becomes β ′X.

Many methods have been proposed for estimating the basis of SY |X in the literature, in-
cluding sliced inverse regression (SIR) (Li (1991)), sliced average variance estimate (SAVE)
(Cook and Weisberg (1991)), contour regression (Li, Zha and Chiaromonte (2005)), direc-
tional regression (DR) (Li and Wang (2007)), minimum average variance estimate (MAVE)
(Xia et al. (2002)), sliced regression (Wang and Xia (2008)), Kullback–Leibler distance based
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estimator (Yin and Cook (2005)), Fouriers transform approach (Zhu and Zeng (2006)), ker-
nel dimension reduction approach (Fukumizu, Bach and Jordan (2009)) and semiparametric
approach (Ma and Zhu (2012)), etc.

Among these methods, SIR is one of the most popular and commonly used techniques
in a wide range of applications. As the pioneer tool for sufficient dimension reduction, SIR
has gained considerable research interests in the literature. In the conventional setting when
the dimension p is fixed, Li (1991) developed the asymptotic theory under the normality
assumption of X. Hsing and Carroll (1992) proved the asymptotic normality of SIR when
each slice contains two data points. Zhu and Ng (1995) established the asymptotic normality
of SIR under a more general setting. And Zhu, Miao and Peng (2006) revealed the asymptotic
behaviour of SIR when p is diverging.

Several recent papers combine SIR with penalized regression approach; see Ni, Cook and
Tsai (2005), Li and Nachtsheim (2006), Li (2007), Li and Yin (2008), Zhou and He (2008),
Chen, Zou and Cook (2010), Yu et al. (2013), Yin and Hilafu (2015), Lin, Zhao and Liu
(2018a) and Yu, Dong and Shao (2016). This proliferation of work, in addition to producing
versatile methods for estimating SY |X in a sparse fashion, points towards a general synthesis
between sufficient dimension reduction and sufficient variable selection or screening (Yin
and Hilafu (2015)).

Despite these recent methodological developments, fundamental understanding of sparse
SIR from the perspective of statistical decision theory is still lacking. To bridge the afore-
mentioned theoretical gap, we target the nonasymptotic error bound of the following four
loss functions for evaluating sparse SIR.

1.1. Loss functions. Let β̂ be the estimator of the basis of SY |X . However, the ordinary
loss function like ‖β̂−β‖2

F is not a good metric to measure the distance between the estimated
central subspace and the true central subspace, as β itself is not identifiable. Here, ‖ · ‖F

denotes the Frobenius norm of a matrix. Following the convention in sufficient dimension
reduction and the recent development in sparse canonical correlation analysis, we consider
the following four loss functions:

(i) General loss. Note that β and β̂ are normalized with respect to � and �̂, respectively.
That is, β ′�β = β̂

′
�̂β̂ = Id . In the sufficient dimension reduction framework, the projection

matrix on to SY |X with respect to the �-inner product is defined as β(β ′�β)−1β ′� (Li and
Dong (2009)), which reduces to ββ ′� as β ′�β = Id . Though β is not identifiable, its inner
product ββ ′ is identifiable. We then consider the general loss defined as

(1) LG(β̂,β) = ∥∥β̂β̂
′ − ββ ′∥∥2

F.

This loss is a commonly used metric to measure the distance between linear subspaces; see
Cai, Ma and Wu (2013) and Gao et al. (2015).

(ii) Projection loss. Motivated by the measure proposed in Li, Zha and Chiaromonte
(2005) and Li and Wang (2007), we propose the following projection loss:

(2) LP (β̂,β) = ‖Pβ̂ − Pβ‖2
F,

where PA = A(ATA)−1AT denotes the orthogonal projection matrix for any given matrix A.
Note that projection loss reduces to general loss when β and β̂ are both orthonormal.

(iii) Prediction loss. The general loss and projection loss are important metrics to evaluate
the distance between the two subspaces spanned by β̂ and β . Another type of criterion to
evaluate β̂ is to quantify how well β̂

′
X∗ predicts the dimension reduced predictor β ′X∗,
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where X∗ is a new observation independently and identically distributed as the training inputs
used to obtain β̂ . To this end, we follow Gao et al. (2015) and consider the prediction loss

LX(β̂,β) = inf
W∈O(d)

E∗
∥∥β̂ ′

X∗ − (βW)′X∗∥∥2
F

= inf
W∈O(d)

∥∥�1/2(β̂ − βW)
∥∥2

F,(3)

where E∗ stands for taking expectation only on X∗ and � = Cov(X) denotes the covariance
matrix. Since β is not identifiable, we consider the infimum of E∗‖β̂ ′

X∗ − (βW)′X∗‖2
F over

all orthonormal matrix W ∈ R
d×d and the column vectors of βW also form a basis of SY |X .

(iv) Correlation loss. In the literature of sufficient dimension reduction, Li (1991) first
suggested the squared multiple correlation coefficient between β̂

′
X∗ and β ′X∗ to assess the

accuracy of β̂ in estimating SY |X , that is,

ρ2(
β̂

′
X∗,β ′X∗)
= 1

d
Tr

[
Cov−1∗

(
β̂

′
X∗)

Cov∗
(
β̂

′
X∗,β ′X∗)

Cov−1∗
(
β ′X∗)

Cov∗
(
β ′X∗, β̂ ′

X∗)]
= 1

d
Tr

[(
β̂

′
�β̂

)−1(
β̂

′
�β

)(
β ′�β

)−1(
β ′�β̂

)]
,

where the covariance matrix with respect to X∗ is given by Cov∗(U,V ) = E∗UV ′ −
E∗UE∗V ′ for q × 1 random vectors U and V . Li and Dong (2009) and Dong and Li (2010)
also adopted this criterion for assessing the performance of sufficient dimension reduction
estimator with nonelliptically distributed predictors. Note that the squared multiple correla-
tion coefficient closer to 1 means better estimation of the central subspace. Then we propose
the following correlation loss function:

(4) Lρ(β̂,β) = 1 − 1

d
Tr

[(
β̂

′
�β̂

)−1(
β̂

′
�β

)(
β ′�β

)−1(
β ′�β̂

)]
.

The general loss and the projection loss are designed to evaluate the performance of esti-
mating the column space spanned by β only. And the prediction loss and the correlation loss
make one step further by also taking the effect of predictor X into account.

REMARK 1. Another popular criterion to measure the distance between central sub-
space and its estimate is the squared trace correlation defined in Ferré (1998), r2(β̂,β) =
1
d

Tr(Pβ̂Pβ), which ranges from zero to one, with a larger value indicating a better es-
timate. Similar to the correlation loss, we can define the squared trace correlation loss
as LTr(β̂,β) = 1 − 1

d
Tr(Pβ̂Pβ), which is indeed a scaled version of general loss with

LTr(β̂,β) = 1
2d

LP (β̂,β). In fact, note that P 2
β̂

= (Pβ̂ − Pβ)2 + 2Pβ̂Pβ − P 2
β , taking Trace

operation on both sides, we have d = ‖Pβ̂ − Pβ‖2
F + 2 Tr(Pβ̂Pβ) − d , that is, LTr(β̂,β) =

1
2d

LP (β̂,β). Since we assume the dimensionality d of the central subspace SY |X to be fixed,
we therefore omit the error bound analysis of this squared trace correlation loss in subsequent
sections. Actually, its minimax lower and upper bounds is indeed of the same bound up to a
constant factor as that of projection loss we will establish in Theorems 1–5.

1.2. Main contributions. To the best of our knowledge, the only paper studied the mini-
max estimation of sparse SIR is Lin et al. (2017). However, they only considered the projec-
tion loss. More importantly, their theoretical study is actually based on the assumption that
� is diagonal and their established minimax lower bound relies on a conjecture (Lin et al.
(2017), Conjecture 1) which cannot be verified rigorously. To overcome this problem, in this
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paper we follow Cook and Yin (2001), Cook (2007) and Cook and Forzani (2009) to specify
the probability space for sparse SIR, and then establish the minimax lower bound for sparse
SIR under general loss, projection loss and prediction loss. Although correlation loss is the
first and widely used criteria in the literature for evaluating sufficient dimension reduction es-
timators, we cannot derive its corresponding minimax lower bound as it is not a semidistance
(Tsybakov (2009)); however, other results are available to this loss.

In the next, we propose natural sparse SIR estimator. We prove that the its upper error
bound associated with all four loss functions can match the minimax lower bound obtained,
which implies that it is a rate-optimal estimator for sparse SIR. However, this optimal esti-
mation is computational intractable. Then we develop the computational feasible counterpart
for this natural sparse SIR estimator through convex relaxations. But our theoretical investi-
gations suggest that such computational realization for natural sparse SIR estimator cannot
maintain the optimal estimation rate. This is known as the statistical and computational trade-
off (Gao et al. (2015), Wang, Berthet and Samworth (2016)).

To further address this issue, we propose a refined sparse SIR estimator. The refined
sparse SIR estimator is also rate-optimal yet computational intractable. However, its com-
putational feasible counterpart based on adaptive estimation procedure is proven to be nearly
rate-optimal. Compared to the Lasso-SIR (Lin, Zhao and Liu (2018b)), which was shown to
be rate optimal only when p = o(n2), our sparse SIR approach is rate optimal even when
logp = o(n). Therefore, our proposed sparse SIR estimator certainly enjoys a much wider
range of applications. The reason why Lasso-SIR fails to work when logp = o(n) is that it
requires the estimation of the eigenvalues and eigenvectors of the p×p nonsparse SIR kernel
matrix. It’s well known that the sample eigenvalues and eigenvectors are not even consistent
when p/n has a nonzero limit as n → ∞ (Johnstone and Lu (2009)). As the sample eigen-
vectors of the p × p SIR kernel matrix are involved, Lasso-SIR needs to guarantee that the
projection of the p−d residual directions onto the d principle directions is approaching zero,
which holds true only when p = o(n2); see Proposition 1 in Lin, Zhao and Liu (2018b) for
more details.

In summary, the minimax lower bound obtained, the two rate-optimal yet computational
infeasible estimators, the two corresponding computational tractable counterparts and the
theoretical upper bound of the four estimators under four loss functions together, provide a
thorough understanding of sparse SIR.

1.3. Organization of the paper. The remainder of this paper is organized as follows. After
introducing the notation, Section 2 formulates the general structure of sparse SIR. Section 3
is devoted to the study of the minimax lower bound for sparse SIR estimator. Sections 4 and
5 concern the development of the natural sparse SIR estimator and the refined sparse SIR es-
timator together with the theoretical properties and computational issues. Section 6 presents
simulations comparing the performance of our proposal and existing methods. Section 7 con-
tains some concluding remarks. The proof of Theorem 1 is provided in the Appendix, and
the detailed algorithms, additional simulation results, proofs of Theorems 2–5 and proofs of
technical lemmas are provided in the Supplementary Material (Tan, Shi and Yu (2020)).

1.4. Notation. The following notation are used throughout the paper. For any dimension
p, lowercase letters are used for vectors and those with subscripts denote their components,
for example, u = (u1, . . . , up)′ ∈ R

p . The �2 norm of u ∈ R
p is ‖u‖ = (

∑p
i=1 |ui |2)1/2.

Uppercase letters are used to denote matrices, for instance, Ip stands for the p × p iden-
tity matrix. For any matrix A = (aij ) ∈ R

m×n, we denote the ith largest singular value of
A by σi(A). When A is positive semidefinite, σi(A) is also the ith largest eigenvalue of
A. Let span(A) denote the linear subspace spanned by the column vectors of A. In ad-
dition, the ith row and j th column of A are denoted by Ai· and A·j , respectively. Let
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supp(A) = {i : ‖Ai·‖ > 0} denote the row support of A. For any set E, let |E| and Ec de-
note its cardinality and complement, respectively. For two subsets E and F of indices, AEF

stands for the |E| × |F | submatrices formed by aij with (i, j) ∈ E × F . For some positive
integer k, [k] denotes the index set {1,2, . . . , k}, and let AI · = AI [n] and A·J = A[m]J . For
any square matrix A, denote its trace by Tr(A) = ∑

i aii . Define the inner product of matrices
A and B of the same size by 〈A,B〉 = Tr(A′B). Then the Frobenius norm ‖ · ‖F, the operator
norm ‖ · ‖op, �0 norm ‖·‖0, nuclear norm ‖·‖∗ and the max norm ‖·‖max of A are defined
as ‖A‖F = √

Tr(A′A), ‖A‖0 = ∑
i,j 1{aij �= 0}, ‖A‖op = √

σ1(A′A), ‖A‖∗ = ∑
i σi(A), and

‖A‖max = max(i,j) |aij |. Moreover, let O(m,n) denote the collection of all m × n orthonor-
mal matrices and O(k) = O(k, k). For any number a, denote a� the smallest integer that is
no smaller than a, and �a� the largest integer no larger than a. For any two numbers a and
b, let a ∨ b = max{a, b} and a ∧ b = min{a, b}. Throughout the paper, we use c and C to
denote generic positive constants, though the actual value may vary at different occasions.
For any event E, we use 1{E} to denote its indicator function. Given a random element X,
L(X) denotes its probability distribution.

2. A general formulation of sparse SIR.

2.1. SIR revisited. Let {J1, . . . , JH } be a measurable partition of the sample space of Y .
In keeping with the usual SIR protocol, for example, Li (1991), Cook (2004), Li and Wang
(2007) and Li and Dong (2009), consider the discretized version of Y as Ỹ = ∑H

�=1 � · 1{Y ∈
J�}. If Y is categorical or H is sufficiently large (H ≥ d +1), Bura and Cook (2001) and Cook
and Forzani (2009) verified that there is no loss of information for identifying SY |X when Y

is replaced by Ỹ . SIR is developed based on the following observation. If E(X|PSY |XX) is
linear in PSY |XX, which is referred to as the linear conditional mean assumption, Li (1991)
discovered that

�−1{
E(X|Ỹ = 1), . . . ,E(X|Ỹ = H)

} ⊆ SY |X.

Accumulating the information about the central subspace across different slices, the kernel
matrix of SIR is then defined as

M � Cov
[
E(X|Ỹ )

]
.

And the SIR (Li (1991)) procedure is actually a generalized eigenvalue decomposition of the
kernel matrix M with respect to the covariance matrix � = Cov(X), that is,

Mβ i = λi�β i with β ′
i�βj = 1{i = j},

where i, j = 1, . . . , p, and λ1 ≥ · · · ≥ λd > 0 = λd+1 = · · · = λp are the eigenvalues. Then
the eigenvectors corresponding to the nonzero eigenvalues β = (β1, . . . ,βd) forms a basis of
SY |X . Thus, the SIR directions β can also be identified through the following optimization
problem:

(5) β = argmax
B∈Rp×d

Tr
(
B ′MB

)
s.t. B ′�B = Id .

2.2. Sparse SIR. SIR provides linear combinations of all the original predictors, and this
often makes it difficult to interpret the extracted components. This limitation can be overcome
via the notion of model-free variable selection (Li, Cook and Nachtsheim (2005), Bondell
and Li (2009)) and sufficient variable selection (Yin and Hilafu (2015)). Model-free variable
selection aims at identifying the smallest subset of the predictors XA such that Y ⊥⊥ X|XA,
where A ⊆ [p], while the sufficient variable selection further seeks to find the central variable
selection space (Yin and Hilafu (2015)). The existence and the uniqueness of the active index
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set A is also guaranteed by Yin and Hilafu (2015). It is important to note that model-free
variable selection and sufficient variable selection can be directly connected with the basis β

of the SIR directions.
Following the partition of X = (XA,XAc ), one can partition β accordingly as

β =
(

βA
βAc

)
, βA ∈ R

|A|×d,βAc ∈ R
(p−|A|)×d .

Bondell and Li (2009) further demonstrated that βAc = 0(p−|A|)×d . In other words,
supp(β) = A, where supp(β) denotes the support of β . Then the sparse representation of
SIR relies on |A|, the number of truly relevant predictors. Assuming |A| ≤ s, sparse SIR is
further defined based on (5) through seeking β such that

(6)
β = argmax

B∈Rp×d

Tr
(
B ′MB

)
s.t. B ′�B = Id and

∣∣supp(B)
∣∣ ≤ s.

The above formulation of sparse SIR enjoys a similar fashion as that of sparse CCA (Gao
et al. (2015)). Inspired by their theoretical studies, we next investigate the minimax lower
bound of sparse SIR estimator.

3. Minimax lower bound of sparse SIR.

3.1. Parameter space. To describe the sparse SIR structure, we first define the parameter
space F(s,p, d,λ;κ,m) as the collection of the matrices of M and � such that (i) β ∈
R

p×d satisfying | supp(β)| ≤ s; (ii) ‖�‖op ∨ ‖�−1‖op ≤ m; (iii) κλ ≥ λ1 ≥ · · · ≥ λd ≥ λ >

0 for a fixed constant κ > 1. Here, assumption (iii) can be viewed as a refinement of the
coverage condition (Cook (2004), Yu, Dong and Shao (2016)), (i.e., span{�−1

E(X | Y ∈
J�), � = 1,2, . . . ,H } = SY |X). Similar assumptions can also be found in Cai, Ma and Wu
(2013) and Gao et al. (2015). In the rest of this paper, if not specified, we simplify the notation
F(s,p, d,λ;κ,m) by F for notational convenience. The probability space we consider is

P(n,H, s,p, d,λ;κ,m)

= {
L

(
(X1, Ỹ1), . . . (Xn, Ỹn)

) : (Xi, Ỹi)
′s are i.i.d. such

that Xi |(Ỹi = �)∼Np(μ�,��),
(
Cov

[
E(Xi |Ỹi)

]
,Cov(Xi)

) ∈ F
}
,

where n is the sample size, the key parameters s, p and λ are allowed to depend on the
sample size n, while κ,m > 1 are treated as fixed constants. For the fixed slicing scheme
we considered, H is also treated as a bounded integer. Then d is also a bounded integer as
d ≤ H − 1. Throughout the paper, we assume κλ ≤ 1 − c0 for some constant c0 ∈ (0,1).

For sparse CCA, normality assumption is imposed on the joint distribution of (X,Y ).
And our normality assumption of the conditional distribution X|Ỹ has root in Cook and Yin
(2001). Their findings reveal that SIR is closely related to the classical linear discriminant
analysis. Then it is natural to assume X|Ỹ is normally distributed following the convention
in the literature of discriminant analysis. Based on such normality assumption of X|Ỹ , Cook
(2007) and Cook and Forzani (2009) further developed principal fitted components method
and the likelihood based approach for recovering SY |X , which extended the scope of sufficient
dimension reduction.
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3.2. Minimax lower bound. Let β̂ ∈ R
p×d be a possible estimator for β . The minimax

lower bound among all possible sparse SIR estimators is stated in the following theorem.

THEOREM 1 (Lower bound). Assume nλ2 ≥ C0 log ep
s

for some sufficiently large con-
stant C0. Then there exist positive constants C and c0 such that

inf
β̂

sup
P∈P

EPLG(β̂,β) ≥ C
s log(ep/s)

nλ2 ∧ c0,

inf
β̂

sup
P∈P

P

{
LP (β̂,β) ≥ C

s log(ep/s)

nλ2 ∧ c0

}
≥ 0.8,

inf
β̂

sup
P∈P

P

{
LX(β̂,β) ≥ C

s log(ep/s)

nλ2 ∧ c0

}
≥ 0.8,

where P = P(n,H, s,p, d,λ;κ,m).

REMARK 2. Note that our lower bound s log(ep/s)

nλ2 is actually the same as the minimax

rate ds+s log(ep/s)

nλ2 in sparse CCA (Gao et al. (2015)) due to our assumption that the model
dimension d is fixed.

REMARK 3. The lower bound established here actually hold beyond the normality as-
sumption of X|Ỹ . If the probability space of {(Xi, Ỹi), i = 1, . . . , n} is P0 other than P , that
is, the condition distribution X|Ỹ is nonnormal. Then it suffices to investigate the minimax
lower bound within an even larger probability space P̃ such that P̃ ⊇ P0 ∪ P . Then we see
that infβ̂ supP∈P̃ EPLG(β̂,β) ≥ infβ̂ supP∈P EPLG(β̂,β).

Theorem 1 serves as the golden standard to evaluate any sparse SIR estimator. Estimator
with upper bound of rate s log(ep/s)

nλ2 can be regarded as optimal. Then it is of great interest to
cast about for the optimal sparse SIR estimator, which is our major task in the subsequent
sections.

4. Natural sparse SIR estimator.

4.1. Natural estimator and upper error bound. Let EnX = n−1 ∑n
i=1 Xi and �̂ = (n −

1)−1 ∑n
i=1(Xi − EnX)(Xi − EnX)′ be the sample mean and sample covariance of X, then

the SIR kernel matrix M is estimated as

M̂ =
H∑

h=1

p̂h

[
En(X|Ỹ = h) −EnX

][
En(X|Ỹ = h) −EnX

]′
,

where p̂h = En(1{Ỹ = h}) = 1
n

∑n
i=1 1{Ỹi = h} and En(X|Ỹ = h) = ∑n

i=1 Xi1{Ỹi = h}/∑n
i=1 1{Ỹi = h}.
Then it is natural to estimate β via replacing M and � in (6) by their sample estimators,

which yields

(7)
β̂ = argmax

B∈Rp×d

Tr
(
B ′M̂B

)
s.t. B ′�̂B = Id and

∣∣supp(B)
∣∣ ≤ s.

The solution β̂ in (7) is called the natural sparse SIR estimator. The following theorem estab-
lishes the upper bound of the four loss functions for the natural sparse SIR estimator.
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THEOREM 2 (Upper bound for β̂). Assume that s log(ep/s)

nλ2 ≤ c for some small constant
c ∈ (0,1). Then for any C′ > 0, there exists a positive constant C such that

LG(β̂,β) ∨ LP (β̂,β) ∨ LX(β̂,β) ∨ Lρ(β̂,β) ≤ C
s log(ep/s)

nλ2

with probability greater than 1−2 exp(−C′(s+ log(ep/s))) uniformly over P ∈P(n,H, s,p,

d,λ;κ,m).

In view of Theorems 1 and 2, β̂ constructed in (7) is rate optimal under general loss,
projection loss and prediction loss. In addition, the commonly used correlation loss in the
literature of sufficient dimension reduction is proven to have the same upper bound. Thus the
natural sparse SIR estimator β̂ can be regarded as one optimal estimator for the SIR directions
β . However, the estimation procedure (7) depends on the unknown sparsity parameter s and
is computationally infeasible as it involves exhaustive search over all B ∈ R

p×d subject to
the sparsity constraint. Motivated by Gao et al. (2015), next we will develop an adaptive
estimation procedure for (7) and investigate the corresponding estimation error.

4.2. Adaptive estimation and nonasymptotic error bound. The objective function
Tr(B ′M̂B) in (7) can be rewritten as 〈M̂,BB ′〉. Let F = BB ′, then the sparsity constraint
| supp(B)| ≤ s indicates that the matrix �0 norm ‖F‖0 ≤ s2. As the �0 norm constraint is
not convex, we perform convex relaxation through considering the �1 norm instead, that is,
‖F‖1 should not be too large. And the normalization constraint in (7) can be further relaxed
as the constraints of the nuclear norm and operator norm. Along the development in Wang,
Berthet and Samworth (2016), Yang, Balasubramanian and Liu (2017) and Gao, Ma and
Zhou (2017), (7) can then be relaxed to the following convex optimization problem:

(8)
F̂ = argmax

F∈Rp×p

〈M̂,F 〉 − ρ1‖F‖1

s.t.
∥∥�̂1/2F�̂1/2∥∥∗ ≤ d,

∥∥�̂1/2F�̂1/2∥∥
op ≤ 1.

Tan et al. (2018a) also proposed a similar convex formulation for sparse sliced inverse re-
gression. Compared to the original procedure (7), solving (8) is relatively easy through the
Alternating Direction Method with Multipliers (ADMM) method (Boyd et al. (2011)). Let
A = ββ ′ and Â = (F̂ + F̂ ′)/2. Then Â is close to A as stated in the following proposition.

PROPOSITION 1. Assume that nλ2 ≥ C1s
2 logp for some sufficiently large constant

C1 > 0. Then there exist positive constants γ1, γ2 and C, C′ only depending on m and C1,
such that when ρ1 = γ

√
(logp)/n for γ ∈ [γ1, γ2],

‖Â − A‖2
F ≤ C

s2 logp

nλ2

with P-probability greater than 1 − 2 exp(−C′(s + log(ep/s))) for any P ∈ P(n,H, s,p, d,

λ;κ,m).

As an estimator of ββ ′, Â has a rate of convergence Cs2 logp/(nλ2). However, this error
rate can be much larger than the optimal rate established in Theorems 1 and 2 as s can be
much larger than d . And the p × p matrix Â is targeting for A = ββ ′ rather than β itself.
For the estimation of β or the column space spanned by β with the knowledge of d , we
consider the eigen-decomposition of A. As the rank of A is d , then A = ∑d

i=1 φiϑiϑ
′
i . Let ϑ =

(ϑ1, . . . , ϑd) and � be a d × d diagonal matrix with its ith diagonal element being φi . Then
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ϑ = βW0�
−1/2 for some W0 ∈ O(d). Moreover, we can verify that ϑ(ϑ ′�ϑ)−1/2 = βW0.

Then we can pick the leading d eigenvectors of the p × p symmetric matrix Â, which are
denoted as ϑ̂ = (ϑ̂1, . . . , ϑ̂d). Then the computational feasible natural sparse SIR estimator
is constructed as β̂

� = ϑ̂(ϑ̂
′
�̂ϑ̂)−1/2. Note here β̂

�
can be regarded as the estimator of βW0

rather than β . However, for the purpose of sufficient dimension reduction, a good estimator of
βW0 is enough and the four loss functions are invariant if we replace β with βW0. The upper
error bound for the realized natural sparse SIR estimator β̂

�
is presented in the following

theorem.

THEOREM 3 (Upper bound for β̂
�
). Assume that nλ2 ≥ C1s

2 logp for some sufficiently
large positive constant C1. Then there exist positive constants γ1, γ2, C, C′ only depending
on m and C1, such that with P-probability greater than 1 − 2 exp(−C ′(s + log(ep/s))) for
any P ∈P(n,H, s,p, d,λ;κ,m),

LP

(
β̂

�
,β

) ≤ Cs2 logp

nλ2

when ρ1 = γ
√

logp/n for some γ ∈ [γ1, γ2]. If we further assume that nλ2 ≥ C2s
4 logp for

some sufficiently large constant C2 > 0, then

LG

(
β̂

�
,β

) ∨ LX

(
β̂

�
,β

) ∨ Lρ

(
β̂

�
,β

) ≤ Cs4 logp

nλ2

with P-probability greater than 1 − 2 exp(−C′(s + log(ep/s))) for any P ∈ P(n,H, s,p, d,

λ;κ,m).

Although the natural sparse SIR estimator β̂ is rate optimal, the actual realized estima-
tor β̂

�
cannot attain the optimal rate. Theorems 2 and 3 together reveal the theoretical and

computation trade-offs in the estimation of sparse SIR directions. Such trade-offs have been
discovered in sparse PCA (Wang, Berthet and Samworth (2016)) and sparse CCA (Gao, Ma
and Zhou (2017)), respectively. In the following sections, we propose a refined sparse SIR
estimator. Our intent is to illustrate the possibility of achieving computationally efficiency
and statistical optimality simultaneously.

5. Refined sparse SIR estimator.

5.1. Refined three-steps estimator. Chen and Li (1998) proposed that SIR can be viewed
as a transformation-based projection pursuit, and β is the solution of following optimization
problem:

(9) β = argmin
B∈Rp×d

E
∥∥B ′

E(X|Ỹ ) − B ′X
∥∥2

F, s.t. B ′�B = Id .

Note that the slight difference between the form (9) and ordinary least square regression
is that the dependent variable in (9) contains the unknown regression coefficients B . Let
 = diag(λ1, . . . , λd). However, if we use β ′

E(X|Ỹ ) as the response instead, then it is easy
to verify that β is the least square solution to the following standard multiresponse linear
regression

(10)

β = argmin
B∈Rp×d

E
∥∥β ′

E(X|Ỹ ) − B ′X
∥∥2

F

= argmin
B∈Rp×d

Tr
(
B ′�B

) − 2 Tr
(
B ′Mβ

) + Tr
(
β ′Mβ

)
= argmin

B∈Rp×d

Tr
(
B ′�B

) − 2 Tr
(
B ′Mβ

)
.
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Let η = β. Then the sparse SIR problem can be recast as the following regularized
multivariate response linear regression problem:

(11) η = argmin
B∈Rp×d

E
∥∥β ′

E(X|Ỹ ) − B ′X
∥∥2

F s.t.
∣∣supp(B)

∣∣ ≤ s.

Then β is the normalized version of η with respect to �, that is,

β = η
(
η′�η

)−1/2
.(12)

Equations (9)–(12) motivate us to propose the refined three step sparse SIR estimator.
Following Gao, Ma and Zhou (2017), we divide the sample S = {(X1, Ỹ1), . . . , (Xn, Ỹn)}
into three mutually independent subsamples S1, S2 and S3 with nearly equal size. And we
denote the sample estimators of � and M based on the subsample Si by �̂(i) and M̂(i),
respectively. Motivated by the least square type formulation of SIR, we propose to estimate
the sparse direction β through the following three steps.

Step 1. Seek the optimizer of (7) based on the first subsample S1 as the initial estimator
for β , that is,

(13)
β̂ = argmax

B∈Rp×d

Tr
(
B ′M̂(1)B

)
s.t. B ′�̂(1)B = Id and

∣∣supp(B)
∣∣ ≤ s.

Step 2. Based on the second subsample S2, the estimator η̂ for η is obtained through sub-
stituting the first-step initial estimator β̂ into (11)

(14)
η̂ = argmin

B∈Rp×d

Tr
(
B ′�̂(2)B

) − 2 Tr
(
B ′M̂(2)β̂

)
s.t.

∣∣supp(B)
∣∣ ≤ s.

Step 3. The final estimator β̃ for β is constructed by normalizing η̂ with respect to �(3),
that is,

(15) β̃ = η̂
(̂
η′�̂(3)η̂

)−1/2
.

The estimator β̃ is called the refined sparse SIR estimator. The theoretical upper bound for
the estimation error of β̃ is established in the following theorem.

THEOREM 4 (Upper bound for β̃). Assume that s log(ep/s)

nλ2 ≤ c for some small constant
c ∈ (0,1). Then for any C′ > 0, there exists a positive constant C such that

LG(β̃,β) ∨ LP (β̃,β) ∨ LX(β̃,β) ∨ Lρ(β̃,β) ≤ C
s log(ep/s)

nλ2

with probability greater than 1−2 exp(−C′(s+ log(ep/s))) uniformly over P ∈P(n,H, s,p,

d,λ;κ,m).

Theorem 4 implies that β̃ is also rate optimal as β̂ . β̃ utilizes the rate optimal estimator
β̂ as the initial estimator and will keep up the optimal rate through the second and third
steps. While β̂

�
as the computational feasible counterpart for β̂ cannot maintain the optimal

estimation rate, the three-steps estimation procedure of β̃ will lead to a more efficient and
adaptive estimator as discussed in the following.
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5.2. Adaptive estimation with statistical guarantees. The first and second step of the
refined estimator still require exhaustive search over all B ∈ R

p×d with sparsity constraint
| supp(B)| ≤ s, where s is again unknown in most applications. Parallel to the development
of (9)–(12), we in this section develop the computation feasible counterpart of the refined
sparse SIR estimator.

Recall that ϑ is the p × d matrix consisting of the biggest d eigenvectors of ββ ′. Suppose
ϑ is already known. Then if ϑ ′

E(X|Ỹ ) is adopted as the response of (9) instead, we can
derive that

(16)

βW0�
−1/2 = argmin

B∈Rp×d

E
∥∥ϑ ′

E(X|Ỹ ) − B ′X
∥∥2

F

= argmin
B∈Rp×d

Tr
(
B ′�B

) − 2 Tr
(
B ′Mϑ

)
.

It is easy to see that βW0�
−1/2 and β share the same column space and

supp(βW0�
−1/2) = supp(β). Let ν = βW0�

−1/2. Then the sparse representation of ν

can be formulated as

(17) ν = argmin
B∈Rp×d

E
∥∥ϑ ′

E(X|Ỹ ) − B ′X
∥∥2

F s.t.
∣∣supp(B)

∣∣ ≤ s.

And we can further verify that the normalized version of ν with respect to � is closely
related to β , that is,

βW1 = ν
(
ν′�ν

)−1/2
,(18)

where W1 = SLS′
R ∈ O(d), where SL and SR are the left and right singular vectors of

W0�
−1/2. (16)–(18) inspires us to consider the computation feasible estimation of ϑ , ν

and then βW1 in the follow three steps.

Step (A1). Similar to (8), estimate ββ ′ adaptively based on the first subsample as (F̃ +
F̃ ′)/2 with F̃ being the solution of the following optimization problem:

(19)
F̃ = argmax

F∈Rp×p

〈
M̂(1),F

〉 − ρ1‖F‖1

s.t.
∥∥(

�̂(1))1/2
F

(
�̂(1))1/2∥∥∗ ≤ d,

∥∥(
�̂(1))1/2

F
(
�̂(1))1/2∥∥

op ≤ 1.

Then ϑ̃ consisting of the leading d eigenvectors of (F̃ + F̃ ′)/2 is the initial estimator of ϑ .
Step (A2). As ν is the least square solution of (16), then we follow Gao, Ma and Zhou

(2017) to perform group-Lasso (Yuan and Lin (2006)) regression based on the second sub-
sample for the relaxation of (17). To be specific, ν̃ is estimated as

(20)

ν̃ = min
B∈Rp×d

Tr
(
B ′�̂(2)B

) − 2 Tr
(
B ′M̂(2)ϑ̃

′) + ρ2

p∑
j=1

‖Bj ·‖

= argmin
B∈Rp×d

∑
(Xi,Ỹi )∈S2

∥∥ϑ̃ ′
Ê(X|Ỹi) − B ′Xi

∥∥2
F + ρ2

p∑
j=1

‖Bj ·‖,

where ρ2 is a penalty parameter controlling the row sparsity of ν̃, and

Ê(X|Ỹi) =
∑

(Xj ,Ỹj )∈S2
Xj 1{Ỹj = Ỹi}∑

(Xj ,Ỹj )∈S2
1{Ỹj = Ỹi} .
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Step (A3). The final estimator β̃
�

for βW1 is constructed by normalizing ν̃ with respect
to �̂(3), that is,

(21) β̃
� = ν̃

(̃
ν′�̂(3)ν̃

)−1/2
.

The estimator β̃
�

is the computational realization of the refined sparse SIR estimator. The fol-
lowing theorem provides statistical guarantees of β̃

�
for estimating the column space spanned

by β .

THEOREM 5 (Upper bound for β̃
�
). Assume nλ2 ≥ C1s

2 logp holds for some suffi-
ciently large positive C1. Then there exist positive constants C and C′, such that with P-
probability at least 1 − 2 exp(−C′(s + log(ep/s))) − exp(−C′ logp) uniformly over P ∈
P(n,H, s,p, d,λ;κ,m),

LG

(
β̃

�
,β

) ∨ LP

(
β̃

�
,β

) ∨ LX

(
β̃

�
,β

) ∨ Lρ

(
β̃

�
,β

) ≤ C
s logp

nλ2

holds as long as we set ρ1 = γ ′
1
√

logp/n and ρ2 = γ ′
2
√

logp/n for any γ ′
1 ∈ [γ1,C2γ1] and

γ ′
2 ∈ [γ2,C2γ2] for some positive constant C2, where γ1 and γ2 are positive constants only

depending on C1 and m.

Comparing the results of Theorem 5 with the optimal rate established in Theorem 1, Theo-
rem 2 and Theorem 4, we see that β̃

�
achieves the nearly optimal estimation rate. Considering

the computational feasibility and theoretical property, β̃
�

is highly recommended in real ap-
plications. Simulation results in Section 6 fully support the theoretical improvement of the
refined estimator β̃

�
over β̂

�
.

6. Numerical studies. In this section, we conduct simulation studies to compare the
realized natural sparse SIR estimator β̂

�
, the realized refined sparse SIR estimator β̃

�
, with

DT-SIR (Lin, Zhao and Liu (2018a)) which was shown to be rate-optimal with the identity
covariance matrix in Lin et al. (2017) and Lasso-SIR (Lin, Zhao and Liu (2018b)) which was
shown to be consistent and rate-optimal with a general covariance structure when p = o(n2).

6.1. Model setting. To be comprehensive, for each model to be studied later on, we con-
sider the following four common covariance structures:

(1) Identity case: � = Ip .
(2) Dense case: � = (σij )1≤i,j≤p where σij = 0.6 for all 1 ≤ i �= j ≤ p and σii = 1 for

1 ≤ i ≤ p. In other words, predictors are strongly correlated with each other.
(3) Toplitz case: � = (σij )1≤i,j≤p where σij = 0.5|i−j | for all 1 ≤ i, j ≤ p. For this case,

� has a banded structure and the values of the entries of � decay as they depart away from
the diagonal.

(4) Sparse Inverse (SparseInv) case: � = (σ 0
ij /

√
σ 0

iiσ
0
jj )1≤i,j≤p . We set �0 = (σ 0

ij )1≤i,j≤p

where �−1
0 = (wij ) with wij = 1{i=j} + 0.5 × 1{|i−j |=1} + 0.4 × 1{|i−j |=2}, 1 ≤ i, j ≤ p. For

this case, the inverse of � is a sparse matrix.

We consider the following models:

Model I: Y = β ′X + sin(β ′X) + ε;
Model II: Y = 2 arctan(β ′X) + ε;
Model III: Y = (β ′X)3 + ε;
Model IV: Y = sinh(β ′X) + ε;
Model V: Y = exp(β ′

1X) · sgn(β ′
2X) + 0.2ε;
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where X ∼ N(0,�), ε ∼ N(0,1) and is independent of X. The regression coefficients β ∈
R

p×1 and (β1,β2) ∈ R
p×2 are set to have s = √

p nonzero rows whose indexes are randomly
chosen from {1,2, . . . , p}. And the values at these nonzero rows are random numbers drawn
from the uniform distribution on the finite set {−2,−1,0,1,2}. Models I–IV are single index
models adopted in Lin et al. (2017) to illustrate the effectiveness of DT-SIR. Model V is a
two-dimensional model, and hence d = 2.

Recall that the optimal rate of convergence is s log(ep/s)

nλ2 , which motivates us to consider
the scaled sample size t defined as t = n

s log(ep/s)
. Let t take values in {3,6,9, . . . ,30}, then

the corresponding sample size n takes value of �ts log(ep/s)�. The number of slices H for
the methods included in our comparison is chosen to be 10 if n ≤ 1000, and H = 20 when
n > 1000. And the details for choosing the tuning parameter ρ1 and ρ2 involved in computing
β̂

�
and β̃

�
are provided in the Supplementary Material (Tan, Shi and Yu (2020)).

As the prediction loss is difficult to calculate in practice, it is excluded from the compar-
ison. Regarding the similarity between general loss and projection loss, we only adopt the
general loss here for space constraint. Then for the purpose of comparison evaluated based
on the general loss and the correlation loss, our simulation studies are conducted across all
combinations of the five models with completely randomly chosen regression coefficients,
four covariance structures, and a sequence of scaled sample size t .

6.2. Simulation results. In this section, we first show that the proposed refined sparse
SIR estimator β̃

�
has a sharper convergence rate than that of the natural sparse SIR estimator

β̂
�
, and then compare these estimators with the DT-SIR and Lasso-SIR estimators. Due to

space constraint, we only present the simulation results of Models I and V, while leaving the
simulation results of Models II–IV in the Supplementary Material (Tan, Shi and Yu (2020)).

To begin with, we summarize the averaged general loss and correlation loss based on 100
repetitions for Models I and V with p = 500 in Figures 1–4. As can be seen from Figures 1–4,
for both single index model I and multiple index model V with d = 2, the refined estimator
β̃

�
outperforms the natural estimator β̂

�
under all covariance structures. It is obvious that the

general loss and correlation loss of the refined estimator β̃
�

converge to zero much faster than
that of β̂

�
, which confirms our theoretical findings in Theorem 3 and Theorem 5.

Then we compare the performance of our realized natural and refined estimators with the
DT-SIR and Lasso-SIR estimators. To this end, we report in Tables 1 and 2 the averages of the
general loss and correlation loss for Models I and V based on 100 repetitions under various
combinations of (n,p) with sparsity parameter s = 5.

As can be seen from Tables 1 and 2, for both single index model I and multiple index model
V, our proposal β̃

�
is the clear winner among all four competitors in all configurations, and

in most cases the improvement is very substantial. Although Lasso-SIR was claimed to be
an rate optimal estimator (Lin, Zhao and Liu (2018b)), we see that β̂

�
is much better than

Lasso-SIR when p is relative large compared to n. It is because the optimality of Lasso-SIR
is guaranteed only when p = o(n2), while our proposed realized refined sparse SIR estimator
is shown to be rate optimal even when logp = o(n).

As for the simulation results of Model II–Model IV, we again accumulate similar pattern
as that of Models I and V, which all advocate β̃

�
over β̂

�
, DT-SIR and Lasso-SIR. All the

simulation results are fairly consistent with our theoretical analysis.

7. Discussion. In this paper, we study the minimax error bound and adaptive estimation
for SIR with sparse loadings. We reveal the theoretical and computational trade-off for the
natural sparse SIR estimator. Then the refined sparse SIR estimator is proposed to maintain
theoretical optimality and computational feasibility. Our proposed methodology and the cor-
responding theoretical analysis are examined through a wide range of simulation studies. As



SPARSE SIR 77

FIG. 1. The general loss for Model I under four covariance structures.

FIG. 2. The correlation loss for Model I under four covariance structures.



78 K. TAN, L. SHI AND Z. YU

FIG. 3. The general loss for Model V under four covariance structures.

FIG. 4. The correlation loss for Model V under four covariance structures.
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TABLE 1
The averages of general loss and correlation loss for Model I

General Loss Correlation Loss

(n,p) � DT-SIR Lasso-SIR β̂
�

β̃
� DT-SIR Lasso-SIR β̂

�
β̃

�

(100, 200)

1 1.389 0.642 0.495 0.404 0.939 0.230 0.109 0.070
2 0.962 0.576 0.681 0.651 0.472 0.106 0.157 0.143
3 1.576 0.601 0.501 0.409 0.945 0.186 0.114 0.073
4 1.647 0.623 0.554 0.476 0.876 0.153 0.121 0.084

(100, 400)

1 1.409 0.804 0.307 0.277 0.954 0.435 0.042 0.033
2 1.866 1.279 0.735 0.568 0.856 0.509 0.122 0.074
3 1.610 0.680 0.308 0.281 0.952 0.283 0.041 0.033
4 1.892 0.619 0.338 0.311 0.930 0.203 0.048 0.040

(100, 600)

1 1.332 0.980 0.581 0.488 0.902 0.587 0.155 0.109
2 1.959 1.439 1.088 1.023 0.883 0.600 0.349 0.301
3 1.460 0.896 0.580 0.496 0.927 0.474 0.147 0.105
4 1.694 0.936 0.696 0.624 0.930 0.388 0.189 0.147

(200, 600)

1 1.441 0.379 0.191 0.173 0.997 0.094 0.015 0.012
2 1.813 0.759 0.450 0.331 0.854 0.187 0.045 0.023
3 1.716 0.325 0.172 0.155 0.932 0.070 0.013 0.010
4 1.164 0.266 0.186 0.171 0.452 0.033 0.014 0.011

(400, 600)

1 1.378 0.171 0.179 0.144 0.961 0.014 0.014 0.009
2 1.531 0.382 0.194 0.166 0.822 0.050 0.009 0.005
3 0.931 0.176 0.177 0.144 0.372 0.014 0.014 0.008
4 0.969 0.198 0.232 0.177 0.328 0.016 0.022 0.012

we put forward a general method for sparse SIR, it is also important to point out that we
can further achieve model-free variable selection through thresholding as the nonzero rows
of β are corresponding to the truly important variables. In addition, moving forward along
our development in this paper and the estimation of sparse generalized eigenvalue problem
(Tan et al. (2018b)), we could expect generalization to minimax estimation of sparse SAVE
and DR. We leave this issue for further study.

APPENDIX: PROOF OF THEOREM 1

A.1. Proof of Theorem 1. Note that any lower bound for a specific case yields immedi-
ately a lower bound for the general case. It therefore suffices to consider the case when d = 1
and H = 2. To this end, since the distribution of X|Ỹ is a mixture of Gaussian distributions
by our assumption, we consider the following structure with d = 1 and H = 2:

(X|Ỹ = 1) ∼ Np

(
(1 − α)β, Ip − M

)
, P(Ỹ = 1) = α,

(X|Ỹ = 2) ∼ Np(−αβ, Ip − M), P(Ỹ = 2) = 1 − α.

Let λ = α(1 − α), β ∈ O(p,1). By the definition of SIR kernel matrix,

M = Cov
[
E(X|Ỹ )

] =
H∑

h=1

phμhμ
′
h −

(
H∑

h=1

phμh

)(
H∑

h=1

phμh

)′
,

where μh = E(X|Ỹ = h). It is easy to verify that:

(i) EX = E[E(X|Ỹ )] = α(1 − α)β − α(1 − α)β = 0;
(ii) M = Cov[E(X|Ỹ )] = λββ ′;
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TABLE 2
The averages of general loss and correlation loss for Model V

General Loss Correlation Loss

(n,p) � DT-SIR Lasso-SIR β̂
�

β̃
� DT-SIR Lasso-SIR β̂

�
β̃

�

(100, 200)

1 1.741 1.193 0.654 0.537 0.769 0.404 0.099 0.066
2 1.746 1.673 1.322 1.020 0.439 0.338 0.212 0.129
3 2.059 1.134 0.677 0.551 0.794 0.345 0.093 0.061
4 1.772 1.019 0.698 0.574 0.557 0.267 0.102 0.068

(100, 400)

1 1.665 1.360 0.692 0.626 0.683 0.527 0.106 0.091
2 1.799 1.718 1.372 1.069 0.432 0.410 0.213 0.139
3 1.958 1.307 0.734 0.651 0.763 0.496 0.121 0.099
4 1.904 1.269 0.729 0.637 0.685 0.455 0.121 0.087

(100, 600)

1 1.660 1.381 0.984 0.859 0.701 0.561 0.228 0.179
2 2.146 1.914 1.664 1.561 0.612 0.425 0.279 0.245
3 1.925 1.357 1.027 0.911 0.765 0.528 0.244 0.201
4 2.297 1.249 0.970 0.841 0.778 0.433 0.212 0.159

(200, 600)

1 1.836 0.908 0.545 0.451 0.851 0.242 0.070 0.046
2 1.751 1.650 1.096 0.874 0.548 0.307 0.160 0.086
3 1.765 0.793 0.518 0.423 0.603 0.179 0.064 0.040
4 1.313 .750 0.571 0.468 0.318 0.146 0.074 0.048

(400, 600)

1 1.819 0.417 0.403 0.297 0.874 0.045 0.038 0.019
2 1.715 1.086 0.439 0.409 0.363 0.126 0.029 0.027
3 1.083 .393 0.404 0.298 0.199 0.039 0.038 0.019
4 1.291 0.476 0.391 0.290 0.257 0.051 0.036 0.018

(iii) � = Cov[E(X|Ỹ )] + E[Cov(X|Ỹ )] = M + Ip − M = Ip , by the law of total covari-
ance.

The main tool to derive the lower bound is Fano’s lemma. The following version of Fano’s
lemma is replaced from Yu (1997), Lemma 3.

LEMMA 1 (Fano’s lemma). Let (�,ρ) be a metric space and {Pθ : θ ∈ �} a collection of
probability measures. For any totally bounded T ⊂ �, denote by M(T ,ρ, ε) the ε-packing
number of T with respect to ρ, that is, the maximal number of points in T whose pairwise
minimum distance in ρ is at least ε. Define the Kullback–Leibler diameter of T by

dKL(T ) � sup
θ,θ ′∈T

D(Pθ ‖ Pθ ′).

Then

(22) inf
θ̂

sup
θ∈�

Eθ

[
ρ2(

θ̂ (X), θ
)] ≥ sup

T ⊂�

sup
ε>0

ε2

4

(
1 − dKL(T ) + log 2

logM(T ,ρ, ε)

)
and equivalently,

(23) inf
θ̂

sup
θ∈�

Pθ

(
ρ2(

θ̂ (X), θ
) ≥ ε2

4

)
≥ 1 − dKL(T ) + log 2

logM(T ,ρ, ε)
.

The key of applying the Fano’s lemma is to derive the Kullback–Leiber divergence be-
tween data distributions of interested, which in our case is the constructed mixture Gaus-
sian distribution. For i = 1,2, let � = Ip and Mi = λβ(i)β(i)′ with λ ∈ (0,1), β(i) ∈
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O(p, d). Let P(Mi,�) denote the distribution of a random i.i.d. sample of size n from
the mixture Gaussian distribution P(Mi,�) = αP1(Mi,�) + (1 − α)P2(Mi,�), where
P1(Mi,�) and P2(Mi,�) denote multivariate normal distribution Np((1 − α)β(i), Ip − Mi)

and Np(−αβ(i), Ip −Mi), respectively. We now derive the upper bound for Kullback–Leiber
divergence between our constructed mixture-Gaussian distributions.

(1) First, by the convexity of K-L divergence, D(P(M1,�) ‖ P(M2,�)) can be upper
bounded by

(24)
D

(
P(M1,�) ‖ P(M2,�)

) ≤ λD
(
P1(M1,�) ‖ P1(M2,�)

)
+ (1 − λ)D

(
P2(M1,�) ‖ P2(M2,�)

)
.

Thus, it’s sufficient to bound the K-L divergence between two Gaussian distributions.
(2) We then upper bound the two terms in the last display. By the K-L divergence formula

between two Gaussian distributions,

D
(
P1(M1,�) ‖ P1(M2,�)

)
= n

2

{(
Tr

[
(Ip − M2)

−1(Ip − M1)
] − p

) + log
(

det(Ip − M2)

det(Ip − M1)

)

+ (1 − α)2(
β(2) − β(1))′(Ip − M2)

−1(
β(2) − β(1))}.

We now upper bound the three terms in order. The first term can be rewritten as

Tr
[
(Ip − M2)

−1(Ip − M1)
] − p = Tr

[
(Ip − M2)

−1(Ip − M2 + M2 − M1)
] − p

= Tr
[
(Ip − M2)

−1(M2 − M1)
]
.

Recall that in our construction of model, we have

(Ip − M2)
−1 = (

Ip − λβ(2)β(2)′)−1 = [
Ip − β(2)β(2)′ + (1 − λ)β(2)β(2)′]−1

= Ip − β(2)β(2)′ + 1

1 − λ
β(2)β(2)′ = Ip + λ

1 − λ
β(2)β(2)′.

Hence, the first term can be upper bounded as follows:

Tr
{
(Ip − M2)

−1(M2 − M1)
}

= Tr
{(

Ip + λ

1 − λ
β(2)β(2)′

)(
λβ(2)β(2)′ − λβ(1)β(1)′)}

= λTr
{

1

1 − λ
β(2)β(2)′ − β(1)β(1)′ − λ

1 − λ
β(2)β(2)′β(1)β(1)′

}
= λTr

{
1

1 − λ
Id − Id − λ

1 − λ
β(2)β(2)′β(1)β(1)′

}
= λTr

{
λ

1 − λ

(
Id − β(2)β(2)′β(1)β(1)′)}

= λ2

2(1 − λ)

∥∥β(1)β(1)′ − β(2)β(2)′∥∥2
F

≤ 2λ2

1 − λ

∥∥β(1) − β(2)
∥∥2

F.
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For the second term log(
det(Ip−M2)

det(Ip−M1)
), since the matrix Ip −Mi only has two eigenvalues 1 and

1 − λ with multiplicity d and p − d , respectively, which implies that log(
det(Ip−M2)

det(Ip−M1)
) = 0.

For the third term (β(2) − β(1))′(Ip − M2)
−1(β(2) − β(1)), we have

Tr
{(

β(2) − β(1))′(Ip − M2)
−1(

β(2) − β(1))}
≤ 1

1 − λ
Tr

{(
β(2) − β(1))′(β(2) − β(1))}

= 1

1 − λ

∥∥β(1) − β(2)
∥∥2

F.

Here, the inequality is due to the fact that the eigenvalues of Ip − M2 is either 1 or 1 − λ.
Combining the above upper bounds for the three terms, we have

D
(
P1(M1,�) ‖ P1(M2,�)

) ≤ n

2
· 2λ2 + (1 − α)2

1 − λ

∥∥β(1) − β(2)
∥∥2

F.

Similarly, we can obtain that

D
(
P2(M1,�) ‖ P2(M2,�)

) ≤n

2
· 2λ2 + α2

1 − λ

∥∥β(1) − β(2)
∥∥2

F.

(3) Finally, applying the convex inequality (24) in the first step, we have

D
(
P(M1,�) ‖ P(M2,�)

)
=

{
α · 2λ2 + (1 − α)2

1 − λ
+ (1 − α) · 2λ2 + α2

1 − λ

}
· n

2

∥∥β(1) − β(2)
∥∥2

F

= 2λ2 + α(1 − α)

1 − λ
· n

2

∥∥β(1) − β(2)
∥∥2

F

= 2λ2 + λ

1 − λ
· n

2

∥∥β(1) − β(2)
∥∥2

F

= (2λ2 + λ)(1 + λ)

1 − λ2 · n

2

∥∥β(1) − β(2)
∥∥2

F

= 3λ2 + 2λ3 + λ

1 − λ2 · n

2

∥∥β(1) − β(2)
∥∥2

F

≤ 3λ2 + 2
√

2λ2

1 − λ2 · n

2

∥∥β(1) − β(2)
∥∥2

F

≤ 3λ2

1 − λ2 · n∥∥β(1) − β(2)
∥∥2

F.

Once we have obtained the upper bound for the Kullback–Leiber divergence of our con-
structed distributions, the rest of proof of Theorem 1 is similar to the proof of Theorem 3 in
Gao et al. (2015) and Theorem 3.2 in Gao, Ma and Zhou (2017), thus we omit it here.
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