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With many pretreatment covariates and treatment factors, the classical
factorial experiment often fails to balance covariates across multiple factorial
effects simultaneously. Therefore, it is intuitive to restrict the randomization
of the treatment factors to satisfy certain covariate balance criteria, possibly
conforming to the tiers of factorial effects and covariates based on their rela-
tive importances. This is rerandomization in factorial experiments. We study
the asymptotic properties of this experimental design under the randomiza-
tion inference framework without imposing any distributional or modeling
assumptions of the covariates and outcomes. We derive the joint asymptotic
sampling distribution of the usual estimators of the factorial effects, and show
that it is symmetric, unimodal and more “concentrated” at the true factorial
effects under rerandomization than under the classical factorial experiment.
We quantify this advantage of rerandomization using the notions of “central
convex unimodality” and “peakedness” of the joint asymptotic sampling dis-
tribution. We also construct conservative large-sample confidence sets for the
factorial effects.

1. Introduction. Factorial experiments, initially proposed by Fisher (1935) and Yates
(1937), have been widely used in the agricultural science (see textbooks by Cochran and Cox
(1950), Hinkelmann and Kempthorne (2007), Kempthorne (1952), Cox and Reid (2000)) and
engineering (see textbooks by Box, Hunter and Hunter (2005), Wu and Hamada (2011)).
Recently, factorial experiments also become popular in social sciences (e.g., Angrist, Lang
and Oreopoulos (2009), Branson, Dasgupta and Rubin (2016), Dasgupta, Pillai and Rubin
(2015)). The completely randomized factorial experiment (CRFE) balances covariates under
different treatment combinations on average. However, with more pretreatment covariates
and treatment factors, we have higher chance to observe unbalanced covariates with respect
to multiple factorial effects. Many researchers have recognized this issue in different ex-
perimental designs (e.g., Bruhn and McKenzie (2009), Fisher (1926), Hansen and Bowers
(2008), Student (1938)). To avoid this, we can force a treatment allocation to have covari-
ate balance, which is sometimes called rerandomization (e.g., Cox (1982, 2009), Morgan
and Rubin (2012)), restricted or constrained randomization (e.g., Bailey (1983), Grundy and
Healy (1950), Yates (1948), Youden (1972)).

Extending Morgan and Rubin (2012)’s proposal for treatment-control experiments,
Branson, Dasgupta and Rubin (2016) proposed to use rerandomization in factorial experi-
ments to improve covariate balance, and studied finite sample properties of this design under
the assumptions of equal sample sizes of all treatment combinations, Gaussianity of covariate
and outcome means, and additive factorial effects. Without requiring any of these assump-
tions, we propose more general covariate balance criteria for rerandomization in 2K factorial
experiments, extend their theory with an asymptotic analysis of the sampling distributions of
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the usual factorial effect estimators and provide large-sample confidence sets for the average
factorial effects.

Rerandomization in factorial experiments have two salient features that differ from reran-
domization in treatment-control experiments. First, the factorial effects can have different
levels of importance a priori. Many factorial experimental design principles hinge on the
belief that main effects are often more important than two-way interactions, and two-way in-
teractions are often more important than higher-order interactions (e.g., Bose (1947), Finney
(1943), Wu (2015)). Consequently, we need to impose different stringencies for balancing co-
variates with respect to factorial effects of different importance. Second, covariates may also
vary in importance based on prior knowledge about their associations with the outcome. We
establish a general theory that can accommodate rerandomization with tiers of both factorial
effects and covariates.

Second, in treatment-control experiments, we are often interested in a single treatment
effect. In factorial experiments, however, multiple factorial effects are simultaneously of in-
terest, motivating the asymptotic theory about the joint sampling distribution of the usual
factorial effect estimators. In particular, for the joint sampling distribution, we use “central
convex unimodality” (Dharmadhikari and Jogdeo (1976), Kanter (1977)) to describe its uni-
modal property, and “peakedness” (Sherman (1955)) to quantify the intuition that it is more
“concentrated” at the true factorial effects under rerandomization than the CRFE. These two
mathematical notions for multivariate distributions extend unimodality and narrower quantile
ranges for univariate distributions (Li, Ding and Rubin (2018)), and they are also crucial for
constructing large-sample confidence sets for factorial effects.

In sum, our asymptotic analysis further demonstrates the benefits of rerandomization in
factorial experiments compared to the classical CRFE (Branson, Dasgupta and Rubin (2016)).
The proposed large-sample confidence sets for factorial effects will facilitate the practical use
of rerandomization in factorial experiments and the associated repeated sampling inference.

The paper proceeds as follows. Section 2 introduces the notation. Section 3 discusses sam-
pling properties and linear projections under the CRFE. Section 4 studies rerandomization
using the Mahalanobis distance criterion. Section 5 studies rerandomization with tiers of fac-
torial effects. Section 6 contains an application to an education dataset. Section 7 concludes
with possible extensions. The online Supplementary Material (Li, Ding and Rubin (2019))
contains all technical details.

2. Notation for a 2K factorial experiment.

2.1. Potential outcomes and causal estimands. Consider a factorial experiment with n

units and K treatment factors, where each factor has two levels, −1 and +1. In total there
are Q = 2K treatment combinations, and for each treatment combination 1 ≤ q ≤ Q, let
ι(q) = (ι1(q), ι2(q), . . . , ιK(q)) ∈ {−1,+1}K be the levels of the K factors. We use potential
outcomes to define causal effects in factorial experiments (Dasgupta, Pillai and Rubin (2015),
Splawa-Neyman (1923), Branson, Dasgupta and Rubin (2016)). For unit i, let Yi(q) be the
potential outcome under treatment combination q , and Y i = (Yi(1), Yi(2), . . . , Yi(Q)) be the
Q dimensional row vector of all potential outcomes. Let Ȳ (q) = ∑n

i=1 Yi(q)/n be the average
potential outcome under treatment combination q , and Ȳ = (Ȳ (1), Ȳ (2), . . . , Ȳ (Q)) be the Q

dimensional row vector of all average potential outcomes. Dasgupta, Pillai and Rubin (2015)
characterized each factorial effect by a Q dimensional column vector with half of its elements
being −1 and the other half being +1. For example, the average main effect of factor k is

τk = 2

Q

Q∑
q=1

1
{
ιk(q) = 1

}
Ȳ (q) − 2

Q

Q∑
q=1

1
{
ιk(q) = −1

}
Ȳ (q)
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= 1

2K−1

Q∑
q=1

ιk(q)Ȳ (q) = 1

2K−1 Ȳ gk (1 ≤ k ≤ K),

where gk = (gk1, . . . , gkQ)′ = (ιk(1), ιk(2), . . . , ιk(Q))′ is called the generating vector for
the main effect of factor k. For an interaction effect among several factors, the g-vector is
an elementwise multiplication of the g-vectors for the main effects of the corresponding fac-
tors. There are in total F = 2K − 1 = Q − 1 factorial effects. Let gf = (gf 1, . . . , gfQ)′ ∈
{−1,+1}Q be the generating vector for the f th factorial effect (1 ≤ f ≤ F ). For unit i, τif =
2−(K−1)Y igf is the f th individual factorial effect, and τ i = (τi1, . . . , τiF )′ is the F dimen-
sional column vector of all individual factorial effects. Let τf = 2−(K−1)Ȳ gf be the f th aver-
age factorial effect, and τ = (τ1, . . . , τF )′ be the F dimensional column vector of all average
factorial effects. The definitions of the factorial effects imply τ i = 2−(K−1) ∑Q

q=1 bqYi(q)

and τ = 2−(K−1) ∑Q
q=1 bqȲ (q), with coefficient vectors

b1 =

⎛
⎜⎜⎜⎝

g11
g21
...

gF1

⎞
⎟⎟⎟⎠ , b2 =

⎛
⎜⎜⎜⎝

g12
g22
...

gF2

⎞
⎟⎟⎟⎠ , . . . , bQ =

⎛
⎜⎜⎜⎝

g1Q

g2Q

...

gFQ

⎞
⎟⎟⎟⎠ .(2.1)

Intuitively, the kth main effect compares the average potential outcomes when factor k is
at +1 and −1 levels, and the interaction effect among two factors compares the average
potential outcomes when both factors are at the same level and different levels. We can view
a higher order interaction as the difference between two conditional lower order interactions.
For example, the interaction among factors 1–3 equals the difference between the interactions
of factors 1 and 2 given factor 3 at +1 and −1 levels. See Dasgupta, Pillai and Rubin (2015)
for more details. Below we use an example to illustrate the definitions.

EXAMPLE 1. We consider factorial experiments with K = 3 factors, and use (1,2,3) to
denote these three factors. Table 1 shows the definitions of the gf ’s and the bq ’s. Specifically,
the first three columns (g1,g2,g3) represent the levels of the three factors in all treatment
combinations, and they generate the main effects of factors (1,2,3). The remaining columns
(g4, . . . ,g7) are the elementwise multiplications of subsets of (g1,g2,g3) that generate the
interaction effects. The coefficient vector bq consists of all the elements in the qth row of
Table 1.

TABLE 1
gf ’s and bq ’s for 23 factorial experiments

1 2 3 12 13 23 123

−1 −1 −1 +1 +1 +1 −1 b′
1

−1 −1 +1 +1 −1 −1 +1 b′
2

−1 +1 −1 −1 +1 −1 +1 b′
3

−1 +1 +1 −1 −1 +1 −1 b′
4

+1 −1 −1 −1 −1 +1 +1 b′
5

+1 −1 +1 −1 +1 −1 −1 b′
6

+1 +1 −1 +1 −1 −1 −1 b′
7

+1 +1 +1 +1 +1 +1 +1 b′
8

g1 g2 g3 g4 g5 g6 g7
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2.2. Treatment assignment, covariate imbalance and rerandomization. For each unit i,
xi represents the L dimensional column vector of pretreatment covariates. For instance, in
the education example in Section 6, college freshmen receive different academic services and
incentives after entering the university, and their pretreatment covariates include high school
grade point average, gender, age and etc. Let Zi be the treatment assignment, where Zi = q

if unit i receives treatment combination q . Let nq be the number of units under treatment
combination q , and Z = (Z1, . . . ,Zn) be the treatment assignment vector for all units. In
the CRFE, the probability that Z takes a particular value z = (z1, . . . , zn) is n1! · · ·nQ!/n!,
where

∑n
i=1 1{zi = q} = nq for all q . Let x̄ = n−1 ∑n

i=1 xi be the finite population covariate
mean vector; for 1 ≤ q ≤ Q, let ˆ̄x(q) = n−1

q

∑
i:zi=q xi be the covariate mean vector for units

that receive treatment combination q . For 1 ≤ f ≤ F , the L dimensional difference-in-means
vector of covariates with respect to the f th factorial effect is

τ̂ x,f = 2

Q

Q∑
q=1

gf q
ˆ̄x(q) = 1

2K−1

∑
q:gf q=1

ˆ̄x(q) − 1

2K−1

∑
q:gf q=−1

ˆ̄x(q).(2.2)

Let τ̂ x = (τ̂ ′
x,1, . . . , τ̂

′
x,F )′ be the LF dimensional column vector of the difference-in-means

of covariates with respect to all factorial effects. Although τ̂ x has mean zero under the CRFE,
for a realized value of Z, covariate distributions are often imbalanced among different treat-
ment combinations. For example, we consider a CRFE with K = 2 factors, L = 4 uncor-
related covariates and equal treatment group sizes nq = n/Q. In this case, with asymptotic

probability 1− (1−5%)4(22−1) ≈ 46.0%, at least one of the difference-in-means in (2.2) with
respect to a covariate and a factorial effect standardized by its standard deviation is larger than
1.96, the 0.975-quantile of N (0,1). This holds due to the asymptotic Gaussianity of τ̂ x with
zero mean and diagonal covariance matrix, implied by Proposition 1 discussed shortly.

Rerandomization is a design to prevent undesirable treatment allocations. When covari-
ate imbalance occurs for a realized randomization under a certain criterion, we discard this
unlucky realization and rerandomize the treatment assignment until this criterion is satisfied.
Generally, rerandomization proceeds as follows (Morgan and Rubin (2012)): first, we collect
covariate data and specify a covariate balance criterion; second, we continue randomizing the
units into different treatment groups until the balance criterion is satisfied; third, we conduct
the physical experiment using the accepted randomization. A major goal of this paper is to
discuss the statistical analysis of the data from a rerandomized factorial experiment.

There are three additional issues on covariates. First, covariates are attributes of the units
that are fixed before the experiment. Second, the covariates can be general (discrete or con-
tinuous). We can use binary indicators to represent discrete covariates. Third, the covariates
can include transformations of the basic covariates and their interactions. This enables us to
balance the marginal and joint distributions of the basic covariates. See Baldi Antognini and
Zagoraiou (2011) and Li, Ding and Rubin (2018) for a related discussion in the treatment-
control experiment.

2.3. Additional notation. To facilitate the discussion, for a positive semidefinite matrix
A ∈ R

m×m with rank p0, and a positive integer p ≥ p0, we use A
1/2
p ∈ R

m×p to denote a

matrix such that A
1/2
p (A

1/2
p )′ = A. Specifically, if A = ��2�′ is the eigen-decomposition

of A where � ∈ R
m×p0 , �′� = Ip0 and � = diag(λ1, . . . , λp0), then we can choose A

1/2
p =

(��,0m×(p−p0)). The choice of A
1/2
p is generally not unique. In the special case with p = m,

we use A1/2 to denote the unique positive-semidefinite matrix satisfying the definition of
A

1/2
m . We use ⊗ for the Kronecker product of two matrices, and ◦ for elementwise multipli-

cations of vectors. We say a matrix M1 is smaller than or equal to M2 and write as M1 ≤ M2,
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if M2 −M1 is positive semidefinite. We say a random vector φ (or its distribution) is symmet-
ric, if φ and −φ have the same distribution. We say a random vector is spherically symmetric,
if its distribution is invariant under orthogonal transformations. In the asymptotic analysis, we
use

.∼ for two sequences of random vectors converging weakly to the same distribution, after
scaling by

√
n.

3. 2K completely randomized factorial experiments. The sampling distributions of
factorial effect estimators under rerandomization are the same as their conditional distribu-
tions under the CRFE given that the treatment assignment vector satisfies the balance crite-
rion. Therefore, we first study the joint sampling distribution of the difference-in-means of
the outcomes and covariates under the CRFE. It depends on the finite population variances
and covariances: Sqq = (n − 1)−1 ∑n

i=1{Yi(q) − Ȳ (q)}2 and Sqk = (n − 1)−1 ∑n
i=1{Yi(q) −

Ȳ (q)}{Yi(k) − Ȳ (k)} for potential outcomes, Sττ = (n − 1)−1 ∑n
i=1(τ i − τ )(τ i − τ )′ for

factorial effects, Sxx = (n − 1)−1 ∑n
i=1(xi − x̄)(xi − x̄)′ for covariates and Sq,x = S′

x,q =
(n − 1)−1 ∑n

i=1{Yi(q) − Ȳ (q)}(xi − x̄)′ for potential outcomes and covariates. The covari-
ance Sxx is known without any uncertainty. However, other variances or covariances (e.g.,
Sqk , Sττ and Sq,x ) involve potential outcomes or individual factorial effects and are thus
unknown.

3.1. Asymptotic sampling distribution under the CRFE. Let Y obs
i = ∑Q

q=1 1{Zi =
q}Yi(q) be the observed outcome of unit i, and ˆ̄Y(q) = n−1

q

∑
i:Zi=q Y obs

i be the average
observed outcome under treatment combination q . For 1 ≤ f ≤ F , the difference-in-means
estimator for the f th average factorial effect is

τ̂f = 2

Q

Q∑
q=1

gf q
ˆ̄Y(q) = 1

2K−1

∑
q:gf q=1

ˆ̄Y(q) − 1

2K−1

∑
q:gf q=−1

ˆ̄Y(q).

Let τ̂ = (τ̂1, . . . , τ̂F )′ be the F dimensional column vector consisting of all factorial effect
estimators.

In the finite population inference, the covariates and potential outcomes are all fixed, and
the only random component is the treatment vector Z. In the asymptotic analysis, we further
embed the finite population into a sequence with increasing sizes, and introduce the following
regularity conditions.

CONDITION 1. As n → ∞, the sequence of finite populations satisfies that for each
1 ≤ q = k ≤ Q:

(i) the proportion of units under treatment combination q , nq/n, has a positive limit,
(ii) the finite population variance and covariances Sqq , Sqk , Sxx and Sq,x have limiting

values, and Sxx and its limit are nondegenerate,
(iii) max1≤i≤n |Yi(q) − Ȳ (q)|2/n → 0 and max1≤i≤n ‖xi − x̄‖2

2/n → 0.

PROPOSITION 1. Under the CRFE, (τ̂ ′ − τ ′, τ̂ ′
x)′ has mean zero and sampling covari-

ance matrix

V ≡ 2−2(K−1)
Q∑

q=1

n−1
q

(
bqb

′
qSqq

(
bqb

′
q

) ⊗ Sq,x(
bqb

′
q

) ⊗ Sx,q

(
bqb

′
q

) ⊗ Sxx

)
− n−1

(
Sττ 0

0 0

)

≡
(
V ττ V τx

V xτ V xx

)
.

Under the CRFE and Condition 1, (τ̂ ′ − τ ′, τ̂ ′
x)′ .∼N (0,V ).
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Proposition 1 follows from a finite population central limit theorem (Li and Ding (2017),
Theorems 3 and 5), with the proof in Appendix A2 of the Supplementary Material (Li, Ding
and Rubin (2019)). Proposition 1 immediately gives the sampling properties of any sin-
gle factorial effect estimator. Let Sτf τf

be the f th diagonal element of Sττ , and Vτf τf
=

2−2(K−1) ∑Q
q=1 n−1

q Sqq − n−1Sτf τf
be the f th diagonal element of V ττ . Then τ̂f is unbi-

ased for τf with sampling variance Vτf τf
, and τ̂f −τf

.∼N (0,Vτf τf
). Moreover, Sττ cannot

be unbiasedly estimated from the observed data, and it equals 0 under the additivity defined
below. Under the additivity, the individual treatment effect does not depend on covariates,
that is, there is no treatment-covariate interaction.

DEFINITION 1. The factorial effects are additive if and only if the individual factorial
effect τ i is a constant vector for all units, or, equivalently, Sττ = 0.

Under the CRFE, the observed sample variance sqq = (nq − 1)−1 ∑
i:Zi=q{Y obs

i − ˆ̄Y(q)}2

is unbiased for Sqq , because the units receiving treatment combination q are from a simple
random sample of size nq . Similar to Splawa-Neyman (1923), we can conservatively estimate

V ττ by 2−2(K−1) ∑Q
q=1 n−1

q bqb′
qsqq , and then construct Wald-type confidence sets for τ .

Both the sampling covariance estimator and confidence sets are asymptotically conservative
unless the additivity in Definition 1 holds. It is then straightforward to construct confidence
sets for any linear transformations of τ .

3.2. Linear projections. First, we decompose the potential outcomes. Let Yi (q) =
Ȳ (q) + Sq,xS−1

xx (xi − x̄) be the finite population linear projection of the Yi(q)’s on the xi ’s,
and Y⊥

i (q) = Yi(q) − Yi (q) be the corresponding residual. The finite population linear pro-

jection of τ i on xi is then τ i = 2−(K−1) ∑Q
q=1 bqYi (q), and the corresponding residual is

τ⊥
i = 2−(K−1) ∑Q

q=1 bqY⊥
i (q). Let Sqq , S⊥

qq , Sττ and S⊥
ττ be the finite population variances

and covariances of Y (q), Y⊥(q), τ and τ⊥, respectively. Define

V ττ = 2−2(K−1)
Q∑

q=1

n−1
q bqb

′
q · Sqq − n−1Sττ ,

V ⊥
ττ = 2−2(K−1)

Q∑
q=1

n−1
q bqb

′
q · S⊥

qq − n−1S⊥
ττ

as analogues of the sampling covariance V ττ in Proposition 1, with the potential outcomes
Yi(q)’s replaced by the linear projections Yi (q)’s and the residuals Y⊥

i (q)’s, respectively.
We have V ττ = V ττ + V ⊥

ττ .
Second, we decompose the factorial effect estimator τ̂ .

THEOREM 1. Under the CRFE, the linear projection of τ̂ − τ on τ̂ x is V τxV −1
xx τ̂ x , the

corresponding residual is τ̂ − τ − V τxV −1
xx τ̂ x and they have sampling covariances:

Cov
(
V τxV −1

xx τ̂ x
) = V ττ , Cov

(
τ̂ − τ − V τxV −1

xx τ̂ x
) = V ⊥

ττ ,

Cov
(
V τxV −1

xx τ̂ x, τ̂ − τ − V τxV −1
xx τ̂ x

) = 0.

Theorem 1 follows from Proposition 1 and some matrix calculations, with the proof in
Appendix A2 of the Supplementary Material (Li, Ding and Rubin (2019)). Let Vτf τf

and

Sτf τf
be the f th diagonal elements of V ττ and Sττ , respectively. The multiple correlation in
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the following corollary will play an important role in the asymptotic sampling distribution of
τ̂f under rerandomization. We summarize its equivalent forms below.

COROLLARY 1. Under the CRFE, the sampling squared multiple correlation between
τ̂f and τ̂ x has the following equivalent forms:

R2
f = Corr2(τ̂f , τ̂ x) = Vτf τf

Vτf τf

= 2−2(K−1) ∑Q
q=1 n−1

q Sqq − n−1Sτf τf

2−2(K−1)
∑Q

q=1 n−1
q Sqq − n−1Sτf τf

.

It reduces to R2
f = S11/S11, the finite population squared multiple correlation between Y(1)

and x under the additivity in Definition 1.

The proof of Corollary 1 is in Appendix A2 of the Supplementary Material (Li, Ding and
Rubin (2019)).

4. Rerandomization using the Mahalanobis distance. As shown in Section 3.1, al-
though τ̂ x has mean 0, its realized value can be very different from 0 for a particular treat-
ment allocation. Rerandomization can avoid this drawback. In the design stage, we can force
balance of the covariate means by ensuring τ̂ x to be “small.”

4.1. Mahalanobis distance criterion. A measure of the magnitude of τ̂ x is the Maha-
lanobis distance M ≡ τ̂ ′

xV −1
xx τ̂ x . We further let a be a positive constant predetermined in

the design stage. Using M as the balance criterion, we accept a treatment assignment vector
Z from the CRFE if and only if M ≤ a. Below we use ReFM to denote 2K rerandomized
factorial experiments using M as the criterion, and M to denote the event that the treatment
vector Z satisfies this criterion. From Proposition 1, M is asymptotically χ2

LF , and there-
fore the asymptotic acceptance probability is pa = P(χ2

LF ≤ a) under ReFM. In practice,
we usually choose a small threshold a, or equivalently a small pa , for example, pa = 0.001.
However, we do not advocate choosing pa to be too small, because an extremely small pa

may lead to too few configurations of treatment allocations in ReFM.

4.2. Asymptotic sampling distribution of τ̂ under ReFM. Rerandomization in the de-
sign stage accepts only the treatment assignments resulting in covariate balance, which con-
sequently changes the sampling distribution of τ̂ . Understanding the asymptotic sampling
distribution of τ̂ is crucial for conducting the classical repeated sampling inference of τ . In-
tuitively, τ̂ has two parts: one part is orthogonal to τ̂ x and thus unaffected by ReFM, and the
other part is the linear projection onto τ̂ x and thus affected by ReFM. Let ε ∼ N (0, IF ) be
an F dimensional standard Gaussian random vector, and ζLF,a ∼ D | D′D ≤ a be an LF

dimensional truncated Gaussian random vector, where D = (D1, . . . ,DLF )′ ∼ N (0, ILF ).
In addition, ε and ζLF,a are independent. The following theorem shows the asymptotic sam-
pling distribution of τ̂ .

THEOREM 2. Under ReFM and Condition 1,

(4.1) τ̂ − τ | M .∼ (
V ⊥

ττ

)1/2
ε + (

V ττ

)1/2
LF ζLF,a.

Theorem 2 holds because the sampling distribution of τ̂ under rerandomization is the
same as the conditional distribution of τ̂ given M ≤ a. Its proof is in Appendix A3 of the
Supplementary Material (Li, Ding and Rubin (2019)). We emphasize that, although the ma-
trix (V ττ )

1/2
LF may not be unique, the asymptotic sampling distribution (4.1) is. Therefore,
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the asymptotic sampling distribution of τ̂ − τ under ReFM depends only on L, F , a, V ⊥
ττ

and V ττ . Theorem 2 immediately implies the asymptotic sampling distribution of a single
factorial effect estimator. Let ε0 ∼ N (0,1), ηLF,a ∼ D1 | D′D ≤ a be the first coordinate of
ζLF,a , and ε and ηLF,a be independent.

COROLLARY 2. Under ReFM and Condition 1, for 1 ≤ f ≤ F ,

(4.2) τ̂f − τf | M .∼
√

Vτf τf

(√
1 − R2

f · ε0 +
√

R2
f · ηLF,a

)
.

The proof of Corollary 2 is in Appendix A3 of the Supplementary Material (Li, Ding and
Rubin (2019)). The marginal asymptotic sampling distribution (4.2) under ReFM has the
same form as that under rerandomized treatment-control experiments using the Mahalanobis
distance (Li, Ding and Rubin (2018)).

4.3. Review of the central convex unimodality. In this subsection, we review a generaliza-
tion of unimodality to multivariate distributions and apply it to study the asymptotic sampling
distribution (4.1). This property will be important for constructing conservative large-sample
confidence sets later.

Although the definition of symmetric unimodality for univariate distribution is simple and
intuitive, it is nontrivial to generalize it to multivariate distribution. Here we adopt the central
convex unimodality proposed by Dharmadhikari and Jogdeo (1976) based on the results of
Sherman (1955), which is also equivalent to the symmetric unimodality in Kanter (1977). For
a set B of distributions on R

m, we say that B is closed convex if it satisfies two conditions:
(i) for any distributions ν1, ν2 ∈ B and for any λ ∈ (0,1), the distribution (1−λ)ν1 +λν2 is in
B, and (ii) a distribution ν is in B if there exists a sequence of distributions in B converging
weakly to ν. For any set C of distributions, let the closed convex hull of C be the smallest
closed convex set containing C. A compact convex set in Euclidean space R

m is called a
convex body if it has a nonempty interior. A set K ⊂ R

m is symmetric if K = {−a : a ∈ K}.
Below we introduce the definition.

DEFINITION 2. A distribution on R
m is central convex unimodal if it is in the closed

convex hull of U , where U is the set of all uniform distributions on symmetric convex bodies
in R

m.

The class of central convex unimodal distributions is closed under convolution, marginal-
ity, product measure and weak convergence (Kanter (1977)). A sufficient condition for the
central convex unimodality is having a log-concave probability density function (Kanter
(1977), Dharmadhikari and Joag-Dev (1988)). The following proposition states the central
convex unimodality of the asymptotic sampling distribution of τ̂ − τ under ReFM.

PROPOSITION 2. The standard Gaussian random vector ε, the truncated Gaussian ran-
dom vector ζLF,a and the asymptotic sampling distribution (4.1) are all central convex uni-
modal.

Proposition 2 follows from the log-concavity of the densities of ε and ζLF,a and the
closedness of the class of central convex unimodal distributions under linear transformation
and convolution. Its proof is in Appendix A3 of the Supplementary Material (Li, Ding and
Rubin (2019)).
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4.4. Representation for the asymptotic sampling distribution of τ̂ . In this subsection, we
further represent (4.1) using well-known distributions to gain more insights. Let χ2

LF,a ∼
χ2

LF | χ2
LF ≤ a be a truncated χ2 random variable, S be an LF dimensional random vector

whose coordinates are independent random signs with probability 1/2 of being ±1 and β be
an LF dimensional Dirichlet random vector with parameters (1/2, . . . ,1/2). Let

√
β be the

elementwise square root of the vector β , and vLF,a = P(χ2
LF+2 ≤ a)/P (χ2

LF ≤ a) ≤ 1.

PROPOSITION 3. ζLF,a is spherically symmetric with covariance vLF,aILF . It follows
ζLF,a ∼ χLF,a · S ◦ √

β , where (χLF,a,S,β) are jointly independent.

Proposition 3 follows from the spherical symmetry of the standard multivariate Gaussian
random vector, with the proof in Appendix A3 of the Supplementary Material (Li, Ding and
Rubin (2019)). Proposition 3 allows for easy simulations of the asymptotic sampling dis-
tribution (4.1), which is useful for the repeated sampling inference discussed shortly. For
simplicity, in the remaining paper, we assume that V ττ is invertible whenever we mention
its inverse; otherwise we can focus on a lower dimensional linear transformation of τ̂ (Li,
Ding and Rubin (2019)). Let R = V

−1/2
ττ V ττV

−1/2
ττ be the matrix measuring the relative

sampling covariance of τ̂ explained by τ̂ x , and R = �
2�′ be its eigen-decomposition,
where � ∈ R

F×F is an orthogonal matrix and 
2 = diag(π2
1 , . . . , π2

F ) ∈ R
F×F is a diagonal

matrix with nonnegative elements. The eigenvalues (π2
1 , . . . , π2

F ) are the canonical correla-
tions between the sampling distributions of τ̂ and τ̂ x under the CRFE, which measure the
association between the potential outcomes and covariates. Under the additivity in Defini-
tion 1, π2

1 = · · · = π2
F = S11/S11. The following corollary gives an equivalent form of (4.1)

highlighting the dependence on the canonical correlations (π2
1 , . . . , π2

F ).

COROLLARY 3. Under ReFM and Condition 1, (4.1) is equivalent to

(4.3) τ̂ − τ | M .∼ V 1/2
ττ �

{(
IF − 
2)1/2

ε + (
,0F×(L−1)F )ζLF,a

}
.

The proof of Corollary 3 is in Appendix A3 of the Supplementary Material (Li, Ding
and Rubin (2019)). The second term in (4.3), affected by rerandomization, depends on the
canonical correlations (π2

1 , . . . , π2
F ) and the asymptotic acceptance probability pa of ReFM.

Below we use a numerical example to illustrate such dependence.

EXAMPLE 2. We consider the case with L = 1, K = 2 and F = 3, and focus on the
standardized distribution (I 3 − 
2)1/2ε + 
ζ 3,a , which depends on 
2 = diag(π2

1 , π2
2 , π2

3 )

and pa = P(χ2
3 ≤ a). First, we fix (π2

2 , π2
3 ,pa) = (0.5,0.5,0.001). Figure 1(a) shows the

density of the first two coordinates of ζ 3,a for different π2
1 . As π2

1 increases, the density
becomes more concentrated around zero, showing that the stronger the association is between
the potential outcomes and covariates, the more precise the factorial effect estimators are.

Second, we fix (π2
1 , π2

2 , π2
3 ) = (0.5,0.5,0.5). Figure 1(b) shows the density of the first two

coordinates of ζ 3,a for different pa . As the asymptotic acceptance probability pa decreases,
the density becomes more concentrated around zero, confirming the intuition that a smaller
asymptotic acceptance probability gives us more precise factorial effect estimators. Note that
the first ε component in the asymptotic sampling distribution (4.3) does not depend on pa and
is usually nonzero. For example, when V ⊥

ττ is positive definite, IF − R = V
−1/2
ττ V ⊥

ττV
−1/2
ττ

is positive definite, as well as the coefficient of ε in (4.3). Therefore, the gain of ReFM by
decreasing pa usually becomes smaller as pa decreases.
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FIG. 1. Joint density of the first two coordinates of (I3 − 
2)1/2ε + 
ζ 3,a .

4.5. Asymptotic unbiasedness, sampling covariance and peakedness. In this subsection,
we further study the asymptotic properties of τ̂ under ReFM. First, the factorial effects es-
timator τ̂ is consistent for τ . Because covariates are potential outcomes unaffected by the
treatment, the difference-in-means of any observed or unobserved covariate with respect to
any factorial effect has asymptotic mean zero.

Second, we compare the asymptotic sampling covariance matrices of τ̂ under ReFM and
the CRFE, which also gives the reduction in asymptotic sampling covariances of difference-
in-means of covariates as a special case.

THEOREM 3. Under Condition 1, the asymptotic sampling covariance matrix of τ̂ under
ReFM is smaller than or equal to that under the CRFE, and the reduction in asymptotic
sampling covariance is (1−vLF,a)nV ττ . Specifically, the percentage reduction in asymptotic
sampling variance (PRIASV) of τ̂f is (1 − vLF,a)R

2
f .

Theorem 3 follows from Theorem 2 and Proposition 3, with the proof in Appendix A4
of the Supplementary Material (Li, Ding and Rubin (2019)). Rigorously, the reductions in
Theorem 3 should be (1 − vLF,a) limn→∞(nV ττ ) and (1 − vLF,a) limn→∞ R2

f . However,
for descriptive simplicity, we omit the limit signs. From Theorem 3, the larger the squared
multiple correlation R2

f is, the more PRIASV of the factorial effect estimator is through
ReFM. When a is close to zero, or equivalently the asymptotic acceptance probability pa is
small, the asymptotic sampling variance of τ̂f reduces to Vτf τf

(1 − R2
f ), which is identical

to the asymptotic sampling variance of the regression adjusted estimator under the CRFE
discussed in Lu (2016).

Third, we compare the peakedness of the asymptotic sampling distributions of τ̂ under
ReFM and the CRFE, because of its close connection to the volumes of confidence sets for τ .
Birnbaum (1948), Bickel and Lehmann (1976) and Shaked (1985) proposed some measures
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of dispersion for univariate distributions. Sherman (1955) and Giovagnoli and Wynn (1995)
generalized them to multivariate distributions. Marshall, Olkin and Arnold (2009) discussed
some related properties. Here we use the definition in Sherman (1955).

DEFINITION 3. For two symmetric random vectors φ and ψ in R
m, we say that φ is

more peaked than ψ and write as φ � ψ , if P(φ ∈ K) ≥ P(ψ ∈ K) for every symmetric
convex set K ⊂ R

m.

From Definition 3, intuitively, the more peaked a random vector is, the more “concen-
trated” around zero it is. Therefore, when comparing two experimental designs, the one with
more peaked sampling distribution of the causal estimator gives more precise estimate for the
true causal effect. That is, peakedness measures the efficiencies of the designs.

As a basic fact, the ordering of peakedness directly implies the ordering of the covariance
matrices.

PROPOSITION 4. For two symmetric random vectors φ and ψ in R
m with finite second

moments, if φ � ψ , then Cov(φ) ≤ Cov(ψ).

Proposition 4 follows from some algebra, with the proof in Appendix A5 of the Sup-
plementary Material (Li, Ding and Rubin (2019)). For two Gaussian vectors φ and ψ ,
Cov(φ) ≤ Cov(ψ) also implies φ � ψ . The reverse of Proposition 4 does not hold for gen-
eral random vectors. For example, we compare a standard Gaussian random variable ε0 and a
truncated Gaussian random variable ξ0 ∼ ε0 | 0.5 ≤ ε2

0 ≤ 1. Both random variables are sym-
metric around zero and Var(ξ0) < 1 = Var(ε0). However, ξ0 is not more peaked than ε0,
because P(|ξ0| ≤ 0.5) = 0 < P(|ε0| ≤ 0.5).

The following theorem shows that the difference-in-means estimator is more “concen-
trated” under ReFM than under the CRFE.

THEOREM 4. Under Condition 1, the asymptotic sampling distribution of τ̂ − τ under
ReFM is more peaked than that under the CRFE.

Theorem 4 holds because the truncated Gaussian random vector ζLF,a is more peaked than
the standard Gaussian random vector. Its proof is in Appendix A5 of the Supplementary Ma-
terial (Li, Ding and Rubin (2019)). First, Theorem 4, coupled with Proposition 4, implies the
asymptotic sampling covariance of τ̂ is smaller under ReFM than under the CRFE. Second,
Theorem 4 shows that asymptotically, τ̂ − τ has larger probability to be in any symmetric
convex set under ReFM than under the CRFE. For a positive definite matrix � ∈ R

p×p and
c ≥ 0, let O(�, c) ≡ {μ : μ′�−1μ ≤ c}. The following theorem implies that, for the special
class of symmetric convex sets, {O(V ττ , c) : c ≥ 0}, the asymptotic probability that τ̂ − τ
lies in O(V ττ , c) is nondecreasing in the canonical correlation π2

k ’s.

THEOREM 5. Under ReFM, assume Condition 1. Let c1−α be the solution of
limn→∞ P {τ̂ − τ ∈ O(V ττ , c1−α) | M} = 1 − α for any α ∈ (0,1). It depends only on
(L,K,a) and the canonical correlation π2

k ’s, and is nonincreasing in these canonical corre-
lations for fixed (L,K,a).

Theorem 5 is a multivariate extension of Theorem 2 of Li, Ding and Rubin (2018), with
the proof in Appendix A5 of the Supplementary Material (Li, Ding and Rubin (2019)). The
set O(V ττ , c1−α) in Theorem 5 is a 1 − α asymptotic quantile region of τ̂ − τ under ReFM.
From Theorem 5, with larger canonical correlation π2

k ’s, ReFM leads to more percentage
reduction in volume of the 1 − α asymptotic quantile region O(V ττ , c1−α) of τ̂ − τ .
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Moreover, we can establish similar conclusions as Theorems 4 and 5 for any linear trans-
formation of τ̂ . This follows from two facts: (i) the peakedness relationship is invariant under
linear transformations (Dharmadhikari and Joag-Dev (1988), Lemma 7.2), that is, for any
C ∈ R

p×m, if φ � ψ , then Cφ � Cψ ; (ii) the asymptotic sampling distribution of any linear
transformation of τ̂ has the same form as τ̂ , that is, a linear combination of a standard Gaus-
sian random vector and a truncated Gaussian random vector. For conciseness, we relegate the
discussion to Appendix A5 of the Supplementary Material (Li, Ding and Rubin (2019)), and
consider only a single factorial effect estimator in the main text. In this case, the comparison
between peakedness of two univariate asymptotic sampling distributions under ReMF and
the CRFE reduces to the comparison of the lengths of quantile ranges (Li, Ding and Rubin
(2018)).

COROLLARY 4. Under Condition 1, for any 1 ≤ f ≤ F and α ∈ (0,1), the threshold
c1−α for the 1−α asymptotic symmetric quantile range [−c1−αV

1/2
τf τf , c1−αV

1/2
τf τf ] of τ̂f − τf

under ReFM is smaller than or equal to that under the CRFE, and is nonincreasing in R2
f .

The proof of Corollary 4 is in Appendix A5 of the Supplementary Material (Li, Ding and
Rubin (2019)). From Corollary 4, with larger squared multiple correlation R2

f , ReFM leads
to more percentage reductions in lengths of the asymptotic quantile ranges of τ̂f − τf .

4.6. Conservative covariance estimator and confidence sets under ReFM. The asymp-
totic sampling distribution (4.1) of τ̂ under ReFM depends on V ⊥

ττ and (V ττ )
1/2
LF =

V τxV
−1/2
xx , which further depend on S⊥

qq , S⊥
ττ and Sq,xS

−1/2
xx . Under treatment combination

q , define sqq as the sample variance of observed outcomes, sq,x as the sample covariance be-
tween observed outcomes and covariates, sxx(q) as the sample covariance of covariates and
s⊥
qq = sqq − sq,xs−1

xx (q)sx,q as the sample variance of the residuals from the linear projection

of observed outcomes on covariates. We estimate V ⊥
ττ by

V̂
⊥
ττ = 2−2(K−1)

Q∑
q=1

n−1
q s⊥

qqbqb
′
q,(4.4)

V τx by V̂ τx = 2−2(K−1) ∑Q
q=1 n−1

q (bqb′
q) ⊗ {sq,xs

−1/2
xx (q)S

1/2
xx } and (V ττ )

1/2
LF by V̂ τx ×

V
−1/2
xx . We can then obtain a covariance estimator and construct confidence sets for τ

or its linear transformations. When the threshold a is small, ζLF,a is close to zero, and
the distribution (4.1) of τ̂ is close to the Gaussian distribution with mean τ and covari-
ance matrix V ⊥

ττ . Therefore, for a parameter of interest Cτ , we recommend confidence

sets of the form Cτ̂ + O(CV̂
⊥
ττC′, c). We choose the threshold c based on simulation

from the estimated asymptotic sampling distribution, and let ĉ1−α be the 1 − α quantile of

(Cφ)′(CV̂
⊥
ττC′)−1(Cφ) with φ following the estimated asymptotic sampling distribution of

τ̂ − τ .

THEOREM 6. Under ReFM and Condition 1, consider inferring Cτ , where C has

full row rank. The probability limit of the covariance estimator for Cτ̂ , CV̂
⊥
ττC′ +

vLF,aCV̂ τxV −1
xx V̂ xτC′, is larger than or equal to the sampling covariance, and the 1 − α

confidence set, Cτ̂ +O(CV̂
⊥
ττC′, ĉ1−α), has asymptotic coverage rate ≥ 1−α, with equality

holding if S⊥
ττ → 0 as n → ∞.
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Theorem 6 holds because the ordering of peakedness still holds by adding an indepen-
dent central convex unimodal random vector. Its proof is in Appendix A6 of the Supplemen-
tary Material (Li, Ding and Rubin (2019)). The above confidence sets will be similar to the
ones based on regression adjustment if the threshold a is small. Theoretically, we can extend
Theorem 6 to general symmetric convex confidence sets, and we relegate this discussion to
Appendix A6 in the Supplementary Material (Li, Ding and Rubin (2019)).

5. Rerandomization with tiers of factorial effects. From Corollary 1, under the addi-
tivity in Definition 1, the squared multiple correlations between τ̂f and τ̂ x are the same for
all f : R2

1 = · · · = R2
F = S11/S11. From Section 4.5, under the additivity in Definition 1, the

improvement of the f th factorial effect estimator τ̂f under ReFM compared to the CRFE is
asymptotically the same for all f . However, in practice, we are sometimes more interested
in some factorial effects than others. For example, the main effects are often more impor-
tant than higher-order interactions. Therefore, we need a balance criterion resulting in more
precise estimators for the more important factorial effects.

5.1. Tiers of factorial effects criterion. Let F = {1,2, . . . ,F } be the set of all factorial
effects. We partition F into H tiers (F1, . . . ,FH) with decreasing importance, where the
Fh’s are disjoint and F = ⋃H

h=1 Fh. The cardinality Fh ≡ |Fh| represents the number of
factorial effects in tier h. For example, we can partition F into three tiers: F1 contains the K

main effects, F2 contains the
(K

2

)
interaction effects between two factors and F3 contains the

remaining factorial effects with higher-order interactions.
Define γ 2

f k = Corr2(τ̂f , τ̂ x,k). When the f th factorial effect is more important, we would
like to put more restriction on the difference-in-means vector τ̂ x,k with larger squared multi-
ple correlation γ 2

f k . Although general results for the relative magnitudes of the γ 2
f k’s appear

too complicated, below we give a proposition under the additivity, which serves as a guideline
for the choice of the balance criterion.

PROPOSITION 5. Under the CRFE, assume the additivity in Definition 1. The squared
multiple correlations satisfy max1≤k≤F γ 2

f k = γ 2
ff = R2

f = S11/S11 for 1 ≤ f ≤ F . The
squared multiple partial correlation between τ̂f and τ̂ x given τ̂ x,f is zero, that is, the
residuals from the linear projections of τ̂f and τ̂ x on τ̂ x,f are uncorrelated. If further
n1 = · · · = nQ = n/Q, then γ 2

f k = 0 for k = f .

Proposition 5 follows from some algebra, with the proof in Appendix A2 of the Supple-
mentary Material (Li, Ding and Rubin (2019)). From Proposition 5, with the additivity and
under the CRFE, τ̂ x explains τ̂f in the linear projection only through τ̂ x,f . Therefore, it is
desirable to impose more restriction on the difference-in-means of covariates with respect to
more important factorial effects under rerandomization.

5.2. Orthogonalization with tiers of factorial effects. For 1 ≤ h ≤ H , let τ̂ x[Fh] be the
subvector of τ̂ x , consisting of the difference-in-means of covariates τ̂ x,f with respect to
factorial effect f ∈ Fh. From Section 5.1, the smaller the h is, the more restriction we want
to impose on τ̂ x[Fh]. However, due to the correlations among the τ̂ x[Fh]’s, restrictions on
one also restrict others. For example, balancing τ̂ x[F1] partially balances τ̂ x[F2]. Therefore,
instead of unnecessarily balancing for all factorial effects in tier h, we balance only the part
that is orthogonal to the factorial effects in previous tiers.

Let B̃ = 2−2(K−1) ∑Q
q=1 n−1

q bqb′
q . From Proposition 1, the sampling covariance of τ̂ x

under the CRFE, V xx = B̃ ⊗ Sxx , contains two components: B̃ determined by the coeffi-
cient vector bq ’s and Sxx determined by the covariates. Below we introduce a blockwise
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Gram–Schmidt orthogonalization of the coefficient vector bq ’s, taking into account the tiers
of factorial effects. Let Fh = ⋃h

l=1 Fl be the factorial effects in the first h tiers. We use
bq[Fh] and bq[Fh] to denote the subvectors of bq with indices in Fh and Fh, and B̃[Fh,Fh]
and B̃[Fh,Fh] to denote the submatrices of B̃ with indices in Fh × Fh and Fh × Fh. For
each 1 ≤ q ≤ Q, we define the orthogonalized coefficient vector cq = (c′

q[1], . . . , c′
q[H ])′ as

cq[1] = bq[F1], and for 2 ≤ h ≤ H ,

cq[h] = bq[Fh] − B̃[Fh,Fh−1]
{
B̃[Fh−1,Fh−1]

}−1
bq[Fh−1].(5.1)

The difference-in-means vector of covariates with respect to orthogonalized coefficient vec-
tors is

θ̂ x ≡

⎛
⎜⎜⎝

θ̂ x[1]
...

θ̂ x[H ]

⎞
⎟⎟⎠ = 2−(K−1)

Q∑
q=1

⎛
⎜⎝

cq[1]
...

cq[H ]

⎞
⎟⎠ ⊗ ˆ̄x(q).(5.2)

By construction, C̃ ≡ 2−2(K−1) ∑Q
q=1 n−1

q cqc′
q is block diagonal, and thus the sampling co-

variance of θ̂ x under the CRFE, C̃ ⊗ Sxx , is also block diagonal. The following proposition
summarizes these results.

PROPOSITION 6. Under the CRFE, (τ̂ ′ − τ ′, θ̂ ′
x)′ has mean zero and sampling covari-

ance:

Cov
(
τ̂ − τ , θ̂ x[h]) ≡ Wτx[h] = 2−2(K−1)

Q∑
q=1

n−1
q

(
bqc

′
q[h]) ⊗ Sq,x,

Cov
(
θ̂ x[h]) ≡ Wxx[h] = 2−2(K−1)

Q∑
q=1

n−1
q

(
cq[h]c′

q[h]) ⊗ Sxx,

and Cov(θ̂ x[h], θ̂ x[h̃]) = 0 if h = h̃.

Proposition 6 follows from some algebra, with the proof in Appendix A2 of the Supple-
mentary Material (Li, Ding and Rubin (2019)). From Proposition 6, (θ̂ x[1], . . . , θ̂ x[H ]) are
mutually uncorrelated under the CRFE, and thus are essentially from a blockwise Gram–
Schmidt orthogonalization of (τ̂ x[F1], . . . , τ̂ x[FH ]). We define the Mahalanobis distance in
tier h as

Mh = θ̂
′
x[h](Wxx[h])−1

θ̂ x[h] (1 ≤ h ≤ H).(5.3)

Let (a1, . . . , aH ) be H positive constants predetermined in the design stage. Under reran-
domization with tiers of factorial effects, denoted by ReFMTF, a randomization is accept-
able if and only if Mh ≤ ah for all 1 ≤ h ≤ H . Below we use TF to denote the event that
the treatment vector Z satisfies this criterion. From the finite population central limit theo-
rem, asymptotically, Mh is χ2

LFh
, and (M1, . . . ,MH) are jointly independent. Therefore, the

asymptotic acceptance probability under ReFMTF is pa = ∏H
h=1 P(χ2

LFh
≤ ah). We usually

choose small ah’s. The magnitude of ah’s depend on the relative importance of the factorial
effects in all tiers. See Morgan and Rubin (2015) for a related discussion.

With equal treatment group sizes, Mh has a simpler form.

PROPOSITION 7. When n1 = · · · = nQ = n/Q, the coefficient cq[h] in (5.1) reduces

to bq[Fh], the difference-in-means of covariates θ̂ x[h] in (5.2) reduces to τ̂ x[Fh] and the
Mahalanobis distance Mh in (5.3) reduces to Mh = n/4 · ∑

f ∈Fh
τ̂ ′

x,f S−1
xx τ̂ x,f .
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Proposition 7 follows from some algebra, with the proof in Appendix A2 of the Supple-
mentary Material (Li, Ding and Rubin (2019)). In Proposition 7, if further each tier contains
exactly one factorial effect, ReFMTF reduces to the rerandomization scheme discussed in
Branson, Dasgupta and Rubin (2016).

5.3. Asymptotic sampling distribution of τ̂ . In this subsection, we study the asymptotic
sampling distribution of τ̂ under ReFMTF. Let Wττ [h] = Wτx[h](Wxx[h])−1Wxτ [h] be the
sampling covariance matrix of τ̂ explained by θ̂ x[h] in the linear projection under the CRFE.
Extending earlier notation, let ε ∼N (0, IF ), and ζLFh,ah

∼ Dh | D′
hDh ≤ ah be a truncated

Gaussian vector with LFh dimensions, where Dh = (Dh1, . . . ,Dh,LFh
)′ ∼ N (0, ILFh

). In
addition, (ε, ζLF1,a1

, . . . , ζLFH ,aH
) are jointly independent.

THEOREM 7. Under ReFMTF and Condition 1,

(5.4) τ̂ − τ | TF
.∼ (

V ⊥
ττ

)1/2
ε +

H∑
h=1

(
Wττ [h])1/2

LFh
ζLFh,ah

.

The proof of Theorem 7, similar to that of Theorem 2, is in Appendix A3 of the Supple-
mentary Material (Li, Ding and Rubin (2019)).

Let Wτf τf
[h] be the f th diagonal element of Wττ [h]. The squared multiple correlation

between τ̂f and θ̂ x[h] under the CRFE is then ρ2
f [h] = Wτf τf

[h]/Vτf τf
. When treatment

group sizes are equal, ρ2
f [h] reduces to ρ2

f [h] = ∑
k:k∈Fh

γ 2
f k for all f ; if further the addi-

tivity holds, ρ2
f [h] reduces to S11/S11 if f ∈ Fh, and zero otherwise. Because the θ̂ x[h]’s

are from a blockwise Gram–Schmidt orthogonalization of τ̂ x , the squared multiple corre-
lation between τ̂f and τ̂ x can be decomposed as R2

f = ∑H
h=1 ρ2

f [h]. The following corol-
lary shows the marginal asymptotic sampling distribution of a single factorial effect estima-
tor. Let ε0 ∼ N (0,1), ηLFh,ah

∼ Dh1 | D′
hDh ≤ ah be the first coordinate of ζLFh,ah

, and
(ε0, ηLF1,a1, . . . , ηLFH ,aH

) be jointly independent.

COROLLARY 5. Under ReFMTF and Condition 1, for 1 ≤ f ≤ F ,

(5.5) τ̂f − τf | TF
.∼

√
Vτf τf

(√
1 − R2

f · ε0 +
H∑

h=1

√
ρ2

f [h] · ηLFh,ah

)
.

The proof of Corollary 5 is in Appendix A3 of the Supplementary Material (Li, Ding and
Rubin (2019)).

5.4. Asymptotic unbiasedness, sampling covariance and peakedness. Based on the
asymptotic distributions in Section 5.3, we study the asymptotic properties of the facto-
rial effect estimators. First, (ε, ζLF1,a1

, . . . , ζLFH ,aH
) are all central convex unimodal from

Proposition 2, and thus the asymptotic sampling distribution (5.4) of τ̂ under ReFMTF is
also central convex unimodal. The symmetry of the asymptotic sampling distributions en-
sures that the factorial effect estimator τ̂ is consistent for τ under ReFMTF, which implies
that the difference-in-means of any observed or unobserved covariate with respect to any
factorial effect has asymptotic mean zero.

Second, we compare the asymptotic sampling covariance matrices of τ̂ under ReFMTF
and the CRFE. For each 1 ≤ h ≤ H , let vLFh,ah

= P(χ2
LFh+2 ≤ ah)/P (χ2

LFh
≤ ah) ≤ 1.
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THEOREM 8. Under Condition 1, τ̂ has smaller asymptotic sampling covariance un-
der ReFMTF than that under the CRFE, and the reduction in asymptotic sampling covari-
ance is n

∑H
h=1(1 − vLFh,ah

)Wττ [h]. Specifically, for each 1 ≤ f ≤ F , the PRIASV of τ̂f is∑H
h=1(1 − vLFh,ah

)ρ2
f [h].

Theorem 8 follows from Theorem 7 and Proposition 3, with the proof in Appendix A4 of
the Supplementary Material (Li, Ding and Rubin (2019)). When the threshold ah’s are close
to zero, the asymptotic sampling variance of τ̂f reduces to Vτf τf

(1 − R2
f ), which is identical

to the asymptotic sampling variance of the regression adjusted estimator under the CRFE (Lu
(2016)).

Third, we compare the peakedness of asymptotic sampling distributions of τ̂ under
ReFMTF and the CRFE.

THEOREM 9. Under Condition 1, the asymptotic sampling distribution of τ̂ − τ under
ReFMTF is more peaked than that under the CRFE.

The proof of Theorem 9, similar to that of Theorem 4, is in Appendix A5 of the Sup-
plementary Material (Li, Ding and Rubin (2019)). We then consider the specific symmetric
convex set O(V ττ , c). Unfortunately, considering joint quantile region for τ is technically
challenging in general, and we consider the case where the following condition holds.

CONDITION 2. There exists an orthogonal matrix � ∈ R
F×F such that

�′V −1/2
ττ Wττ [h]V −1/2

ττ � = diag
(
ω2

h1, . . . ,ω
2
hF

)
(1 ≤ h ≤ H),

where (ω2
h1, . . . ,ω

2
hF ) are the canonical correlations between τ̂ and θ̂ x[h] under the CRFE.

Condition 2 holds automatically when H = 1. Moreover, the additivity in Definition 1
implies Condition 2 for general H ≥ 1. The following proposition states this result. By con-
struction, bq = cq , where  ∈ R

F×F is the common linear transformation matrix for all

1 ≤ q ≤ Q. Recall that B̃ = 2−2(K−1) ∑Q
q=1 n−1

q bqb′
q , and C̃ = 2−2(K−1) ∑Q

q=1 n−1
q cqc

′
q .

PROPOSITION 8. Under the additivity in Definition 1, Condition 2 holds with orthogonal

matrix � = B̃
−1/2

C̃
1/2

, and the canonical correlations between τ̂ and θ̂ x[h] have exactly
Fh nonzero elements, which are all equal to S11/S11.

Proposition 8 follows from some algebra, with the proof in Appendix A5 of the Supple-
mentary Material (Li, Ding and Rubin (2019)).

THEOREM 10. Under ReFMTF, assume that Conditions 1 and 2 hold. Let c1−α be the
solution of limn→∞ P {τ̂ − τ ∈ O(V ττ , c1−α) | TF} = 1 −α. It depends only on L, Fh’s, ah’s
and (ω2

h1, . . . ,ω
2
hF )’s, and is nonincreasing in ω2

hf for 1 ≤ h ≤ H and 1 ≤ f ≤ F .

The proof of Theorem 10, similar to that of Theorem 5, is in Appendix A5 of the Supple-
mentary Material (Li, Ding and Rubin (2019)).

Because the peakedness relationship is invariant under linear transformations, and any
linear transformation of τ̂ has an asymptotic sampling distribution of the same form as τ̂ , we
can establish similar conclusions as Theorems 9 and 10 for any linear transformations of τ̂ .
We relegate the details to Appendix A5 of the Supplementary Material (Li, Ding and Rubin
(2019)), and consider only the asymptotic sampling distribution of a single factorial effect
estimator below.
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FIG. 2. PRIASV of main effect estimators divided by R2
f .

COROLLARY 6. Under Condition 1, for any 1 ≤ f ≤ F and α ∈ (0,1), the threshold
c1−α for 1 − α asymptotic symmetric quantile range [−c1−αV

1/2
τf τf , c1−αV

1/2
τf τf ] of τ̂f − τf

under ReFMTF is smaller than or equal to that under the CRFE, and is nonincreasing in
ρ2

f [h] for 1 ≤ h ≤ H .

The proof of Corollary 6 is in Appendix A5 of the Supplementary Material (Li, Ding and
Rubin (2019)). From Corollary 6, with larger squared multiple correlation ρ2

f [h], ReFMTF

yields more percentage reductions of quantile ranges.
The example below shows the advantage of ReFMTF over ReFM.

EXAMPLE 3. We consider experiments with K factors and L dimensional covariates.
Assume the additivity in Definition 1, which implies that R2

f is the same for all factorial
effects f . Suppose that we are more interested in the K main effects than the interaction
effects. We divide the F effects into 2 tiers, where tier 1 contains the F1 = K main effects
and tier 2 contains the remaining F2 = 2K − 1 − K interaction effects. From Proposition 5,
we can derive ρ2

k [1] = R2
f and ρ2

k [2] = 0 for the main effect 1 ≤ k ≤ K . We compare two
rerandomization schemes with the same asymptotic acceptance probability: ReFM with pa =
0.001 and ReFMTF with thresholds (a1, a2) satisfying P(χ2

LF1
≤ a1) = 0.002 and P(χ2

LF2
≤

a2) = 0.5. Figure 2 shows the PRIASV, divided by R2
f , of the main effect estimators for both

rerandomization schemes. It shows that the advantage of ReFMTF increases as the numbers
of factors and covariates increase.

5.5. Conservative covariance estimator and confidence sets under ReFMTF. We es-

timate V ⊥
ττ by V̂

⊥
ττ in (4.4), Wτx[h] by Ŵ τx[h] = 2−2(K−1) ∑Q

q=1 n−1
q (bqc

′
q[h]) ⊗

{sq,xs
−1/2
xx (q)S

1/2
xx }, and (Wττ [h])1/2

LFh
by Ŵ τx[h](Wxx[h])−1/2. We can then obtain a co-

variance estimator and construct confidence sets for τ or its linear transformations. Sim-
ilar to ReFM, for a parameter of interest Cτ , we recommend confidence sets of the

form Cτ̂ + O(CV̂
⊥
ττC′, c), where we choose the threshold c by simulating random draws

from the estimated asymptotic sampling distribution. Let ĉ1−α be the 1 − α quantile of

(Cφ)′(CV̂
⊥
ττC′)−1(Cφ) with φ following the estimated asymptotic sampling distribution

of τ̂ − τ under ReFMTF.
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THEOREM 11. Under ReFMTF and Condition 1, consider inferring Cτ , where C has

full row rank. The probability limit of the covariance estimator, CV̂
⊥
ττC′ +∑H

h=1 vLFh,ah
C ×

Ŵ τx[h](Wxx[h])−1Ŵxτ [h]C′, for Cτ̂ is larger than or equal to the actual sampling covari-

ance, and the 1 − α confidence set, Cτ̂ + O(CV̂
⊥
ττC′, ĉ1−α), has asymptotic coverage rate

≥ 1 − α, with equality holding if S⊥
ττ → 0 as n → ∞.

The proof of Theorem 11, similar to that of Theorem 6, is in Appendix A6 of the Supple-
mentary Material (Li, Ding and Rubin (2019)). The above confidence sets will be similar to
the ones based on regression adjustment if the threshold ah’s are small (Lu (2016)). More-
over, we can also extend Theorem 11 to general symmetric convex confidence sets (Li, Ding
and Rubin (2019)).

6. An education example. We illustrate the theory of rerandomization using a dataset
from the Student Achievement and Retention Project (Angrist, Lang and Oreopoulos (2009)),
a 22 CRFE at one of the satellite campuses of a large Canadian university. One treatment fac-
tor is the Student Support Program (SSP), which provides students some services for study.
The other treatment factor is the Student Fellowship Program (SFP), which awards students
scholarships for achieving a target first year grade point average (GPA). There were 1,006
students in the control group receiving neither SSP nor SFP (i.e., (−1,−1)), 250 students
offered only SFP (i.e., (−1,+1)), 250 students offered only SSP (i.e., (+1,−1)) and 150
students offered both SSP and SFP (i.e., (+1,+1)). We include L = 5 pretreatment covari-
ates: high school GPA, gender, age, indicators for whether the student was living at home
and whether the student rarely put off studying for tests, and exclude students with missing
covariate values. This results in treatment groups of sizes (856,216,208,118) for treatment
combinations (−1,−1), (−1,+1), (+1,−1) and (+1,+1), respectively.

To demonstrate the advantage of rerandomization, we compare the CRFE and ReFMTF in
terms of the sampling distributions of the factorial effects estimator. However, the sampling
distributions depend on all the potential outcomes including the missing ones. To make the
simulation more realistic, we impute all of the missing potential outcomes based on simple
model fitting. Specifically, we fit a linear regression of the observed GPA on the levels of
two treatment factors, all covariates and the interactions between these covariates, and then
impute all the missing potential outcomes based on the fitted model. We further truncate all
the potential outcomes to [0,4] to mimic the values of GPA. Note that the generating models
for the missing potential outcomes are not linear in the covariates. For the simulated data
set, the sampling squared multiple correlations between factorial effect estimators and the
difference-in-means of covariates are (R2

1,R2
2,R

2
3) = (0.247,0.244,0.245).

We divide the three factorial effects into two tiers, where tier 1 contains F1 = 2 main
effects, and tier 2 contains F2 = 1 interaction effect, and choose thresholds (a1, a2) such that
P(χ2

LF1
≤ a1) = 0.002 and P(χ2

LF2
≤ a2) = 0.5. Table 2 shows the empirical and theoretical

percentage reductions in the sampling variances and the lengths of 95% symmetric quantile
ranges for the three factorial effect estimators under ReFMTF, compared to the CRFE. From
Table 2, the asymptotic approximations work fairly well, and ReFMTF improves the precision
of the two average main effects estimators more than that of the average interaction effect
estimator.

We then consider confidence sets for the two average main effects (τ1, τ2) under both de-
signs. The empirical coverage probabilities of 95% confidence sets discussed in Sections 3.1
and 5.5 under the CRFE and ReFMTF are, respectively, 96.4% and 96.5%, showing that
both confidence sets are slightly conservative. Moreover, the percentage reduction in the av-
erage volume of 95% confidence sets under ReFMTF compared to the CRFE is 20.5%, and
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TABLE 2
Comparison of the factorial effect estimators between the CRFE and ReFMTF. The second and third columns

show the percentage reductions in variances, and the fourth and fifth columns show the percentage reductions in
the lengths of 95% quantile ranges

Reduction in quantile rangeReduction in variance

Factorial effect Empirical Theoretical Empirical Theoretical

Main effect of SSP 20.2% 21.2% 10.7% 11.2%
Main effect of SFP 20.4% 20.9% 10.8% 11.1%
Interaction effect 14.4% 14.9% 7.7% 7.8%

the corresponding percentage increase in sample size needed for the CRFE to obtain 95%
confidence set of the same average volume as ReFMTF is about 25.8%.

To end this section, we investigate the dependence of the PRIASVs on the choices of
thresholds (a1, a2). Let pah ≡ P(χ2

LFh
≤ ah) be the asymptotic acceptance probability for

tier h (h = 1,2). Fixing the overall asymptotic acceptance probability pa ≡ pa1pa2 at 0.001,
Figure 3 shows the PRIASVs of all factorial effect estimators as functions of pa1. We can
see that (1) more stringent restrictions on the first tier of factorial effects (i.e., the two main
effects) lead to larger PRIASVs of the corresponding estimators, but (2) the PRIASV of the
estimator of the second tier of factorial effect (i.e., the interaction effect) is a nonmonotone
function of pa1. Therefore, in practice, we are facing a trade-off, which depends on the a
priori relative importance of the factorial effects.

7. Extension. When covariates have varying importance for the potential outcomes, we
can further consider a balance criterion using tiers of covariates, that is, rerandomized fac-
torial experiments with tiers of both covariates and factorial effects. We discuss this balance
criterion and demonstrate its advantage in Appendix A1 of the Supplementary Material (Li,
Ding and Rubin (2019)).
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FIG. 3. PRIASVs of all factorial effects as pa1, with pa = pa1pa2 fixed at 0.001.
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SUPPLEMENTARY MATERIAL

Supplement to “Rerandomization in 2K factorial experiments” (DOI: 10.1214/18-
AOS1790SUPP; .pdf). We study the theoretical properties of 2K rerandomized factorial ex-
periments with tiers of both covariates and factorial effects, and prove all the theorems, corol-
laries and propositions.
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