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This paper rigorously establishes that the existence of the maximum like-
lihood estimate (MLE) in high-dimensional logistic regression models with
Gaussian covariates undergoes a sharp “phase transition.” We introduce an
explicit boundary curve hMLE, parameterized by two scalars measuring the
overall magnitude of the unknown sequence of regression coefficients, with
the following property: in the limit of large sample sizes n and number of
features p proportioned in such a way that p/n → κ , we show that if the
problem is sufficiently high dimensional in the sense that κ > hMLE, then the
MLE does not exist with probability one. Conversely, if κ < hMLE, the MLE
asymptotically exists with probability one.

1. Introduction. Logistic regression [12, 13] is perhaps the most widely used and stud-
ied nonlinear model in the multivariate statistical literature. For decades, statistical infer-
ence for this model has relied on likelihood theory, especially on the theory of maximum
likelihood estimation and of likelihood ratios. Imagine we have n independent observations
(xi , yi), i = 1, . . . , n, where the response yi ∈ {−1,1} is linked to the covariates xi ∈ R

p via
the logistic model

P(yi = 1|xi ) = σ
(
x′

iβ
)
, σ (t) := et

1 + et
;

here, β ∈ R
p is the unknown vector of regression coefficients. In this model, the log-

likelihood is given by

�(b) =
n∑

i=1

− log
(
1 + exp

(−yix
′
ib

))

and, by definition, the maximum likelihood estimate (MLE) is any maximizer of this func-
tional.

1.1. Data geometry and the existence of the MLE. The delicacy of maximum-likelihood
theory is that the MLE does not exist in all situations, even when the number p of covariates
is much smaller than the sample size n. This is a well-known phenomenon, which sparked
several interesting series of investigation. One can even say that characterizing the existence
and uniqueness of the MLE in logistic regression has been a classical problem in statistics. For
instance, every statistician knows that if the n data points (xi , yi) are completely separated
in the sense that that there is a linear decision boundary parameterized by b ∈ R

p with the
property

(1.1) yix
′
ib > 0 for all i,
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then the MLE does not exist. To be clear, (1.1) means that the decision rule that assigns a
class label equal to the sign of x′

ib makes no mistake on the sample. Every statistician also
knows that if the data points overlap in the sense that for every b �= 0, there is at least one data
point that is classified correctly (yix

′
ib > 0) and at least another that is classified incorrectly

(ykx
′
kb < 0), then the MLE does exist. The remaining situation, where the data points are

quasi-completely separated, is perhaps less well known to statisticians: this occurs when for
any decision b �= 0,

(1.2) yix
′
ib ≥ 0 for all i,

where equality above holds for some of the observations. A useful theorem of Albert and
Anderson [1] states that the MLE does not exist in this case either. Hence, the MLE exists if
and only if the data points overlap.

Historically, [1] follows earlier work of Silvapulle [17], who proposed necessary and suffi-
cient conditions for the existence of the MLE based on a geometric characterization involving
convex cones (see [1] for additional references). Subsequently, Santner and Duffy [15] ex-
panded on the characterization from [1] whereas Kaufman [8] established theorems on the
existence and uniqueness of the minimizer of a closed proper convex function. In order to de-
tect separation, linear programming approaches have been proposed on multiple occasions;
see, for instance, [1, 10, 18]. Detection of complete separation was studied in further detail
in [9, 11]. Finally, [4] analyzes the notion of regression depth for measuring overlap in data
sets.

1.2. Limitations. Although beautiful, the aforementioned geometric characterization
does not concretely tell us when we can expect the MLE to exist and when we cannot. In-
stead, it trades one abstract notion, “there is an MLE,” for another, “there is no separating
hyperplane.” To drive our point home, imagine that we have a large number of covariates xi ,
which are independent samples from some distribution F , as is almost always encountered
in modern applications. Then by looking at the distribution F , the data analyst would like to
be able to predict when she can expect to find the MLE and she cannot. The problem is that
the abstract geometric separation condition does not inform her in any way; she would have
no way to know a priori whether the MLE would go to infinity or not.

1.3. Cover’s result. One notable exception against this background dates back to the
seminal work of Cover [5, 6] concerning the separating capacities of decision surfaces. When
applied to logistic regression, Cover’s main result states the following: assume that the xi ’s
are drawn i.i.d. from a distribution F obeying some specific assumptions and that the class
labels are independent from xi and have equal marginal probabilities; that is, P(yi = 1|xi ) =
1/2. Then Cover shows that as p and n grow large in such a way that p/n → κ , the data
points asymptotically overlap—with probability tending to one—if κ < 1/2 whereas they
are separated—also with probability tending to one—if κ > 1/2. In the former case where
the MLE exists, [20] refined Cover’s result by calculating the limiting distribution of the MLE
when the features xi are Gaussian.

Hence, the results from [5, 6] and [20] describe a phase transition in the existence of the
MLE as the dimensionality parameter κ = p/n varies around the value 1/2. Therefore, a
natural question is this:

Do phase transitions exist in the case where the class labels yi actually depend on the
features xi?

Since likelihood based inference procedures are used all the time, it is of significance to
understand when the MLE actually exists. This paper is about this question.
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1.4. Motivation. Our motivation behind the study of this problem is two-fold. First,
knowing when the MLE exists has been a problem of fundamental importance to statistical
science, as is evidenced by [5, 6] and the series of works mentioned in Section 1.1. Second,
the results from this paper serve as a basis to derive a new theory of maximum-likelihood
(ML) estimation in high-dimensional logistic regression [19]. In that work, the authors show
that in the common modern setting, where the number of explanatory variables is not negligi-
ble compared to the sample size, classical ML theory breaks down. The MLE β̂ is not close to
being Gaussian with mean β (the true regression coefficient sequence) and covariance given
by the inverse of the Fisher information matrix. In particular, the MLE is biased and sys-
tematically over-estimates effect sizes. Also, the variability of the MLE is greater than that
estimated from the inverse Fisher information. Finally, the log-likelihood-ratio (LLR) statis-
tic is far from a χ2. In a nutshell, [19] proves that the distribution of a coordinate β̂j of the
MLE is in some sense equal to

α�βj + σ�Z,

where Z ∼ N (0,1) and independent of everything else. This holds provided that the covari-
ates are independent Gaussian variables. For instance, a null coordinate β̂j for which βj = 0
follows β̂j ∼ N (0, σ 2

� ). Above, α� and σ� are parameters that can be calculated explicitly. In
particular, α� > 1 indicating a (possibly strong) bias of the MLE. Now this new asymptotic
theory crucially builds on the results and methods from this paper and would be impossible
to build without. To describe the distributional properties of the MLE, we first need to know
when we can find it.

1.5. Phase transitions. This work rigorously establishes the existence of a phase transi-
tion in the logistic model with Gaussian covariates, and computes the phase transition bound-
ary explicitly.

Model. Since researchers routinely include an intercept in the fitted model, we consider
such a scenario as well. Throughout the paper, we assume we have n samples (xi , yi) with
Gaussian covariates unless otherwise mentioned:

xi
i.i.d.∼ N (0,�), P(yi = 1|xi ) = σ

(
β0 + x′

iβ
) = 1 − P(yi = −1|xi ),

where the covariance � is nonsingular but otherwise arbitrary.

Peek at the result. To describe our results succinctly, assume the high-dimensional
asymptotics from the previous section in which p/n → κ (assumed to be less than one
throughout the paper). To get a meaningful result in diverging dimensions, we consider a
sequence of problems with β0 fixed and

(1.3) Var
(
x′

iβ
) → γ 2

0 .

This is set so that the log-odds ratio β0 + x′
iβ does not increase with n or p, so that the

likelihood is not trivially equal to either 0 or 1. Instead,

(1.4)
√
E

(
β0 + x′

iβ
)2 →

√
β2

0 + γ 2
0 =: γ.

In other words, we put ourselves in a regime where accurate estimates of β translate into a
precise evaluation of a nontrivial probability.

Our main result is that there is an explicit function hMLE given in (2.2) such that

κ > hMLE(β0, γ0) =⇒ P{MLE exists} → 0,

κ < hMLE(β0, γ0) =⇒ P{MLE exists} → 1.
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FIG. 1. Theoretical predictions from (2.2). (a) Boundary curve γ 	→ hMLE(0, γ ) separating the regions
where the MLE asymptotically exists and where it does not (in this case β0 = 0). (b) Boundary curves

γ 	→ hMLE(ργ,

√
1 − ρ2γ ) for various values of ρ. The curve with ρ = 0 shown in blue is that from (a). It is

hardly visible because it is close to that with ρ2 = 0.25.

Hence, the existence of the MLE undergoes a sharp change: below the curves shown in Fig-
ure 1, the existence probability asymptotically approaches 1; above, it approaches 0. Also
note that the phase-transition curve depends upon the unknown regression sequence β ∈ R

p

only through the intercept β0 and γ 2
0 = limn,p→∞ Var(x′

iβ).
The formula for the phase transition hMLE is new. As we will see, it is derived from ideas

from convex geometry.

1.6. Notation. Throughout the paper, vectors and matrices are denoted by lower-case and
upper-case bold symbols, respectively. For u,v ∈ R

d , we write u ≥ v whenever the vector
u − v has nonnegative entries. Similarly, for matrices A and B , we write A � B whenever
A − B is positive semidefinite. Finally, ‖u‖ denotes the usual �2 norm of the vector u and
‖A‖ the operator norm of the matrix A.

2. Main result.

2.1. Model with intercept. Throughout the paper, for each β0 ∈ R and γ0 ≥ 0, we write

(2.1) (Y,V ) ∼ Fβ0,γ0 if (Y,V )
d= (Y,YX),

where X ∼ N (0,1), and P(Y = 1|X) = 1 − P(Y = −1|X) = σ(β0 + γ0X).

THEOREM 2.1. Let (Y,V ) ∼ Fβ0,γ0 and Z ∼ N (0,1) be independent random variables.
Define

(2.2) hMLE(β0, γ0) = min
t0,t1∈R

{
E(t0Y + t1V − Z)2+

}
,

where x+ = max(x,0) and we write x2+ = (x+)2 for short. Then in the setting from Sec-
tion 1.5,

κ > hMLE(β0, γ0) =⇒ lim
n,p→∞P{MLE exists} = 0,

κ < hMLE(β0, γ0) =⇒ lim
n,p→∞P{MLE exists} = 1.
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This result is proved in Section 3. As the reader will gather from checking our proof, our
convergence result is actually more precise. We prove that the transition occurs in an interval
of width O(n−1/2): take any sequence λn → ∞; then

p/n > hMLE(β0, γ0) + λnn
−1/2 =⇒ lim

n,p→∞P{MLE exists} = 0,

p/n < hMLE(β0, γ0) − λnn
−1/2 =⇒ lim

n,p→∞P{MLE exists} = 1.

It is not hard to see that hMLE defined for values of β0 ∈ R and γ0 ≥ 0 is symmetric in its
first argument, hMLE(β0, γ0) = hMLE(−β0, γ0). We thus only consider the case where β0 ≥ 0.
Over the nonnegative orthant R2+, hMLE(β0, γ0) is a decreasing function of both β0 and γ0.
Figure 1 shows a few phase-transition curves.

2.2. Special cases. It is interesting to check the predictions of formula (2.2) for extreme

values of γ :=
√

β2
0 + γ 2

0 , namely, γ = 0 (no signal) and γ → ∞ (infinite signal).

• At γ = 0, Y and V are independent, and Y is a Rademacher variable whereas V is a
standard Gaussian. The variable t0Y + t1V − Z is, therefore, symmetric and

hMLE(0,0) = min
t0,t1

1

2
E(t0Y + t1V − Z)2 = min

t0,t1

1

2

(
t2
0 + t2

1 + 1
) = 1

2
.

Hence, this recovers and extends Cover’s result: in the limit where β2
0 + β ′�β → 0 (this

includes the case where yi is symmetric and independent of xi as in [5, 6]), we obtain that
the phase transition is at κ = 1/2.

• When γ0 → ∞, V
d→ |Z′|, Z′ ∼ N (0,1). Hence, plugging t0 = 0 into (2.2) gives

lim
t1→−∞E

(
t1

∣∣Z′∣∣ − Z
)2
+ = 0.

If β0 → ∞, Y
d→ 1 and plugging t1 = 0 into (2.2) gives

lim
t0→−∞E(t0 − Z)2+ = 0.

Either way, this says that in the limit of infinite signal strength, we must have p/n → 0 if
we want to guarantee the existence of the MLE.

We simplify (2.2) in other special cases below.

LEMMA 1. In the setting of Theorem 2.1, consider the special case γ0 = 0, where the
response does not asymptotically depend on the covariates: we have

(2.3) hMLE(β0,0) = min
t∈R

{
E(tY − Z)2+

}
.

In the case β0 = 0 where the marginal probabilities are balanced, P(yi = 1) = P(yi = −1) =
1/2,

(2.4) hMLE(0, γ0) = min
t∈R

{
E(tV − Z)2+

}
.

PROOF. Consider the first assertion. In this case, it follows from the definition (2.1)

that (Y,V )
d= (Y,X) where Y and X are independent, P(Y = 1) = σ(β0) and X ∼ N (0,1).

Hence,

hMLE(β0,0) = min
t0,t1

E

(
t0Y −

√
1 + t2

1 Z
)2

+ = min
t0,t1

(
1 + t2

1
)
E

(
t0/

√
1 + t2

1 Y − Z
)2

+

= min
t ′0,t1

(
1 + t2

1
)
E

(
t ′0Y − Z

)2
+
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and the minimum is clearly achieved at t1 = 0. For the second assertion, a simple calculation
reveals that Y and V are independent and P(Y = 1) = 1/2. By convexity of the mapping
Y 	→ (t0Y + t1V − Z)2+, we have that

E
{
(t0Y + t1V − Z)2+ | V,Z

} ≥ (
E{t0Y |V,Z} + t1V − Z

)2
+ = (t1V − Z+)2.

Hence, in this case, the miminum in (2.2) is achieved at t0 = 0. �

2.3. Model without intercept. An analogous result holds for a model without intercept.
Its proof is the same as that of Theorem 2.1, only simpler. It is, therefore, omitted.

THEOREM 2.2. Assume β0 = 0 and consider fitting a model without an intercept. If V

has the marginal distribution from Theorem 2.1 and is independent from Z ∼ N (0,1), then
the conclusions from Theorem 2.1 hold with the phase-transition curve given in (2.4). Hence,
the location of the phase transition is the same whether we fit an intercept or not.

2.4. Comparison with empirical results. We compare our asymptotic theoretical predic-
tions with the results of empirical observations in finite samples. For a given data set, we can
numerically check whether the data is separated by using linear programming techniques; see
Section 1.1. (In our set-up, it can be shown that quasi-complete separation occurs with zero
probability). To detect separability, we study whether the program [10]

(2.5)

maximize
n∑

i=1

yi

(
b0 + x′

ib
)

subject to yi

(
b0 + x′

ib
) ≥ 0, i = 1, . . . , n,

− 1 ≤ b0 ≤ 1, −1 ≤ b ≤ 1

has a solution or not. For any triplet (κ,β0, γ0), we can thus estimate the probability
π̂(κ, β0, γ0) that complete separation does not occur (the MLE exists) by repeatedly sim-
ulating data with these parameters and solving (2.5).

Below, each simulated data set follows a logistic model with n = 4000, p = κn, i.i.d.
Gaussian covariates with identity covariance matrix (note that our results do not depend on
the covariance �) and β selected appropriately so that Var(x ′

iβ) = γ 2
0 . We consider a fixed

rectangular grid of values for the pair (κ, γ ) where the κ are equispaced between 0 and 0.6

and the γ ’s—recall that γ =
√

β2
0 + γ 2

0 —are equispaced between 0 and 10. For each triplet
(κ,β0, γ0), we estimate the chance that complete separation does not occur (the MLE exists)
by averaging over 50 i.i.d. replicates.

Figure 2(a) shows empirical findings for a model without intercept; that is, β0 = 0, and the
other regression coefficients are here selected to have equal magnitude. Observe that the MLE
existence probability undergoes a sharp phase transition, as predicted. The phase transition
curve predicted from our theory (red) is in excellent agreement with the boundary between
high and low probability regions. Figure 2(b) shows another phase transition in the setting
where γ0 = 0 so that β0 = γ . The y-axis is here chosen to be the marginal distribution of the
response, that is, P(yi = 1) = eγ /(1+eγ ). Once again, we observe the sharp phase transition,
as promised, and an impeccable alignment of the theoretical and empirical phase transition
curves. We also see that when the response distribution becomes increasingly asymmetric,
the maximum dimensionality κ decreases, as expected. If yi has a symmetric distribution,
we empirically found that the MLE existed for all values of κ below 0.5 in all replications.
For P(yi = 1) = 0.9, however, the MLE existed (resp., did not exist) if κ < 0.24 (resp., if
κ > 0.28) in all replications. For information, the theoretical value of the phase transition
boundary at P(yi = 1) = 0.9 is equal to κ = 0.255.
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FIG. 2. Empirical probability that the MLE exists (black is zero, and white is one) estimated from 50 inde-
pendent trials for each “pixel.” (a) Model without intercept in which β0 = 0 and γ0 = γ , with theoretical phase
transition curve from (2.4) in red (this is the same curve as in Figure 1(a)). (b) Model with γ0 = 0, β0 = γ and
the theoretical phase transition curve from (2.3) in red. The y-axis is here chosen to be the marginal probability
P(yi = 1) = eγ /(1 + eγ ).

Finally, Figure 3 shows the phase transition in the setting β0 = ργ , γ0 =
√

1 − ρ2γ and

ρ = √
0.75. The regression coefficients are chosen to have equal magnitudes. Once again, we

observe perfect agreement between the theoretical and empirical phase transition curves.

3. Proof of main theorem. The proof of Theorem 2.1 comprises three main steps as
outlined below:

1. Recall that the nonexistence of the MLE is characterized by the geometric conditions
(1.1) and (1.2). In Section 3.1, we recast these geometric conditions as whether a random
subspace intersects a random convex cone.

2. The motivation underlying the equivalence above is that there exist deep results in high-
dimensional stochastic geometry that characterize precisely when a random subspace inter-
sects a given convex cone. We leverage these ideas in Section 3.2 to obtain a mathematically
tractable approximation for the probability that the MLE exists.

3. We simplify this approximation through a series of arguments in Section 3.2 to obtain
the final result.

3.1. Conic geometry. This section introduces ideas from conic geometry and proves our
main result. We shall use the characterization from Albert and Anderson [1] reviewed in
Section 1.1; recall that the MLE does not exist if and only if there is (b0,b) �= 0 such that
yi(b0 + x′

ib) ≥ 0 for all i = 1, . . . , n. In passing, the same conclusion holds for the probit
model and a host of related models.

FIG. 3. Same plot as Figure 2 but with β0 = ργ and γ0 =
√

1 − ρ2γ and ρ = √
0.75. The theoretical phase

transition curve from (2.2) in red is the same as the magenta curve in Figure 1(b).
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3.1.1. Gaussian covariates. Write xi ∼ N (0,�) as xi = �1/2zi , where zi ∼ N (0, I ).
Doing this, we immediately see that the MLE does not exist if and only if there is (b0,b) �= 0
such that

yi

(
b0 + z′

i�
1/2b

) ≥ 0 ∀i.

This is equivalent to the existence of (b0, θ) �= 0 such that yi(b0 +z′
iθ) ≥ 0 for all i. In words,

multiplication by a nonsingular matrix preserves the existence of a separating hyperplane;
that is to say, there is a hyperplane in the “z coordinate” system (where the variables have
identity covariance) if and only if there is a separating hyperplane in the “x coordinate”
system (where the variables have general nonsingular covariance). Therefore, it suffices to
assume that the covariance is the identity matrix, which we do from now on.

We thus find ourselves in a setting where the p predictors are independent standard normal
variables and the regression sequence is fixed so that Var(x′β) = ‖β‖2 = γ 2

0 (the theorem
assumes that this holds in the limit but this does not matter). By rotational invariance, we can
assume without loss of generality that all the signal is in the first coordinate; that is,

P(yi = 1|xi ) = σ(β0 + γ0xi1)

since this leaves invariant the joint distribution of (xi , yi).
At this point, it is useful to introduce some notation. Let (X1, . . . ,Xp) be independent

standard normals. Then

(xi , yi)
d= (X1, . . . ,Xp;Y),

where P(Y = 1|X1, . . . ,Xp) = σ(β0 + γ0X1). It thus follows that

(3.1) (yi, yixi )
d= (Y,V,X2, . . . ,Xp),

Y,V ∼ Fβ0,γ0,

(X2, . . . ,Xp) ∼ N (0, Ip−1),

(Y,V ) ⊥⊥ (X2, . . . ,Xp).

This yields a useful characterization.

PROPOSITION 1. Let the n-dimensional vectors (Y ,V ,X2, . . . ,Xp) be n i.i.d. copies of
(Y,V,X2, . . . ,Xp) distributed as in (3.1). Then if p < n − 1,

(3.2) P{no MLE} = P
{
span(Y ,V ,X2, . . . ,Xp) ∩R

n+ �= {0}}.
Here and below, Rn+ is the nonnegative orthant.

PROOF. We have seen that there is no MLE if there exists (b0, b1, . . . , bp) �= 0 such that

(3.3) b0Y + b1V + b2X2 + · · · + bpXp ≥ 0.

By (3.1), this says that the chance there is no MLE is the chance of the event (3.3). Un-
der our assumptions, the probability that the (p − 1) dimensional subspace spanned by
X2, . . . ,Xp nontrivially intersects a fixed subspace of dimension 2 is zero. Since (Y ,V )

and (X2, . . . ,Xp) are independent, this means that we have equality in (3.3) with probability
zero. �
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3.1.2. Convex cones. We are interested in rewriting (3.2) in a slightly different form. For
a fixed subspace W ⊂ R

n, introduce the convex cone

(3.4) C(W) = {w + u : w ∈ W,u ≥ 0}.
This is a polyhedral cone, which shall play a crucial role in our analysis. As we will see, the
MLE does not exist if span(X2, . . . ,Xp) intersects the cone C(span(Y ,V )) in a nontrivial
way.

PROPOSITION 2. Set L = span(X2, . . . ,Xp) and W = span(Y ,V ). Let
{No MLE Single} be the event that we can either completely or quasi-separate the data points
by using the intercept and the first variable only: that is, W ∩R

n+ �= {0}. We have

(3.5)

P{no MLE} = P
{
L∩ C(W) �= {0} and {No MLE Single}c}

+ P{No MLE Single}.
An immediate consequence is this:

(3.6) 0 ≤ P{no MLE} − P
{
L∩ C(W) �= {0}} ≤ P{No MLE Single}.

PROOF. If {No MLE Single} occurs, the data is separable and there is no MLE. Assume,
therefore, that {No MLE Single} does not occur. We know from Proposition 1 that we do not
have an MLE if and only if we can find a nonzero vector (b0, b1, . . . bp) such that

b0Y + b1V + b2X2 + · · · + bpXp = u, u ≥ 0,u �= 0.

By assumption, b0Y + b1V = u cannot hold. Therefore, b2X2 + · · · + bpXp is a nonzero
element of C(W). This gives (3.5) from which (3.6) easily follows. �

We have thus reduced matters to checking whether L intersects C(W) in a nontrivial way.
This is because we know that under our model assumptions, the chance that we can separate
the data via a univariate model is exponentially decaying in n; that is, the chance that there
is (b0, b1) �= 0 such that yi(b0 + b1xi1) ≥ 0 for all i is exponentially small. We state this
formally below.

LEMMA 2. In the setting of Theorem 2.1, the event {No MLE Single} occurs with expo-
nentially small probability.

PROOF. We only sketch the argument. We are in a univariate model with P(yi = 1|xi) =
σ(β0 + γ0xi) and xi i.i.d. N (0,1). Fix t0 ∈ R. Then it is easy to see that the chance that t0
separates the xi ’s is exponentially small in n. However, when the complement occurs, the
data points overlap and no separation is possible. �

It follows from Lemma 2 and (3.6) that P(no MLE) → 0 if and only if P{L ∩ C(W) �=
{0}} → 0.

3.2. Proof of Theorem 2.1. To prove our main result, we need to understand when a
random subspace L with uniform orientation intersects C(span(Y ,V )) in a nontrivial way.
For a fixed subspace W ⊂ R

n, the approximate kinematic formula [2], Theorem I, from the
literature on convex geometry tells us that for any ε ∈ (0,1),

(3.7)
p − 1 + δ

(
C(W)

)
> n + aε

√
n =⇒ P

{
L∩ C(W) �= {0}} ≥ 1 − ε,

p − 1 + δ
(
C(W)

)
< n − aε

√
n =⇒ P

{
L∩ C(W) �= {0}} ≤ ε.
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We can take aε = √
8 log(4/ε). Above, δ(C) is the statistical dimension of a convex cone C

defined as

(3.8) δ(C) := E
∥∥�C(Z)

∥∥2 = n −E
∥∥Z − �C(Z)

∥∥2
, Z ∼ N (0, In),

where �C is the projection onto C.
We develop a formula for the statistical dimension of the cone C(W) of interest to us.

LEMMA 3. Fix W ⊂ R
n. Then with Z distributed as in (3.8),

(3.9) δ
(
C(W)

) = n −E

{
min
w∈W

∥∥(w − Z)+
∥∥2

}
.

PROOF. By definition, δ(C(W)) = n − Edist2(Z,C(W)), where for a fixed z ∈ R
n,

dist2(z,C(W)) is the optimal value of the quadratic program

minimize ‖z − w − u‖2

subject to w ∈ W,

u ≥ 0.

For any w ∈ W , the optimal value of u is given by (z − w)+. Hence, the optimal value of the
program is

minw∈W ‖z − w − (z − w)+‖2 = minw∈W
∥∥(w − z)+

∥∥2
. �

We claim that this lemma combined with the theorem below establish Theorem 2.1.

THEOREM 3.1. Let (Y ,V ) be n i.i.d. samples from Fβ0,γ0 . The random variable

Qn := min
t0,t1∈R

1

n

∥∥(t0Y + t1V − Z)+
∥∥2

obeys

(3.10) Qn
P−→ hMLE(β0, γ0) = min

t0,t1

{
E(t0Y + t1V − Z)2+

}
.

In fact, we establish the stronger statement Qn = hMLE(β0, γ0) + OP (n−1/2).

Below, we let F be the σ -algebra generated by Y and V . Set εn = n−α for some positive
α, an = √

8α log(4n), and define the events

An = {
p/n > E{Qn|F} + ann

−1/2}
, En = {

L∩ C(W) �= {0}}.
We first show that if κ > hMLE(β0, γ0), then P{no MLE} → 1 or, equivalently, P{En} → 1.

Our geometric arguments (3.7) tell us that if An occurs, then P{En | F} ≥ 1 − εn. This means
that

1{An} ≤ 1
{
P{En | F} ≥ 1 − εn

} ≤ P{En | F} + εn.

Taking expectation gives

P{En} ≥ P{An} − εn.

Next, we claim that

(3.11) E{Qn|F} P−→ hMLE(β0, γ0).
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This concludes the proof since (3.11) implies that P{An} → 1 and, therefore, P{En} → 1.
The argument showing that if κ < hMLE(β0, γ0), then P{no MLE} → 0 is entirely similar
and omitted.

It remains to justify (3.11). Put h = hMLE(β0, γ0) for short (this is a nonrandom quantity),
and note that Qn −h is uniformly integrable (this is because Qn is the minimum of an average
of n i.i.d. subexponential variables). Hence, if Qn converges in probability, it also converges
in mean in the sense that E|Qn − h| → 0. Since∣∣E{Qn|F} − h

∣∣ ≤ E
{|Qn − h| | F}

,

we see that taking expectation on both sides yields that E{Qn|F} converges to h in mean and,
therefore, in probability (since convergence in means implies convergence in probability).

3.3. About the approximate kinematic formula. The approximate kinematic formula
(3.7) [2], Theorem I, arises from a set of deep ideas in conic integral geometry. A classi-
cal problem in this field is to study when a randomly rotated convex cone shares a ray with
a fixed convex cone. Although explicit formulas were established in [16], they were not im-
mediately mathematically tractable. Several works subsequently developed variants that are
more useful and [2] ultimately derived an approximate kinematic formula by utilizing the
statistical dimension of cones. This approach is connected to Gordon’s escape through the
mesh lemma [7]; we refer to [2] for a detailed exposition.

4. Sub-Gaussian designs. While this paper was under review, the referees asked
whether our main conclusions apply more broadly, and we indeed expect Theorem 2.1 to
hold under a class of covariate distributions with sub-Gaussian tails. We sketch the proof of
a simple extension but do not examine more complicated situations in this paper. We also
provide some numerical simulations offering support for our belief.

4.1. Empirical support. To begin with, consider features xi with entries drawn i.i.d. from
the Rademacher distribution (each entry is equally likely to take on the values 1 and −1).
Keeping everything else as in Section 2.4, we repeat the experiments of Figure 2 and the
results are shown in Figure 4. We observe a perfect agreement of the theoretical and empirical
phase transition curves in both cases, which corroborates our belief.

We next study the phase transition behavior under a more general covariate distribution,
which is loosely inspired by genome-wide association studies. In such studies, the features
are single nucleotide polymorphisms (SNPs), which count the number of occurrences of a
reference allele at various locations along the genome (the reference allele of course de-
pends on the location). When the j th SNP is in Hardy–Weinberg equilibrium, the chances of

FIG. 4. Empirical probability that the MLE exists (black is zero, and white is one) estimated from 50 independent
trials for each “pixel” under the Rademacher model. Panels (a) and (b) mirror Figures 2(a) and 2(b).
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FIG. 5. Empirical probability that the MLE exists (black is zero, and white is one) estimated from 50 independent
trials for each “pixel” under a GWAS inspired model. Panels (a) and (b) mirror Figures 2(a) and 2(b).

observing 0, 1 and 2 are respectively p2
j , 2pj (1 − pj ) and (1 − pj )

2, where pj ∈ (0,1).
Consider independent features generated from such marginal distributions with parame-
ters pj varying in [0.25,0.75], and center each feature to have zero mean. This results
in independent variables Xj , each taking on three possible values and obeying EXj = 0,
Var(Xj ) = 2pj (1 − pj ). From here on, repeat the experiments from Section 2.4 with re-

gression coefficients βj =
√

γ 2
0 /p Var(Xj ) so that Var(xi

′β) = γ 2
0 (recall γ =

√
β2

0 + γ 2
0 ).

The results are shown in Figure 5. Once again, we observe a perfect agreement between the
theoretical and empirical phase transition curves.

4.2. Theoretical support. Our methods establish that our results continue to hold in the
special case of independent symmetric sub-Gaussian variables—we assume the explanatory
variables are nondegenerate, that is, are not identically zero—and γ0 = 0; that is to say,
P(yi = 1|xi ) = σ(β0) (this is the setting of the first part of Lemma 1). This is possible be-
cause the central piece of our argument is the approximate kinematic formula (3.7), which
has been generalized to a broad class of independent variables.

To see why this special extension holds, we begin by rehearsing our result for Gaus-
sian variables. Recall that the key is to understand whether a p-dimensional subspace
L = span(X1, . . . ,Xp) spanned by the feature vectors intersects C(span(Y )) in a nontriv-
ial way (here, we may take W to be the span of Y because there is no signal). We have seen
that the probability of a nontrivial intersection is essentially either 0 or 1 depending on the
value of the statistical dimension of C(span(Y )) (3.7). The crucial point is that a version of the
same kinematic formula (3.7) continues to hold if the n-dimensional vectors (X1, . . . ,Xp)

are i.i.d. copies of (X1, . . . ,Xp) where our explanatory variables are independent, symmetric,
nondegenerate and obey certain moment assumptions [14], Theorem I. Since the statistical
dimension does not depend upon the distribution of the explanatory variables and that

1 − δ(C(span(Y )))

n

P−→ min
t∈R E(tY − Z+)2 = hMLE(β0,0),

we readily see that the same phase transition holds.
In sum, the arguments above prove that the phase transition curves from Figures 4(b) and

5(b) are asymptotically correct. Of course, extending our results to broader settings is likely
to be considerably more involved.

5. Proof of Theorem 3.1. We begin by introducing some notation to streamline our
exposition as much as possible. Define the mapping J : x 	→ ‖x+‖2/2 and let A be the n × 2
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matrix with y and V as columns. Next, define the random function F and its expectation f

as

F(λ) = n−1J (Aλ − Z), f (λ) = EF(λ).

F is convex and it is not hard to see that f is strictly convex (we will see later that it is, in
fact, strongly convex). Let λ� be any minimizer of F (λ� is a random variable) and λ0 be the
unique minimizer of f (λ0 is not random and finite). With this notation, Theorem 3.1 asks us
to prove that

(5.1) F(λ�) = f (λ0) + OP

(
n−1/2)

and in the rest of this section, we present the simplest argument we could think of.
We begin by recording some simple properties of F and f . It follows from ∇J (x) = x+

that ∇J is Lipschitz and obeys∥∥∇J (x) − ∇J (x0)
∥∥ ≤ ‖x − x0‖.

Consequently, F is also Lipschitz with constant at most n−1‖A‖2 ≤ n−1(‖y‖2 + ‖V ‖2) =
1 +n−1‖V ‖2. It is also a straightforward calculation to see that f is twice differentiable with
Hessian given by

∇2f (λ) = n−1
E

{
A′DA

}
, D = diag

(
1{Aλ − Z ≥ 0}).

It follows that with λ = (λ0, λ1), the Hessian is given by

(5.2) ∇2f (λ) =
[
E

{
Y 2�(λ0Y + λ1V )

}
E

{
YV �(λ0Y + λ1V )

}
E

{
YV �(λ0Y + λ1V )

}
E

{
V 2�(λ0Y + λ1V )

}
]

,

where (Y,V ) is distributed as in Theorem 2.1 and � is the cdf of a standard normal. We claim
that for fixed (β0, γ0), it holds that

(5.3) α0I 2 � ∇2f (λ) � α1I 2,

uniformly over λ, where α0, α1 are fixed positive numerical constant (that may depend on
(β0, γ0)).

Next, we claim that for a fixed λ, F(λ) does not deviate much from its expectation f (λ).
This is because F(λ) is an average of subexponential variables which are i.i.d. copies of
(λ0Y + λ1V − Z)2+; classical bounds [21], Corollary 5.17, give

(5.4)

P
{∣∣F(λ) − f (λ)

∣∣ ≥ t
}

≤ 2 exp
(
−c0nmin

(
t2

c2
1(1 + ‖λ‖2)2

,
t

c1(1 + ‖λ‖2)

))
,

where c0, c1 are numerical constants. Also, ∇F(λ) does not deviate much from its expec-
tation ∇f (λ) either because this is also an average of sub-exponential variables. Hence, we
also have

(5.5)

P
{∥∥∇F(λ) − ∇f (λ)

∥∥ ≥ t
}

≤ 2 exp
(
−c2nmin

(
t2

c2
3(1 + ‖λ‖2)2

,
t

c3(1 + ‖λ‖2)

))
,

where c2, c3 are numerical constants. In the sequel, we shall make a repeated use of the
inequalities (5.4)–(5.5).

With these preliminaries in place, we can turn to the proof of (5.1). On the one hand, the
convexity of F gives

(5.6) F(λ�) ≥ F(λ0) + 〈∇F(λ0),λ� − λ0
〉
.
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On the other hand, since ∇F is Lipschitz, we have the upper bound

(5.7) F(λ�) ≤ F(λ0) + 〈∇F(λ0),λ� − λ0
〉 + (

1 + ‖V ‖2/n
)‖λ� − λ0‖2.

Now observe that (5.4) gives that

F(λ0) = f (λ0) + OP

(
n−1/2)

.

Also, since ∇f (λ0) = 0, (5.5) gives∥∥∇F(λ0)
∥∥ = OP

(
n−1/2)

.

Finally, since ‖V ‖2/n
P−→ EV 2, we see from (5.6) and (5.7) that (5.1) holds if ‖λ� − λ0‖ =

OP (n−1/4).

LEMMA 4. We have ‖λ� − λ0‖ = OP (n−1/4).

PROOF. The proof is inspired by an argument in [3]. For any λ ∈ R
2, (5.3) gives

f (λ) ≥ f (λ0) + α0

2
‖λ − λ0‖2.

Fix x ≥ 1. For any λ on the circle C(x) := {λ ∈ R
2 : ‖λ − λ0‖ = xn−1/4} centered at λ0 and

of radius xn−1/4, we have

(5.8) f (λ) ≥ f (λ0) + 3y, y = α0x
2

6
√

n
.

Fix z = f (λ0) + y and consider the event E defined as

(5.9) F(λ0) < z and inf
λ∈C(x)

F (λ) > z.

By convexity of F , when E occurs, λ� must lie inside the circle and, therefore, ‖λ� − λ0‖ ≤
xn−1/4.

It remains to show that E occurs with high probability. Fix d equispaced points {λi}di=1 on
C(x). Next, take any point λ on the circle and let λi be its closest point. By convexity,

(5.10) F(λ) ≥ F(λi ) + 〈∇F(λi ),λ − λi

〉 ≥ F(λi ) − ∥∥∇F(λi )
∥∥‖λ − λi‖.

On the one hand, ‖λ − λi‖ ≤ πxn−1/4/d . On the other, by (5.5) we know that if we define B

as

B :=
{
max

i

∥∥∇F(λi ) − ∇f (λi )
∥∥

2 ≥ xn−1/2
}

then

(5.11) P
{
Bc} ≤ 2d exp

(
−c2 min

(
x2

c2
3(1 + maxi ‖λi‖2)2

,

√
nx

c3(1 + maxi ‖λi‖2)

))
.

Also, since ‖∇2f ‖ is bounded (5.3) and ∇f (λ0) = 0,∥∥∇f (λi )
∥∥

2 ≤ α1‖λi − λ0‖ = α1xn−1/4.

For n sufficiently large, this gives that on B ,∥∥∇F(λi )
∥∥‖λ − λi‖ ≤ Cy/d

for some numerical constant C. Choose d ≥ C. Then it follows from (5.10) that on B ,

inf
λ∈C(x)

F (λ) ≥ min
i

F (λi) − y.
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It remains to control the right-hand side above. To this end, observe that

F(λi ) > f (λi ) − y =⇒ F(λi) − y > f (λ0) + y = z

since f (λi ) ≥ f (λ0) + 3y by (5.8). Hence, the complement of the event E in (5.9) has prob-
ability at most

P
{
Ec} ≤ P

{
Bc} + P

{
F(λ0) ≥ f (λ0) + y

} +
d∑

i=1

P
{
F(λi ) ≤ f (λi ) − y

}
.

The application of (5.11) and that of (5.4) to the last two terms in the right-hand side con-
cludes the proof. �

6. Conclusion. In this paper, we established the existence of a phase transition for the
existence of the MLE in a high-dimensional logistic model with Gaussian covariates. We
derived a simple expression for the phase-transition boundary when the model is fitted with or
without an intercept. Our methods use elements of convex geometry, especially the kinematic
formula reviewed in Section 3.2, which is a modern version of Gordon’s escape through a
mesh theorem [7]. It is likely that the phenomena and formulas derived in this paper hold for
more general covariate distributions, and we leave this to future research.
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