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JOINT CONVERGENCE OF SAMPLE AUTOCOVARIANCE
MATRICES WHEN p/n → 0 WITH APPLICATION

BY MONIKA BHATTACHARJEE1 AND ARUP BOSE2

University of Florida and Indian Statistical Institute

Consider a high-dimensional linear time series model where the dimen-
sion p and the sample size n grow in such a way that p/n → 0. Let �̂u

be the uth order sample autocovariance matrix. We first show that the LSD
of any symmetric polynomial in {�̂u, �̂∗

u,u ≥ 0} exists under independence
and moment assumptions on the driving sequence together with weak as-
sumptions on the coefficient matrices. This LSD result, with some additional
effort, implies the asymptotic normality of the trace of any polynomial in
{�̂u, �̂∗

u,u ≥ 0}. We also study similar results for several independent MA
processes.

We show applications of the above results to statistical inference problems
such as in estimation of the unknown order of a high-dimensional MA process
and in graphical and significance tests for hypotheses on coefficient matrices
of one or several such independent processes.

1. Introduction. A general high-dimensional linear time series model is the
infinite dimensional moving average process of order q (MA(q)), where q may
be finite or infinite. For this process, the sample {X(n)

t.p : t = 1,2, . . . , n} of size n

satisfies

(1.1) X
(n)
t.p =

q∑
j=0

ψ
(n)
j.pεt−j.p ∀t, n ≥ 1 (almost surely).

For all t , X
(n)
t.p and εt.p = (εt,1, εt,2, . . . , εt,p)′ are p-dimensional vectors and

ψ
(n)
j.p are p × p coefficient matrices and ψ

(n)
0.p = Ip . Moreover, p,n → ∞. For

q = ∞, appropriate assumptions given later guarantee that the sum in (1.1) is
meaningful. Precise assumptions on independence and finiteness of moments for
{εt,i}, growth of p, n and conditions on the coefficient matrices are discussed later.
For convenience, we will write ψj , εt and Xt , respectively, for ψ

(n)
j.p , εt.p and X

(n)
t.p .
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The infinite dimensional vector autoregressive processes (IVAR) and infinite di-
mensional autoregressive moving average processes (IVARMA), can be expressed
as infinite dimensional MA(∞) processes; for details, see Bhattacharjee and Bose
(2014). Statistical inference in such time series models when both p and n are
large, is relatively underdeveloped.

Key quantities in time series are the population autocovariance matrices,

(1.2) �u.p := E
(
Xt.pX∗

(t+u).p

) =
q−u∑
j=0

ψjψ
∗
j+u, u = 0,1, . . . .

Their estimators are the sample autocovariance matrices

(1.3) �̂u.p = 1

n

n−u∑
t=1

Xt.pX∗
(t+u).p, 0 ≤ u ≤ n − 1.

We write �u and �̂u, respectively, for �u.p and �̂u.p . Our major goals are:

(1) Establish the Limiting Spectral distribution (LSD) and the asymptotic nor-
mality of trace of symmetric polynomials in {�̂u, �̂

∗
u}, preferably under as weak

conditions as possible.
(2) Address one and two sample statistical inference problems in high-

dimensional time series, using results from (1).

Suppose the dimension p → ∞, and the sample size n = n(p) → ∞ such that
p/n → y. There are three possibilities on the growth of p and n:

(I) y ∈ (0,∞), that is, p and n grow at the same rate. This case has been well
studied in the literature. Some references are provided later in the discussions.

(II) y = 0, that is, p grows slower than n. We shall concentrate on this case and
it is significantly different from Case I.

(III) y = ∞, that is, p grows faster than n. This case will be considered else-
where.

1.1. Results on LSD and trace. Suppose Rp is a p×p (random) matrix where
p → ∞. Its empirical spectral distribution (ESD) is the (random) probability dis-
tribution with mass 1/p at each eigenvalue of Rp . If it converges weakly (almost
surely) to a probability distribution, then the latter is called the limiting spectral
distribution (LSD) of Rp . Incidentally, the study of the LSD for non-Hermitian
matrices is extremely difficult and very few general results are known. We shall
consider LSD of only symmetric matrices. When we have more than one sequence
of random matrices of the same order, a most natural way to study their joint con-
vergence is through the LSD of their (symmetric) matrix polynomials.

Recent LSD results on sample autocovariance matrices has attracted the atten-
tion of statisticians due to their usefulness for inference in high-dimensional time
series models. We shall discuss this aspect in the next section.
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For Case I, LSD of symmetric polynomials in {�̂u, �̂
∗
u} is well studied in

the literature; see Pfaffel and Schlemm (2011), Liu, Aue and Paul (2015) and
Bhattacharjee and Bose (2016a). Consider the simplest case of a p × n matrix Z,
whose entries are i.i.d. with mean 0, variance 1 and have finite 4-th order moment.
Then the almost sure LSD of n−1ZZ∗ is the Marčenko–Pastur law with parameter
y (see Marčenko and Pastur (1967)). The main idea behind one of the available
proofs is to embed Z into a Wigner matrix (a symmetric matrix with i.i.d. entries)
of order (p + n) × (p + n) and then use the asymptotic freeness of Wigner and
deterministic matrices.

Case II is very different. In this case, it is not hard to check that the LSD of

n−1ZZ∗ is degenerate at 1. However, the almost sure LSD of
√

np−1(n−1ZZ∗ −
Ip) is the standard semicircle law (see Bai and Yin (1988)). The proof of this
result is significantly harder and involved. The embedding technique mentioned
above fails as the growth rates of p and n are different. It gets even harder for
general polynomials of autocovariance matrices in the general MA(q) model.

For the general MA(q) model in Case II, the only work in the literature is of
Wang, Aue and Paul (2017) who established the existence of LSD for the specific

symmetric polynomial,
√

np−1(�̂u + �̂∗
u − �u − �∗

u) along with a formula (via a
pair of nonlinear equations) for the Stieltjes transformation of the limit. They as-
sumed that {ψj } are Hermitian, norm bounded (bounded largest singular value)
and simultaneously diagonalizable; for details, see Assumption (WAP2) and The-
orem 2.1 stated later. Their result continues to hold for the MA(∞) process, under
an additional summability assumption on the largest singular value of {ψj } (see
(WAP3)). (WAP2) and (WAP3) are strong assumptions on {ψj } and exclude many
interesting moving average processes (see the introduction of Bhattacharjee and
Bose (2016a)).

As a corollary to one of our results, we show that the above result continues
to hold under significantly weaker assumptions (see Corollary 2.1(a)(ii)). We drop
the Hermitian and simultaneously diagonalizable assumption on {ψj } and instead
assume the following minimal condition:

(B1) {ψj } are norm bounded and jointly converge.

By “joint convergence” of matrices we mean “convergence in ∗-distribution”
of noncommutative variables in the sense of Definition 8.13 in Nica and Speicher
(2006).

In particular, (WAP2) implies Assumption (B1). For MA(∞) process also, our
Assumption (B2) (given later) on {ψj } is weaker than (WAP3).

Now consider other matrices formed from sample autocovariance matrices. For
example, the singular values of �̂u are the eigenvalues of the symmetric product
�̂u�̂

∗
u. This is a completely different LSD problem and no LSD result is known.

Indeed, one may wish to consider more general symmetrizations that involve sev-
eral �̂u, �̂∗

u. A motivation is provided by white noise tests in the one-dimensional
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case—all such tests are based on quadratic functions of several autocovariances
(see, e.g., Shao (2011) and Xiao and Wu (2014)). The analogous objects in our
model (1.1) are quadratic polynomials of sample autocovariance matrices of dif-
ferent orders. Further, taking a cue from real valued time series models, it is easy
to be convinced that in high-dimensional models, estimation and testing for pa-
rameters in one and two sample problems would involve some polynomials of the
autocovariance matrices. Thus we are naturally led to the consideration of matrix
polynomials of autocovariances. More detailed motivation for studying functions
of autocovariance matrices are laid out in Section 1.2 on statistical inference.

Throughout this paper,

(1.4) �sym(·) is a finite degree symmetric matrix polynomial.

Suppose {εt,i : t, i ≥ 1} are independently distributed with mean 0, variance 1 and
their moments of all order exist and are uniformly bounded. Further suppose that
(B1) holds. Then in Theorem 2.2 we prove that the LSD of

(1.5) R�sym =
√

np−1
(
�sym

(
�̂u, �̂

∗
u : u ≥ 0

) − �sym
(
�u,�

∗
u : u ≥ 0

))
exists almost surely. This is a significant generalization of Wang, Aue and Paul
(2017). Moreover, while they express the LSD (in the special case) via a pair of
Stieltjes transform equations, we write the LSD in terms of polynomials of some
freely independent variables. In Section 1.2, we shall see that such descriptions
are useful in testing of hypotheses as they provide insightful information on the
nature of the LSD under both null and alternative hypotheses. In contrast, Stieltjes
transform descriptions do not provide such insight and are also computationally
prohibitive to be easily applicable.

Now a word about the uniform boundedness assumption on the moments of
{εt,i : t, i ≥ 1} in Theorem 2.2. This is needed because we are dealing with all
symmetric polynomials in {�̂u, �̂

∗
u} together. For specific choices of polynomials,

this assumption can be weakened. In Corollaries 2.1 and 2.2, we respectively state

the existence of the LSD of
√

np−1(�̂u + �̂∗
u − �u − �∗

u) and of
√

np−1(�̂u�̂
∗
u −

�u�
∗
u), along with their limiting Stieltjes transformations, under weaker moment

assumptions on {εt,i} (see Assumption (A3)). In particular, Corollary 2.1 implies
the result of Wang, Aue and Paul (2017). Corollary 2.2 is a new result.

The results of Wang, Aue and Paul (2017) are for a single MA(q) process and
so is Theorem 2.2. However, our method can tackle polynomials in autocovari-
ance matrices of two or more independent MA(q) processes; see Theorem 2.3
and Corollary 2.3. The proof of this theorem uses asymptotic freeness results for
independent and deterministic matrices.

As we shall see in the next section, these results are useful to develop graphical
tests for different hypotheses in one and two sample problems.
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Statistical inference in high-dimensional models is often based on linear spec-
tral statistics defined as

∑
f (λi) where f is a suitable function and {λi} are eigen-

values of a matrix. There is a large literature on the spectral statistics of high-
dimensional variance–covariance matrices and its application in statistical infer-
ence; see, for example, Diaconis and Evans (2001), Bai and Silverstein (2004),
Bai, Wang and Zhou (2009), Zheng (2012), Bai et al. (2013), Bao et al. (2015)
and Zheng, Bai and Yao (2015). However, apparently there are no results on linear
spectral statistics of general autocovariance matrices. This would be an important
topic of independent research. While we do not consider such statistics in general,
we consider the behaviour of traces (of matrix polynomials of �u). The trace is a
particular linear spectral statistics with f (x) = x.

To state the trace result, we need the following notation. Let

�(·) be a finite degree polynomial, and(1.6)

R� =
√

np−1
(
�

(
�̂u, �̂

∗
u : u ≥ 0

) − �
(
�u,�

∗
u : u ≥ 0

))
.(1.7)

Let

σ 2
R�

= limE
(
Tr(R�)

)2
.

Making use of the arguments in the proof of Theorem 2.2, we show (see Theo-
rem 2.4)

(1.8) TrR�
D→ N

(
0, σ 2

R�

)
.

Theorem 2.5 establishes the two sample version of Theorem 2.4.

In Corollary 2.4, we show the asymptotic normality of
√

np−1(Tr(�̂u)−Tr(�u))

and
√

np−1(Tr(�̂u�̂
∗
u) − Tr(�u�

∗
u)), under weaker moment assumptions. Corol-

lary 2.5 is its two sample version. Note that for these results on trace, symmetry
of the matrix polynomials is not required. In the next section, we shall discuss
how these results can be used to construct asymptotically valid tests for different
hypotheses in one and two sample problems.

1.2. Statistical applications. Statistical inference in high-dimensional time se-
ries is relatively underdeveloped. We believe that spectral properties of autocovari-
ance matrices have a crucial role to play in this development. Wang, Aue and Paul
(2017) also mentioned some possible applications of their results. We discuss a
few statistical inference problems in one and two sample situations to demonstrate
how the results discussed in Section 1.1 can be used. In Section 3, we discuss some
problems which cannot be handled if we use the restrictive results of Wang, Aue
and Paul (2017). In each case, we provide both graphical and significance tests.
Graphical tests are based on LSD results given in Theorems 2.2 and Corollary 2.1
and significance tests are constructed using Theorem 2.4 and Corollary 2.4. Until
now, inference for two independent high-dimensional moving average processes
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has not been considered in the literature. We discuss some testing of hypotheses
for two independent MA(q) processes using Theorems 2.3 and 2.5.

First, consider the following simple testing problem:

(1.9) H01 : Xt = εt against H11 : Xt = εt + εt−1.

A graphical test is as follows. Using free probability description of the LSD of
symmetric polynomials in {�̂u, �̂

∗
u}, given in Theorem 3.1 of the Supplemen-

tary Material (Bhattacharjee and Bose (2018)), under H01 and H11, the LSD of
1
2

√
np−1(�̂2 + �̂∗

2) are semicircle distributions with variances 0.5 and 3, respec-

tively. A semicircle distribution with variance σ 2 has the following density:

(1.10) f (x) =
⎧⎨
⎩

1

2πσ 2

√
4σ 2 − x2, −2σ ≤ x ≤ 2σ,

0, otherwise.

The support of this distribution is [−2σ,2σ ]. Therefore, we can plot the histogram

of the eigenvalues of 1
2

√
np−1(�̂2 + �̂∗

2) and accept H01 if the support of the his-

togram appears to be [−2
√

0.5,2
√

0.5] = [−1.41,1.41]. In Section 3.1, we gen-
eralize this idea to graphically test

(1.11) H02 : q = q0 against H12 : q = q1 when Xt =
q∑

t=0

εt−q.

We can also use our results on traces to construct asymptotically valid test statis-
tics. For example, by Theorem 2.4,√

np−1 Tr(�̂1)
D→ N(0,1), under H01,(1.12) √

np−1
(
Tr(�̂1) − 1

) D→ N(0,7), under H11.(1.13)

Therefore, we reject H02 at 100α% level of significance if |
√

np−1 Tr(�̂1)| > zα/2,
where zα/2 is the upper α/2-th quantile of the standard normal distribution. More-
over, this test is consistent by (1.13). In the last part of Section 3.1, we generalize
the above idea to construct a significance test for (1.11).

In Section 3.2, we compare the empirical power of our test with the well known
Ljung–Box test. Table 2 documents the simulated power of the tests and it is ob-
served that our test performs better. Moreover, the performance of the Ljung–Box
test deteriorates as p increases. Whereas due to consistency, our test statistic does
increasingly better as p increases.

Next, consider the MA(q) process (1.1) and the following testing problem:

(1.14) H03 : q = q0 against H13 : q = q1.

Wang, Aue and Paul (2017) suggested to graphically compare the eigenvalue dis-
tributions of the appropriately centered and scaled symmetrized sample autoco-
variance matrices with the LSD of the same under null hypothesis. Unfortunately,
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their Stieltjes transform formulae are very complicated and are unable to provide
any idea about the shape of the LSD under null and alternative hypotheses that
would facilitate graphical comparison.

To construct appropriate tests of significance for the hypotheses (1.14), Wang,
Aue and Paul (2017) proposed to consider a class of test statistics that equals the
squared integral of the difference between the ESD of renormalized sample au-
tocovariance matrices and the corresponding LSD under null. Calculation of the
LSD under null hypothesis requires inversion of the Stieltjes transform formula,
which is computationally challenging and involves hard calculations in complex
analysis. They also mentioned an alternative test statistic based on computing the
differences between the Stieltjes transforms of the ESD and the LSD for a finite
set of z ∈ C+ and then combining them through some norm. The distribution of
either statistic under null and alternative hypotheses are not known, and hence it is
difficult to calculate their appropriate cut off values and power.

Our method of testing (1.14) is based on a graphical estimate of q . Consider the
MA(q) process given in (1.1). A graphical estimate of q is based on the fact that
the LSD of �̂u + �̂∗

u are all degenerate at 0 if u > q and are not so for u ≤ q; see
Section 3.3. Hence, we can plot the histogram or the CDF of the ESD of �̂u + �̂∗

u

for first few u ≥ 1. Then q is estimated by the smallest q̂ for which the eigenvalue
distributions appear concentrated at 0 only for all u > q̂ . We accept H03 if q̂ = q0.
Simulation results in Figure 1 show that this method performs remarkably well.

One of the referees mentioned that often it may not be easy to decide if the ESD
is close to being degenerate. Thus one should base a test on some non-degenerate

limit. The LSD of
√

np−1(�̂u + �̂∗
u −�u −�∗

u) is nondegenerate but unfortunately
cannot be used directly as {�u} are unknown. A way out is to use a suitable consis-
tent estimator Cu of �u. Indeed, appropriately banded version of �̂u are consistent
for �u; for example, see Bhattacharjee and Bose (2014). Then we can consider the

statistic
√

np−1(�̂u + �̂∗
u − Cu − C∗

u). Its LSD is nondegenerate and is the same

as the LSD of
√

np−1(�̂u + �̂∗
u − �u − �∗

u). This can then be used for a graphical
test; for details, see Theorem 3.1 and the corresponding discussion.

Now consider hypothesis testing for {ψj } for the MA(q) process (1.1). In Sec-
tion 3.4.1, we provide a graphical method and also an asymptotically valid test
statistic to test the hypotheses

H04 : ψq = Aq against H14 : ψq �= Aq and(1.15)

H05 : ψj = Aj ∀j against H15 : ψj �= Aj for at least one j(1.16)

for some p × p deterministic matrices {Aj }. Specific nontrivial choice of {Aj } is
also given in this section. Since all our results refer to eigenvalue distribution, by
equality of two matrices we mean that their eigenvalue distributions are identical.

A graphical method to test (1.15) is based on the LSD of (�̂q + �̂∗
q − Aq − A∗

q)

and a significance test is based on the (asymptotic) distribution of
√

np−1(Tr(�̂q)−
Tr(A)).
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As H05 and H15 specify all the coefficient matrices {ψj : 0 ≤ j ≤ q}, it is natural
to base any test for (1.16) on {�̂u}, 1 ≤ u ≤ q . Observe that the results of Wang,
Aue and Paul (2017) are then of no use.

Let

(1.17) Ĝq =
q∑

u=1

�̂u and GqH0 =
q∑

u=1

q∑
j=0

AjA
∗
j+u.

We provide a graphical test based on the LSD of (Ĝq + Ĝ∗
q −GqH0 −G∗

qH0
) and a

significance test based on the asymptotic normality of
√

np−1(Tr(Ĝq) − Tr(Gq)).
These LSD and asymptotic normality are consequences of Theorems 2.2 and 2.4.

Examples 6 and 7 contain statistical application of asymptotic normality of√
np−1(Tr(�̂u�̂

∗
u) − Tr(�u�

∗
u)) in hypothesis testing. Examples 8–11 deal with

some interesting tests on IVAR and IVARMA processes which need asymptotic
normality of polynomials in sample autocovariance matrices other than symmetric
sums and products.

In Section 3.4.2, we discuss hypothesis testing for the equality of coefficient
matrices of two independent MA(q) processes, where the joint convergence results
of polynomials in independent autocovariance matrices are used.

The Supplementary Material (Bhattacharjee and Bose (2018)) provides all the
technical details. We shall often refer to technical lemmas, corollaries and exam-
ples from the Supplementary Material. For example, Lemma 1.2 in the Supple-
mentary Material will be referred here as Lemma S1.2.

2. Results on LSD and trace. In this section, we present our main theoreti-
cal results in the general MA(q) setup. These will be put to use in Section 3 for
statistical inference.

2.1. Existing LSD result. The only existing LSD result in this area is Wang,
Aue and Paul (2017), proved under the assumptions (WAP1)–(WAP3):

(WAP1) {εt,i} are i.i.d. with mean 0, variance 1 and E|εt,i |4 < ∞.
(WAP2) {ψj } are Hermitian and simultaneously diagonalizable, norm bounded

matrices. There are continuous functions fj : Rm → R and a unitary matrix U of
order p such that UψjU

∗ = diag(fj (α1), fj (α2), . . . , fj (αp)), αj ∈ R
m for all

j and some positive integer m. ESD of {α1, α2, . . . , αp} converges weakly to a
compactly supported probability distribution F on R

m.

For any matrix A of order p, let

(2.1) ‖ψj‖2 =
√

largest eigenvalue of A∗A.
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(WAP3) (when q = ∞)
∑∞

j=0 j4(supp ‖ψj‖2) < ∞.

Let

(2.2) �̂a,u =
√

np−1
(
2−1(

�̂u + �̂∗
u

) − 2−1(
�u + �∗

u

))
, ∀u ≥ 0.

THEOREM 2.1 (Wang, Aue and Paul (2017)). Consider the MA(q) process
given in (1.1) and let 0 ≤ q < ∞. Suppose (WAP1) and (WAP2) hold, and
n = n(p), p → ∞, p/n → 0. Then the LSD of �̂a,u exists almost surely and its
Stieltjes transform can be expressed as the unique solution of the system of equa-
tions S(4.5)–S(4.8). This continues to hold for the case q = ∞ under the additional
assumption (WAP3).

Theorem 2.1 is only for the additively symmetrized autocovariance matrix. Also
note that (WAP2) is fairly restrictive. It excludes many interesting time series mod-
els. For example, consider the MA(2) process

(2.3) Xt = εt + Cεt−1 + Dεt−2, ∀t

where the p × p matrices C = ((I (1 ≤ i = j ≤ [p/2]) − I ([p/2] + 1 ≤ i = j ≤
p))) and D = ((I (i + j = p + 1))). Note that C and D are not simultaneously
diagonalizable. Hence, Theorem 2.1 is not applicable.

Moreover, Theorem 2.1 deals with one autocovariance matrix at a time in a sin-
gle moving average process and hence cannot be used to claim any LSD result for
any function of several sample autocovariance matrices from one or more inde-
pendent moving average processes. Such LSD results would be useful in one and
two sample inference problems; see Section 3.

We shall impose a much relaxed condition on {ψj } and shall still be able to
establish the LSD for all self-adjoint polynomials of {�̂u, �̂

∗
u} for one (or more

than one) MA(q) processes.

2.2. LSD results for one and many samples. We need the following assump-
tions.

(A1) {εt,i} are independent with E(εi,j ) = 0, E|εi,j |2 = 1, supi,j E|εi,j |4 < ∞.
(A2) For some η, δ > 0,

P
(|εi,j | < ηp

1
2+δ

) = 1, ∀1 ≤ i ≤ n,1 ≤ j ≤ p

or, supi,j E|εi,j |k < Ck < ∞ for all k ≥ 1.

Later we shall replace (A2) by weaker moment assumptions while dealing with
specific polynomials, including �̂a,u.

(B1) {ψj } are norm bounded and converge jointly.
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By “joint convergence” of matrices we mean “convergence in ∗-distribution”
of noncommutative variables in the sense of Definition 8.13 in Nica and Speicher
(2006) (see Section S2 for more details).

It is easy to see that (WAP2) implies (B1).

(B2) (when q = ∞)
∑∞

j=0 ‖ψj‖2 < ∞.

Note that (WAP3) implies (B2).
The proof of the following theorem is given in Section S1. This, in conjunction

with Corollary 2.1(a)(ii) and (b), is a significantly more general version of Theo-
rem 2.1 and does not use the restrictive (WAP2) or (WAP3). Recall R�sym defined
in (1.5).

THEOREM 2.2. In the model (1.1), suppose 0 ≤ q < ∞, (A1), (A2), (B1) hold
and n = n(p), p → ∞, p/n → 0. When q = ∞ assume further that (B2) holds.
Then the almost sure LSD of R�sym exists.

The above LSD can be described in terms of freely independent variables; for
details, see Sections S2 and S3.

REMARK 2.1. LSD results for symmetric polynomials in sample autoco-
variance matrices when p/n → y > 0 are discussed in Bhattacharjee and Bose
(2016a). These results for p/n → 0 and p/n → y > 0 are very different. For ex-
ample, consider the model Xt = εt + εt−1. By the results given in Bhattacharjee
and Bose (2016a), we can say that the LSD of �̂1 + �̂∗

1 exists and the moment
sequence of the LSD is given by βk = 2k + O(y) for all k ≥ 1. Thus when y = 0,
this LSD will be degenerate at 2. Bhattacharjee and Bose (2016a) cannot say any-

thing further. Theorem 2.2 proves that the LSD of 0.5
√

np−1(�̂1 + �̂1 − 2I ) is the
semicircle variable with variance given in S(10.1) (with q = 1, u = 1).

The proofs of results for p/n → 0 are harder and more involved compared to
p/n → y > 0. In the latter case, we construct a p × n independent matrix Z =
(ε1, ε2, . . . , εn), embed Z into a larger Wigner matrix of order (p + n) and then
use asymptotic freeness of Wigner and deterministic matrices. This embedding
technique fails for p/n → 0 as the growth rates of p and n are different and makes
this case challenging. It gets even harder for general polynomials of autocovariance
matrices in the general MA(q) model. Finally, it is not at all easy to guess the
nature of the limit for y = 0 case from the y > 0 case.

In the next two corollaries, we relax (A2) and consider weaker moment assump-
tion for two specific polynomials. We need the following assumption:

(A3) For some δ > 0,

lim
p→∞

1

p2

n∑
t=1

p∑
j=1

E
(|εt,j |2+δI

(|εt,j | > ηp
1

2+δ
)) = 0.
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COROLLARY 2.1. (a) Consider the model (1.1) and 0 ≤ q < ∞.

(i) Suppose Assumptions (A1), (A2), (B1) hold and n(p),p → ∞, p/n → 0.
Then the LSD of �̂a,u exists almost surely. The Stieltjes transform of the LSD is
given in Theorem S4.1(a).

(ii) The result in (i) holds if instead of (A2) we assume (WAP1) or (A3).
(iii) The almost sure LSD of (i) (or (ii)) are identical whenever u > q .

(b) The results in (i) and (ii) continue to hold for an MA(∞) process if in
addition (B2) holds.

Corollary 2.1(a)(i) is immediate from Theorem 2.2 except the Stieltjes trans-
form, which is derived in Section S4. Part (a)(ii) is established in Section S5 via
truncation. Proof of (a)(iii) appears in Section S7. Proof of (b) is similar to the
proof of the same for the case p/n → y ∈ (0,∞), which is given in Theorem 7.3.4
in Bhattacharjee (March, 2016). Hence we omit it.

Corollary 2.1(a)(ii) and (b) imply Theorem 2.1 of Wang, Aue and Paul (2017).
The argument is similar to Corollary 2 in Bhattacharjee and Bose (2016b) and the
discussion after that. We omit the details.

The next corollary is apparently new. Let

(2.4) �̂m,u =
√

np−1
(
�̂u�̂

∗
u − �u�

∗
u

)
.

COROLLARY 2.2. (a) Consider the model (1.1) and 0 ≤ q < ∞.

(i) Suppose Assumptions (A1), (A2), (B1) hold and n(p),p → ∞, p/n → 0.
Then the LSD of �̂m,u exists almost surely. The Stieltjes transform of the LSD is
given in Theorem S4.1(b).

(ii) The result in (i) holds if instead of (A2) we assume (WAP1) and E|εi,j |8 <

∞ or, (A3) and supi,j E|εi,j |8 < ∞.
(iii) The almost sure LSD of (i) (or (ii)) are identical whenever u > q .

(b) The results in (i) and (ii) continue to hold for an MA(∞) process if in
addition (B2) holds.

Corollary 2.2(a)(i) is immediate from Theorem 2.2. The Stieltjes transform of
the LSD of �̂m,u is derived in the proof of Theorem S4.1(b). Proof of Corol-
lary 2.2(a)(ii) and (iii) are respectively given in Sections S6 and S7. We omit the
proof of Corollary 2.2(b) for the same reasons that were given for Corollary 2.1(b).

A multisample version of Theorem 2.2 is true. We state the two-sample ver-
sion for simplicity. Its proof is given in Section S8. So, consider another MA(q)

process,

(2.5) Yt =
q∑

j=0

φjηt−j ,
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where {εt } and {ηt } are independent. By the statement ‘(A1)–(A3), (B1), (B2) hold
for {Yt }’, we mean they hold after replacing {εt } and {ψj }, respectively, by {ηt } and
{φj }. Let {�uX, �̂uX} and {�uY , �̂uY } be the population and sample autocovariance
matrices respectively for the processes {Xt } and {Yt }. Also let an arbitrary sym-
metric polynomial in population and sample autocovariance matrices of {Xt } and
{Yt } be denoted by

�sym,XY = �
(
�u,X,�∗

u,X,�u,Y ,�∗
u,Y : u ≥ 0

)
,(2.6)

�̂sym,XY = �
(
�̂u,X, �̂∗

u,X, �̂u,Y , �̂∗
u,Y : u ≥ 0

)
.(2.7)

THEOREM 2.3. Suppose all the assumptions of Theorem 2.2 hold for both
{Xt } and {Yt } and n = n(p), p → ∞, p/n → 0. Then the almost sure LSD of√

np−1(�̂sym,XY − �sym,XY ) exists.

As in Corollaries 2.1 and 2.2, for specific polynomials, reduced moment con-
ditions suffice. Recall {�̂a,u, �̂m,u} from (2.2) and (2.4). Let {�̂a,u,X, �̂m,u,X}
and {�̂a,u,Y , �̂m,u,Y } have the obvious meaning. We state the following corollary
for the difference (�̂a,u,X − �̂a,u,Y ) and (�̂m,u,X − �̂m,u,Y ). These are useful to
construct graphical test for the hypotheses comparing coefficient matrices of two
independent MA(q) processes; for details, see Example 12. We omit the proof.

COROLLARY 2.3. Consider the process (1.1). Suppose (A1), (A3) and (B1)
hold and n = n(p), p → ∞, p/n → 0.

(a) Suppose 0 ≤ q < ∞.

(i) Then the LSD of (�̂a,u,X − �̂a,u,Y ) exists almost surely for u ≥ 0.
(ii) Moreover, if supi,j (E|εi,j |8 + E|ηi,j |8) < ∞, the almost sure LSD of

(�̂m,u,X − �̂m,u,Y ), u ≥ 0, exists.

(b) Above results continue to hold for q = ∞ if in addition we assume (B2).

2.3. Asymptotic normality of traces. For any random matrix M with eigen-
values {λi} and a “suitable” function f , the linear spectral statistic is given by
1
n

∑n
i=1 f (λi). Asymptotic normality of these statistics is extremely useful in sta-

tistical inference. While such results are known for many random matrix models,
no results are known for general sample autocovariance matrices. We deal with a
specific class of linear spectral statistics namely traces of polynomials. This will
be useful later in Section 3 to test hypotheses in high-dimensional time series.

Recall R� from (1.7). Let

σ 2
R�

= limE
(
Tr(R�)

)2
.

Then we have the following theorem. Its proof is given in Section S9. In partic-
ular, the above limit exists and is finite under our assumptions.
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THEOREM 2.4. Consider the model (1.1) and 0 ≤ q < ∞. Suppose (A1),

(A2), (B1) hold and n = n(p), p → ∞, p/n → 0. Then Tr(R�)
D→ N (0, σ 2

R�
).

This also holds for an MA(∞) process if we additionally assume (B2).

The theorem as stated is for one polynomial at a time. If we have a collection of
polynomials, then by the Cramér–Wold technique, their joint asymptotic normality
follows easily by an application of the above result. We omit the detailed proof.
The same comment is true for all subsequent results of this kind. Also note that �

is not assumed to be symmetric for this result.
The following corollary is in the spirit of Corollaries 2.1 and 2.2. We omit its

proof. Let

σ 2
a,u = limE

(
Tr(�̂a,u)

)2 and σ 2
m,u = limE

(
Tr(�̂m,u)

)2
.

COROLLARY 2.4. Consider the process (1.1). Suppose (A1), (A3) and (B1)
hold and n = n(p), p → ∞, p/n → 0.

(a) Suppose 0 ≤ q < ∞.

(i) Then Tr(�̂a,u)
D→ N (0, σ 2

a,u) for u ≥ 0.

(ii) Moreover, if supi,j E|εi,j |8 < ∞, then Tr(�̂m,u)
D→ N (0, σ 2

m,u),∀u ≥ 0.

(b) These continue to hold for q = ∞ if in addition we assume (B2).

Proof of the following two-sample version of Theorem 2.4 is omitted. Let �XY

and �̂XY be arbitrary polynomials respectively in population and sample autoco-
variance matrices of {Xt } and {Yt }. Let

R�XY
=

√
np−1(�̂XY − �XY ) and σ 2

RXY
= limE

(
Tr(R�XY

)
)2

.

THEOREM 2.5. Consider the models (1.1) and (2.5) and 0 ≤ q < ∞. Sup-
pose (A1), (A2) and (B1) hold for both (1.1) and (2.5). Let n = n(p), p → ∞,

p/n → 0. Then Tr(R�XY
)

D→ N (0, σ 2
RXY

). Also this continues to hold for two
MA(∞) processes if in addition we assume (B2) for both processes.

The next corollary is the two sample version of Corollary 2.4(a). Part (a)(i), (ii)
are immediate from Corollary 2.4(a) as traces for {Xt } and {Yt } are independent.
We omit the proof.

Let

�̂m,(u,v),(X,Y ) =
√

np−1
(
�̂u,X�̂∗

v,Y − �u,X�∗
v,Y

)
,

σ 2
m,(u,v),(X,Y ) = limE

(
Tr(�̂m,(u,v),(X,Y ))

)2
.
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COROLLARY 2.5. Consider the models (1.1) and (2.5). Suppose (A1), (A3)
and (B1) hold and n = n(p), p → ∞, p/n → 0.

(a) Suppose 0 ≤ q < ∞.

(i) Then for all u ≥ 0,

Tr(�̂a,u,X − �̂a,u,Y )
D→ N

(
0, σ 2

a,u,X + σ 2
a,u,Y

)
.

(ii) If supi,j (E|εi,j |8 + E|ηi,j |8) < ∞, then for all u ≥ 0,

Tr(�̂m,u,X − �̂m,u,Y )
D→ N

(
0, σ 2

m,u,X + σ 2
m,u,Y

)
.

(iii) Under the same assumptions as in (ii), for all u, v ≥ 0,

Tr(�̂m,(u,v),(X,Y ))
D→ N

(
0, σ 2

m,(u,v),(X,Y )

)
.

(b) These continue to hold for q = ∞ if in addition we assume (B2).

REMARK 2.2. Under appropriate causality conditions, IVAR and IVARMA
processes can be expressed as MA(∞) processes which satisfy (B2); for details
on these causality conditions, see Bhattacharjee and Bose (2014). Therefore, all of
the above results on the MA(∞) process also hold for such IVAR and IVARMA
processes.

3. Statistical inference. As indicated earlier, there are not too many proce-
dures, especially those based on LSD results that have been developed in high-
dimensional time series. We shall now indicate how the results obtained in Sec-
tion 2 can be substantially used. This includes estimation of the unknown order of
the moving average processes and testing of different hypotheses on the coefficient
matrices—these are done by graphical methods or consistent tests of significance
which rely on the LSD results.

Throughout this section, we assume (A1) and (A3) for both the processes {εt }
and {ηt }. Moreover, 0 ≤ q < ∞ and n = n(p), p → ∞, p/n → 0.

3.1. Hypothesis testing for q: A simple model. Consider a random sample
{Xt : 1 ≤ t ≤ n} from the process

(3.1) Xt =
q∑

j=0

εt−j ∀t ≥ 0.

Based on the above sample, suppose we wish to test

(3.2) H0 : q = q0 against H1 : q = q1.

The LSD of �̂a,u given in Corollary 2.1 and its free probability description
discussed in Corollary S3.1(a), are useful in this context. Recall the semi-circle
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distribution defined in (1.10). In Lemma S10.1, we show that the LSD of �̂a,u,
for u ≥ q , are all semicircle distributions with variance σ 2

q,u. The expression for
σ 2

q,u for any arbitrary q and u, is cumbersome and is given in S(10.1). However,

by Corollary S10.1, whenever u > q , σ 2
q,u depends on q only; for example, σ 2

1,u =
3 ∀u > 1 and σ 2

2,u = 9.5 ∀u > 2. For more details, see Examples S1 and S2.
For u > q , let σ 2

q denote the common value of σ 2
q,u, which can be computed

using (S10.8). An easy graphical way to test the hypotheses in (3.2) is to plot
the ESD of �̂a,u for u = max(q0, q1) + 1. If the support of the distribution is
[−2σqi

,2σqi
], then we accept Hi .

Significant tests can be designed based on the asymptotic normality of the
traces. Let us assume q0 < q1. A similar method will work for the reverse case.
In Corollary S11.1, using Theorem 2.4, we prove that under Hi ,√

np−1
(
Tr(�̂u) − au,qi

p
)
/τu,qi

D→ N (0,1) where

τ 2
u,qi

= 1

2

∞∑
v=−∞

(av−u,qi
+ av+u,qi

)2,

au,qi
= (

(qi + 1) − |u|)I (|u| ≤ qi

)
.(3.3)

For 0 ≤ u ≤ q1, we can use any of the Tu =
√

np−1(Tr(�̂u) − au,q0p)/τu,q0 as a
test statistic. The test will reject H0 at 100α% level of significance if Tu > zα ,
where zα is the upper α point of the standard normal distribution.

All of the above tests are consistent. For large p, by asymptotic normality, the
power of Tu at level α is approximately

(3.4) 1 − �
(
zατu,q0τ

−1
u,q1

− (au,q1 − au,q0)p

√
np−1τ−1

u,q1

)
, 0 ≤ u ≤ q1,

where �(·) is the distribution function of the standard normal variable. It is easy
to see that as au,q1 is nonnegative and a nonincreasing function of u > 0, τu,q1 is
smaller and consequently (3.4) is larger for u = q1. Thus for large p, the power of
Tq1 dominates the power of all other Tu mentioned above.

Following simulation results provide numerical support. Consider the null hy-
pothesis H0 : q0 = 1 against the two alternatives H1 : q1 = 2 and H1 : q1 = 3

for model (3.1). We simulate from model (3.1) for q1 = 2,3, εt
i.i.d.∼ N (0, Ip),

n = p1.8, p = 300,500,700,1000 and compute {Tu : 0 ≤ u ≤ q1} for q0 = 1. Ta-
ble 1 provides the empirical power (E.P.) of these test statistics computed for 300
replications. Note that E.P. of Tq1 dominates E.P. of {Tu : 0 ≤ u < q1}.

3.2. Comparison between the above test and the Ljung–Box test. One of the
referees raised the issue of using the well-known multivariate Ljung–Box test for
the hypothesis (3.2) in the model (3.1) when q0 = 0. The test statistic is given by

(3.5) TLB = nVec(Ĉ)′
(
Is ⊗ �̂−1

0 ⊗ �̂−1
0

)
Vec(Ĉ)
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TABLE 1
Comparison of E.P. of {Tu : 0 ≤ u ≤ q1}

Model (3.1) p T0 T1 T2 T3

q0 = 1, q1 = 2 300 0.89 0.90 0.92
q0 = 1, q1 = 2 500 0.91 0.93 0.94
q0 = 1, q1 = 2 700 0.92 0.95 0.97
q0 = 1, q1 = 2 1000 0.94 0.96 0.99
q0 = 1, q1 = 3 300 0.85 0.88 0.92 0.94
q0 = 1, q1 = 3 500 0.90 0.92 0.95 0.97
q0 = 1, q1 = 3 700 0.94 0.95 0.97 0.98
q0 = 1, q1 = 3 1000 0.95 0.97 0.98 0.99

where Ĉ = (�̂1�̂2 . . . �̂s) (a p×ps matrix), Vec(Ĉ) is the vector of dimension p2s

which is built by stacking the columns of Ĉ beneath one another, Is is the identity
matrix of order s and ⊗ is the Kronecker product of matrices. Under H0 : q = 0,
TLB follows asymptotically χ2

p2s
and we reject H0 at 100α% level of significance

if the observed value of TLB is greater than the upper α point of χ2
p2s

distribution;
for more details, see Hosking (1980).

Since the degrees of freedom is large, we can also consider the test statistic

T ∗
LB = TLB−p2s√

2p2s
. Under H0, T ∗

LB is asymptotic normal. Thus we can reject H0 at

100α% level of significance if the observed |T ∗
LB| > zα/2 where zα/2 is the (1 −

α/2)-th quantile of the standard normal distribution.
For the same hypothesis, results of Section 3.1 provides our test statistic. Sub-

stituting q = q0 = 0 in (3.3), we have au,q0 = I (u = 0) and τu,q0 = I (|u| ≥ 1).

Hence this test statistic reduces to T =
√

np−1 Tr(�̂q1) for testing against the al-
ternative H1 : q = q1. Under H0, T is asymptotically N (0,1) and we reject H0 at
100α% level if observed |T | > zα/2 where zα/2 is the upper α/2 point of N (0,1).

Let us compare the empirical power of TLB, T ∗
LB and T for the two models:

Xt = εt + εt−1 and Xt = εt + εt−1 + εt−2 where εt
i.i.d.∼ Np(0, Ip). We simulate a

sample of size n = p1.2 where p = 300,500,700,1000, compute the test statistic
TLB, T ∗

LB (for s = 10) and T , and replicate this a 100 times.
Table 2 provides the empirical powers. Clearly, the empirical power of T domi-

nates those of TLB and T ∗
LB. Moreover, the latter decrease as p increases whereas,

as discussed in Section 3.1, the opposite happens for T .

REMARK 3.1. In Section 3.1, we used test statistics based on {�̂u : 0 ≤ u ≤
q1} for testing (3.2) in the model (3.1) with q0 < q1. This is possible because, in
the model (3.1), all the elements of {�̂u : 0 ≤ u ≤ q} vary with q . In general, we
cannot use {�̂u : 0 ≤ u ≤ q0} to construct a valid test statistic for testing (3.2) with
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TABLE 2

Comparison of empirical power (E.P.) of TLB, T ∗
LB and T for εt

i.i.d.∼ Np(0, Ip), n = p1.2 and 100
replications

Model p E. P. of TLB E.P. of T ∗
LB E.P. of T

Xt = εt + εt−1 300 0.83 0.84 0.87
Xt = εt + εt−1 500 0.76 0.79 0.89
Xt = εt + εt−1 700 0.69 0.65 0.93
Xt = εt + εt−1 1000 0.52 0.55 0.96
Xt = εt + εt−1 + εt−2 300 0.8 0.8 0.88
Xt = εt + εt−1 + εt−2 500 0.73 0.78 0.91
Xt = εt + εt−1 + εt−2 700 0.58 0.63 0.94
Xt = εt + εt−1 + εt−2 1000 0.52 0.59 0.97

q0 < q1. For example, consider the following hypotheses:

H0 : Xt = εt + εt−1 against H1 : Xt = εt + εt−2,

H0 : Xt = εt + εt−1 against H2 : Xt = εt + 0.5εt−1 + εt−2.

Note that (Tr(�0),Tr(�1),Tr(�2)) equals (2,1,0)p, (2,0,1)p and (2.25,1,1)p,
respectively, under H0, H1 and H2. Note that we cannot use �̂0 to test H0 against
H1 as asymptotic distribution of T r(�0) under H0 and H1 are identical. Similarly,
�̂1 cannot not be used to test H0 against H2. It is better to use �̂2 in both cases.

3.3. Estimation of q . Consider the MA(q) process (1.1) with unknown q and
unknown coefficient matrices. Suppose {Xt : 1 ≤ t ≤ n} is a sample from the pro-
cess (1.1). We now discuss graphical estimation of q .

Applying Corollary 2.1(a)(ii), it is immediate that, under (B1), the LSD of
0.5(�̂u + �̂∗

u) and 0.5(�u + �∗
u) are identical for all u ≥ 0. Moreover, this LSD

is degenerate at 0 when u > q . Hence, we propose to plot the histogram of the
ESD of 0.5(�̂u + �̂∗

u) for u = 0,1,2, . . . . We say that q̂ is an estimate of q , if the
ESD of these matrices appear degenerate at 0 for order u > q̂ . However, as pointed
out by one of the referees, often it may not be easy to decide if the ESD is close to
being degenerate.

There is an alternative approach which uses a significance test based on the

trace. By Corollary 2.1(a)(i)), 0.5
√

np−1(�̂u + �̂∗
u −�u −�∗

u) have non-degenerate
LSD which are described in Corollary S3.1. However, {�u} are unknown so this
cannot be used. A way out is to use appropriate consistent estimator of �u. Fortu-
nately, such an estimate is available in Bhattacharjee and Bose (2014) for certain
combinations of n and p.

Let us first define the appropriate parameter spaces for {ψj } where the above
mentioned consistency can be achieved. To impose restrictions on the parameter
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space, define for any nested sequence of matrices {Mp = ((mij ))p×p},
‖M‖(1,1) = max

j≥1

∑
i≥1

|mij | and T (M, t) = max
j≥1

∑
i:|i−j |>t

|mij |.

Let max(‖ψj‖(1,1),‖ψ ′
j‖(1,1)) = rj , j ≥ 0. We define the following class of

{ψj }∞j=0 for some 0 < β < 1 and λ ≥ 0:

�(β,λ) =
{
{ψj }∞j=0 :

∞∑
j=0

r
β
j < ∞,

∞∑
j=0

r
2(1−β)
j jλ < ∞

}

which ensures that the dependence among Xt and Xt+τ decreases with the lag τ .
Note that the summability implies that the decay rate of rj cannot be slower than
a polynomial rate. In case of a finite order moving average process, as we have a
finite number of norm bounded parameter matrices, {ψj } will automatically belong
to �(β,λ) for all 0 < β < 1 and λ ≥ 0.

For any 1 ≤ i ≤ p, let Xt,i.p be the ith component of the vector Xt.p . Here, we
ensure that for any t1 < t and k > 0, the dependence between Xt1,(i±k).p and Xt,i.p

grows weaker as the lag k increases. We achieve this by putting restrictions over
{T (ψj , t) : j = 0,1,2, . . . } for all t > 0. Consider the following class for some
C,α, ν > 0 and 0 < η < 1 as

G(C,α,η, ν) =
{
{ψj } : T

(
ψj , t

j∑
u=0

ηu

)
< Ct−αrj j

ν
j∑

u=0

η−uα, and

∞∑
j=k

rj rj−kj
ν

ηαj
< ∞

}
.(3.6)

Consider the following assumptions:

(C1) {ψj } ∈ �(β,λ) ∩ G(C,α,η, ν) for some 0 < β,η < 1 and C,λ,α, ν > 0.

Let εt,j.p be the j th component of εt.p .

(C2) For some λ0 > 0,

(3.7) sup
j≥1

E
(
eλεt,j.p

)
< ∞ for all |λ| < λ0.

For any matrix M of order p and k > 0, the banded version of M is

Bk(M) = ((
mij I

(|i − j | ≤ k
)))

.

By Theorem 4.1 of Bhattacharjee and Bose (2014), if (C1) and (C2) hold then for

kn = (n−1logp)
− 1

2(α+1) , ‖Bkn(�̂u) − �u‖2 = Op(k−α
n ) for all u.

Let �̂a,u,B =
√

np−1(�̂u + �̂∗
u −Bkn(�̂u)−Bkn(�̂

∗
u)). We then have the follow-

ing theorem.
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THEOREM 3.1. Consider the model (1.1) with 0 ≤ q < ∞. Suppose (A1),
(A2), (B1), (C1) and (C2) hold, and n(p),p → ∞ such that p/n → 0 and

np−(α+1)(logp)α → 0. Then for kn = (n−1logp)
− 1

2(α+1) , the LSD (in probabil-
ity) of �̂a,u,B and �̂a,u are identical. This conclusion also holds for q = ∞ if we
further assume (B2).

PROOF. Observe that by Corollary A.41 of Bai and Silverstein (2010) and
Corollary 2.1 we have

1

p
Tr

(√
np−1

(
�̂u + �̂∗

u − Bkn(�̂u) − Bkn

(
�̂∗

u

)) −
√

np−1
(
�̂u + �̂∗

u − �̂u − �̂∗
u

))2

= 1

p
Tr

(
�̂u + �̂∗

u − Bkn(�̂u) − Bkn

(
�̂∗

u

))
)2

≤ 4np−1∥∥Bkn(�̂u) − �u

∥∥2
2 = oP

(
n

p

(
logp

n

) α
(α+1)

)
→ 0. �

Now by Corollary 2.1(a)(iii) and Theorem 3.1, the LSD (in probability) of
�̂a,u,B are identical for u > q and are different for u ≤ q . Thus we can plot the
CDF of the ESD of �̂a,u,B for the first few sample autocovariance matrices in the
same graph. We say that q̂ is an estimate of q , if the ESD of �̂a,u,B with order
u > q̂ empirically coincide with each other.

EXAMPLES (SIMULATIONS). Let Ip and Jp be respectively the identity ma-
trix of order p and the p × p matrix with all entries 1 and let εt ∼ Np(0, Ip),∀t .
Let A = 0.5Ip , B = 0.5(Ip + Jp), C = ((I (1 ≤ i = j ≤ [p/2]) − I ([p/2] < i =
j ≤ p))), D = ((I (i + j = p + 1))) and E = (((|i − j | + 1)−1I (i + j = p + 1)))

be five p × p matrices. We consider the following models:

Model 1 Xt = εt .
Model 2 Xt = εt + Aεt−1.
Model 3 Xt = εt + Bεt−1.
Model 4 Xt = εt + Cεt−1 + Dεt−2.
Model 5 Xt = εt + Cεt−1 + Eεt−2.

Suppose we have samples of size n respectively from Models 1–5. Now suppose
that we do not know the models and wish to identify the unknown order of the MA
processes. This will be done in two ways: first, by using the fact that the LSD of
�̂u + �̂∗

u is degenerate when u > q; second by using the fact that the nondegenerate
LSD of �̂a,u,B are identical for all u > q .

Let p = 500, n = p1.5. For each of the five models, we plot the CDF of the
above two ESD for 1 ≤ u ≤ 3 and 1 ≤ u ≤ 4, respectively; see Figures 1 and 2.
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FIG. 1. CDF of ESD of 0.5(�̂u + �̂∗
u), 1 ≤ u ≤ 3 with p = 500 and n = p1.5.

From the figures, we see that the ESD of 0.5(�̂u + �̂∗
u) are almost degenerate at

0 for u ≥ 1 in Model 1, for u ≥ 2 in Models 2, 3 and for u ≥ 3 in Models 4, 5. In
Figure 1, we have not displayed the ESD of Model 5 as the LSD of 0.5(�̂u + �̂∗

u)

for Models 4 and 5 are identical.
Similarly, the ESD of �̂a,u,B are observed to be identical in the above cases

except for Model 4. The matrix D in Model 4 does not belong to the class G
defined in (3.6) and that explains why the corresponding ESDs are not performing
well in the simulation.

From the plots, the estimated value of q is 0, 1, 1, 2 and 2, respectively, for
Models 1−5. This shows that our method is performing very well.

Incidentally, it follows by simple algebra and application of Corollary 2.1(a)(i)
that the LSDs in Model 4 are 2Ber(0.5) − 1 for u = 1,2. This is supported by the
graph in the bottom right panel of Figure 1.

3.4. Hypothesis testing for coefficient matrices. Since an MA(q) process (1.1)
is characterized by its coefficient matrices {ψj }, it is relevant to make statistical in-
ference on them. To the best of our knowledge, there are no results in the literature
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FIG. 2. CDF of ESD of 0.5
√

np−1(�̂u + �̂∗
u − Bkn

(�̂u) − Bkn
(�̂∗

u), 1 ≤ u ≤ 4 with p = 500,

n = p1.5 and kn = (n−1logp)− 1
4 .

which provide consistent estimators of {ψj } or deals with testing of hypotheses
for {ψj }. In this section, we shall discuss testing of {ψj } for some simple null and
alternative hypotheses.

The entries of ψj provide spatial correlations (correlation between components)
at time lag j . Hence to understand these correlations, one may be interested to
test different hypothesis regarding ψj . For instance, H0 : ψq = 0 or H0 : ψj =
0 ∀j—these are equivalent to testing for the unknown order of the process and
have already been discussed in Sections 3.1–3.3. We may also be interested to
test H0 : ψq = Aq and H0 : ψj = Aj ∀j for some known nonnull {Aj }. Moreover
it is known that, as p → ∞, the sample autocovariance matrices {�̂u} are not
consistent for {�u} unless we have appropriate restrictions on the parameter space
of coefficient matrices {ψj }; for example, see Bhattacharjee and Bose (2014) and
Basu and Michailidis (2015). Therefore, an important problem is to check whether
{ψj } satisfies these restrictions. This also leads us to test for hypotheses on {ψj }.
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In this section, we demonstrate tests using the LSD results and the asymptotic
normality of traces for some specific hypotheses.

In Examples 1 and 3, we provide tests of significance for H0 : ψq = Aq and H0 :
ψj = Aj ∀j , respectively, for some known {Aj }. Specific choices of {Aj } are also
discussed in Examples 4–7. Unfortunately, we do not know how to test hypothesis
on ψj , 1 ≤ j ≤ q − 1; for details, see Example 2. Examples 8–11 deal with some
interesting testing for IVAR and IVARMA processes. We also discuss two-sample
hypothesis testing in Section 3.4.2. Much more work needs to be done to generalize
our prescription to deal with more general null and alternative hypotheses.

In our formulation nonrandom matrices with the same ESD or LSD are treated
to be asymptotically equal. Hence by A = B for two nonrandom matrices, we
mean the eigenvalue distributions of A and B are identical. Throughout this sec-
tion, we assume that all the deterministic (nonrandom) matrices converge jointly.

We provide both graphical and significance tests. Graphical tests are based on
the LSD of nonscaled but centered sample autocovariance matrices. These are easy
to derive using Theorem 2.2 and Corollary 2.1. Significance tests are based on the
asymptotic normality of appropriately centered and scaled trace of sample autoco-
varance matrices. These can be derived using Theorem 2.4 and Corollary 2.4.

3.4.1. One sample case. Consider the MA(q) process given in (1.1).

EXAMPLE 1. Let A be a square matrix of order p with a nondegenerate LSD.
Suppose we wish to test

(3.8) H0 : ψq = A against H1 : ψq �= A.

As �q = ψ∗
q , this is equivalent to testing

(3.9) H0 : �q = A∗ against H1 : �q �= A∗.

Using Corollary 2.1(a)(ii), it is easy to establish that, under H0 the LSD of (�̂q +
�̂∗

q − A − A∗) is degenerate at 0. While under H1 this LSD is identical with the
LSD of (�q +�∗

q −A−A∗) which is nondegenerate. Thus to test (3.8) graphically,

we plot the eigenvalue distribution of (�̂q + �̂∗
q −A−A∗). If it appears degenerate

at 0, then H0 is accepted; else we reject H0.
One of the referees raised the issue that it may be difficult to decide whether the

ESD is close to being degenerate. Note that the LSD are all almost sure results.
It is known from the experience of random matrix theory that the convergences to
the LSD for many matrix models are very fast. Even though no convergence rate
results are known in the present cases at the moment, we believe the convergence
in our theorems are also quite fast.

A significant test can be derived using the asymptotic normality of Tr(�̂q). In
Corollary S11.3, using Theorem 2.4 and some additional arguments, we prove that
under H0

(3.10)
√

np−1
(
Tr(�̂q) − Tr(A)

)
/λ̂q

D→ N (0,1),
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where λ̂2
q is a consistent estimator of the asymptotic variance of

√
np−1(Tr (�̂q)−

Tr(A)) and is a function of {limp−1 Tr(�̂u�̂v) : −q < u,v < q} only. Explicit
expression for λ̂2

q is given in S(11.21).
In Corollary S11.3, we also establish that under H1, for some 0 < λ < ∞,

(3.11)
√

np−1
(
Tr(�̂q) − Tr(�q)

)
/λ̂q

D→ N
(
0, λ2)

.

Therefore, we can use the statistic on the left side of (3.10) and reject H0 if it is
large.

One of the referees pointed out that the above test is essentially for H0 :
Tr(ψq) = Tr(A) against H1 : Tr(ψq) �= Tr(A). While that is true, note that in
general, we can also test for H0 : Tr(ψk

q ) = Tr(Ak) for any k ≥ 1 against H1 :
Tr(ψk

q ) �= Tr(Ak) using asymptotic normality of
√

np−1(Tr(�̂k
q) − Tr(�k

q)). Fur-
ther investigation is needed to propose a combined test for a set of values of k.
This would alleviate the problem partially.

EXAMPLE 2. Consider the model (1.1). In general, we do not have any ready-
made answers for testing H0 : ψj = AagainstH1 : ψj �= A for some fixed 0 ≤ j ≤
(q − 1) and p × p matrix A. To explain why, consider the MA(3) process with
coefficient matrices {ψ0 = I,ψ1,ψ2,ψ3}. In this case,

�1 = ψ∗
1 + ψ1ψ

∗
2 + ψ2ψ

∗
3 , �2 = ψ∗

2 + ψ1ψ
∗
3 ,

�3 = ψ∗
3 , �u = 0 ∀u ≥ 4.

(3.12)

Suppose we wish to test

(3.13) H0 : ψ2 = A against H1 : ψ2 �= A.

�1, �2 and �3 under H0 are given by

(3.14) �1H0 = ψ∗
1 + ψ1A

∗ + Aψ∗
3 , �2H0 = A∗ + ψ1ψ

∗
3 , �3H0 = ψ∗

3 .

If ψ1 and ψ3 are known, then by Corollary 2.1(a)(ii), it is easy to see that under H0,
the LSD of (�̂1 + �̂∗

1 − �1H0 − �∗
1H0

) is degenerate at 0, whereas under H1, this
LSD is identical with the LSD of (�1 +�∗

1 −�1H0 −�∗
1H0

). Also, by Theorem 2.4,
for some 0 < a,b < ∞,

under H0,

√
np−1

(
Tr(�̂1) − Tr(�1H0)

) D→ N
(
0, a2)

and

under H1,

√
np−1

(
Tr(�̂1) − Tr(�1)

) D→ N
(
0, b2)

.

Here, a and b are functions of {limp−1Tr(�uH0�uH0) : −3 ≤ u, v ≤ 3} and
{limp−1Tr(�u�v) : −3 < u,v < 3}, respectively. Just as in Example 1, we can
make use of these results to test (3.13). One can use autocovariance of order 2
also. �̂3 cannot be used to test (3.13) as �3 is not a function of ψ2, and hence it
makes no distinction between H0 and H1.
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Clearly, the above method does not work when ψ1 and ψ3 are unknown. More-
over, it is hard to estimate these coefficient matrices. If we consider the method of
moments, we get the system of equations given in (3.12) after replacing the popula-
tion autocovariance matrices by the sample autocovariance matrices. These equa-
tions are not easy to solve. Moreover, appropriate regularization could be needed
before consistency is achieved. This needs further investigation.

EXAMPLE 3. Next, consider the hypotheses

(3.15) H0 : ψj = Aj ∀j against H1 : ψj �= Aj for at least one j ,

for some known p × p matrices {Aj }. As H0 specifies all the coefficient matrices
{ψj : 0 ≤ j ≤ q}, a natural testing method should be based on �̂u for all 1 ≤ u ≤ q .
Let

Ĝq =
q∑

u=1

�̂u, Gq =
q∑

u=1

�u =
q∑

u=0

q−u∑
j=0

ψjψ
∗
j+u and(3.16)

GqH0 =
q∑

u=0

q−u∑
j=0

AjA
∗
j+u (i.e., Gq under H0).(3.17)

By Theorem 2.2 and using truncation arguments, it can easily be proved that under
H0, the LSD of (Ĝq + Ĝ∗

q − GqH0 − G∗
qH0

) is degenerate at 0 whereas under
H1, this LSD is identical with the LSD of (Gq + G∗

q − GqH0 − G∗
qH0

). Thus to

test (3.15) graphically, we plot the eigenvalue distribution of (Ĝq + Ĝ∗
q − GqH0 −

G∗
qH0

). We accept H0 if this ESD appears degenerate at 0.

A test statistic can be proposed using Tr(Ĝq). In Corollary S11.4, we show that
under H0,

(3.18)
√

np−1
(
Tr(Ĝq) − Tr(GqH0)

)
/δ̂q

D→ N (0,1),

where δ̂2
q is a consistent estimator of the asymptotic variance of

√
np−1(Tr(Ĝq) −

Tr(GqH0)) and is a function of {limp−1 Tr(�̂u�̂v) : −q < u,v < q} only. An ex-
plicit expression for δ̂2

q is given in S(11.23).
In Corollary S11.4, we also establish that under H1, for some 0 < δ < ∞,

(3.19)
√

np−1
(
Tr(Ĝq) − Tr(Gq)

)
/δ̂q

D→ N
(
0, δ2)

.

Therefore, we can use T3 =
√

np−1(Tr(Ĝq) − Tr(GqH0))/δ̂q as a test statistic and
reject H0 if it is large in absolute value.

EXAMPLE 4. Consider the MA(q) model (1.1) with ψj = αjIp for all 0 ≤
j ≤ q , considered by Pfaffel and Schlemm (2011). They established the LSD of
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(�̂u+�̂∗
u) when p/n → y ∈ (0,∞). Consider two sequences of real numbers {a0j }

and {a1j }. Suppose we wish to test

H0 : αj = a0j ∀0 ≤ j ≤ q against H1 : αj = a1j ∀0 ≤ j ≤ q.

Define γiu := ∑q−u
j=0 aij ai(j+u) for all i = 0,1 and u ≥ 0. We assume

∑q
u=0(γ0u −

γ1u) �= 0 so that
∑q

u=0 Tr(�u) under H0 and H1 are different. Further suppose
p/n → 0. By Theorem S11.1, under Hi , we have

Ti :=
√

np−1

(
Tr

( q∑
u=0

�̂u

)
−

( q∑
u=0

γiu

)
p

)/
σ̄i

D→ N (0,1) where

σ̄ 2
i := 0.5

∞∑
v=−∞

( q∑
u=−q

γi(v+u)

)2

.

We can use T0 as test statistic and can reject H0 when |T0| is large.

EXAMPLE 5. Consider the MA(q) process (1.1) with ψj = αjA. Note that
this is a more general model than in Example 4. Suppose {αj } is known and A is
unknown. We wish to test

(3.20) H0 : A = Ip against H1 : A = Diag(a1, a2, . . . , ap),

where
∑p

j=1 a2
j �= p and a2 := limp−1 ∑p

j=1 a4
j exists. This can be done by testing

either of the following (q + 2) hypotheses:

H0u : �u = γuIp against

H1u : �u = γu Diag
(
a2

1, a2
2, . . . , a2

p

)
, 0 ≤ u ≤ q

Hu(q+1) : ψj = αjIp ∀j against

H1(q+1) : ψj = αj Diag(a1, a2, . . . , ap) ∀j

where γu = ∑∞
j=0 αjαj+u and αj = 0 ∀j > q . Define

σ 2
u = 0.5

∞∑
v=−∞

(γv+u + γv−u)
2, 0 ≤ u ≤ q and

σ 2
q+1 = 0.5

∞∑
v=−∞

( q∑
u=−q

γv+u

)2

.

By Theorem S11.1, it is easy to see that under H0,

TuH0 =
√

np−1
(
Tr(�̂u) − γup

)
/σu

D→ N (0,1), 0 ≤ u ≤ q,

T(q+1)H0 =
√

np−1

[
Tr

( q∑
u=0

�̂u

)
−

( q∑
u=0

γu

)
p

]/
σq+1

D→ N (0,1)
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and under H1,

TuH1 =
√

np−1

(
Tr(�̂u) − γu

( p∑
j=1

a2
j

))/
aσu

D→ N (0,1), 0 ≤ u ≤ q,

T(q+1)H1 =
√

np−1

[
Tr

( q∑
u=0

�̂u

)
−

( q∑
u=0

γu

)( p∑
j=1

a2
j

)]/
aσq+1

D→ N (0,1).

Therefore, we can use any TuH0 , 0 ≤ u ≤ q + 1, as a test statistic and can reject H0

for their larger absolute values.
All of the above tests are consistent. It is not possible to compare the power of

these tests in general but we can do it in certain specific cases. Note that for large
p and 0 ≤ u ≤ q , the power of TuH0 (at level α) approximately equals

1 − �

(
zα/2a

−1 +
√

np−1γu

( q∑
j=0

a2
j − p

)
(aσu)

−1

)

+ �

(
−zα/2a

−1 +
√

np−1γu

( q∑
j=0

a2
j − p

)
(aσu)

−1

)
,

where � and zα/2 are the distribution function and the upper α/2 point of the
standard normal variable. Moreover, if {γu} is nonnegative and non-increasing for
u ≥ 0, then we have σ 2

q = min{σ 2
u : 0 ≤ u ≤ q + 1}. Thus TqH0 provides more

power than {TuH0 : 0 ≤ u ≤ q − 1, u = q + 1}.
Simulations: Here, we simulate from the six MA(q) processes with q = 1,2

and αj = θj I (0 ≤ j ≤ q) with θ = 0.5,1,2. For all models, we take a4
j =

p/(q + 1) ∀j . Thus
∑q

j=0 a2
j < p and a2 = 1. Moreover, we consider εt

i.i.d.∼
Np(0, Ip), n = p1.2 and p = 300,500,1000. We compute {TuH0 : 0 ≤ u ≤ q + 1}
and their empirical power (E.P.) with 300 replications for each case. These E.P.s
are recorded in Table 3. It shows that all of the above tests are consistent and TqH0

dominates others. This is because γu = θ |u|(∑q−|u|
j=0 θ2j )I (|u| ≤ q) is nonnegative

and is a nonincreasing function of u ≥ 0.

EXAMPLE 6. Consider the same model as in Example 5 and hypotheses
(3.20). Moreover, assume

∑p
j=1 a2

j = p,
∑p

j=1 a4
j �= p and ã2 := limp−1 ∑p

j=1 a8
j

exists. The test statistics given in Example 5 will not work since
∑p

j=1 a2
j = p
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TABLE 3
Comparison of E.P. of {TuH0 : 0 ≤ u ≤ (q + 1)} in the context of Example 5

q = 1 T0H0 T1H0 T2H0

θ = 0.5 p = 300 0.82 0.85 0.78
θ = 0.5 p = 500 0.85 0.89 0.83
θ = 0.5 p = 1000 0.94 0.97 0.92
θ = 1 p = 300 0.81 0.82 0.8
θ = 1 p = 500 0.89 0.9 0.87
θ = 1 p = 1000 0.94 0.95 0.93
θ = 2 p = 300 0.81 0.85 0.75
θ = 2 p = 500 0.9 0.93 0.85
θ = 2 p = 1000 0.95 0.98 0.93

q = 2 • T0H0 T1H0 T2H0 T3H0

θ = 0.5 p = 300 0.82 0.88 0.94 0.75
θ = 0.5 p = 500 0.89 0.92 0.97 0.82
θ = 0.5 p = 1000 0.92 0.94 0.98 0.89
θ = 1 p = 300 0.85 0.89 0.92 0.78
θ = 1 p = 500 0.91 0.93 0.95 0.83
θ = 1 p = 1000 0.93 0.94 0.98 0.89
θ = 2 p = 300 0.81 0.88 0.94 0.75
θ = 2 p = 500 0.9 0.93 0.97 0.86
θ = 2 p = 1000 0.92 0.95 0.98 0.9

implies Tr(�u) under H0 and H1 are equal. On the other hand, by Corollary S11.5,

under H0, T̃qH0 =
√

np−1
(
Tr

(
�̂q�̂∗

q

) − γ 2
q p

)
/σ̃q

D→ N (0,1),

under H1, T̃qH1 =
√

np−1

(
Tr

(
�̂q�̂∗

q

) − γ 2
q

( p∑
j=1

a4
j

)2)
/ãσ̃q

D→ N (0,1),

where σ̃ 2
q = 2

[ ∞∑
v=−∞

γ 2
q (γv+q + γv−q)

2

]
.

Thus TqH0 can be used to test (3.20) and we can reject H0 for its large absolute
values. As in Example 5, one can also use test statistics based on �̂u�̂

∗
u for 0 ≤

u ≤ q − 1. We omit the details.

EXAMPLE 7. A matrix M = ((mij )) is said to be K-banded if mij = 0 for
|i − j | > K . It is known that {�u} are consistently estimable if {ψj } (or A) are
K-banded; for example, see Bhattacharjee and Bose (2014). Consider the MA(q)

process (1.1) with ψj = αjA and A = ((t|i−j |I (|i−j | ≤ K)))p×p for some integer
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K ≥ 0 and known sequence of real numbers {tj }. We want to test

H0 : K = K0 against H1 : K = K1 > K0.

This cannot be tested using Tr(�̂u) as it is identical under H0 and H1. In-
stead we use Tr(�̂u�̂

∗
u). Let TK = Tr(((t|j−l|I (|j − l| > Ki)))

4). Suppose ã2
Hi

:=
limp−1Tr(((t|j−l|I (|j − l| > Ki)))

8), i = 0,1, exist. Then by Corollary S11.5,
under Hi ,

T̄uHi
=

√
np−1

(
Tr

(
�̂u�̂

∗
u

) − γ 2
u TKi

)
/σ̃uãHi

D→ N (0,1),

where σ̃ 2
u = 2

[ ∞∑
v=−∞

γ 2
u (γv+u + γv−u)

2

]
,0 ≤ u ≤ q.

Then we can use any of T̄uH0 , 0 ≤ u ≤ q , as a test statistic and reject H0 when its
value is large. One can also use appropriately centered and scaled

∑q
u=0 Tr(�̂u�̂

∗
u)

as a test statistic. As in Example 5, here also T̄qH0 will have more power if {γu}
are nonnegative and nonincreasing.

Testing for IVAR processes.

EXAMPLE 8. Consider the following IVAR(1) process:

Xt = AXt−1 + εt ,

where A is symmetric, ‖A‖2 < 1, the LSD of A exists and {εt } satisfies (A1) and
(A3). It is easy to see that �u = (I −A2)−1Au. Suppose p/n → 0. We wish to test

(3.21) H0 : A = 0 against H1 : A �= 0.

Note that by Theorem S11.1, under H0,√
np−1

(
Tr(�̂0) − p

) D→ N (0,2),

√
np−1

(
Tr(�̂u)

) D→ N (0,1), ∀u ≥ 1

and under H1,√
np−1

(
Tr(�̂u) − Tr

((
I − A2)−1

Au)) D→ N
(
0, σ 2

u

)
where

σ 2
u = 0.5

∞∑
v=−∞

lim
1

p
Tr

((
I − A2)−2(

A|v−u| + A|v+u|)2)
.

Therefore, we use either
√

np−1(Tr(�̂0) − p) or
√

np−1(Tr(�̂u)) for any u ≥ 1 as
the test statistic and reject H0 for their larger absolute value. As discussed in the
previous examples, power of the tests increase with u.
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Now consider higher order IVAR processes. Recall that tests of significance in
higher order univariate AR processes are based on partial autocovariances. Simi-
larly, possible tests of significance in IVAR processes would be based on partial au-
tocovariance matrices. Since these matrices are functions of autocovariance matri-
ces and their inverses, potentially their joint limits can be derived. However, since
inverses are involved, this is technically not an easy task—the moment method
is not directly applicable, identification of the LSD is nontrivial and results on
the trace are not obvious. These need further research. Here, we concentrate on
two easy scenarios where inverses do not come into the picture and we can fall
back on the results already derived for autocovariances; see examples (Examples
9 and 11).

Consider the following polynomials in {ai, a
∗
i : i ≥ 0}:

(3.22) �u

({
ai, a

∗
i : i ≥ 0

}) = det

⎛
⎜⎜⎜⎜⎜⎜⎝

a0 a∗
1 · · · a∗

u−2 a1
a1 a0 · · · a∗

u−3 a2
a2 a1 · · · a∗

u−4 a3
...

... · · · ...
...

au−1 au−2 · · · a1 au

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let �Partial,u = �u({�i,�
∗
i : i ≥ 0}). It is not hard to see that �Partial,u is propor-

tional to the uth order population partial autocovariance matrix of model (1.1) with
commutative and symmetric {ψj : j ≥ 0}; for details, see Brockwell and Davis
(2006). Its sample counterpart, the uth order sample partial autocovariance matrix,
is denoted by �̂Partial,u. As �̂Partial,u is a polynomial in {�̂u, �̂

∗
u}, its asymptotic

normality follows from Theorem 2.4.

EXAMPLE 9. Consider the following IVAR(2) process:

(3.23) Xt = A1Xt−1 + A2Xt−2 + εt

where A1 and A2 are symmetric, commutative, norm bounded and converge
jointly. Moreover, we assume that {εt } satisfies (A1) and (A3). Suppose A1 is
known and p/n → 0. We wish to test

(3.24) H0 : A2 = 0 against H1 : A2 �= 0.

Note that �Partial,2 = �2�0 −�2
1 for the model (3.23). Therefore, it equals 0 under

H0 but not under H1. By Theorem 2.4, there are σH0 (depends only on A1) and
σH1 such that under H0,

(3.25)
√

np−1Tr
(
�̂Partial,2�̂

∗
Partial,2

)
/σH0

D→ N (0,1)

and under H1√
np−1

(
Tr

(
�̂Partial,2�̂

∗
Partial,2

) − Tr
(
�Partial,2�

∗
Partial,2

))
/σH1

D→ N (0,1).(3.26)
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Hence we can use
√

np−1Tr(�̂Partial,2�̂
∗
Partial,2)/σH0 as our test statistic and reject

H0 when it is large in magnitude.

Testing for IVARMA processes.

EXAMPLE 10. Consider the following stationary IVARMA(r, q) process:

(3.27) Xt =
r∑

j=1

AjXt−j +
q∑

j=0

ψjεt−j ,

where {Ai,ψj : 1 ≤ i ≤ r,0 ≤ j ≤ q} converge jointly and are norm bounded. {εt }
satisfies (A1) and (A3). Suppose q and {ψj : 0 ≤ j ≤ q} are known and p/n → 0.
We wish to test

(3.28) H0 : r = 0 against H1 : r �= 0.

This is equivalent to testing

(3.29) H0 : Aj = 0 ∀j against H1 : Aj �= 0 for at least one j .

Note that �q+1 = 0 under H0 but not under H1. By Theorem S11.2, there are
σH0 (depends only on q and {ψj : 0 ≤ j ≤ q}), σH1 , μH1 �= 0 such that, un-
der H0, √

np−1Tr
(
�̂q+1�̂

∗
q+1

)
/σH0

D→ N (0,1),

and under H1, √
np−1

(
Tr

(
�̂q+1�̂

∗
q+1

) − μH1

)
/σH1

D→ N (0,1).

Therefore, we can use
√

np−1Tr(�̂q+1�̂
∗
q+1)/σH0 as our test statistic and reject H0

when it is large in magnitude.

EXAMPLE 11. Now consider the higher order IVARMA(r, q) processes in
(3.27) where {Ai,ψj : 1 ≤ i ≤ r,0 ≤ j ≤ q} converge jointly and are norm
bounded. Moreover, we assume that {εt } satisfies (A1) and (A3). Suppose r and
{Aj : 1 ≤ j ≤ r} are known and p/n → 0. Further suppose {Ai,ψj : 1 ≤ i ≤ r,0 ≤
j ≤ q} are commutative and symmetric. We wish to test

(3.30) H0 : q = 0 against H1 : q �= 0.

It is easy to see that �partial,r+1 = 0 under H0 but not under H1. By Theorem 2.4,
there are σH0 (depends only on r and {Aj : 1 ≤ j ≤ r}), σH1 , μH1 �= 0 such that,
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under H0, √
np−1Tr

(
�̂Partial,r+1�̂

∗
Partial,r+1

)
/σH0

D→ N (0,1),

and under H1,√
np−1

(
Tr

(
�̂Partial,r+1�̂

∗
Partial,r+1

) − μH1

)
/σH1

D→ N (0,1).

Therefore, we can use
√

np−1Tr(�̂Partial,r+1�̂
∗
Partial,r+1)/σH0 as our test statistic

and reject H0 when it is large in magnitude.

3.4.2. Two samples case. Two sample version of all tests given in Exam-
ples 1–11 can be developed based on Theorems 2.3 and 2.4. Here, we illustrate
the analogue of Examples 1 and 3 only. Consider the two MA(q) processes (1.1)
and (2.5).

EXAMPLE 12. Suppose we wish to test

(3.31) H0 : ψq = φq against H1 : ψq �= φq.

Recall {�̂a,u,X, �̂a,u,Y } from the discussion after Theorem 2.3. It is immediate
from Corollary 2.3(a)(ii) that under H0, the LSD of (�̂a,q,X − �̂a,q,Y ) is degen-
erate at 0 and under H1, this LSD is identical with the LSD of 0.5(ψq + ψ∗

q −
φq −φ∗

q), which is nondegenerate. Thus a graphical method to test (3.31) is to plot

the eigenvalue distribution of (�̂a,q,X − �̂a,q,Y ). If it appears degenerate at 0, we
accept H0.

Similar to the one sample cases, we can devise test statistics. Recall λ̂q from
(3.10). Let λ̂q,X and λ̂q,Y be λ̂q respectively for the processes {Xt } and {Yt }. Define
λ̂2

q,XY = λ̂2
q,X + λ̂2

q,Y . By the independence of these processes and Corollary S11.3,
it is easy to see that under H0,

T4 ≡
√

np−1
(
Tr(�̂q,X) − Tr(�̂q,Y )

)
/λ̂q,XY

D→ N (0,1)

and under H1, for some 0 < λ̃ < ∞,√
np−1

((
Tr(�̂q,X) − Tr(�̂q,Y )

) − (
Tr(ψq) − Tr(φq)

))
/λ̂q,XY

D→ N
(
0, λ̃2)

.

Therefore, we can use T4 as our test statistic and reject H0 if it is large in absolute
value.

EXAMPLE 13. Consider the hypotheses

(3.32) H0 : ψj = φj ∀j against H1 : ψj �= φj for at least one j .
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Recall the definition of {Gq, Ĝq} in (3.16). {Gq,X, Ĝq,X} and {Gq,Y , Ĝq,Y } have
obvious meaning. By Theorem 2.3 and using truncation arguments, under H0 the
LSD of (Ĝq,X + Ĝ∗

q,X − Ĝq,Y − Ĝ∗
q,Y ) is degenerate at 0 whereas under H1, this

LSD is identical with the LSD of (Gq,X +G∗
q,X −Gq,Y −G∗

q,Y ). Therefore, to test

(3.32), we can plot the eigenvalue distribution of (Ĝq,X + Ĝ∗
q,X − Ĝq,Y − Ĝ∗

q,Y )

and accept H0 if the distribution appears to be degenerate at 0.
Let δ̂q,X and δ̂q,Y have their usual meaning. Define δ̂2

q,XY = δ̂2
q,X + δ̂2

q,Y . By
Corollary S11.4 and the independence of (1.1) and (2.5), it is easy to see that
under H0,

T5 ≡
√

np−1
(
Tr(Ĝq,X) − Tr(Ĝq,Y )

)
/δ̂q,XY

D→N (0,1)

and under H1, for some 0 < δ̃ < ∞√
np−1

((
Tr(Ĝq,X) − Tr(Ĝq,Y )

) − (
Tr(Gq,X) − Tr(Gq,Y )

))
/δ̂q,XY

D→ N
(
0, δ̃2)

.

Thus we can use T5 as a test statistic and reject H0 if it is large in absolute value.

REMARK 3.2. 1. It may be noted that even though most of the methods in Sec-
tion 3 are based on the symmetric sum and product of {�̂u, �̂

∗
u}, other polynomials

can also be used. We have restricted to the symmetric sum and product only for
illustration. However, calculation of the asymptotic variances become increasingly
difficult with higher order polynomials.

2. Inference in one-dimensional AR and ARMA models hinge on properties
of the partial autocovariance sequences. Similarly, in IVAR and IVARMA mod-
els one can define partial autocovariance matrices. Large sample behavior of these
matrices could be derived using our approach. Such results can then be applied to
inference problems. We have briefly illustrated this idea in Examples 8–11 when
coefficient matrices are symmetric and commutative. However, more general sit-
uations need further technical machinery and we shall attempt to develop it else-
where.

3. Simulations show that the eigenvalue distribution of the nonsymmetric �̂u are
also well behaved; see, for example, Figure 3. However, no theoretical results are
known.
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FIG. 3. ESD of
√

np−1(�̂1 − �1) for Models 1 − 4 given in Section 3.3 and n = 103,p = n0.9.

SUPPLEMENTARY MATERIAL

Supplement to “Joint convergence of sample autocovariance matrices when
p/n → 0 with application.” (DOI: 10.1214/18-AOS1785SUPP; .pdf). The sup-
plementary file provides all technical details, free probability description of LSDs
of symmetric polynomials in sample autocovariance matrices and the Stieltjes
transform for some of the LSDs.
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