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STATISTICAL INFERENCE FOR AUTOREGRESSIVE MODELS
UNDER HETEROSCEDASTICITY OF UNKNOWN FORM

BY KE ZHU1

University of Hong Kong

This paper provides an entire inference procedure for the autoregressive
model under (conditional) heteroscedasticity of unknown form with a finite
variance. We first establish the asymptotic normality of the weighted least
absolute deviations estimator (LADE) for the model. Second, we develop
the random weighting (RW) method to estimate its asymptotic covariance
matrix, leading to the implementation of the Wald test. Third, we construct
a portmanteau test for model checking, and use the RW method to obtain
its critical values. As a special weighted LADE, the feasible adaptive LADE
(ALADE) is proposed and proved to have the same efficiency as its infeasible
counterpart. The importance of our entire methodology based on the feasible
ALADE is illustrated by simulation results and the real data analysis on three
U.S. economic data sets.

1. Introduction. Consider a pth order heteroscedastic autoregressive (AR)
model:

(1.1) yt = μ0 + φ10yt−1 + · · · + φp0yt−p + εt ,

where the error εt satisfies

(1.2) εt = gtut := g

(
t

n

)
ut

for t = 1, . . . , n. Here, g(·) is a positive bounded scalar function with unknown
form, ut is a rescaled error with unknown form and a finite variance for all t , and
n is the sample size. In model (1.1), yt is allowed to be nonstationary with a finite
variance due to the heteroscedasticity of εt , but it cannot be a unit root process,
since the coefficients {φi0}pi=1 are required to satisfy the stationarity condition of
AR(p) model. In model (1.2), {ut } need not be independent and identically dis-
tributed (i.i.d.), nor even a martingale difference sequence (m.d.s.), allowing for
model misspecification. This setting is important, in view of that the literature
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generally needs a non-i.i.d. sequence {ut } (see, e.g., Drost and Nijman (1993)).
Under certain identification condition on ut , gt is identifiable. Particularly, when
ut is stationary, the (conditionally) heteroscedastic structure of εt is allowed to
change abruptly, gradually or periodically according to the unspecified form of
g(·). Similar specifications as for gt have been widely adopted in the literature;
see, for example, Robinson (1989, 2012), Fryzlewicz, Sapatinas and Subba Rao
(2006), Zhou and Wu (2009) and Chen and Hong (2016) to name a few.

Model (1.1) is one of the often used models of empirical macroeconomics and
statistics. Conventional statistical inference methods for this model are designed
for homogenous error {εt } (i.e., Eε2

t = a constant), which is either a sequence
of i.i.d. random variables or an m.d.s.; see, for example, Gonçalves and Kilian
(2004), Yao and Brockwell (2006), Zhu and Ling (2015) and references therein.
However, homogenous error can be a crucial weakness in applications, since het-
eroscedasticity has been widely demonstrated by Tsay (1988) for social science
data, Watson (1999) for interest rates data, Busetti and Taylor (2003) and Sensier
and van Dijk (2004) for macroeconomic data, Amado and Teräsvirta (2013, 2014)
for stock index data and many others. As shown in Diebold (1986), Mikosch and
Stǎricǎ (2004) and Stǎricǎ and Granger (2005), the presence of heteroscedasticity
could mislead the conventional time series analysis procedure resulting in erro-
neous conclusions. Hence, it is necessary to develop a valid statistical inference
procedure for model (1.1) under heteroscedasticity.

So far, few works have centered around this topic, and most of them are based on
the least squares estimator (LSE); see Nicholls and Pagan (1983) for earlier works
and Phillips and Xu (2006) for more recent ones. The seminal work in Carroll
(1982) and Robinson (1987) demonstrated that the LSE in regression models is less
efficient than the adaptive LSE (ALSE), which takes the unknown heteroscedastic
form of the error term into account; see also Cragg (1983) for the study of the
instrumental variable LSE. Motivated by this, Xu and Phillips (2008) constructed
a feasible ALSE for model (1.1), and showed that this feasible ALSE is more
efficient than the LSE. However, their theory does not allow ut to be conditionally
heteroscedastic, and their methodology may be limited in practice since no valid
statistical inference tools (e.g., t-test, Wald test and model diagnostic checking)
is provided. Moreover, a heavy-tailed error is an often observed feature in fitted
model (1.1), and the LSE-based inference methods in this case are undesirable
from the viewpoint of robustness.

This paper provides an entire statistical inference procedure for model (1.1)
based on the weighted least absolute deviations estimator (LADE). We first estab-
lish the asymptotic normality of the weighted LADE. Second, since the asymp-
totic covariance matrix of the weighted LADE cannot be estimated directly from
the sample, we develop the random weighting (RW) method to estimate this co-
variance matrix, leading to the implementation of the Wald test. The RW method
initiated by Jin, Ying and Wei (2001) has been widely applied to provide statistical
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inference; see Zhu (2016). Third, we construct a portmanteau test for model diag-
nostic checking, and use the RW method to obtain its critical values. As a special
weighted LADE, the infeasible adaptive LADE (ALADE) with weight equal to gt

is desired in terms of efficiency, and its advantage in efficiency is demonstrated
by a formal comparison. To circumvent the unobservable gt , we further propose a
feasible ALADE, prove that it has the same efficiency as its infeasible counterpart,
and show that our entire inference procedure is still valid based on this feasible es-
timator. Under the identification condition E|ut | = 1 for gt , this feasible ALADE
is constructed with weight equal to a kernel estimator of gt . Unlike Xu and Phillips
(2008), our entire inference procedure based on the weighted LADE does not rule
out the conditional heteroscedasticity of ut . The importance of our methodology is
illustrated by simulation results and the real data analysis on three U.S. economic
data sets.

We emphasize that the idea of the weighted LADE has been adopted for
the linear regression model with heteroscedasticity of either known form in
Gutenbrunner and Jurečková (1992) or unknown form in Zhao (2001). But our
technique is different from theirs, since they neither considered a general het-
eroscedastic time series model as models (1.1)–(1.2), nor provided an entire valid
inference procedure. When εt is stationary and conditionally heteroscedastic with
unknown form, Zhu and Ling (2015) provided the statistical inference method
for model (1.1) based on either the self-weighted LADE or the usual LADE. Our
weighted LADE and their self-weighted LADE are not compatible due to different
weighting mechanisms. The weight wsw,t for the self-weighted LADE is a random
variable in the filtration generated by {yk}k≤t−1, and it is useful to deal with the
infinite variance AR model. For the finite variance AR model (as in our setting),
wsw,t is not needed any more, since the self-weighted LADE is always less ef-
ficient than the usual LADE in this case. On the contrary, the weight wt for our
weighted LADE is a deterministic function (or its kernel estimate based on the
whole sample {yt }nt=1), and it is used to take the unknown heteroscedastic form
of εt into account. As a result, the weighted LADE can be more efficient than the
usual LADE by choosing an appropriate weight (e.g., the weight for the feasible
ALADE) in many circumstances. Compared to the usual LADE in Zhu and Ling
(2015), our weighted LADE has two more incremental contributions besides the
advantage in efficiency. First, the results based on the weighted LADE allow εt

to be heteroscedastic with unknown form, and hence the scope of applications is
much wider in dealing with the finite variance AR model. Second, although the
RW method is motivated by Zhu and Ling (2015), new proof techniques are used
to handle the heteroscedasticity of εt , especially for the feasible ALADE.

The remainder of the paper is organized as follows. Section 2 obtains the asymp-
totic normality of the weighted LADE. Section 3 presents the RW method to esti-
mate the asymptotic covariance matrix. Section 4 constructs a portmanteau test for
model diagnostic checking. Section 5 considers the choice of the weight function,
and discusses the asymptotic efficiency. Section 6 proposes the feasible ALADE.
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Simulation results are reported in Section 7. Concluding remarks are offered in
Section 8. Proofs of all theorems are relegated to Appendices. Additional simu-
lation results, applications, some technical lemmas and the remaining proofs are
provided in the Supplementary Material (Zhu (2019)).

Throughout the paper, | · | and ‖ · ‖ denote the absolute value and the vector
l2-norm, respectively, A′ is the transpose of matrix A, ‖ξ‖κ = (E|ξ |κ)1/κ is the
Lκ -norm of random variable ξ , plim denotes the convergence in probability, →d

denotes the convergence in distribution, I (·) is the indicator function, and sgn(a) =
I (a > 0) − I (a < 0) is the sign of any a ∈ R.

2. The weighted LADE. Let θ = (μ,φ1, . . . , φp)′ ∈ � be the unknown pa-
rameter of model (1.1), and θ0 = (μ0, φ10, . . . , φp0)

′ ∈ � be its true value, where
� is the parameter space, and it is a compact subset of Rp+1 with R = (−∞,∞).
Given the observations {yt }nt=1 and the initial values {yt }0

t=−p ≡ 0, we consider the
weighted least absolute deviations estimator (LADE) for θ0:

θ̂wn = arg min
θ∈�

n∑
t=1

|yt − Y ′
t−1θ |

wt

,

where Yt−1 = (1, yt−1, . . . , yt−p)′ and wt := w(t/n) are weights with w(·) being
a positive scalar function. Particularly, when w(·) ≡ 1, θ̂wn becomes the usual
LADE, denoted by θ̂n. To study the asymptotic theory of θ̂wn, we need the notation
of near-epoch dependent (NED) random variables.

DEFINITION 1. {Znt } is near-epoch dependent in Lκ -norm (Lκ -NED) on
{Vnt } if ‖Znt − E(Znt |Ft+m

t−m)‖κ ≤ dntψm, where F
t+m
t−m := σ(Vns; t − m ≤ s ≤

t + m) is a filtration with σ(·) being the σ -field operator, {dnt } are positive con-
stants, and ψm → 0 as m → ∞.

The definition of near-epoch dependence was first introduced in Billingsley
(1968) and has been widely used in the literature. NED processes allow for consid-
erable heterogeneity and also for dependence and include the mixing processes as
a special case. Many nonlinear models are shown to be NED (see, e.g., Davidson
(2002, 2004) for overviews), and hence the NED concept makes possible a con-
venient theory of inference for these models. Besides near-epoch dependence, the
physical dependence in Wu (2005) is a parallel tool to depict the dependence of
a dynamic process. It might be interesting to apply physical dependence to our
setting, and we leave this for future study.

Let ft (x) be the conditional density of ut given Ft−1, where Ft := σ(us; s ≤ t)

is a filtration. We make the following five assumptions throughout the paper, where
the definition of ft (x) is essential only for the last one.

ASSUMPTION 2.1. θ0 is an interior point in � and for each θ ∈ �, φ(z) 	= 0
when |z| ≤ 1, where φ(z) := 1 −∑p

i=1 φiz
i .
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ASSUMPTION 2.2. g(·) and w(·) are continuous on the interval [0,1] except
at a finite number of points, and

0 < C ≤ inf
x∈[0,1]g(x) ≤ sup

x∈[0,1]
g(x) ≤ C < ∞,

0 < C ≤ inf
x∈[0,1]w(x) ≤ sup

x∈[0,1]
w(x) ≤ C < ∞,

for some positive numbers C and C.

ASSUMPTION 2.3. E[sgn(εt )|Ft−1] = 0.

ASSUMPTION 2.4. ut is an α-mixing but not necessary a stationary process,
and:

(i) supt E|ut |4+δ0 < ∞ for some δ0 > 0;

(ii) m
(1)
r := E(ut−r ) is uniformly bounded for all t, r ≥ 1;

(iii) m
(2)
r,s := E(ut−rut−s) is uniformly bounded for all t, r, s ≥ 1.

ASSUMPTION 2.5. ft (x) satisfies that:

(i) ft (x) is continuous with ft (0) > 0 and supx∈R ft (x) < ∞ (a.s.) for all
t ≥ 1;

(ii) {ft (0)} is L2+δ1 -NED on {ut } for some δ1 > 0;
(iii) τ0 := E[ft (0)] is uniformly bounded for all t ≥ 1;
(iv) τ

(1)
r := E[ft (0)ut−r ] is uniformly bounded for all t, r ≥ 1;

(v) τ
(2)
r,s := E[ft (0)ut−rut−s] is uniformly bounded for all t, r, s ≥ 1.

We offer some remarks on the aforementioned assumptions. Assumption 2.1 is
the usual stationarity condition for AR(p) model, and it implies that

(2.1) yt = ρ +
∞∑
i=0

αiεt−i ,

where ρ = μ0/(1 − φ10 − · · · − φp0) and
∑∞

i=0 |αi | < ∞. Assumption 2.2 is suf-
ficient to guarantee that both g(·) and w(·) are integrable on the interval [0,1] up
to any finite order, and similar conditions have been used in Cavaliere (2004),
Cavaliere and Taylor (2007), Phillips and Xu (2006), Xu and Phillips (2008)
and many others. Assumption 2.3 is the identification condition for θ0 based on
the weighted LADE. Assumption 2.4 is adopted from Kuersteiner (2002) and
Gonçalves and Kilian (2004) in a similar way. Assumption 2.4(i) is stronger than
the condition that Eu2

t < ∞, which is sufficient for the asymptotic normality of
the LADE if εt is stationary; see, for example, Zhu and Ling (2015) and refer-
ences therein. We resort to a stronger moment condition of ut in Assumption 2.4(i)
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to handle the heteroscedasticity of εt . Assumption 2.4(ii)–(iii) are less restrictive
than the condition that ut is covariance stationary with mean zero. Assumption 2.5
is required only for the LADE but not for the LSE, and it is stronger than the one
in Bassett and Koenker (1978), Davis and Dunsmuir (1997), Pan, Wang and Yao
(2007) and Zhu and Ling (2012, 2015) due to the heteroscedasticity of εt . When
ft (0) ≡ f (0) is independent of t , Assumption 2.5(ii)–(iii) hold automatically, and
Assumption 2.5(iv)–(v) become Assumption 2.4(ii)–(iii), respectively. When ut

follows a stationary autoregressive conditional heteroskedasticity (ARCH) type
model, the NED condition in Assumption 2.5(ii) can be checked or even be not
needed and the moment conditions in Assumption 2.5(iii)–(v) can be satisfied (see
the discussions for Corollaries 2.1–2.3 below).

We shall point out that Assumption 2.4(ii)–(iii) and Assumption 2.5(iii)–(v)
need m

(1)
r , m

(2)
r,s , τ0, τ

(1)
r and τ

(2)
r,s to be independent of t . In the general frame-

work, these terms may depend on t . A detailed study for this general framework
might be done in a separate paper.

Let d1 = ∫ 1
0

1
w2(x)

dx, d2 = τ0
∫ 1

0
1

g(x)w(x)
dx, and

ζ (1)
r = ρd1 +

( ∞∑
i=0

αim
(1)
i+r

)∫ 1

0

g(x)

w2(x)
dx,(2.2)

ζ (2)
r = ρd2 +

( ∞∑
i=0

αiτ
(1)
i+r

)∫ 1

0

1

w(x)
dx,(2.3)

ξ (1)
r,s = ρ

[
ζ (1)
r + ζ (1)

s

]− ρ2d1 +
( ∞∑

i=0

∞∑
j=0

αiαjm
(2)
i+r,j+s

)∫ 1

0

g2(x)

w2(x)
dx,(2.4)

ξ (2)
r,s = ρ

[
ζ (2)
r + ζ (2)

s

]− ρ2d2 +
( ∞∑

i=0

∞∑
j=0

αiαj τ
(2)
i+r,j+s

)∫ 1

0

g(x)

w(x)
dx.(2.5)

With this notation, define

(2.6) �l =
(

dl K ′
l

Kl �l

)
∈ R(p+1)×(p+1) for l = 1,2,

where Kl is the p × 1 column vector with r th element ζ
(l)
r , and �l is the p × p

matrix with (r, s)th element ξ
(l)
r,s . Our first main result is given as follows.

THEOREM 2.1. Suppose Assumptions 2.1–2.5 hold. Then

√
n(θ̂wn − θ0) →d N

(
0,

1

4
�−1

2 �1�
−1
2

)
as n → ∞, where �l (l = 1,2) is defined as in (2.6).
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REMARK 1. Theorem 2.1 implies that θ̂wn is asymptotically normal for gen-
eral specifications of g(·) and ut , which determine the asymptotic variance of θ̂wn,
and hence need be considered in all inferential methods. Since there is no guaran-
tee that the structures of g(·) and ut specified by the researcher provide a correct
description of reality, we will propose valid inferential methods without specifying
the forms of g(·) and ut in the sequel.

When g(·) ≡ 1, w(·) ≡ 1 and ut is stationary, Theorem 2.1 covers the existing
results on the usual LADE in Bassett and Koenker (1978) for the i.i.d. ut and Zhu
and Ling (2015) for the conditionally heteroscedastic ut with unknown form.

When μ0 ≡ 0 (i.e., ρ ≡ 0) and ft (0) ≡ f (0), the asymptotic variance of θ̂wn has
the following simplified version:

(2.7)
1

4
�−1

2 �1�
−1
2 = cgw

4f 2(0)
�−1,

where cgw = (
∫ 1

0
g2(x)

w2(x)
dx)(

∫ 1
0

g(x)
w(x)

dx)−2 and � is the p × p matrix with

(r, s)th element
∑∞

i=0
∑∞

j=0 αiαjm
(2)
i+r,j+s . Furthermore, if ut is a sequence of

i.i.d. random variables, the (r, s)th element of � becomes λ|r−s|, where λk =
Eu2

t (
∑∞

i=0 αiαi+k).

REMARK 2. Our weighted LADE θ̂wn requires E[sgn(εt )|Ft−1] = 0, based
on which model (1.1) gives the predicted median of future yt under L1 loss func-
tion. If one is interested to predict the mean of future yt , the prediction can be
conducted under L2 loss function, assuming E[εt |Ft−1] = 0. From the viewpoint
of robustness, the predicted median of future yt under L1 loss function may be
desired, and if E[sgn(εt )|Ft−1] = E[εt |Ft−1] = 0, it also forecasts the mean of
future yt .

We also note that though θ̂wn has the parametric convergence rate n−1/2 in The-
orem 2.1, it is not needed for the purpose of prediction. A less restricted model
(1.1) with time-varying AR coefficients might be studied in the future to deliver a
better prediction of yt .

In the finite variance AR model, the technique in Zhu and Ling (2015) for the
usual LADE requires the stationarity of yt , which is against our setting for a either
time-varying gt or nonstationary ut . Our proof techniques for the weighted LADE
in Theorem 2.1 or its related inferential methods below rely on Theorem 1 of
Andrews (1988), and they require a key technical condition that {ft (0)} is L2+δ1 -
NED on {ut } (see Assumption 2.5(ii)), which seems new to the study of the LADE.
Moreover, in the present of gt , we further propose a special weighted LADE with
wt equal to a kernel estimator of gt ; see Section 6 below. In many situations, this
special weighted LADE is “optimal” in terms of efficiency, but its related proof
techniques (particularly for Propositions A.3–A.4 in Appendix A) are new and not
available in Zhu and Ling (2015).
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In the infinite variance AR model, Zhu and Ling (2015) constructed a self-
weighted LADE, which is

√
n-consistent and asymptotically normal when yt is

stationary. Meanwhile, they pointed out that the convergence rate of the usual
LADE is slower than n−1/2 when εt follows the first-order (G)ARCH model, while
Davis (1996) proved that the convergence rate of the usual LADE is faster than
n−1/2 when εt is i.i.d. This implies that the self-weighted LADE may not always
outperform the usual LADE (or the weighted LADE) when yt is stationary with
an infinite variance. In general, when yt is allowed to be nonstationary (as in our
setting) with an infinite variance, the asymptotic properties of the weighted LADE
and the self-weighted LADE are not clear at this stage, and we leave this topic for
future study.

Next, we relax the technical conditions in Theorem 2.1 for some special cases
of model (1.1). We first consider the case that ut has the ARCH-type structure
(Engle (1982), Bollerslev (1986), Giraitis, Kokoszka and Leipus (2000), Francq
and Zakoïan (2010)):

(2.8) ut = σtηt ,

where ut is stationary, {ηt } is a sequence of i.i.d. innovations with median zero,
and σt ∈ Ft−1 satisfies that σt ≥ c for some c > 0. This condition on σt directly
holds for most of ARCH-type models as long as their intercept term has a positive
lower bound. Since ut is stationary, Assumption 2.4(ii)–(iii) are not needed any
more if Assumption 2.4(i) holds.

Let fη(·) be the density of ηt . Under model (2.8), ft (0) = fη(0)/σt . Since
σt ≥ c, Assumption 2.5(ii) holds if {σt } is L2+δ1 -NED on {ut }, and Assump-
tion 2.5(iii)–(v) hold by Assumption 2.4(i). Hence, Assumption 2.5 can be relaxed
to Assumption 2.6 in this case.

ASSUMPTION 2.6. ut satisfies model (2.8), and:

(i) fη(x) is continuous with fη(0) > 0 and supx∈R fη(x) < ∞;
(ii) {σt } is L2+δ1 -NED on {ut } for some δ1 > 0.

COROLLARY 2.1. Suppose Assumptions 2.1–2.3, 2.4(i) and 2.6 hold. Then
the result in Theorem 2.1 holds.

Since σt ≥ c, by a minor extension of Lemma 2.1 of Davidson (2002), we can
show that Assumption 2.6(ii) holds if {σκ1

t } is L2+δ1 -NED on {ut } for some κ1 ≥ 1.
When σt in (2.8) satisfies that

(2.9) σ
κ1
t = ψ0 +

∞∑
i=1

ψi |ut−i |κ1
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with ψ0 > 0 and ψi ≥ 0 for all i ≥ 1, it is straightforward to see that {σκ1
t } is

Lκ2 -NED (for some κ2 ≥ 1) on {ut } if

(2.10)
∞∑
i=1

ψi < ∞ and E|ut |κ1κ2 < ∞.

Hence, Assumption 2.6(ii) holds under (2.9)–(2.10) with κ2 = 2 + δ1, which
allow a general class of ARCH-type models, including (G)ARCH, ARCH(∞)

(Robinson (1991)), power GARCH (Ding, Granger and Engle (1993)), hyperbolic
GARCH (Davidson (2004)), and many others. Note that our NED condition in
(2.10) is different from the one in Davidson (2004), since our filtration is based on
{ut } instead of {ηt }.

Second, we consider the case that ft (0) depends on finite lags of ut . In this
case, Assumption 2.4(i) and Assumption 2.5(ii) can be further relieved as shown
in Assumption 2.7, which does not need {ft (0)} to be NED.

ASSUMPTION 2.7. (i) supt E|ut |2+δ0 < ∞ for some δ0 > 0; (ii) ft (0) ∈
σ(us; t − c0 ≤ s ≤ t) for some c0 > 0 is uniformly bounded for all t ≥ 1.

COROLLARY 2.2. Suppose Assumptions 2.1–2.3, 2.4(ii)–(iii), 2.5(i) and (iii)–
(v) and 2.7 hold. Then the result in Theorem 2.1 holds.

Clearly, Assumption 2.7(ii) holds under model (2.9) with ψi ≡ 0 for all i ≥ i0
and some integer i0 ≥ 1. This implies that when ut follows a stationary finite-lag
ARCH model with E|ut |2+δ0 < ∞ and Eu4

t = ∞, θ̂wn is asymptotically normal.
However, the LSE in this case is asymptotically nonnormal with a slower conver-
gence rate than n−1/2 as shown in Zhang and Ling (2015). Hence, the weighted
LADE seems to be more convenient and efficient than the LSE to tackle the heavy-
tailedness of εt .

Third, we consider the case that φi0 ≡ 0, under which model (1.1) becomes a
location model. For this location model, Assumptions 2.1 is redundant, and As-
sumptions 2.4–2.5 can be replaced by Assumption 2.8 below.

ASSUMPTION 2.8. φi0 ≡ 0 for all i in model (1.1), and either:

(i) Assumption 2.5(i) and (iii) hold and {ft (0)} is L1-NED on {ut }; or
(ii) Assumption 2.6(i) holds and {σt } is L1-NED on {ut } under (2.8).

COROLLARY 2.3. Suppose Assumptions 2.2–2.3 and 2.8 hold. Then the result
in Theorem 2.1 holds.

As argued before, Assumption 2.8(ii) holds under (2.9)–(2.10) with κ2 = 1. It
is worth noting that the weaker technical assumptions in Corollaries 2.1–2.3 not
only suffice for Theorem 2.1 but also for other asymptotic results subsequently.
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3. The bootstrapped variance estimator. Since the asymptotic variance of
θ̂wn in Theorem 2.1 depends on the unknown forms of g(·) and ut , it cannot be
estimated directly by its sample counterpart. To solve this problem, we use the
random weighting (RW) method to approximate the limiting distribution of θ̂wn in
Theorem 2.1. Let {w∗

t }nt=1 be a sequence of i.i.d. nonnegative random variables,
with mean and variance both equal to 1. Define

(3.1) θ̂∗
wn = arg min

θ∈�

n∑
t=1

w∗
t

|yt − Y ′
t−1θ |

wt

.

Based on Assumption 3.1, we can show that the distribution of
√

n(θ̂wn − θ0) can
be approximated by the resampling distribution of

√
n(θ̂∗

wn − θ̂wn).

ASSUMPTION 3.1. (i) E(w∗
t )

2+δ2 < ∞ for some δ2 > 0; (ii) {w∗
t } and {yt }

are independent.

THEOREM 3.1. Suppose Assumption 3.1 and the conditions in Theorem 2.1
hold. Then, conditional on {yt }nt=1,

√
n
(
θ̂∗
wn − θ̂wn

)→d N

(
0,

1

4
�−1

2 �1�
−1
2

)
in probability

as n → ∞, where �l (l = 1,2) is defined as in (2.6).

REMARK 3. The RW method can be viewed as a variant of the wild bootstrap
in Wu (1986) and Liu (1988). It provides us with a valid tool to implement the
statistical inference based on the weighted LADE, and some other bootstrap meth-
ods (see, e.g., Gonçalves and Kilian (2004)) may also be valid or even better under
our setting. An interesting work is to find the optimal bootstrap method among all
valid ones in theory. This will necessitate higher order asymptotic analysis and is
beyond the scope of this paper.

According to Theorems 2.1 and 3.1, we can approximate the asymptotic covari-
ance matrix of θ̂wn by the following procedure:

1. Generate J replications of the i.i.d. random weights {w∗
t }nt=1 from the stan-

dard exponential distribution, which has mean and variance both equal to one.
2. Compute θ̂∗

wn for ith replication, and denote it as bi .
3. Calculate the sample variance-covariance matrix of {bi − θ̂wn}Ji=1, denoted

by V̂wn, which provides a good approximation for the asymptotic covariance ma-
trix of θ̂wn for large J .

Based on V̂wn, we can construct a Wald test statistic

(3.2) Wwn = (�θ̂wn − r)′
(
�V̂wn�

′)−1
(�θ̂wn − r)
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to test the following linear null hypothesis:

(3.3) H0 : �θ0 = r,

where � is an s × (p + 1) constant matrix with rank s and r is an s × 1 con-
stant vector. If Wwn is larger than the upper-tailed critical value of χ2

s , the null
hypothesis H0 is rejected. Otherwise, H0 is not rejected.

4. Model diagnostic checking. Model diagnostic checking is an important
step in applications. Most of the existing methods, including the time domain
correlation-based tests and frequency domain periodogram-based tests, require
that the observed data are stationary with a homogenous innovation; see, for ex-
ample, Hong (1996), Hong and Lee (2005), Escanciano (2006) and Zhu and Li
(2015) for an overview. Hence, they are invalid for model (1.1), which calls for a
new method for its diagnostic checking. In this section, we construct a sign-based
Ljung–Box portmanteau test as in Zhu and Ling (2015) for this purpose.

Let εt (θ) = yt − θ ′Yt−1. The idea of our sign-based portmanteau test is based
on the fact that {sgn(εt (θ0))} is a sequence of uncorrelated random variables under
Assumption 2.3. Hence, if model (1.1) is correctly specified, it is expected that the
sample autocorrelation function of {sgn(εt (θ̂wn))} at lag k, denoted by r̂wn,k , is
close to zero, where

r̂wn,k =
∑n

t=k+1[sgn(εt (θ̂wn)) − ε(θ̂wn)][sgn(εt−k(θ̂wn)) − ε(θ̂wn)]∑n
t=1[sgn(εt (θ̂wn)) − ε(θ̂wn)]2

with ε(θ) = 1
n

∑n
t=1 sgn(εt (θ)). Let r̂wn = (̂rwn,1, r̂wn,2, . . . , r̂wn,M)′ for some in-

teger M ≥ 1. To study the joint distribution of r̂wn, we need one more assumption
below.

ASSUMPTION 4.1. ut and ft (0) satisfy that:

(i) m
(3)
r,s := E[sgn(ut−r )ut−s] is uniformly bounded for all t, s, r ≥ 1;

(ii) μ
(1)
r := E[ft (0) sgn(ut−r )] is uniformly bounded for all t, r ≥ 1;

(iii) μ
(2)
r,s := E[ft (0) sgn(ut−r )ut−s] is uniformly bounded for all t, s, r ≥ 1.

Let d3 = ∫ 1
0

1
g(x)

dx and

K3k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
∞∑
i=0

αim
(3)
k,1+i

...
∞∑
i=0

αim
(3)
k,p+i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, �3k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d3μ
(1)
k

ρd3μ
(1)
k +

∞∑
i=0

αiμ
(2)
k,1+i

...

ρd3μ
(1)
k +

∞∑
i=0

αiμ
(2)
k,p+i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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for k = 1, . . . ,M . With this notation, define

(4.1) �3 =
(
IM K ′

3
K3 �1

)
∈ Rp×p and �4 = (

IM,−�3�
−1
2

) ∈ RM×p,

where K3 = (
∫ 1

0
g(x)
w(x)

dx)K̇3 with K̇3 = (K31,K32, . . . ,K3M) ∈ R(p+1)×M , �3 =
(�31,�32, . . . ,�3M)′ ∈ RM×(p+1), and p = p + M + 1. The following theorem
gives the joint distribution of r̂wn.

THEOREM 4.1. Suppose Assumption 4.1 and the conditions of Theorem 2.1
hold. Then, if model (1.1) is correctly specified,

√
nr̂wn →d N

(
0,�4�3�

′
4
)

as n → ∞, where �l (l = 3,4) is defined as in (4.1).

REMARK 4. When g(·) ≡ 1, w(·) ≡ 1, and ut is stationary, Theorem 4.1 cov-
ers the existing result on the usual LADE in Zhu and Ling (2015) for the condi-
tionally heteroscedastic ut with unknown form.

When μ0 ≡ 0 and ft (0) ≡ f (0), the asymptotic variance of r̂wn has the follow-
ing simplified version:

(4.2) �4�3�
′
4 = IM − (2 − cgw)K̈ ′

3�
−1K̈3,

where K̈3 is the submatrix of K̇3 by removing its first row, and cgw and � are
defined as in (2.7).

Since the forms of g(·) and ut are not specified, the asymptotic covariance ma-
trix of r̂wn cannot be directly estimated from its sample counterpart. We use the
similar RW method as in Section 3 to avoid this difficulty. Define

r̂∗
wn,k =

∑n
t=k+1 w∗

t [sgn(εt (θ̂
∗
wn)) − ε(θ̂∗

wn)][sgn(εt−k(θ̂
∗
wn)) − ε(θ̂∗

wn)]∑n
t=1[sgn(εt (θ̂∗

wn)) − ε(θ̂∗
wn)]2

.

Let r̂∗
wn = (̂r∗

wn,1, r̂
∗
wn,2, . . . , r̂

∗
wn,M)′. The following theorem indicates that the

distribution of
√

nr̂wn can be approximated by the resampling distribution of√
n(̂r∗

wn − r̂wn).

THEOREM 4.2. Suppose Assumption 3.1 and the conditions in Theorem 4.1
hold. Then, if model (1.1) is correctly specified, conditional on {yt }nt=1,

√
n
(̂
r∗
wn − r̂wn

)→d N
(
0,�4�3�

′
4
)

in probability

as n → ∞, where �l (l = 3,4) is defined as in (4.1).

According to Theorems 4.1 and 4.2, we can approximate the asymptotic covari-
ance matrix of r̂wn by the following procedure:
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1. Generate J replications of the i.i.d. random weights {w∗
t }nt=1 from the stan-

dard exponential distribution.
2. Compute r̂∗

wn for ith replication, and denote it as ci .
3. Calculate the sample variance-covariance matrix of {ci − r̂wn}Ji=1, denoted

by Ûwn, which provides a good approximation for the asymptotic covariance ma-
trix of r̂wn for large J .

Based on Ûwn, we can construct a portmanteau test statistic

(4.3) Swn(M) = r̂ ′
wnÛ

−1
wn r̂wn

to detect the adequacy of model (1.1). If Swn(M) is larger than the upper-tailed
critical value of χ2

M , the fitted model (1.1) is not adequate. Otherwise, it is ade-
quate.

5. The choice of weight function. By choosing the weight function wt ≡ 1,
a systematical statistical inference procedure for model (1.1) based on the usual
LADE θ̂n is already available in Sections 2–4. However, this choice of the weight
function may lead to a deficient weighted LADE in terms of efficiency. In this sec-
tion, we are interested in finding the “optimal” weight wt to minimize the asymp-
totic covariance matrix in Theorem 2.1. Given wt = gt , we consider a weighted
LADE defined by

θ̂an = arg min
θ∈�

n∑
t=1

|yt − Y ′
t−1θ |

gt

.

Clearly, θ̂an is infeasible in practice as gt is not observable. However, Corollary 5.1
below shows that θ̂an is the desired one under three different scenarios.

COROLLARY 5.1. 1
4�−1

2 �1�
−1
2 attains its minimum A when wt = gt (up to

a constant multiplier) under one of the following scenarios:

(S1) μ0 ≡ 0;
(S2) ft (0) ≡ f (0);
(S3) φi0 ≡ 0 for all i.

Particularly, under (S1), A is the p × p matrix with (r, s)th element ar,s , and
ar,s = 1

4 [a(τ)
r,s ]−1a

(m)
r,s [a(τ)

r,s ]−1 with a
(τ)
r,s = ∑∞

i=0
∑∞

j=0 αiαj τ
(2)
i+r,j+s and a

(m)
r,s =∑∞

i=0
∑∞

j=0 αiαjm
(2)
i+r,j+s .

Under (S1), the asymptotic covariance matrix of θ̂an is adaptive to the unknown
form of g(·). From this point of view, we follow Xu and Phillips (2008) to call θ̂an

the infeasible adaptive LADE (ALADE). Obviously, Corollary 5.1 indicates that
θ̂an is more efficient than θ̂n under (S1), (S2) or (S3). Our finding that gt is the
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optimal weight is similar to those in Gutenbrunner and Jurečková (1992) and Zhao
(2001) for the linear heteroscedastic regression model.

Next, we make a formal comparison of efficiency among the LADE θ̂n, the
infeasible ALADE θ̂an, the LSE qθn in Phillips and Xu (2006), and the infeasible
adaptive LSE (ALSE) qθan in Xu and Phillips (2008), where

qθn =
(

n∑
t=1

Yt−1Y
′
t−1

)−1( n∑
t=1

ytYt−1

)
and

qθan =
(

n∑
t=1

g−2
t Yt−1Y

′
t−1

)−1( n∑
t=1

g−2
t ytYt−1

)
.

We assume that μ0 ≡ 0 as in Xu and Phillips (2008), and that {ut } is an i.i.d.
sequence with median(ut ) = 0, Eut = 0 and Eu2

t = 1 to make the comparison
feasible. As {ut } is an i.i.d. sequence, the moment condition that E|ut |2+δ0 < ∞
for some δ0 > 0 is sufficient for the asymptotic normality of θ̂n and θ̂an by Corol-
lary 2.2, and this is also the case for qθn and qθan by a slight modification of the
proof in Xu and Phillips (2008).

Define

b1 = 1

4f 2(0)

∫ 1
0 g2(x) dx

[∫ 1
0 g(x) dx]2

, b2 = 1

4f 2(0)
,

b3 =
∫ 1

0 g4(x) dx

[∫ 1
0 g2(x) dx]2

and b4 = 1,

where f (·) is the density function of ut . Under the aforementioned conditions,
result (2.7) implies that as n → ∞,

√
n(θ̂n − θ0) →d N

(
0, b1�

−1) and
√

n(θ̂an − θ0) →d N
(
0, b2�

−1),
respectively; and Phillips and Xu (2006) and Xu and Phillips (2008) showed that
as n → ∞,

√
n(qθn − θ0) →d N

(
0, b3�

−1) and
√

n(qθan − θ0) →d N
(
0, b4�

−1),
respectively. The asymptotic efficiencies of these four estimators can be for-
mally compared by just looking at the values of bi under different scenarios
of ut and g(·). Below, Example 1 considers the case that g(·) has an abrupt
change in the variance, when ut is chosen to be an i.i.d. standardized t3 (ST3) or
standardized Laplace(0,1) (SL(0,1)) sequence with E(u2

t ) = 1. For the cases that
g(·) has gradual and periodical change in the variance, one can refer to Examples 2
and 3 in Zhu (2019).
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EXAMPLE 1 (An abrupt change in the variance). Let τ ∈ [0,1] and g(·) be the
step function

(5.1) g(x) = e0 + (e1 − e0)I (x ≥ τ),

where x ∈ [0,1], e0 > 0, and e1 > 0. Under (5.1), the variance of εt is e2
0 before

the break point [nτ ], and e2
1 afterwards. Let δ = e1/e0. Then some algebra shows

that

b1 = 1

4f 2(0)

τ + (1 − τ)δ2

(τ + (1 − τ)δ)2 and b3 = τ + (1 − τ)δ4

(τ + (1 − τ)δ2)2 .

Figure 1(a)–(f) plot the values of all bi in terms of δ for τ = 0.1,0.5 and 0.9,
respectively. From this figure, our findings are as follows:

(i) θ̂an is more efficient than qθan under all considered cases. Meanwhile, θ̂n

can be more efficient than qθan when the break happens earlier with a large δ, the
break happens later with a small δ or the break happens in the middle with δ not
largely deviating from 1. All of these findings imply the efficiency advantage of
the ALADE (or LADE) over the ALSE when ut is heavy-tailed.

(ii) θ̂an (or qθan) is always more efficient than θ̂n (or qθn) as expected, but the
efficiency advantage is less significant when the break happens earlier with a large
δ, the break happens later with a small δ, or the break happens in the middle with

FIG. 1. The values of b1 (solid line), b2 (dashed line), b3 (dash-dot line) and b4 (dotted line)
across δ.
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δ ≈ 1 (see Xu and Phillips (2008), page 270) for a similar phenomenon and expla-
nation). This indicates that the ALADE with an appropriate choice of the weight
function can have a pronouncing efficiency advantage over the usual LADE.

Overall, Examples 1–3 demonstrate that (i) θ̂an and θ̂n can be more efficient
than qθan when ut is heavy-tailed; (ii) θ̂an is more efficient than θ̂n in all considered
cases. However, θ̂an is infeasible in practice, and this problem will be solved in the
next section.

6. The feasible adaptive LADE. The objective of this section is to give a fea-
sible ALADE, prove that this feasible ALADE calculated with estimated weights
is equivalent to the infeasible ALADE θ̂an asymptotically, and show that our entire
statistical inference procedure in Sections 2–4 is still valid based on this feasible
ALADE.

We use a similar nonparametric method as in Xu and Phillips (2008) to achieve
this goal. Let ε̂t = yt − Y ′

t−1θ̂n be the residual from the LADE. Denote

(6.1) ĝt =
n∑

i=1

kti |̂εi |,

where kti = (
∑n

i=1 Kti)
−1Kti with

Kti =
⎧⎪⎨⎪⎩K

(
t − i

nb

)
if t 	= i,

0 if t = i,

where K(·) is the kernel function defined on R, and b > 0 is the bandwidth. Of
course, the role of ĝt is to deputize for gt , which is the mean of |εt | based on the
following assumption.

ASSUMPTION 6.1. E|ut | = 1.

Assumption 6.1 is used for the identification of gt , and it does not rule out the
conditional heteroscedasticity of ut . For the feasible ALSE, Xu and Phillips (2008)
resorted to the identification condition E[u2

t |Ft−1] = 1; however, their identifica-
tion condition is restrictive, since it does not allow ut to be conditionally het-
eroscedastic. Moreover, we shall mention that besides (6.1), other methods could
also be used to estimate gt (see, e.g., Fan and Yao (1998), Yu and Jones (2004)),
and this is a promising direction for the future study.

By using ĝt in (6.1), our feasible ALADE is defined as follows:

θ̃an := arg min
θ∈�

n∑
t=1

|yt − Y ′
t−1θ |

ĝt

.

To obtain the asymptotic theory of θ̃an, we need two more assumptions.



INFERENCE FOR AR MODELS 3201

ASSUMPTION 6.2. ut is an α-mixing process with αu(k) ≤ Ck−δ3 for some
C > 0 and δ3 ≥ 2(4 + δ0)/δ0, where αu(k) is the sequence of strong mixing coef-
ficients of ut , and δ0 is defined as in Assumption 2.4(i).

ASSUMPTION 6.3. (i) K(·) ≥ 0 is a bounded continuous function with∫∞
−∞ K(x)dx = 1; (ii) b + 1/(nb5+δ4) → 0 as n → ∞ for some δ4 > 0.

Assumption 6.2 from Shao and Yu (1996) is a technical condition for some mo-
ment inequalities of the partial sums of strong mixing sequences. An exponentially
fast decaying αu(k), which holds for large classes of processes (see Carrasco and
Chen (2002)), is sufficient for the validity of this assumption. Assumption 6.3(i)
holds for commonly used kernels such as uniform, Epanechnikov, biweight and
Gaussian. Assumption 6.3(ii) requires that b converges to zero at a slower rate
than n−1/(5+δ4), and this rate can be improved under some stronger conditions; see
Remark 5 below.

The following theorem shows that θ̃an has the same asymptotic variance as θ̂an,
and hence it is the desired weighted LADE we are looking for.

THEOREM 6.1. Suppose Assumptions 2.1–2.5 and 6.1–6.3 hold. Then

√
n(θ̃an − θ0) = √

n(θ̂an − θ0) + op(1) →d N

(
0,

1

4
�−1

a2 �a1�
−1
a2

)
as n → ∞, where �al (l = 1,2) is defined in the same way as �l in (2.6) with
wt = gt .

REMARK 5. If E[|ut ||Ft−1] = 1 (a stronger condition than Assumption 6.1),
we can similarly show that the result in Theorem 6.1 holds by Propositions A.3(ii′)
and A.4(ii′) in Appendix A, without Assumption 6.2 and with the replacement of
Assumption 6.3(ii) by the weaker condition that b + 1/(nb2) → 0 as n → ∞. In
this case, b can converge to zero at a slower rate than n−1/2.

REMARK 6. When μ0 ≡ 0 and ft (0) ≡ f (0), the asymptotic variance of θ̃an

becomes 1
4f 2(0)

�−1 by (2.7).

Since the implementation of θ̃an depends on the bandwidth b, we use a similar
cross-validation (CV) method as in Xu and Phillips (2008) to select b. That is, b is
chosen to be the value of b∗ which minimizes

(6.2) ĈV(b) = 1

n

n∑
t=1

(|̂εt | − ĝt

)2
.

In theory, it is unclear whether the bandwidth b∗ chosen by this CV method sat-
isfies Assumption 6.3(ii). In practice, we can set b = Cn−1/(5+2δ4) for a small δ4,
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and find C∗ by a grid search such that b∗ = C∗n−1/(5+2δ4) minimizes ĈV(b). With
b∗ computed by this data-driven method, simulation studies in Section 7 show that
our θ̃an has a good finite sample performance.

Next, we consider the estimation of g(·) as an interest in its own.

COROLLARY 6.1. Suppose (i) Assumptions 2.1–2.5, 6.1–6.2 and 6.3(i) hold;
and (ii) b + 1/(nb2) → 0 as n → ∞. Then

plim
n→∞

ĝ[nτ ] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g(τ−)

∫ 0

−∞
K(x)dx + g(τ+)

∫ ∞
0

K(x)dx for τ ∈ (0,1),

g(1−)

∫ 0

−∞
K(x)dx for τ = 1,

where g(τ−) = limτ̄↑τ g(τ̄ ) and g(τ+) = limτ̄↓τ g(τ̄ ) for τ ∈ (0,1].

Corollary 6.1 shows that ĝ[nτ ] converges in probability to g(τ) for interior points
τ when g(·) is continuous, but in general to a point between g(τ−) and g(τ+)

depending on the shape of the kernel function K(·). It is worth noting that the
inconsistency of ĝ[nτ ] at points of discontinuities has no impact on the asymptotic
theory of θ̃an as shown in Theorem 6.1.

Third, since the forms of g(·) and ut are not specified, we use the RW method
as before to estimate the asymptotic covariance matrix of θ̃an. Define

θ̃∗
an = arg min

θ∈�

n∑
t=1

w∗
t

|yt − Y ′
t−1θ |

ĝt

.

The following theorem indicates that the distribution of
√

n(θ̃an − θ0) can be ap-
proximated by the resampling distribution of

√
n(θ̃∗

an − θ̃an).

THEOREM 6.2. Suppose Assumption 3.1 and the conditions in Theorem 6.1
hold. Then, conditional on {yt }nt=1,

√
n
(
θ̃∗
an − θ̃an

)→d N

(
0,

1

4
�−1

a2 �a1�
−1
a2

)
in probability

as n → ∞, where �al (l = 1,2) is defined as in Theorem 6.1.

According to Theorems 6.1 and 6.2, we can approximate the asymptotic covari-
ance matrix of θ̃an by Ṽan, where Ṽan is calculated in the same way as V̂wn with
θ̂wn and θ̂∗

wn replaced by θ̃an and θ̃∗
an, respectively. Then we can construct another

Wald test statistic Wan based on Ṽan, to test the linear null hypothesis H0 in (3.3),
where

(6.3) Wan = (�θ̃an − r)′
(
�Ṽan�

′)−1
(�θ̃an − r).
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If Wan is larger than the upper-tailed critical value of χ2
s , the null hypothesis H0 is

rejected. Otherwise, H0 is not rejected.
In the end, we consider the sign-based portmanteau test based on θ̃an. De-

fine r̃an,k and r̃∗
an,k in the same way as r̂wn,k and r̂∗

wn,k , with θ̂wn and θ̂∗
wn re-

placed by θ̃an and θ̃∗
an, respectively. Let r̃an = (̃ran,1, r̃an,2, . . . , r̃an,M)′ and r̃∗

an =
(̃r∗

an,1, r̃
∗
an,2, . . . , r̃

∗
an,M)′. The following theorem indicates that the distribution of√

nr̃an can be approximated by the resampling distribution of
√

n(̃r∗
an − r̃an).

THEOREM 6.3. Suppose the conditions in Theorem 6.2 hold. Then, if model
(1.1) is correctly specified:

(i)
√

nr̃an →d N(0,�a4�a3�
′
a4) as n → ∞;

(ii) conditional on {yt }nt=1,
√

n(̂r∗
wn − r̂wn) →d N(0,�a4�a3�

′
a4) in probabil-

ity as n → ∞, where �al (l = 3,4) is defined in the same way as �l in (4.1) with
wt = gt .

REMARK 7. When μ0 ≡ 0 and ft (0) ≡ f (0), the asymptotic variance of r̃an

becomes IM − K̈ ′
3�

−1K̈3 by (4.2).

According to Theorem 6.3, we can approximate the asymptotic covariance ma-
trix of r̃an by Ũan, where Ũan is calculated in the same way as Ûwn with θ̂wn and
θ̂∗
wn replaced by θ̃an and θ̃∗

an, respectively. Then we can construct another sign-
based portmanteau test statistic San(M), based on Ũan, to detect the adequacy of
model (1.1), where

(6.4) San(M) = r̃ ′
anŨ

−1
an r̃an.

If San(M) is larger than the upper-tailed critical value of χ2
M , the fitted model (1.1)

is not adequate. Otherwise, it is adequate.

7. Simulation study. In this section, we first assess the performance of the
LADE θ̂n, the feasible ALADE θ̃an, and the corresponding RW approach in finite
samples. We generate 1000 replications of sample size n = 100 and 200 from the
following model:

(7.1) yt = θ0yt−1 + εt and εt = gtut ,

where θ0 = 0.5, the error generating process for εt is designed as follows:

(7.2) ut = ηtσt with σ 2
t = 0.1 + α†u

2
t−1 + β†σ

2
t−1;

and gt = g(t/n) with g(·) satisfying one of the following structures:

[Abrupt change] g(x) = 1 + (δ − 1)I (x ≥ 0.5),(7.3)

[Gradual change] g(x) = 1 + (δ − 1)x2,(7.4)

[Periodic change] g(x) = sin(δx) + 2.(7.5)
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TABLE 1
The values of SE and AE of θ̂n and θ̃an for model (7.1) with gt ∼ model (7.3)

ηt ∼ SL(0,1) ηt ∼ ST3 ηt ∼ N(0,1)

α† β† δ n θ̂n θ̃an θ̂n θ̃an θ̂n θ̃an

0.0 0.0 0.2 100 SE 0.0813 0.0680 0.0893 0.0770 0.1322 0.1094
AE 0.0898 0.0758 0.0924 0.0800 0.1288 0.1118

200 SE 0.0588 0.0494 0.0632 0.0537 0.0923 0.0763
AE 0.0616 0.0520 0.0643 0.0551 0.0913 0.0783

5 100 SE 0.0897 0.0759 0.0942 0.0833 0.1352 0.1159
AE 0.0975 0.0825 0.1005 0.0869 0.1381 0.1189

200 SE 0.0564 0.0473 0.0615 0.0540 0.0930 0.0768
AE 0.0634 0.0527 0.0676 0.0574 0.0952 0.0813

0.1 0.8 0.2 100 SE 0.0962 0.0786 0.1020 0.0867 0.1304 0.1109
AE 0.1012 0.0852 0.1088 0.0919 0.1372 0.1162

200 SE 0.0631 0.0539 0.0767 0.0623 0.0951 0.0822
AE 0.0714 0.0579 0.0787 0.0652 0.0985 0.0826

5 100 SE 0.1013 0.0836 0.1103 0.0954 0.1443 0.1200
AE 0.1103 0.0911 0.1174 0.0984 0.1489 0.1256

200 SE 0.0707 0.0568 0.0803 0.0647 0.0985 0.0854
AE 0.0731 0.0599 0.0806 0.0667 0.1056 0.0882

Here, we use (α†, β†) = (0,0) or (0.1,0.8), choose ηt ∼ i.i.d. SL(0,1), N(0,1)

or ST3 in model (7.2), and set δ ∈ {0.2,5} in models (7.3)–(7.4), δ ∈ {2π,4π} in
model (7.5). Although ut does not satisfy E|ut | = 1 in the aforementioned set-up,
the estimation property of θ0 is unaffected by noting that εt = g

†
t u

†
t with g

†
t =

gtE|ut | and u
†
t = ut/E|ut |. To save space, we only report the results for model

(7.3) in what follows, and the results for models (7.4)–(7.5) are similar and can be
found in Zhu (2019).

Table 1 reports the sample root mean squared error (SE) and the average boot-
strapped sample root mean squared error (AE) of θ̂n and θ̃an, based on 1000 repli-
cations. In all calculations, θ̃an is obtained by using Gaussian kernel and the CV
method in (6.2) to choose b; and the bootstrapped sample root mean squared errors
for θ̂n and θ̃an are computed by using the RW method with the bootstrap sample
size J = 500. From Table 1, we can find that (i) the disparity between SE and AE
in each case is small, indicating that our RW approach is reliable; (ii) the SE of
θ̃an is always smaller than the one of θ̂n as expected; (iii) the SE of each estima-
tor becomes small as the sample size n increases; (iv) the SE of each estimator in
the case of heavy-tailed ηt (i.e., ηt ∼ SL(0,1) or ST3) is smaller than the corre-
sponding one in the case of light-tailed ηt (i.e., ηt ∼ N(0,1)). Besides SE, we also
compute the sample median and sample median of absolute deviation of θ̂n and
θ̃an to see their variability, and the details are relegated to Zhu (2019).
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Furthermore, we examine the performance of our CV method by calculating the
value of the following ratio:

R1 = SD of θ̃an

SD of θ̂an

,

where SD stands for the sample standard deviation based on 1000 replications. If
our CV method works well, the value of R1 should be close to one. Meanwhile,
we compare the efficiency of θ̂n, θ̃an and the LSE qθn with the infeasible ALSE qθan

by looking at the values of the following three ratios:

R2 = SD of θ̂n

SD of qθan

, R3 = SD of θ̃an

SD of qθan

and R4 = SD of qθn

SD of qθan

.

Clearly, θ̂n, θ̃an and qθn are more efficient than qθan when the values of R2, R3 and
R4 are smaller than one, respectively. Also, the most efficient estimator among θ̂n,
θ̃an and qθn is related to the smallest value of R2, R3 and R4.

Table 2 reports the values of these four ratios. From this table, we first find
that the value of R1 is close to one, and hence it implies that our CV method
works satisfactorily. Second, we can see that θ̃an is more efficient than qθan (with
values of R3 less than one) in general when ηt is heavy-tailed, and this efficiency
advantage in the case of (α†, β†) = (0,0) is less substantial than the one in the
case of (α†, β†) = (0.1,0.8); on the other hand, as expected, qθan is generally more
efficient than θ̃an when ηt is light-tailed. For θ̂n, it can still be more efficient than
qθan (with values of R2 less than one) in most of examined cases especially when
ηt ∼ SL(0,1), and this is not the case when ηt ∼ N(0,1). Third, we note that qθn is
always less efficient than θ̃an and qθan, and it is more efficient than θ̂n only when
ηt ∼ N(0,1).

In summary, our numerical results in Tables 1–2 show that the RW method can
provide reliable estimators of the standard deviations for both θ̂n and θ̃an, and θ̃an

calculated by the CV method shall be recommended for the heavy-tailed ηt .
Next, we examine the performance of the Wald tests Wwn and Wan, the sign-

based portmanteau tests Swn(M) and San(M), and the corresponding RW ap-
proach in finite samples. We generate 1000 replications of sample size n = 100
and 200 from the following model:

(7.6) yt = φ10yt−1 + φ20yt−2 + εt and εt = gtut ,

where (φ10, φ20) = (0.5, κ) with κ = 0,0.2 or 0.4, and the error generating process
for εt is given by model (7.1). We fit each replication by an AR(2) model with the
LADE (or the feasible ALADE) of (φ10, φ20), and then apply Wwn in (3.2) (or Wan

in (6.3)) to test the hypothesis of φ20 = 0 (i.e., � = (0,1), θ0 = (φ10, φ20)
′ and r =

0 in (3.3)). Furthermore, we fit each replication by an AR(1) model with the LADE
(or the feasible ALADE) of φ10, and then apply Swn(M) in (4.3) (or San(M) in
(6.4)) to check whether this fitted AR(1) model is adequate. In all cases, we set the
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TABLE 2
The values of Ri (i = 1,2,3,4) for model (7.1) with gt ∼ model (7.3)

ηt ∼ SL(0,1) ηt ∼ ST3 ηt ∼ N(0,1)

α† β† δ n R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

0.0 0.0 0.2 100 1.0341 1.0375 0.8653 1.4035 1.0914 1.1754 1.0140 1.4778 1.0705 1.6754 1.3871 1.5480
200 1.0296 0.9774 0.8220 1.3821 1.0583 1.0652 0.9050 1.4160 1.0734 1.6254 1.3449 1.4804

5 100 1.0302 0.9944 0.8415 1.2922 1.0516 1.1202 0.9909 1.3496 1.0420 1.5078 1.2974 1.3422
200 1.0284 0.9634 0.8073 1.3432 1.0334 1.0061 0.8879 1.3140 1.0186 1.5142 1.2521 1.3577

0.1 0.8 0.2 100 1.0457 1.0456 0.8581 1.3895 1.0062 1.0844 0.9240 1.3134 1.0428 1.5114 1.2841 1.4655
200 1.0040 0.9013 0.7696 1.3530 0.9998 1.0026 0.8142 1.3148 1.0281 1.5076 1.3065 1.4204

5 100 1.0049 0.9727 0.8048 1.2610 0.9939 1.0219 0.8870 1.2561 0.9917 1.4868 1.2356 1.3240
200 1.0050 0.9728 0.7821 1.3056 0.9922 1.0144 0.8189 1.2813 1.0006 1.4119 1.2257 1.3133
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TABLE 3
The power (×100) of all tests for model (7.6) with gt ∼ model (7.3) and ηt ∼ SL(0,1)

κ = 0 κ = 0.2 κ = 0.4

α† β† δ n Wwn Wan Sw(6) Sa(6) Wwn Wan Sw(6) Sa(6) Wwn Wan Sw(6) Sa(6)

0.0 0.0 0.2 100 4.2 4.4 1.8 2.2 45.8 60.6 8.3 9.3 94.5 97.9 42.9 48.8
200 4.6 4.7 2.9 3.1 76.8 87.2 26.5 27.8 99.8 99.9 87.2 89.6

5 100 3.5 3.8 1.3 2.0 39.0 52.3 7.1 7.6 91.2 96.4 37.6 39.3
200 4.7 4.9 2.8 2.8 71.9 85.7 25.2 25.0 99.4 99.9 85.0 86.1

0.1 0.8 0.2 100 3.3 3.2 1.7 1.8 42.3 53.5 6.8 8.7 92.7 98.0 43.2 48.6
200 5.2 4.4 3.0 2.9 66.6 81.2 23.3 24.6 99.4 99.9 84.5 87.0

5 100 4.2 3.2 1.6 1.7 32.0 43.9 6.7 6.9 86.2 94.4 35.4 37.8
200 4.7 4.4 2.5 3.2 59.9 78.0 22.0 22.1 99.0 99.8 83.2 83.9

significance level α = 0.05 and M = 6. Based on 1000 replications, the empirical
power of all the tests are reported in Table 3 for the case that ηt ∼ SL(0,1), and
their sizes correspond to the results for the case that κ = 0. Since the results for
other two distributions of ηt are similar, they are not provided here for saving the
space. From Table 3, it is clear that the sizes of the two Wald tests are close to
their nominal ones, and the sizes of the two portmanteau tests are conservative
especially when n is small. For the power of all tests, we find that all the power
becomes large as the value of n or κ increases; the power of Wan and San based
on the feasible ALADE is larger than that of Wwn and Swn based on the LADE,
respectively, and this power advantage is more distinct for the Wald test. Overall,
all tests based on the RW approach have a good performance especially when
the sample size is large, and we recommend Wan and San based on the feasible
ALADE in practice.

8. Concluding remarks. This paper provides an entire statistical inference
procedure for the AR(p) model under (conditional) heteroscedasticity of unknown
form by establishing the asymptotic normality of the weighted LADE, developing
the RW method to estimate its asymptotic covariance matrix, and constructing a
portmanteau test for the model diagnostic checking. This entire procedure can ei-
ther be based on the usual LADE or the feasible ALADE, and as demonstrated by
the simulation results, the ALADE is the better choice in terms of the estimation
efficiency and testing power. Applications to three U.S. economic data sets are
considered in the Supplementary Material (Zhu (2019)), and the results indicate
that after the financial crisis in 2007–2008, the monetary policies may become less
prudent, and their control on the PPI and CPI seems to be weaker. The methodol-
ogy developed in this paper provides a new way to handle the heteroscedastic time
series data and shall have a large applicable scope in practice. Extensions to other
time series models (e.g., autoregressive moving average models) and estimation



3208 K. ZHU

methods (e.g., M- and quantile estimations) could be potentially interesting future
works.

APPENDIX A: PROOFS OF THEOREMS

This appendix gives the proofs of all the theorems, and the proofs of all the
corollaries are offered in Zhu (2019). Define

zn(ξ) = 1√
n

n∑
t=1

Yt−1[sgn(εt )]
ξt

and(A.1)

Zn(ξ) =
n∑

t=1

1

ξt

∫ v′Yt−1/
√

n

0

{
I (εt ≤ s) − I (εt ≤ 0)

}
ds,(A.2)

where v ∈ Rp+1. To facilitate the proof of Theorem 2.1, the following two propo-
sitions are needed, and their proofs are given in Zhu (2019).

PROPOSITION A.1. Suppose Assumptions 2.1–2.2 and 2.4–2.5 hold. Then:

(i) plimn→∞ 1
n

∑n
t=1 w−2

t Yt−1Y
′
t−1 = �1;

(ii) plimn→∞ 1
n

∑n
t=1(gtwt )

−1ft (0)Yt−1Y
′
t−1 = �2,

where �1 and �2 are defined as in (2.6).

PROPOSITION A.2. Suppose Assumptions 2.1–2.4 hold. Then, zn(w) →d

N(0,�1) as n → ∞, where zn(w) and �1 are defined as in (A.1) and (2.6), re-
spectively.

PROOF OF THEOREM 2.1. Denote Hn(v) = ∑n
t=1

1
wt

(|εt − v′√
n
Yt−1| − |εt |),

where v ∈ Rp+1. Then v̂wn := √
n(θ̂wn − θ0) is the the minimizer of Hn(v) over

Rp+1.
Using the identity,

(A.3) |x − y| − |x| = −y
{
sgn(x)

}+ 2
∫ y

0

{
I (x ≤ s) − I (x ≤ 0)

}
ds,

which holds when x 	= 0 (see Knight (1998)), it follows that

(A.4) Hn(v) = −v′zn(w) + 2Zn(w),

where zn(w) and Zn(w) are defined as in (A.1) and (A.2), respectively. Write
Zn(w) := ∑n

t=1 Kt = ∑n
t=1 E(Kt |Ft−1) + ∑n

t=1[Kt − E(Kt |Ft−1)]. Subse-
quently, we can show that for each v ∈ Rp+1,

n∑
t=1

E(Kt |Ft−1) = v′ �2

2
v + op(1),(A.5)

n∑
t=1

[
Kt − E(Kt |Ft−1)

]= op(1);(A.6)
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see Zhu (2019) for details. By (A.4)–(A.6), Hn(v) = −v′zn(w) + v′�2v + op(1)

for each v ∈ Rp+1. As Hn(v) is convex for each v, Theorem 2 in Kato (2009)
implies that

(A.7) v̂wn = (2�2)
−1zn(w) + op(1).

Now, the conclusion follows from (A.7) and Proposition A.2. �

PROOF OF THEOREM 3.1. Denote H ∗
n (v) = ∑n

t=1
w∗

t

wt
(|εt − v′√

n
Yt−1| − |εt |),

where v ∈Rp+1. Then v̂∗
wn = √

n(θ̂∗
wn−θ0) is the minimizer of H ∗

n (v) over Rp+1.
As for (A.4), we can obtain that H ∗

n (v) = −v′z∗
n(w) + 2Z∗

n(w), where

z∗
n(w) = 1√

n

n∑
t=1

w∗
t Yt−1[sgn(εt )]

wt

and

Z∗
n(w) =

n∑
t=1

w∗
t

wt

∫ v′Yt−1/
√

n

0

{
I (εt ≤ s) − I (εt ≤ 0)

}
ds.

Since {w∗
t } is independent of {yt } with E(w∗

t ) = 1 by Assumption 3.1, a similar
argument as for (A.5)–(A.6) entails that Z∗

n(w) = v′ �2
2 v + op(1). Then, for each

v ∈Rp+1, H ∗
n (v) = −v′z∗

n(w) + v′�2v + op(1), which implies that

(A.8) v̂∗
wn = (2�2)

−1z∗
n(w) + op(1)

by a similar argument as for (A.7). Hence, by (A.7) and (A.8), we have

√
n
(
θ̂∗
wn − θ̂wn

)= [2�2]−1
√

n

n∑
t=1

(w∗
t − 1)Yt−1 sgn(εt )

wt

+ op(1)

=: [2�2]−1
n∑

t=1

Jtn + op(1).(A.9)

Let E∗ be the conditional expectation on {yt }nt=1 and λ ∈ Rp+1 be a nonzero
constant vector. We now study the conditional distribution of

∑n
t=1 λ′Jtn. First,

since {w∗
t } is independent of {yt } with Ew∗

t = 1, we have

(A.10) E∗[λ′Jtn

]= 0.

Next, since var(w∗
t ) = 1, by the independence of {w∗

t } and {yt }, we have

n∑
t=1

E∗[λ′JtnJ
′
tnλ

]= λ′
{

1

n

n∑
t=1

Yt−1Y
′
t−1[sgn(εt )]2

w2
t

}
λ

= λ′�1λ + op(1)(A.11)
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by Proposition A.1(i). Finally, we claim that the Lindeberg condition holds by
showing that

(A.12)
n∑

t=1

E∗[λ′JtnJ
′
tnλI

(∣∣λ′Jtn

∣∣> η
)]= op(1);

see Zhu (2019) for details. By (A.10)–(A.12), the Cramér–Wold device and the
central limit theorem in Pollard (1984, Theorem VIII.1) yield that conditional on
{yt }nt=1,

∑n
t=1 Jtn →d N(0,�1) in probability as n → ∞. Now, the conclusion

follows directly from (A.9). �

PROOF OF THEOREM 4.1. By Lemma B.4(i) with sn = v̂wn, we have

(A.13)
√

nr̂wn,k = 1√
n

n∑
t=k+1

sgn
(
εt (θ̂wn)

)
sgn

(
εt−k(θ̂wn)

)+ op(1).

Rewrite sgn(εt (θ̂wn)) sgn(εt−k(θ̂wn))− sgn(εt ) sgn(εt−k) = Pnt (v̂wn)+Qnt(v̂wn),
where Pnt (v) and Qnt(v) are defined as in Lemma B.4. By (A.13) and Lem-
ma B.4(ii)–(iv), it follows that

(A.14)
√

nr̂wn,k =
[

1√
n

n∑
t=k+1

sgn(εt ) sgn(εt−k)

]
− 2�′

3kv̂wn + op(1).

Hence, by (A.7) and (A.14), we have

(A.15)
√

nr̂wn = �4Sn + op(1),

where

Sn = 1√
n

(
n∑

t=2

sgn(εt ) sgn(εt−1), . . . ,

n∑
t=M+1

sgn(εt ) sgn(εt−M),

n∑
t=1

Y ′
t−1 sgn(εt )

wt

)′
.

Finally, the conclusion holds by the central limit theorem for m.d.s. and a similar
argument as for Proposition A.1. �

PROOF OF THEOREM 4.2. By Assumption 3.1 and Lemma B.4(i) with sn =
v̂∗
wn, we have

√
nr̂∗

wn,k = 1√
n

n∑
t=k+1

w∗
t sgn

(
εt

(
θ̂∗
wn

))
sgn

(
εt−k

(
θ̂∗
wn

))+ op(1).

By Assumption 3.1 and a similar argument as for (A.14), we can obtain that

(A.16)
√

nr̂∗
wn,k =

[
1√
n

n∑
t=k+1

w∗
t sgn(εt ) sgn(εt−k)

]
− 2�′

3kv̂
∗
wn + op(1).
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Hence, by (A.8) and (A.16), we have

(A.17)
√

nr̂∗
wn = �4S

∗
n + op(1),

where

S∗
n = 1√

n

(
n∑

t=2

w∗
t sgn(εt ) sgn(εt−1), . . . ,

n∑
t=M+1

w∗
t sgn(εt ) sgn(εt−M),

n∑
t=1

w∗
t Y

′
t−1 sgn(εt )

wt

)′
.

Finally, the conclusion holds by (A.15), (A.17) and a similar argument as for The-
orem 3.1. �

Following a similar terminology as in Robinson (1987), we let

g̃t =
n∑

i=1

kti |εi | and gt =
n∑

i=1

ktigi .

To prove Theorems 6.1–6.3, two crucial propositions are needed, and their proofs
are given in Zhu (2019).

PROPOSITION A.3. Suppose Assumptions 2.1–2.5, 6.1–6.2 and 6.3(i) hold.
Then:

(i) zn(ĝ) − zn(g̃) = Op( 1√
nb

);

(ii) zn(g̃) − zn(g) = Op( 1
√

nb
5+δ4

2

+ 1
nb3+δ4

+ bδ4) for some δ4 > 0;

(ii′) zn(g̃) − zn(g) = Op( 1√
nb

) if E[|ut ||Ft−1] = 1;

(iii) zn(g) − zn(g) = op(1),

where zn(·) is defined as in (A.1).

PROPOSITION A.4. Suppose the conditions in Proposition A.3 hold. Then,
for each v ∈ Rp+1:

(i) Zn(ĝ) − Zn(g̃) = Op( 1
n3/4b

);

(ii) Zn(g̃) − Zn(g) = Op( 1
n1/4b

);

(ii′) Zn(g̃) − Zn(g) = Op( 1
n1/4b1/2 ) if E[|ut ||Ft−1] = 1;

(iii) Zn(g) − Zn(g) = op(1),

where Zn(·) is defined as in (A.2).

PROOF OF THEOREM 6.1. Denote Ĝn(v) = ∑n
t=1

1
ĝt

(|εt − v′√
n
Yt−1| − |εt |),

where v ∈ Rp+1. Then ṽan := √
n(θ̃an −θ0) is the minimizer of Ĝn(v) over Rp+1.
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As for (A.4), Ĝn(v) = −v′zn(ĝ) + 2Zn(ĝ). By Assumption 6.3(ii) and Proposi-
tions A.3–A.4, it follows that for each v ∈ Rp+1, Ĝn(v) = −v′zn(g) + 2Zn(g) +
op(1). Hence, as for (A.7), we can deduce that

(A.18) ṽan = (2�a2)
−1zn(g) + op(1),

and the conclusion follows by Proposition A.2. �

PROOF OF THEOREM 6.2. Denote Ĝ∗
n(v) = ∑n

t=1
wt

ĝt
(|εt − v′√

n
Yt−1| − |εt |),

where v ∈Rp+1. Then ṽ∗
an := √

n(θ̃∗
an −θ0) is the minimizer of Ĝ∗

n(v) over Rp+1.
As for (A.4), Ĝ∗

n(v) = −v′z∗
n(ĝ) + 2Z∗

n(ĝ). By Assumptions 3.1 and 6.3(ii) and
similar arguments as for Propositions A.3–A.4, it follows that for each v ∈ Rp+1,
Ĝ∗

n(v) = −v′z∗
n(g) + 2Z∗

n(g) + op(1). Hence, as for (A.8), we can deduce that

(A.19) ṽ∗
an = (2�a2)

−1z∗
n(g) + op(1).

Now, the conclusion holds by (A.18)–(A.19) and the similar arguments as for The-
orem 3.1. �

PROOF OF THEOREM 6.3. By noting that ṽan = Op(1) and ṽ∗
an = Op(1), the

proofs of (i) and (ii) follow the same arguments as for Theorems 4.1 and 4.2,
respectively. �

APPENDIX B: SOME TECHNICAL LEMMAS

This appendix gives Lemmas B.1–B.6, which can be found in the Supplemen-
tary Material Zhu (2019).
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SUPPLEMENTARY MATERIAL

Supplement to “Statistical inference for autoregressive models under het-
eroscedasticity of unknown form” (DOI: 10.1214/18-AOS1775SUPP; .pdf). The
supplement includes additional simulation results, applications, some technical
lemmas and the remaining proofs.
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