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ACTIVE RANKING FROM PAIRWISE COMPARISONS AND WHEN
PARAMETRIC ASSUMPTIONS DO NOT HELP

BY REINHARD HECKEL∗,1, NIHAR B. SHAH†,2,3, KANNAN RAMCHANDRAN‡

AND MARTIN J. WAINWRIGHT‡,2

Rice University∗, Carnegie Mellon University† and University of California,
Berkeley‡

We consider sequential or active ranking of a set of n items based on
noisy pairwise comparisons. Items are ranked according to the probability
that a given item beats a randomly chosen item, and ranking refers to par-
titioning the items into sets of prespecified sizes according to their scores.
This notion of ranking includes as special cases the identification of the top-k
items and the total ordering of the items. We first analyze a sequential ranking
algorithm that counts the number of comparisons won, and uses these counts
to decide whether to stop, or to compare another pair of items, chosen based
on confidence intervals specified by the data collected up to that point. We
prove that this algorithm succeeds in recovering the ranking using a number
of comparisons that is optimal up to logarithmic factors. This guarantee does
depend on whether or not the underlying pairwise probability matrix, satis-
fies a particular structural property, unlike a significant body of past work
on pairwise ranking based on parametric models such as the Thurstone or
Bradley–Terry–Luce models. It has been a long-standing open question as to
whether or not imposing these parametric assumptions allows for improved
ranking algorithms. For stochastic comparison models, in which the pairwise
probabilities are bounded away from zero, our second contribution is to re-
solve this issue by proving a lower bound for parametric models. This shows,
perhaps surprisingly, that these popular parametric modeling choices offer at
most logarithmic gains for stochastic comparisons.

1. Introduction. Given a collection of n items, it is frequently of interest to
estimate a ranking based on noisy comparisons between pairs of items. Such rank
aggregation problems arise across a wide range of applications. Some traditional
examples in sports include identifying the best player in a tournament, selecting
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the top k teams for playoffs and finding the full ranking of players. More recently,
the internet era has led to a variety of applications involving pairwise comparison
data, including recommender systems [1, 29] for rating movies, books or other
consumer items; peer grading [33] for ranking students in massive open online
courses; and online sequential survey sampling [30] for assessing the popularity of
proposals in a population of voters. In many of these and other such applications,
it is possible to make comparisons in an active or adaptive manner, that is, based
on the outcomes of comparisons of previously chosen pairs. Motivated by those
applications, the focus of this paper is the problem of obtaining statistically sound
rankings based on a sequence of actively chosen pairwise comparisons.

We consider a collection of n items, and our data consists of outcomes of com-
parisons between pairs of items in this collection that are collected in a sequential
fashion, also known as the active setting. We assume that the outcomes of com-
parisons are stochastic, that is, item i beats item j with an unknown probability
Mij ∈ (0,1). The outcomes of pairwise comparisons are furthermore assumed to
be statistically mutually independent. We define the ordering of the items in terms
of their (unknown) scores, where the score τi of item i is defined as the probability
that item i beats an item chosen uniformly at random from all other items:

τi := 1

n − 1

∑
j �=i

Mij .(1.1)

In the context of social choice theory [12], these sums are also known as the
Borda scores or counts of the items. Apart from their intuitive appeal, the Borda
counts are of particular interest because they provide a natural unification of the
assumed orderings in several popular comparison models. Specifically, the para-
metric Bradley–Terry–Luce (BTL) [5, 25] and Thurstone [37] models, as well as
the nonparametric Strong Stochastic Transitivity (SST) model [38], are all based
on an assumed ordering of the items; in all of these models, this ordering coin-
cides with that given by the scores {τi}ni=1. In this paper, we consider the problem
of partitioning the items into sets of prespecified sizes according to their respective
scores. This notion of ranking includes as special cases identification of the top-k
items and the total ordering of the items.

We make two primary contributions. We begin by presenting and analyzing a
simple active ranking algorithm for estimating a partial or total ranking of the
items. At each round, this algorithm first counts the number of comparisons won,
then computes confidence bounds from those counts, which it finally uses to se-
lect a subset of pairs to be compared at the next time step. We provide perfor-
mance guarantees showing that with high probability, the algorithm recovers the
desired partial or total ranking from a certain number of comparisons. We refer
to this sample size as the sample complexity, and show that it is a function of
the (unknown) scores {τi}ni=1 and, therefore, distribution-dependent. Conversely,
we prove distribution-dependent lower bounds that are matching up to logarith-
mic factors, thereby showing that the algorithm is near-optimal in the number of
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comparisons. Our analysis leverages the fact that ranking in terms of the scores
{τi}ni=1 is related to a particular class of multi-armed bandit problems [7, 14, 39].
We note that this connection has been used in past work [18, 39, 40] in the context
of finding the top item.

Our second main contribution relates to the popular parametric modeling
choices made in the literature. On one hand, the algorithmic analysis of this pa-
per does not impose any assumptions on the pairwise comparison probabilities.
On the other hand, much past work (including some of our own) is based on spe-
cific parametric assumptions on the pairwise comparisons; for instance, see the
papers [11, 15, 17, 26, 27, 31, 35, 36] as well as references therein. Concrete
examples of parametric assumptions include the Bradley–Terry–Luce (BTL) and
Thurstone parametric models. There is a long standing debate on whether such
parametric assumptions are reasonable, that is, in which situations they (approx-
imately) hold, and in which they fail [3]. When such parametric models are suit-
able, the natural hope is that their structure allows some reduction of the sample
complexity. In fact, for essentially deterministic comparison models (meaning that
pairwise comparison probabilities may be arbitrarily close to zero or one), there
can indeed be significant gains; see the discussion following Theorem 2 for further
details. However, as we show in the paper, if one considers stochastic comparison
models (in which the pairwise probabilities are bounded away from zero and one),
then assuming a parametric comparison model versus not making any structural
assumption leads to at most a logarithmic gain in the sample complexity. This log-
arithmic gain needs to be weighed against the potential lack of robustness incurred
by using a parametric mode—note that parametric modeling assumptions often
hold only approximately [3], if at all—which can be significant, as shown in our
numerical results section.

Related work. There is a vast literature on ranking and estimation from pair-
wise comparison data. Most works assume probabilistic comparison outcomes;
we refer to the paper [20] and references therein for ranking problems assum-
ing deterministic comparison outcomes. Several prior works [10, 15, 17, 27, 31,
34, 35] consider settings where pairs to be compared are chosen a priori. In con-
trast, we consider settings where the pairs may be chosen in an active manner.
The recent work [36] assumes the Bradley–Terry–Luce (BTL) parametric model,
and considers the problem of finding the top item and the full ranking in an ac-
tive setup. In the stochastic regime, for certain underlying distributions, the cor-
responding results [36], Theorem 3 and Theorem 4, are close to what our more
general result implies. On the other hand, for several other problem instances, the
performance guarantees of Theorem 3 and Theorem 4 in the work [36] lead to a
significantly larger sample complexity. Our work thus offers better guarantees for
the BTL model in the stochastic regime, despite the additional generality of our
setting in that we do not restrict ourselves to the BTL model. However outside the
stochastic regime, specifically for models with pairwise comparison probabilities
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very close to zero and one [36], Theorem 3 and Theorem 4, offer gains over the
results afforded by our more general model; we discuss this regime in more detail
later. The paper [26] considers the problem of finding a full ranking of items for a
BTL pairwise comparison model, and provides a performance analysis for a prob-
abilistic model on the BTL parameter vector. [13] considers the problem of finding
the very top items using graph based techniques, whereas [8] consider the problem
of finding the top-k items. [2] considers the problem of linearly ordering the items
so as to disagree in as few pairwise preference labels as possible. Our work is also
related to the literature on multi-armed bandits, and we revisit these relations later
in the paper.

Organization. The remainder of this paper is organized as follows. We begin
with background and problem formulation in Section 2. We then present a de-
scription and a sharp analysis of our ranking algorithm in Section 3. In Section 4,
we show that parametric assumptions do not reduce the sample complexity in the
stochastic regime. In Section 5, we study numerically whether algorithms designed
for parametric models can yield some improvement outside the stochastic regime,
and study some additional aspects of our proposed algorithm. We provide proofs
of all our results in Section 6, and conclude with a discussion in Section 7.

2. Problem formulation and background. In this section, we formally state
the ranking problem considered in this paper and formalize the notion of an active
ranking algorithm. We also formally introduce the class of parametric models in
this section.

2.1. Pairwise probabilities, scores and rankings. Given a collection of items
[n] := {1, . . . , n}, let us denote by Mij ∈ (0,1) the (unknown) probability that
item i wins a comparison with item j . For all items i and j , we require that
each comparison results in a winner (meaning that Mij + Mji = 1), and we set
Mii = 1/2 for concreteness. For each item i ∈ [n], consider the score (1.1) given
as τi := 1

n−1
∑

j∈[n]\{i} Mij . Note that the unknown score τi ∈ (0,1) corresponds
to the probability that item i wins a comparison with an item j chosen uniformly
at random from [n] \ {i}.

Assuming that the scores are all distinct, they define a unique ranking of the
n items; more specifically, this unknown ranking is defined by the permutation
π : [n] → [n] such that τπ(1) > τπ(2) > · · · > τπ(n). In words, π(i) denotes the
ith ranked item according to the scores. A number of ranking problems can be
defined in terms of π : at one extreme, finding the best item corresponds to deter-
mining the item π(1), whereas at the other extreme, finding a complete ranking
is equivalent to estimating π(j) for all j ∈ [n]. We introduce a general formal-
ism that allows us to handle these and many other ranking problems. In particular,
given an integer L ≥ 2, we let {k�}L�=1 be a collection of positive integers such
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that 1 ≤ k1 < k2 < · · · < kL−1 < kL = n. Any such collection of positive integers
defines a partition of [n] into L disjoint sets of the form

S1 := {
π(1), . . . , π(k1)

}
, S2 := {

π(k1 + 1), . . . , π(k2)
}
,

. . . , SL := {
π(kL−1 + 1), . . . , π(n)

}
.

(2.1)

For instance, if we set L = 2 and k1 = k, then the set partition (S1,S2) corresponds
to splitting [n] into the top k items and its complement. At the other extreme, if we
set L = n and (k1, k2, . . . , kn) = (1,2, . . . , n), then the partition {S�}L�=1 allows us
to recover the full ranking of the items, as specified by the permutation π .

For future reference, we define the set

CMmin := {
M ∈ (0,1)n×n | Mij = 1 − Mji,Mij ≥ Mmin,

and τi �= τj for all (i, j)
}
,(2.2)

corresponding to the set of pairwise comparison matrices with pairwise compari-
son probabilities lower bounded by Mmin, and for which a unique ranking exists.
We note that our results actually do not require the entire underlying ordering of
the scores to be strict; rather, we require strict inequalities only at the boundaries
of the sets S1, . . . ,SL.

2.2. The active ranking problem. An active ranking algorithm acts on a pair-
wise comparison model M ∈ C0. Consider any specified values of L and {k�}L�=1,
which define a partition of the form (2.1) in terms of their latent scores (1.1). The
goal is to obtain a partition of the items [n] into L disjoint sets of the form (2.1)
from active comparisons. At each time instant, the algorithm can compare two ar-
bitrary items, and the choice of which items to compare may be based on the out-
comes of previous comparisons. As a result of comparing two items i and j , the
algorithm receives an independent draw of a binary random variable with success
probability Mij in response. After termination dictated by an associated stopping
rule, the algorithm returns a ranking Ŝ1, . . . , ŜL.

For a given tolerance parameter δ ∈ (0,1), we say that a ranking algorithm A is
δ-accurate for a comparison matrix M if the ranking it outputs obeys

PM [Ŝ� = S�, for all � = 1, . . . ,L] ≥ 1 − δ.(2.3)

For any set of comparison matrices CPAR(�), we say that the algorithm A is uni-
formly δ-accurate over CPAR(�) if it is δ-accurate for each matrix M ∈ CPAR(�).
The performance of any algorithm is measured by means of its sample complex-
ity, by which we mean the number of comparisons required to obtain the desired
partition.
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2.3. Active ranking and multi-armed bandits. It is worthwhile noting that the
ranking problem studied here is related to multi-armed bandits [6, 23]. More pre-
cisely, a (stochastic) multi-armed bandit model consists of a collection of n “arms,”
each associated with an unknown and stochastic reward function. When an arm is
“pulled,” a reward is drawn i.i.d. from a corresponding distribution, and the goal
is to maximize the reward obtained via a sequential choice of arms. In past work,
various researchers (e.g., [18, 39–41]) have drawn links between pairwise com-
parison ranking and such bandit problems. In particular, by definition of the score
τi , comparing item i to a distinct item chosen from the n − 1 alternatives can be
modeled as drawing a Bernoulli random variable with mean τi . Our subsequent
analysis in Section 3 relies on this relation. When cast in the multi-armed bandit
setting, the setting of pairwise comparisons is often referred to as that of “dueling
bandits.” Prior works in this setting [18, 40, 41] address the problem of finding the
single “best arm”—meaning the item with the highest score—or the set of top-k
arms [39], based on noisy comparisons. By contrast, this paper treats the more
general problem of finding a partial or total ordering of the items.

Despite these similarities, there is an important distinction between the two set-
tings. If we view our problem as a multi-armed bandit problem with Bernoulli
random variables with means {τi}ni=1, these means are actually coupled together,
in the sense that information about any particular mean imposes constraints on
all the other means. In particular, any set of scores {τi}ni=1 must be realized by
some valid set of pairwise comparison probabilities {Mij }i,j∈[n]. Since these pair-
wise comparison probabilities must obey the constraint Mij = 1 − Mji , the in-
duced scores must satisfy certain constraints, not all of which are obvious. One
obvious constraint, which follows immediately from the definition (1.1), is that∑n

i=1 τi = n/2. Another less obvious constraint is the collection of inequalities∑j
i=1 τπ(i) ≥ 1

n−1
j (j−1)

2 for j = 2, . . . , n − 1; see the papers [21, 24] for discus-
sion. These conditions, while necessary, are certainly not sufficient, as can be
seen by studying some simple cases.4 Our algorithm, presented in the next sec-
tion, does not take the coupling of the scores explicitly into account. Nevertheless,
our algorithm is shown to be optimal up to a logarithmic factor in the stochastic
regime.

2.4. Parametric models. In this section, we introduce a family of paramet-
ric models that form a basis of several prior works [15, 17, 27, 31, 36]. To be
clear, we make no modeling assumptions for our algorithm and its analysis in
Section 3. Rather, we focus on these parametric models in Section 4, where we

4For instance, there is no set of pairwise comparison probabilities with scores [1,1,0,0], even
though those scores satisfy the aforementioned constraints. In order to verify this fact, note that
τ1 = 1 implies M12 = M13 = M14 = 1. Thus, we have M21 = 0, which implies τ2 ≤ 2/3 and,
therefore, contradicts τ2 = 1.
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show that, perhaps surprisingly, outside of the deterministic regime, none of these
parametric assumptions provide more than a logarithmic gain in sample complex-
ity.

Any member of this family is defined by a strictly increasing and continuous
function � : R → [0,1] such that �(t) = 1−�(−t), for all t ∈R. The function �

is assumed to be known. A pairwise comparison matrix in this family is associated
to an unknown vector w ∈ R

n, where each entry of w represents some quality
or strength of the corresponding item. The parametric model CPAR(�) associated
with the function � is defined as

CPAR(�) = {
Mij = �(wi − wj) for all i, j ∈ [n], for some w ∈ R

n}
.

(2.4)

Popular examples of models in this family are the Bradley–Terry–Luce (BTL)
model, obtained by setting � equal to the sigmoid function (�(t) = 1

1+e−t ), and
the Thurstone model, obtained by setting � equal to the Gaussian CDF. Note that
τ1 > τ2 > · · · > τn is equivalent to w1 > w2 > · · · > wn, meaning that the ranking
induced by the scores {τi}ni=1 is equivalent to that induced by w.

It is worthwhile noting that a common assumption in the setting of parametric
models [11, 27, 31] is that ‖w‖∞ ≤ B for some finite constant B . This bound-
edness assumption implies that the pairwise comparison probabilities {Mij }ni,j=1
are all uniformly bounded away from 0 and 1, thereby guaranteeing a stochastic
comparison model.

3. Active ranking from pairwise comparisons. In this section, we present
our algorithm for obtaining the desired partition of the items as described earlier
in Section 2, and a sharp analysis of this algorithm proving its optimality up to
logarithmic factors.

3.1. Active ranking (AR) algorithm. Our active ranking algorithm is based on
the following two ingredients:

• Successive estimation of the scores {τi}ni=1, where τi is estimated by comparing
item i with items chosen uniformly at random from [n] \ {i}.

• Assigning an item i to an estimate Ŝ� of the set S� once a certain confidence
level of i belonging to S� is attained.

This strategy is essentially an adaption of the successive elimination approach from
the bandit literature, proposed in the classic paper [28], and studied in a long line
of subsequent work (see, e.g., the papers [7, 14, 18, 39]). While we focus on an
elimination strategy in this paper, we note that an algorithm based on carefully
using lower and upper confidence bound (LUCB) information, in a manner similar
to the top-k arm identification LUCB algorithm [9, 22], would result in the same
sample complexity.
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The first input to the algorithm is a collection of positive integers {k�}L�=0 such
that k0 = 0 < k1 < k2 < · · · < kL−1 < kL = n, which define a desired ranking. The
second input is a tolerance parameter δ ∈ (0,1), which defines the probability with
which the algorithm is allowed to fail. Finally, our algorithm uses a confidence
bound based on an nonasymptotic version of the law of the iterated algorithm [19,

23], that takes on the form αt ∝
√

log(log(t)n/δ)
t

, for time t ∈ {1,2, . . .}. We explicitly
choose the constants involved by setting

αt =
√

β(t, δ/n)

2t
,(3.1)

with β(t, δ′) = log(1/δ′) + 0.75 log log(1/δ′) + 1.5 log(1 + log(t/2)).

ALGORITHM 1 (Active Ranking (AR)). At time t = 0, define and initialize
the following quantities:

• S = [n] (set of items not ranked yet);
• Ŝ� = ∅ for all � ∈ [L] (estimates of the partition);
• k̂� = k� for all � ∈ {0, . . . ,L} (borders of the sets);
• τ̂i (0) = 0 for all i ∈ [n] (estimates of the scores).
At any time t ≥ 1:

1. For every i ∈ S : Compare item i to an item chosen uniformly at random from
[n] \ {i}, and set

τ̂i (t) =

⎧⎪⎪⎨⎪⎪⎩
t − 1

t
τ̂i(t − 1) + 1

t
if i wins

t − 1

t
τ̂i(t − 1) otherwise.

(3.2)

2. Sort the items in set S by their current estimates of the scores: For any k ∈ [|S|],
let (k) denote the item with the k-th largest estimate of the score (if the k-th
largest estimate is not unique, break ties arbitrarily).

3. With parameter αt as defined in equation (3.1), do the following for every
j ∈ S :

If the following pair of conditions (3.3a) and (3.3b) hold simultaneously for
some � ∈ [L],

k̂�−1 = 0 or τ̂j (t) < τ̂(k̂�−1)
(t) − 4αt

(j likely is one of the lower n − k�−1 − 1 items)(3.3a)

k̂� = |S| or τ̂j (t) > τ̂(k̂�+1)(t) + 4αt

(j likely is one of the top k� items),(3.3b)

then add j to Ŝ�, remove j from S , and set k̂�′ ← k̂�′ − 1 for all �′ ≥ �.
4. If S = ∅, terminate.
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FIG. 1. Illustration of the AR algorithm applied to the problem of finding the top 2 items out of
n = 4 items total, corresponding to S1 = {1,2}, S2 = {3,4}. The figure depicts the estimates τ̂i (t),
along with the corresponding confidence intervals [τ̂i (t)− 4αt , τ̂i (t)+ 4αt ], at different time steps t .
At time t = 5, the algorithm is not confident about the position of any of the items, and hence it
continues to sample further. At time t = 10, the confidence interval of item (1) indicates that (1) is
either the best or the second best item, therefore the AR algorithm assigns (1) to Ŝ1. Likewise, it
assigns item (4) to Ŝ2. At time step t = 15, the AR algorithm assigns items (1) and (2) to Ŝ1 and Ŝ2,
respectively, and terminates.

See Figure 1 for an illustration of the progress of this algorithm on a particular
instance.

3.2. Guarantees and optimality of the AR algorithm. In this section, we estab-
lish guarantees on the number of samples for the AR algorithm to succeed. As we
show below, the sample complexity is a function of the gaps between the scores,
defined as

	̄�,i := τπ(k�−1) − τi and 	�,i := τi − τπ(k�+1).(3.4)

The dependence on these gaps is controlled via the functions

f0(x) := 1

x2 , and fAR(x) := log(2 log(2/x))

x2 .(3.5)

In part (a) of the theorem to follow, we prove an upper bound involving fAR on the
AR algorithm, and in part (b), we prove a lower bound involving f0 that applies to
any uniformly δ-accurate algorithm. As one might intuitively expect, the number
of comparisons required is lower when the gaps between the underlying scores are
larger. See Figure 2 for an illustration of the gaps for the particular problem of
finding a partitioning of the items {1,2, . . . ,6} into three sets of cardinality two
each.
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FIG. 2. Illustration of the gaps 	̄�,i and 	�,i relevant for finding a partitioning of the items
{1,2, . . . ,6} into the sets S1 = {1,2}, S2 = {3,4}, and S3 = {5,6}.

THEOREM 1. There are positive universal constants (cup, clow) such that:5

(a) For any M ∈ C0, and any δ ∈ (0,0.14] the AR algorithm is δ-accurate for
M using a number of comparisons at most

cup log
(

n

δ

){∑
i∈S1

fAR(	1,i )

+
L−1∑
�=2

∑
i∈S�

max
{
fAR(	�,i), fAR(	̄�,i)

} + ∑
i∈SL

fAR(	̄L,i)

}
.(3.6a)

(b) For any δ ∈ (0,0.14], consider a ranking algorithm that is uniformly δ-
accurate over C1/8. Then when applied to a given pairwise comparison model M ∈
C3/8, it must make at least

clow log
(

1

2δ

){∑
i∈S1

f0(	1,i)

+
L−1∑
�=2

∑
i∈S�

max
{
f0(	�,i), f0(	̄�,i)

}+ ∑
i∈SL

f0(	̄L,i)

}
(3.6b)

comparisons on average.

Part (a) of Theorem 1 proves that the AR algorithm is δ-accurate, and charac-
terizes the number of comparisons required to find a ranking as a function of the
gaps between scores. In contrast, part (b) shows that, up to logarithmic factors, the
AR algorithm is optimal, not only in a minimax sense, but in fact when acting on
any given problem instance. The proof of part (b) involves constructing pairs of
comparison matrices that are especially hard to distinguish, and makes use of a
change of measure lemma [23], Lemma 1, from the bandit literature. For the spe-
cial case of top-1 identification (corresponding to L = 2 and k1 = 1), [18] and [39]
observe that by using the relation to multi-armed bandits discussed in Section 2.3,

5Without having optimized for the constants, our proof yields cup = 2003 and clow = 1/16.
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a standard multi-armed bandit algorithm can be applied which in turn is known to
achieve the sample complexity (3.6a). Again for the special case of top-1 identi-
fication, part (b) of Theorem 1 recovers Theorem 1 in [18]. For the special case
of top-k identification (corresponding to L = 2 and k1 = k), part (a) of Theorem 1
reduces to Theorem 1 in [39], which applies to a generic elimination algorithm
(SAVAGE) particularized to the dueling bandit problem (see [39], Section 4.2).
However, the dependency of Theorem 1 on the gaps is by a logarithmic factor bet-
ter than that in Theorem 1 in [39]. Note that our negative result in part (b) applies
to the stochastic regime, where the pairwise comparison probabilities are bounded
away from zero, and does therefore not rule out the possibility that in the regime
where the pairwise comparison probabilities are very close to one, improvements
in sample complexity are possible.

As Theorem 1 shows, while the AR algorithm is optional, the number of com-
parisons is at least linear in n, and can be (significantly) larger, depending on the
gaps between the scores. In order to gain intuition on this result, in particular the
dependence on the squared gaps, it is useful to specialize to the toy case n = 2. In
this special case with n = 2, we have τ1 = M12 and τ2 = M21 = 1 − M12. Thus,
the ranking problem reduces to testing the hypothesis {τ1 > τ2}. One can verify
that the hypothesis {τ1 > τ2} is equivalent to {M12 > 1

2}. Let Xi , i = 1, . . . ,Q be
the outcomes of Q independent comparisons of items 1 and 2, that is, P[Xi =
1] = M12 and P[Xi = 0] = 1 − M12. A natural test for {M12 > 1

2} is to test

whether X̄ > 1/2, where X̄ := 1
Q

∑Q
i=1 Xi . Supposing without loss of generality

that M12 > 1
2 , by Hoeffding’s inequality, we can upper bound the corresponding

error probability as

P[X̄ ≤ 1/2] = P[X̄ − M12 ≤ 1/2 − M12] ≤ e−2Q(1/2−M12)
2 = e−8Q(τ1−τ2)

2
.

Thus, for Q ≥ log(1/δ)

8(τ1−τ2)
2 the error probability is less than δ. The bound (3.6a) in

Theorem 1(a) yields an identical result up to a logarithmic factor.
More generally, testing for the inclusion i ∈ S� amounts to testing for 	̄�,i > 0

and 	�,i > 0, where 	̄�,i = τπ(k�−1) − τi and 	�,i = τi − τπ(k�+1). These require-
ments provide some intuition regarding the dependence of our bounds on the in-
verses of the squared gaps.

3.3. Gains due to active estimation. In order to understand the benefits of an
active strategy, it is worthwhile to compare the performance of our active method
to the (minimax optimal) guarantees obtainable by passive comparison strategies.
We hasten to add that these gains should not be seen as surprising in of themselves,
since it is well known that active estimators can often yield significant improve-
ments over passive schemes.

Recent work by a subset of the current authors [34] considers the problem of
ranking items from pairwise comparisons in a passive random design setup. On
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one hand, it is shown (Theorem 1) that a simple passive scheme—namely, one
that ranks items according to the total number of comparisons won—recovers the
top k items with high probability using n logn

(τk−τk+1)
2 comparisons in total (assuming

without loss of generality that τ1 > τ2 > · · · > τn); the same paper also establishes
a matching lower bound, meaning that no passive scheme can do better up to con-
stant factors. In contrast, Theorem 1 of the present paper shows that in the active
setting, the number of comparisons necessary and sufficient for finding the top k

items is of the order
k∑

i=1

1

(τi − τk+1)2 +
n∑

i=k+1

1

(τk − τi)2 ,

up to a logarithmic factor. Readers familiar with the bandit literature will notice
that this expression is equivalent to the complexity of top-k arm identification with
τi being the expected reward of arm i; see, for example, [22]. By comparing this
guarantee to the passive sample complexity n logn

(τk−τk+1)
2 , we can understand when

active strategies do or do not lead to substantial gains. First, note that the com-
plexity of the nonactive estimator is always higher, except for scores satisfying the
linear constraints τ1 = · · · = τk and τk+1 = · · · = τn, in which case the two estima-
tors would have similar performance. Second, the difference in sample complexity
can be as large as a factor of n, up to logarithmic factors. In particular, suppose
that the score difference τi − τi+1 is on the order of 1/n: in this case, up to loga-
rithmic factors, the sample complexity of the active and passive schemes scale as
n2 and n3, respectively. A similar conclusion holds if we compare the results of
the paper [34] with those of the present paper for the problem of recovering the
full ranking.

Having seen that the gains from active estimation depend on the distribution of
the scores {τi}ni=1, it is natural to wonder how these scores behave in real-world
settings. As one illustration, Figure 3 shows some real-world examples of this dis-
tribution for data collected by [30]; the left panel shows the scores estimated in the
paper [30] of a collection of environmental proposals for New York City, whereas
the right panel shows a collection of educational proposals for the Organisation for
Economic Co-operation and Development (OECD). These data were collected by
asking interviewees in corresponding online surveys for preferences between two
options. The goal of such online surveys is, for example, to identify the top propos-
als or a total ranking of the proposals. Our results show that estimation of the top
k proposals or another ranking with an active scheme would require a significantly
smaller number of queries compared to a nonactive estimator.

4. When parametric assumptions do not help. The active ranking algo-
rithm described and analyzed in the previous section applies to any comparison
matrix M , that is, it neither assumes nor exploits any particular structure in M ,
such as that imposed by the parametric models described in Section 2.4. Given
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FIG. 3. Estimated scores from comparisons of the proposals in the PlaNYC (a) and OECD
(b) surveys, as reported in the paper [30] (only scores of items (proposals) that were rated at
least 50 times are depicted). Estimation of the top k proposals or another ranking with an active
scheme would require a significantly smaller number of queries compared to a nonactive estima-
tor. For example, for the PlaNYC survey and top-k, k = 10, identification the ratio of the sample
complexity of the passive estimator over the sample complexity of the active estimator is about
n(τk − τk+1)−2/(

∑k
i=1(τi − τk+1)−2 + ∑n

i=k+1(τk − τi)
−2) ≈ 30.

that the AR algorithm imposes no conditions on the model, one might suspect that
when ranking data is actually drawn from a parametric model, for example, of BTL
or Thurstone type, it could be possible to come up with another algorithm with a
lower sample complexity. Surprisingly, as we show in this section, this intuition
turns out to be false in the following sense: for stochastic comparison models—
in which the comparison probabilities are bounded strictly away from zero and
one—imposing parametric assumptions can lead to at most a logarithmic reduc-
tion in sample complexity.

Recall that a parametric model is described by a continuous and strictly increas-
ing CDF �; in this section, we prove a lower bound that applies even to algorithms
that are given a priori knowledge of the function �. For any pair of constants
0 < φmin ≤ φmax < ∞, we say that a CDF � is (φmin, φmax,Mmin)-bounded if it is
differentiable, and its derivative �′ satisfies the bounds

φmin ≤ �′(t) ≤ φmax for all t ∈ [
�−1(Mmin),�

−1(1 − Mmin)
]
.(4.1)

Note that these conditions hold for standard parametric models, such as the BTL
and Thurstone models.

The following result applies to any parametric model CPAR(�) described by a
CDF of this type. It also involves the complexity parameter

F
(
τ(M)

) := ∑
i∈S1

f0(	1,i ) +
L−1∑
�=2

∑
i∈S�

max
{
f0(	�,i), f0(	̄�,i)

} + ∑
i∈SL

f0(	̄L,i),

which appeared previously in the lower bound from Theorem 1(b).
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THEOREM 2. (a) Given a tolerance δ ∈ (0,0.15], and a continuous and
strictly increasing CDF � whose derivative is (φmin, φmax,Mmin)-bounded, con-
sider any algorithm that is uniformly δ-accurate over CPAR(�)∩CMmin . Then, when
applied to a given pairwise comparison matrix M ∈ CPAR(�)∩CMmin , it must make
at least

cpar log
(

1

2δ

)
F

(
τ(M)

)
(4.2)

comparisons on average, where cpar := Mminφ
2
min

2.004φ2
max

.

(b) Let τ ∈ (0,1)n be any set of scores that is realizable by some pairwise
comparison matrix M ′ ∈ CMmin , Mmin > 0. Then for any continuous and strictly
increasing �, there exists a pairwise comparison matrix in M ∈ CPAR(�)[Mmin]
with scores τ , and in particular with F(τ(M)) = F(τ(M ′)).

First, let us provide some concrete settings of the constant cpar: for
Mmin = 3

8 , we have cpar = 0.164 and cpar = 0.169 for the BTL and Thurstone mod-
els, respectively; whereas for Mmin = 1

4 , we have cpar = 0.07 and cpar = 0.079 for
the BTL and Thurstone models, respectively.

Second, let us turn to the implications of Theorem 2. To start, it should be
noted that the lower bound (4.2) is, at least in a certain sense, stronger than the
lower bound from Theorem 1, because it applies to a broader class of algorithms—
namely, those that are δ-accurate only over the smaller class of parametric mod-
els. On the flip side, it is possible that the lower bound (4.2) might be weaker
in some sense. That is, could there be some “difficult” matrix M ′ ∈ CMmin such
that the supremum of F(τ(M)) over M ∈ CPAR(�) ∩ CMmin is much smaller than
F(τ(M ′))? Part (b) of the theorem rules out this possibility: it guarantees that for
any pairwise comparison matrix M ′—which need not be generated by a paramet-
ric model—there exists a parametric model M for which the ranking problem is
equally hard. This result is surprising because one might think that imposing para-
metric assumptions would simplify the ranking problem. In fact, the full set CMmin

is substantially larger than the parametric subclass CMmin ∩CMmin ; in particular, one
can demonstrate matrices in CMmin that cannot be well approximated by any para-
metric model; for example, see the paper [32] for inapproximability results of this
type.

A consequence of Theorem 2 is that up to logarithmic factors, the AR algo-
rithm is again optimal, even if we restrict ourselves to algorithms that are uni-
formly δ-accurate only over a parametric subclass (provided the comparison prob-
abilities are bounded away from zero and one). Thus, for stochastic comparison
models, imposing parametric assumptions only limits the flexibility while failing
to provide any significant reductions in sample complexity for ranking. It is worth
commenting that for deterministic or near-deterministic comparison models—in
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which the pairwise probabilities can be arbitrarily close to zero or one—the con-
stant cpar in the lower bound (4.2) can become small. For this reason, our lower
bound does not contradict the fact that parametric assumptions might help for
(near)-deterministic comparison models. As one example, recalling that the BTL
model described in Section 2.4 is based on a parameter vector w ∈ R

n, suppose
that we set wi = ξ(n − i) for all i ∈ [n], and then let ξ tend to infinity. Since
Mij = ewi

ewi +e
wj under the model, taking the limit ξ → ∞ leads to a fully determin-

istic comparison model in which items i beats j with probability one if and only if
wi > wj . In this limit, pairwise ranking reduces to a deterministic sorting problem,
and sorting-based algorithms (e.g., [36]) can be used to achieve top item identifica-
tion with O(n logn) comparisons. In contrast, in this deterministic setting, the AR
algorithm requires O(n2 logn) comparisons, which can be guaranteed by apply-
ing Theorem 1(a) with the associated score vector τi = 1 − i−1

n−1 . To be very clear,
this example does not violate any of our claimed results since the lower bound of
Theorem 1(b), and hence the associated claim of optimality, applies only to the
case when the pairwise comparison probabilities are bounded away from 0 and 1
by some constant Mmin.

5. Numerical results. We now turn to some numerical comparisons of our ac-
tive ranking (AR) algorithm with algorithms designed for parametric models. One
finding—consistent with our theory—is that the AR algorithm is on par or out-
performs these algorithms, unless the pairwise comparison probabilities are close
to zero or one. Moreover, we find that algorithms designed for parametric models
start to break down even if the parametric modeling assumption is only slightly vi-
olated. Finally, in the Supplementary Material [16], we experiment with the choice
of constants setting confidence intervals αt for the AR algorithm, and find that the
choice given by our theory is conservative.

5.1. Comparison to algorithms tailored to parametric models. Our results in
Section 4 show that for stochastic comparison models, algorithms that exploit para-
metric structure can have sample complexities lower by at most a logarithmic fac-
tor. On the other hand, for (near)-deterministic comparison models, we gave an
example showing that parametric structure can allow for significant gains. In this
section, we perform some numerical experiments to quantify and understand these
two different regimes.

To this end, we consider the problem of top-item recovery, that is, the prob-
lem specified by L = 2 and k1 = 1. We study this top-item recovery problem
(also known as the dueling bandit problem) because of availability of previ-
ous algorithms for this special case of the more general ranking problem con-
sidered in our paper. We compare the AR algorithm to the Plackett–Luce PAC
(PLPAC) [36] and Beat the Mean Bandit (BTMB) [41] algorithms. Both al-
gorithms yield an δ-accurate ranking provided the BTL modeling assumptions
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hold. We choose the PLPAC algorithm for comparison as it is based on sort-
ing: a BTL problem with pairwise comparison probabilities close to one and
zero is in essence a noisy sorting problem, thus we expect sorting based proce-
dures to work well here. The BTMB algorithm is guaranteed to succeed if Strong
Stochastic Transitivity (SST) (or a relaxed version thereof) and a certain stochas-
tic transitivity triangle inequality hold;6 both assumptions are satisfied for the
BTL model. Regarding the algorithms parameters; for the AR algorithm we set

αt =
√

log(n/δ)+0.75 log log(n/δ)+1.5 log(1+log(t/2))
2t

, as for this choice the AR algorithm
provably succeeds according to our main result (in practice, the constants in αt

may be chosen smaller, see the Supplementary Material for a discussion for the
choice of αt , which leads to even better performance). We set n = 10 and con-
sider two different BTL models parameterized by η > 0 and ξ > 0, respectively,
and denoted by M(η) and M(ξ). The parameters η and ξ determine how close
the minimal and maximal pairwise comparison probabilities are to 0 and 1; the
larger, the closer. Specifically, the parameters of the BTL model M(η) are given
by wi = log(1/η + n − i), i = 1, . . . , n. This results in pairwise comparison prob-
abilities M

(η)
ij = 1/η+n−i

2(1/η+n)−i−j
. The parameters of the second BTL model, M(ξ),

are wi = ξ(n − i) which implies that the probability that item i beats the next best
item i + 1 is M

(ξ)
i,i+1 = 1

1+e−ξ . Thus, each item beats all lower ranked ones with

probability at least 1
1+e−ξ , which results in all the pairwise comparison probabili-

ties being skewed away from 1/2; the larger ξ the “closer” those probabilities are
to 0 and 1.

In Figure 4, we depict the empirical sample complexity for both models as a
function of Mmax := maxi,j Mij , along with the corresponding complexity param-
eters F(τ(M(η))) and F(τ(M(ξ))). Here, we choose the model parameters η and
ξ such that Mmax varies between 0.65 and 0.99. The results show, as predicted by
our theory, that the sample complexity of the AR algorithm is essentially a con-
stant times the complexity parameter F . In contrast, the sample complexity of the
PLPAC and the BTMB algorithms improves in Mmax relative to the complexity
parameter F . Note that the AR algorithm performs better than PLPAC and BTMB
if Mmax is not too large, while both PLPAC and BTMB have lower sample com-
plexity than the AR algorithm in the regime where Mmax is very close to one. We
remark that the relative improvement is not determined solely by Mmax, as shown
by the curves for the two differently parameterized BTL models differing.

Our next simulation shows that, however, even if the pairwise comparison ma-
trix only deviates slightly from the BTL model, both the sample complexity and
more pertinently the failure probability (i.e., PM [Ŝ� �= S�, for one or more � =

6A necessary and sufficient condition for a matrix to satisfy the SST condition is the existence of
a permutation of the items, such that the permuted pairwise comparison matrix M is nondecreasing
across rows and nonincreasing across columns. The stochastic transitivity inequality demands that
for each triplet with τ1 > τj > τk , we have that M1j − 1/2 + Mjk − 1/2 ≥ M1k − 1/2.
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FIG. 4. (a) Empirical sample complexity of the AR, PLPAC, and BTMB algorithms applied to the
BTL model M(η) with parameters wi = log(η + n − i), i = 1, . . . ,10, and (b) applied to the BTL
model M(ξ) with parameters wi = ξ(n − i), i = 1, . . . ,10, as a function of Mmax := maxi,j Mij .
For panel (a) and (b) we varied η and ξ such that Mmax ∈ [0.65,0.99]. The error bars correspond
to one standard deviation from the mean. While the AR algorithm has even lower sample complexity
than the PLPAC and BTMB algorithms in the regime where Mmax is not to close to 1; the PLPAC
and BTMB perform better when Mmax is close to one.

1, . . . ,L]) can become very large. Specifically, as before, we generate a BTL
model M with n = 10 and parameters wi = log(1 + n − i), i = 1, . . . , n. We then
substitute a fraction of λ of the off-diagonal elements of M with a number drawn
uniformly from [0,1]. Thus, the model M transitions from a BTL model to a ran-
dom pairwise comparison matrix in λ; for small λ, the model M is close to the
original BTL model. The results, depicted in Figure 5, show that, while the AR al-

FIG. 5. (a) Relative sample complexity defined as the number of comparisons until termination,
Q, divided by the complexity parameter F(τ(M)), and (b) failure probability on a BTL model M

with n = 10 and with a fraction of λ of the off-diagonals of M substituted by a random pairwise
comparison probability. The model transitions from a BTL model to a random pairwise comparison
matrix in λ; the closer λ to zero the closer M to the original BTL model. The results show that,
while the AR algorithm yields an δ-accurate ranking after O(F(τ(M))) comparisons, irrespectively
of λ, the sample complexity and more importantly the failure probability of the PLPAC and BTMB
algorithms become very large in λ.
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gorithm succeeds for all values of λ as expected, the sample complexity and more
importantly the failure probability of the PLPAC and BTMB algorithms become
very large. We hasten to add that both the PLPAC and BTMB algorithm are not
designed for this scenario; therefore, it might not be surprising that they fail. The
results show that these algorithms are, however, not robust to violations of their
assumed models.

6. Proofs. In this section, we provide the proofs of our two main theorems.
In order to simplify notation, we take the underlying permutation π equal to the
identity, so that τ1 > τ2 > · · · > τn. This assumption entails no loss of generality,
since it can also be satisfied by re-indexing the items if necessary.

6.1. Proof of Theorem 1(a). In this section, we provide a proof of the achiev-
able result stated in part (a) of Theorem 1. Our proof consists of three main steps.
We begin by showing that the estimate τ̂i(t) is guaranteed to be αt -close to τi ,
for all i ∈ S , with high probability. We then use this result to show that the AR
algorithm never misclassifies any item, and that it stops with the number of com-
parisons satisfying the claimed upper bound.

Throughout the paper, we use S to denote the set of items that have not been
ranked yet; to be clear, since items are eliminated from S at certain time steps t ,
the set S changes with t , but we suppress this dependence for notational simplicity.

The following lemma ensures that the estimated score τ̂i is close to the latent
score τi . As shown below, the lemma follows by noting that τ̂i (t) is a sum of t inde-
pendent Bernoulli random variables, each of which has mean τi/t , and application
of a version of the law of the iterated logarithm.

LEMMA 1. Under the theorem’s assumptions, the event

Eα := {∣∣τ̂i(t) − τi

∣∣ ≤ αt , for all i ∈ S and for all t ≥ 1
}

(6.1)

occurs with probability at least 1 − δ.

Our next step is to show that provided that the event Eα occurs, the AR algo-
rithm never misclassifies any item, that is, Ŝ� ⊆ S� for all � and for all t ≥ 1. First
suppose that, at a given time step t , the AR algorithm did not misclassify any item
at a previous time step. We show that, at time t , conditioned on the event Eα , any
item j ∈ S is added to Ŝ� only if j ∈ S�, which implies that the AR algorithm
does not misclassify any item at time t . This fact is a consequence of our second
auxiliary result.

In order to state this second lemma, we require some additional notation. Let
τ{k} denote the k-th largest score among the latent scores τi , i ∈ S . Note that we
use the notation {·} to emphasize that the index {k} is not necessarily equal to the
index (k), since the latter corresponds to the kth largest score among the estimated
scores τ̂i(t), i ∈ S .
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LEMMA 2. Suppose that the event Eα occurs. Then both of the implications

• for any j ∈ S, τ̂j (t) < τ̂(k̂�−1)
(t) − 4αt implies τj < τ{k̂�−1}, and

(6.2a)

• for any j ∈ S, τ̂j (t) > τ̂(k̂�+1)(t) + 4αt implies τj > τ{k̂�+1},
(6.2b)

hold for all t ≥ 1.

Provided that the AR algorithm did not misclassify any item at a previous time
step, some consequences of implications (6.2a) and (6.2b) are the following:

• first, for any index �, an item is added to Ŝ� at time t only if j ∈ S�.
• therefore, we are guaranteed that Ŝ� ⊆ S� at time t + 1.

These consequences allow us to apply an inductive argument to conclude that the
AR algorithm never misclassifies any item.

Our next step is to show that, conditioned on the event Eα on which the AR
algorithm does not misclassify any item, all items are eliminated after the number
of comparisons given in equation (3.6a) have been carried out. Since, by Lemma 1,
the event Eα holds with probability at least 1 − δ, this concludes the proof of
Theorem 1(a).

In order to establish the former claim, we use the following lemma, in which
we made the dependence of the set of candidates S on t explicit by writing S(t).

LEMMA 3. Suppose that the event Eα occurs. For any index � ∈ {2, . . . ,L}
and any item i ∈ S� ∩ S(t i), we have, with c1 := 654,

τ̂i (t i) < τ̂(k̂�−1)
(t i) − 4αti where t i := c1

	̄2
�,i

log
(

n

δ
log

(
2

	̄�,i

))
,(6.3a)

	̄�,i = τk�−1 − τi , and for � ∈ {1, . . . ,L − 1} and any item i ∈ S� ∩ S(t i), we have

τ̂i(t i) > τ̂(k̂�+1)(t i) − 4αti
where t i := c1

	̄2
�,i

log
(

n

δ
log

(
2

	�,i

))
,(6.3b)

	�,i = τi − τk�+1.

Consequently, the index i ∈ S� is eliminated from the set of candidates S after
no more than the following number of many time steps (and hence comparisons):⎧⎪⎪⎨⎪⎪⎩

t i , if � = 1

max(t i, t i), if � ∈ {2, . . . ,L − 1}
t i , if � = L.
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Using the relations

t i ≤ cup
log(2 log(2/	̄�,i))

	̄2
�,i

log(n/δ)

and

t i ≤ cup
log(2 log(2/	�,i))

	2
�,i

log(n/δ),

where the inequalities hold for some constant cup (in particular, we can set cup =
2003), it follows that the AR algorithm terminates after the number of comparisons
stated in equation (3.6a) has been carried out.

It remains to prove Lemmas 1, 2 and 3, and we do so in the Supplementary
Material.

6.2. Proof of Theorem 1(b). We now turn to the proof of the lower bound from
Theorem 1. We first introduce some notation required to state a useful lemma [23],
Lemma 1, from the bandit literature. Let ν = {νj }mj=1 be a collection of m probabil-
ity distributions, each supported on the real line R. Consider an algorithm A that,
at times t = 1,2, . . . , selects the index it ∈ [m] and receives an independent draw
Xt from the distribution νit in response. Algorithm A may select it only based on
past observations, that is, it is Ft−1 measurable, where Ft is the σ -algebra gener-
ated by i1,Xi1, . . . , it ,Xit . Algorithm A has a stopping rule χ that determines the
termination of A. We assume that χ is a stopping time measurable with respect to
Ft and obeying P[χ < ∞] = 1.

Let Qi(χ) denote the total number of times index i has been selected by the
algorithm A (until termination). For any pair of distributions ν and ν′, we let
KL(ν, ν′) denote their Kullback–Leibler divergence, and for any p,q ∈ [0,1], let
d(p, q) := p log p

q
+ (1 − p) log 1−p

1−q
denote the Kullback–Leiber divergence be-

tween two binary random variables with success probabilities p,q .
With this notation, the following lemma relates the cumulative number of com-

parisons to the uncertainty between the actual distribution ν and an alternative
distribution ν′.

LEMMA 4 ([23], Lemma 1). Let ν, ν′ be two collections of m probability dis-
tributions on R. Then for any event E ∈ Fχ with Pν[E] ∈ (0,1), we have

m∑
i=1

Eν

[
Qi(χ)

]
KL

(
νi, ν

′
i

) ≥ d
(
Pν[E],Pν′ [E]).(6.4)

Let us now use Lemma 4 to prove Theorem 1(b). In particular, we apply it using
the event

E := {Ŝ� = S�, for all � = 1, . . . ,L},(6.5)
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which corresponds to success of the algorithm A. Note that here {Ŝ�}L�=1 are the
estimated sets at termination of the algorithm. Recalling that χ is the stopping
rule of algorithm A, we are guaranteed that E ∈ Fχ . Given the linear relations
Mij = 1 − Mji , the pairwise comparison matrix M is determined by the entries
{Mij , i = 1, . . . , n, j = i + 1, . . . , n}. Let Qij (χ) be the total number of compar-
isons between items i and j made by A. For any other pairwise comparison matrix
M ′ ∈ C0, Lemma 4 ensures that

n∑
i=1

n∑
j=i+1

EM [Qij ]d(
Mij ,M

′
ij

) ≥ d
(
PM [E],PM ′ [E]).(6.6)

In order to aid in subsequent exposition, we augment the notation S� defined
in (2.1) earlier to explicitly depict the underlying pairwise-probability matrix
which S� depends on. Specifically, for any matrix M ∈ [0,1]n×n such that
Mij + Mji = 1 for every entry (i, j), we let S�(M) denote the value of S� when
the probabilities of the outcomes of the pairwise-comparisons are governed by the
matrix M (we will drop this additional dependence on the matrix whenever it is
clear from the context).

For some � > 1 and item m ∈ S�(M), our next step is to construct a matrix
M ′ ∈ C1/8 such that m /∈ S�(M

′) under the distribution M ′. Since the algorithm A
is uniformly δ-accurate over C1/8 by assumption, we are guaranteed that

PM [E] ≥ 1 − δ and PM ′ [E] ≤ δ,

from which it follows that

d
(
PM [E],PM ′ [E]) ≥ d(δ,1 − δ) = (1 − 2δ) log

1 − δ

δ
≥ log

1

2δ
,(6.7)

where the last inequality holds for δ ≤ 0.15.
It remains to specify the alternative matrix M ′ ∈ C0 for use in inequality (6.7):

it is defined with entries

M ′
ij :=

⎧⎪⎪⎨⎪⎪⎩
Mmj + (τk�−1 − τm) if i = m,j ∈ [n] \ {m}
Mim − (τk�−1 − τm) if j = m, i ∈ [n] \ {m}
Mij otherwise.

(6.8)

From this definition, it follows that

τ ′
m = 1

n − 1

∑
j∈[n]\{m}

M ′
mj = 1

n − 1

∑
j∈[n]\{m}

(
Mmj + (τk�−1 − τm)

) = τk�−1 .

Similarly, all other scores τ ′
i , i ∈ [n] \ {m}, are smaller than τi by a common con-

stant, that is, for i ∈ [n] \ {m} τ ′
i = τi − 1

n−1(τk�−1 − τm). See Figure 8 in the
Supplementary Material for an illustration. It follows that, under the distribution
M ′, the score of item m is among the k�−1 highest scoring items, which ensures
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m /∈ S�(M
′). Moreover, we claim that M ′ ∈ C1/8. This inclusion follows from the

assumption M ∈ C3/8, which implies that M ′
mj ≤ 5

8 + (5
8 − 3

8) ≤ 7
8 . An analogous

argument shows that M ′
mj ≥ 1

8 .
Next, consider the total number of comparisons item m is involved in that is,

Qm = ∑
j∈[n]\{m} Qmj . Recall that Qij is the total number of comparisons between

items i and j made by the algorithm A. By the linearity of expectation, we have
the following bound on the expectation of Qm:

max
j∈[n]\{m}d

(
Mmj,M

′
mj

)
EM [Qm] = max

j∈[n]\{m}d
(
Mmj,M

′
mj

) ∑
j ′∈[n]\{m}

EM [Qmj ′ ]

≥ ∑
j∈[n]\{m}

EM [Qmj ]d(
Mmj,M

′
mj

)
.

Now observe that by the definition of M ′ in equation (6.8), we have d(Mij ,M
′
ij ) =

0 for all (i, j) outside of the sets {(m, j) | j ∈ [n] \ {m}} and {(i,m) | i ∈ [n] \ {m}}.
Removing these terms from the sum yields

max
j∈[n]\{m}d

(
Mmj,M

′
mj

)
EM [Qm] ≥

n∑
i=1

n∑
j=i+1

EM [Qij ]d(
Mij ,M

′
ij

)
(i)≥ d

(
PM [E],PM ′ [E]) (ii)≥ log

1

2δ
,(6.9)

where step (i) follows from inequality (6.6) in Lemma 4; and step (ii) follows from
inequality (6.7).

We next upper bound the KL divergence on the left-hand side of inequality (6.9).
Using the inequality logx ≤ x − 1 valid for x > 0, we have

d
(
Mmj,M

′
mj

) ≤ (Mmj − M ′
mj )

2

M ′
mj (1 − M ′

mj )
≤ 10(τk�−1 − τm)2,(6.10)

where the last step uses the definition of M ′ in equation (6.8), as well as the inclu-
sion 1

8 ≤ M ′
mj ≤ 7

8 , which implies that 1
M ′

mj (1−M ′
mj )

≤ 64/7 < 10.

Applying inequality (6.10) to the left-hand side of inequality (6.9) yields

EM [Qm] ≥ log(1/(2δ))

10(τk�−1 − τm)2 valid for each m ∈ S�(M) and � > 1.(6.11)

Now consider an index m ∈ S�(M) for some � < L. In this case, again construct
an alternative pairwise comparison matrix M ′ under which m /∈ S�(M

′). Specifi-
cally, for notational convenience, we set

M ′
ij =

⎧⎪⎪⎨⎪⎪⎩
Mmj − (τm − τk�+1) i = m,j ∈ [n] \ {m}
Mim + (τm − τk�+1) j = m, i ∈ [n] \ {m}
Mij otherwise.
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In a similar manner to our earlier argument, we have τ ′
i = τi + 1

n−1(τm − τk�+1)

for i ∈ [n] \ {m} and τ ′
m = τk�+1 (relative to the scores τi , the score of m is smaller

and all others are larger by the same factor). Under M ′, item m is not among the
k� items with the largest scores and, therefore, m /∈ S�(M

′). Carrying out the same
computations as above yields

EM [Qm] ≥ log(1/(2δ))

10(τm − τk�+1)2 .(6.12)

Combining inequalities (6.11) and (6.12) across all items m yields the bound

EM [Qm] =
n∑

i=1

E[Qi]

≥ clow log
(
1/(2δ)

)[∑
i∈S1

	−2
1,i +

L−1∑
�=2

∑
i∈S�

max
{
	−2

�,i , 	̄
−2
�,i

} + ∑
i∈SL

	̄−2
L,i

]
,

with clow = 1/10, thereby yielding the claimed result.

6.3. Proof of Theorem 2(b). Let τ ∈ (0,1)n be any set of scores that is re-
alizable by some pairwise comparison matrix in CMmin that is not necessarily in
CPAR(�) ∩ CMmin . Theorem 2(b) is proven by showing that for any continuous and
strictly increasing �, there exists a pairwise comparison matrix in CPAR(�)∩CMmin

with scores τ . As mentioned before, the proof of Theorem 2(b) relies on results
established by Joe [21] on majorization orderings of pairwise probability matrices.
For convenience, we define the set of pairwise probability matrices with scores
τ = (τ1, . . . , τn) as

C(τ ) =
{
M ∈ C0

∣∣∣ 1

n − 1

∑
j �=i

Mij = τi, for all i

}
.

Minimality for pairwise comparison matrices. Our proof requires some back-
ground on majorization and a certain notion of minimality for pairwise compar-
ison matrices. We say that a vector y ∈ R

m is nonincreasing if its entries sat-
isfy y1 ≥ y2 ≥ · · · ≥ ym. Given two nonincreasing vectors y, z ∈ R

m such that∑m
i=1 yi = ∑m

i=1 zi , we say y majorizes z, written y � z, if
∑k

i=1 yi ≥ ∑k
i=1 zi , for

all k = 1, . . . ,m − 1.
Given pairwise comparison matrices M,M ′ ∈ C(τ ), we let v(M), v(M ′) ∈

(0,1)n(n−1) be vectors with entries corresponding to the off-diagonal elements of
M and M ′, respectively, in nonincreasing order. We say that M majorizes M ′ if
v(M) � v(M ′), and we use the shorthand M � M ′ to denote this relation. Finally,
a matrix M ∈ C(τ ) is minimal if any other M ′ ∈ C(τ ) obeying M � M ′ satisfies
the relation v(M ′) = v(M).

In order to prove Theorem 2(b), we show that there is a minimal M ∈ C(τ ) ∩
CMmin , and this minimal M takes a parametric form and thus M ∈ CPAR(�)∩CMmin .
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We first note that Joe ([21], Theorem 2.7) observed that the argument minimizing
any Schur convex7 function over the set C(τ ) is a minimal M . Let us now construct
a function that is Schur convex. In particular, we first define a scalar function ψ :
[0,1] → [0,∞] as

ψ(u) =

⎧⎪⎪⎨⎪⎪⎩
1

2

∫ u

1/2
�−1(x) dx u ∈

[
1

2
,1

]
−1

2

∫ 1/2

u
�−1(x) dx u ∈

[
0,

1

2

)
.

(6.13)

The function ψ is well defined since the inverse �−1 exists due to our assumption
that � is strictly increasing and continuous. Since � is strictly increasing, so is
�−1. It follows that ψ is strictly convex. From the property that all symmetric and
strictly convex functions are also strictly Schur convex, it follows that the function∑

i,j �=i ψ(Mij ) is strictly Schur convex over C(τ ). As a result, we are guaranteed
that the argument minimizing the following convex program corresponds to a min-
imal matrix:

minimize
∑
i,j>i

(
ψ(Mij ) + ψ(1 − Mij )

)
subject to 0 ≤ Mij ≤ 1 for all i ∈ [n], j = i + 1, . . . , n, and

1

n − 1

i−1∑
j=1

(1 − Mji) + 1

n − 1

n∑
j=i+1

Mij = τi for all i ∈ [n].(6.14)

Here, the minimization is performed over the variables Mij for i = 1, . . . , n and
j = i + 1, . . . , n.

First, note that any M that is feasible for the problem (6.14) obeys M ∈ C(τ ).
We next show that any optimal solution M∗ to the problem (6.14) has entries
satisfying the interval inclusion M∗

ij ∈ [Mmin,1 − Mmin] for all pairs (i, j), and
therefore M∗ ∈ CMmin , as desired. Indeed, suppose that there were an optimal
solution M∗ that violated this inclusion. By assumption, there exists a matrix
M ′ ∈ C(τ ) ∩ CMmin . Thus, if the inclusion were violated, then there would be some
index pair (i, j) such that M∗

ij > 1 − Mmin. This would imply that M∗ is strictly
larger than M ′ in the majorization ordering. But since the objective function (6.14)
is Schur convex, this contradicts the optimality of M∗.

We have established that M∗ ∈ C(τ ) ∩ CMmin . We next show that M∗ takes
a parametric form, which establishes M∗ ∈ CPAR(�) ∩ CMmin , which concludes
the proof. Since there exists a solution to the convex optimization problem (6.14)
that satisfies the inequality constraints strictly (due to Mmin > 0, by assumption),

7In our context, a function f : (0,1)n×n → R is Schur convex (or order-preserving) if for all
M,M ′ ∈ C(τ ) such that M is majorized by M ′, we have f (M) ≤ f (M ′).
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Slater’s conditions hold, and the Karush–Kuhn–Tucker (KKT) conditions are nec-
essary and sufficient for optimality (see, for instance, [4], Section 5.5). Thus, the
primal and dual optimal solutions M∗

ij and {λ∗
ij , κ

∗
ij , ν

∗
i } must satisfy the KKT con-

ditions

λ∗
ij , κ

∗
ij ≥ 0,(6.15a)

λ∗
ij

(
M∗

ij − 1
) = 0, κ∗

ijM
∗
ij = 0, and(6.15b)

ψ ′(M∗
ij

) − ψ ′(1 − M∗
ij

) + λ∗
ij − κ∗

ij + ν∗
i − ν∗

j = 0.(6.15c)

Since M∗
ij ∈ (0,1) for all pairs (i, j), the KKT conditions imply that λ∗

ij = 0
and κ∗

ij = 0. Consequently, equation (6.15c) takes the simpler form

ν∗
j − ν∗

i = ψ ′(M∗
ij

) − ψ ′(1 − M∗
ij

) = 1

2
�−1(

M∗
ij

) − 1

2
�−1(

1 − M∗
ij

)
(i)= �−1(

M∗
ij

)
,(6.16)

where step (i) follows because �(t) = 1 − �(−t) for all t ∈ R by assumption.
It follows that M∗

ij = �(ν∗
j − ν∗

i ) for all pairs (i, j), meaning that M∗ takes a
parametric form, as claimed.

7. Discussion. In this paper, we considered the problem of finding a partial
or complete ranking from active pairwise comparisons. We proved that a simple
and computationally efficient algorithm succeeds in recovering the ranking with
a sample complexity that is optimal up to logarithmic factors. We furthermore
proved that this algorithm remains optimal when imposing common parametric
assumptions such as the popular BTL or Thurstone models—provided the pair-
wise comparison probabilities are bounded away from 0 and 1. This show that,
perhaps surprisingly, imposing common parametric assumptions cannot reduce the
sample complexity of ranking by more than a log-factor in the stochastic regime.
That being said, it should be noted that in practice, the possibility of gaining (at
most) a log factor from assuming the parametric model may be overshadowed by
the significant additional robustness afforded by our more general model class.
For instance, see Ballinger et al. [3] for some empirical evidence that parametric
models do not provide good fit in many applications, and as our numerical results
demonstrated, algorithms relying on parametric models can be quite sensitive to
violations of those modeling assumptions.

There are a number of open and practically relevant questions suggested by
our work. From a theoretical perspective, it would be interesting to provide an
algorithm and corresponding guarantees for parametric models that matches our
lower bound in the regime where the comparison probabilities are bounded away
from zero and one, and at the same time is optimal in the regime where the pairwise
comparison probabilities are very close to zero and one. A final interesting topic
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is related to approximate rankings, as in practice, one might only be interested
in finding an approximate ranking, or might only be able to find an approximate
ranking due to a limited budget.

SUPPLEMENTARY MATERIAL

Supplement to “Active ranking from pairwise comparisons and when para-
metric assumptions do not help.” (DOI: 10.1214/18-AOS1772SUPP; .pdf). In
the supplement, we provide additional numerical results as well as the proofs of
some of the results in our paper.
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