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ADDITIVE MODELS WITH TREND FILTERING

BY VEERANJANEYULU SADHANALA AND RYAN J. TIBSHIRANI

Carnegie Mellon University

We study additive models built with trend filtering, that is, additive mod-
els whose components are each regularized by the (discrete) total variation
of their kth (discrete) derivative, for a chosen integer k ≥ 0. This results in
kth degree piecewise polynomial components, (e.g., k = 0 gives piecewise
constant components, k = 1 gives piecewise linear, k = 2 gives piecewise
quadratic, etc.). Analogous to its advantages in the univariate case, additive
trend filtering has favorable theoretical and computational properties, thanks
in large part to the localized nature of the (discrete) total variation regularizer
that it uses. On the theory side, we derive fast error rates for additive trend
filtering estimates, and show these rates are minimax optimal when the under-
lying function is additive and has component functions whose derivatives are
of bounded variation. We also show that these rates are unattainable by addi-
tive smoothing splines (and by additive models built from linear smoothers, in
general). On the computational side, we use backfitting, to leverage fast uni-
variate trend filtering solvers; we also describe a new backfitting algorithm
whose iterations can be run in parallel, which (as far as we can tell) is the
first of its kind. Lastly, we present a number of experiments to examine the
empirical performance of trend filtering.

1. Introduction. As the dimension of the input space grows large, nonpara-
metric regression turns into a notoriously difficult problem. In this work, we adopt
the stance taken by many others, and consider an additive model for responses
Y i ∈ R, i = 1, . . . , n and corresponding input points Xi = (Xi

1, . . . ,X
i
d) ∈ R

d ,
i = 1, . . . , n, of the form

Y i = μ +
d∑

j=1

f0j

(
Xi

j

) + εi, i = 1, . . . , n,

where μ ∈ R is an overall mean parameter, each f0j is a univariate function with∑n
i=1 f0j (X

i
j ) = 0 for identifiability, j = 1, . . . , d , and the errors εi , i = 1, . . . , n

are i.i.d. with mean zero. A comment on notation: here and throughout, when in-
dexing over the n samples we use superscripts, and when indexing over the d

dimensions we use subscripts, so that, for example, Xi
j denotes the j th component

of the ith input point. (Exceptions will occasionally be made, but the role of the
index should be clear from the context.)
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Additive models are a special case of the more general projection pursuit re-
gression model of Friedman and Stuetzle (1981). Additive models for the Cox
regression and logistic regression settings were studied in Tibshirani (1983) and
Hastie (1983), respectively. Some of the first asymptotic theory for additive mod-
els was developed in Stone (1985). Two algorithms closely related to (backfitting
for) additive models are the alternating least squares and alternating conditional
expectations methods, from van der Burg and de Leeuw (1983) and Breiman and
Friedman (1985), respectively. The work of Buja, Hastie and Tibshirani (1989)
advocates for the use of additive models in combination with linear smoothers,
a surprisingly simple combination that gives rise to flexible and scalable multidi-
mensional regression tools. The book by Hastie and Tibshirani (1990) is the defini-
tive practical guide for additive models for exponential family data distributions,
that is, generalized additive models.

More recent work on additive models is focused on high-dimensional nonpara-
metric estimation, and here the natural goal is to induce sparsity in the component
functions, so that only a few select dimensions of the input space are used in the
fitted additive model. Some nice contributions are given in Lin and Zhang (2006),
Meier, van de Geer and Bühlmann (2009), Ravikumar et al. (2009), all primarily
focused on fitting splines for component functions and achieving sparsity through
a group lasso type penalty. In other even more recent and interesting work sparse
additive models, Lou et al. (2016) consider a semiparametric (partially linear) ad-
ditive model, and Petersen, Witten and Simon (2016) study componentwise fused
lasso (i.e., total variation) penalization.

The literature on additive models (and by now, sparse additive models) is vast
and the above is far from a complete list of references. In this paper, we examine a
method for estimating additive models wherein each component is fit in a way that
is locally adaptive to the underlying smoothness along its associated dimension of
the input space. The literature on this line of work, as far as we can tell, is much
less extensive. First, we review linear smoothers in additive models, motivate our
general goal of local adaptivity, and then describe our specific proposal.

1.1. Review: Additive models and linear smoothers. The influential paper by
Buja, Hastie and Tibshirani (1989) studies additive minimization problems of the
form

min
θ1,...,θd∈Rn

∥∥∥∥∥Y − Ȳ1 −
d∑

j=1

θj

∥∥∥∥∥
2

2

+ λ

d∑
j=1

θT
j Qjθj

subject to 1T θj = 0, j = 1, . . . , d,

(1)

where Y = (Y 1, . . . , Y n) ∈ R
n denotes the vector of responses, and Y − Ȳ1 is its

centered version, with Ȳ = 1
n

∑n
i=1 Y i denoting the sample mean of Y , and 1 =

(1, . . . ,1) ∈ R
n the vector of all 1s. Each vector θj = (θ1

j , . . . , θn
j ) ∈ R

n represents
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the evaluations of the j th component function fj in our model, that is, tied together
by the relationship

θi
j = fj

(
Xi

j

)
, i = 1, . . . , n, j = 1, . . . , d.

In the problem (1), λ ≥ 0 is a regularization parameter and Qj , j = 1, . . . , d are
penalty matrices. As a typical example, we might consider Qj to be the Reinsch
penalty matrix for smoothing splines along the j th dimension of the input space,
for j = 1, . . . , d . Under this choice, a backfitting (block coordinate descent) rou-
tine for (1) would repeatedly cycle through the updates

(2) θj = (I + λQj)
−1

(
Y − Ȳ1 − ∑

� �=j

θ�

)
, j = 1, . . . , d,

where the j th update fits a smoothing spline to the j th partial residual, over the
j th dimension of the input points, denoted by Xj = (X1

j ,X
2
j , . . . ,X

n
j ) ∈ R

n. At
convergence, we arrive at an additive smoothing spline estimate, which solves (1).

Modeling the component functions as smoothing splines is arguably the most
common formulation for additive models, and it is the standard in several statis-
tical software packages like the R package gam. However, as Buja, Hastie and
Tibshirani (1989) explain, the backfitting perspective suggests a more algorith-
mic approach to additive modeling: one can replace the operator (I + λQj)

−1 in
(2) by Sj , a particular (user-chosen) linear smoother, meaning, a linear map that
performs univariate smoothing across the j th dimension of inputs Xj . The lin-
ear smoothers Sj , j = 1, . . . , d could correspond to smoothing splines, regression
splines (regression using a spline basis with given knots), kernel smoothing, local
polynomial smoothing or a combination of these, across the input dimensions. In
short, as argued in Buja, Hastie and Tibshirani (1989), the class of linear smoothers
is broad enough to offer fairly flexible, interesting mechanisms for smoothing, and
simple enough to understand precisely. Most of the work following Buja, Hastie
and Tibshirani (1989) remains in keeping with the idea of using linear smoothers
in combination with additive models.

1.2. The limitations of linear smoothers. The beauty of linear smoothers lies
in their simplicity. However, with this simplicity comes serious limitations, in
terms of their ability to adapt to varying local levels of smoothness. In the univari-
ate setting, the seminal theoretical work by Donoho and Johnstone (1998) makes
this idea precise. With d = 1, suppose that underlying regression function f0 lies
in the univariate function class

(3) Fk(C) = {
f : TV

(
f (k)) ≤ C

}
,

for a constant C > 0, where TV(·) is the total variation operator, and f (k) the
kth weak derivative of f . The class in (3) allows for greater fluctuation in the lo-
cal level of smoothness of f0 than, say, more typical function classes like Holder
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and Sobolev spaces. The results of Donoho and Johnstone (1998) (see also Sec-
tion 5.1 of Tibshirani (2014)) imply that the minimax error rate for estimation over
Fk(C) is n−(2k+2)/(2k+3), but the minimax error rate when we consider only lin-
ear smoothers (linear transformations of Y ) is n−(2k+1)/(2k+2). This difference is
highly nontrivial, for example, for k = 0 this is a difference of n−2/3 (optimal)
versus n−1/2 (optimal among linear smoothers) for estimating a function f0 of
bounded variation.

It is important to emphasize that this shortcoming is not just a theoretical one; it
is also clearly noticeable in basic practical examples. Just as linear smoothers will
struggle in the univariate setting, an additive estimate based on linear smoothers
will not be able to efficiently track local changes in smoothness, across any of
the input dimensions. This could lead to a loss in accuracy even if only some of
the components f0j , j = 1, . . . , d possesses heterogeneous smoothness across its
domain.

Two well-studied univariate estimators that are locally adaptive, that is, that at-
tain the minimax error rate over the kth order total variation class in (3), are wavelet
smoothing and locally adaptive regression splines, as developed by Donoho and
Johnstone (1998) and Mammen and van de Geer (1997), respectively. There is
a substantial literature on these methods in the univariate case (especially for
wavelets), but fewer authors have considered them in the additive models con-
text. Some notable exceptions are Petersen, Witten and Simon (2016), Sardy and
Tseng (2004), Zhang and Wong (2003), with the latter work especially related to
our focus in this paper.

1.3. Additive trend filtering. We consider additive models that are constructed
using trend filtering (instead of linear smoothers, wavelets, or locally adaptive re-
gression splines) as their componentwise smoother. Proposed independently by
Steidl, Didas and Neumann (2006) and Kim et al. (2009), trend filtering is a
relatively new approach to univariate nonparametric regression. As explained in
Tibshirani (2014), it can be seen as a discrete-time analog of the locally adaptive
regression spline estimator. Denoting by X = (X1, . . . ,Xn) ∈ R

n the vector of uni-
variate input points, where we assume X1 < · · · < Xn, the trend filtering estimate
of order k ≥ 0 is defined as the solution of the optimization problem

(4) min
θ∈Rn

1

2
‖Y − θ‖2

2 + λ
∥∥D(X,k+1)θ

∥∥
1,

where λ ≥ 0 is a tuning parameter, and D(X,k+1) ∈ R
(n−k−1)×n is a kth order differ-

ence operator, constructed based on X. These difference operators can be defined
recursively, as in

(5) D(X,1) =

⎡
⎢⎢⎢⎣
−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

0 0 0 . . . −1 1

⎤
⎥⎥⎥⎦ ∈ R

(n−1)×n,
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and for k = 1,2,3, . . . ,

D(X,k+1) = D(X,1) diag
(

k

Xk − X1 , . . . ,
k

Xn − Xn−k+1

)
D(X,k)

∈ R
(n−k−1)×n.

(6)

(The leading matrix D(X,1) in (6) is the (n − k − 1) × (n − k) version of the
difference operator in (5).) Intuitively, the interpretation is that the problem (4)
penalizes the sum of absolute (k + 1)st order discrete derivatives of θ1, . . . , θn

across the input points X1, . . . ,Xn. Thus, at optimality, the coordinates of the trend
filtering solution θ̂1, . . . , θ̂n obey a kth order piecewise polynomial form.

This intuition is formalized in Tibshirani (2014) and Wang, Smola and Tibshi-
rani (2014), where it is shown that the components of the kth order trend filtering
estimate θ̂ are precisely the evaluations of a fitted kth order piecewise polynomial
function across the inputs, and that the trend filtering and locally adaptive regres-
sion spline estimates of the same order k are asymptotically equivalent. When
k = 0 or k = 1, in fact, there is no need for asymptotics, and the equivalence be-
tween trend filtering and locally adaptive regression spline estimates is exact in
finite samples. It is also worth pointing out that when k = 0, the trend filtering
estimate reduces to the 1d fused lasso estimate (Tibshirani et al. (2005)), which
is known as 1d total variation denoising in signal processing (Rudin, Osher and
Fatemi (1992)).

Over the kth order total variation function class defined in (3), Tibshirani (2014),
Wang, Smola and Tibshirani (2014) prove that kth order trend filtering achieves
the minimax optimal n−(2k+2)/(2k+3) error rate, just like kth order locally adaptive
regression splines. Another important property, as developed by Kim et al. (2009),
Ramdas and Tibshirani (2016), Tibshirani (2014), is that trend filtering estimates
are relatively cheap to compute—much cheaper than locally adaptive regression
spline estimates—owing to the bandedness of the difference operators in (5), (6),
which means that specially implemented convex programming routines can solve
(4) in an efficient manner.

It is this computational efficiency, along with its capacity for local adaptivity,
that makes trend filtering a particularly desirable candidate to extend to the additive
model setting. Specifically, we consider the additive trend filtering estimate of
order k ≥ 0, defined as a solution in the problem

min
θ1,...,θd∈Rn

1

2

∥∥∥∥∥Y − Ȳ1 −
d∑

j=1

θj

∥∥∥∥∥
2

2

+ λ

d∑
j=1

∥∥D(Xj ,k+1)Sj θj

∥∥
1

subject to 1T θj = 0, j = 1, . . . , d.

(7)

As before, Y − Ȳ1 is the centered response vector, λ ≥ 0 is a regularization param-
eter, and now Sj ∈ R

n×n in (7) is a permutation matrix that sorts the j th component
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of inputs Xj = (X1
j ,X

2
j , . . . ,X

n
j ) into increasing order, that is,

SjXj = (
X

(1)
j ,X

(2)
j , . . . ,X

(n)
j

)
, j = 1, . . . , d.

Also, D(Xj ,k+1) in (7) is the (k + 1)st order difference operator, as in (5), (6),
but defined over the sorted j th dimension of inputs SjXj , for j = 1, . . . , d . With
backfitting (block coordinate descent), computation of a solution in (7) is still quite
efficient, since we can leverage the efficient routines for univariate trend filtering.

1.4. A motivating example. Figure 1 shows a simulated example that compares
the additive trend filtering estimates in (7) (of quadratic order, k = 2), to the addi-
tive smoothing spline estimates in (1) (of cubic order). In the simulation, we used

n = 3000 and d = 3. We drew input points Xi i.i.d.∼ Unif[0,1]3, i = 1, . . . ,3000,

and drew responses Y i i.i.d.∼ N(
∑3

j=1 f0j (X
i
j ), σ

2), i = 1, . . . ,3000, where σ =
1.72 was set to give a signal-to-noise ratio of about 1. The underlying component
functions were defined as

f01(t) = min(t,1 − t)0.2 sin
(

2.85π

0.3 + min(t,1 − t)

)
,

f02(t) = e3t sin(4πt), f03(t) = −(t − 1/2)2,

so that f01, f02, f03 possess different levels of smoothness (f03 being the
smoothest, f02 less smooth, and f01 the least smooth), and so that f01 itself has
heterogeneous smoothness across its domain.

The first row of Figure 1 shows the estimated component functions from addi-
tive trend filtering, at a value of λ that minimizes the mean squared error (MSE),
computed over 20 repetitions. The second row shows the estimates from additive
smoothing splines, also at a value of λ that minimizes the MSE. We see that the
trend filtering fits adapt well to the varying levels of smoothness, but the smooth-
ing spline fits are undersmoothed, for the most part. In terms of effective degrees
of freedom (df), the additive smoothing spline estimate is much more complex,
having about 85 df (computed via Monte Carlo over the 20 repetitions); the ad-
ditive trend filtering has only about 42 df. The third row of the figure shows
the estimates from additive smoothing splines, when λ is chosen so that the re-
sulting df roughly matches that of additive trend filtering in the first row. Now
we see that the first component fit is oversmoothed, yet the third is still under-
smoothed.

Figure 2 displays the MSE curves from additive trend filtering, as a function
of df. We see that trend filtering achieves a lower MSE, and moreover, its MSE
curve is optimized at a lower df (i.e., less complex model) than that for smooth-
ing splines. This is analogous to what is typically seen in the univariate setting
(Tibshirani (2014)).
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FIG. 1. Comparing estimates from additive trend filtering (7) (of quadratic order) and additive
smoothing splines (1) (of cubic order), for a simulation with n = 3000 and d = 2, as described
in Section 1.4. In each row, the underlying component functions are plotted in black. The first row
shows the estimated component functions using additive trend filtering, in red, at a value of λ chosen
to minimize mean squared error (MSE), computed over 20 repetitions. The second row shows the
estimates from additive smoothing splines, in blue, again at a value of λ that minimizes MSE. The
third row shows the estimates from additive smoothing splines when λ is tuned so that the effective
degrees of freedom (df) of the fit roughly matches that of additive trend filtering in the first row.

We note that this motivating example is intended to elucidate the differences
in what additive smoothing splines and additive trend filtering can do with a sin-
gle tuning parameter each; a serious applied statistician, in just d = 3 dimensions,
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FIG. 2. MSE curves for additive trend filtering and additive smoothing splines, computed over 20
repetitions from the same simulation setup as in Figure 1. Vertical segments denote ±1 standard
deviations. The MSE curves are parametrized by degrees of freedom (computed via standard Monte
Carlo methods over the 20 repetitions).

would likely use REML or some related technique to fit a multiple tuning param-
eter smoothing spline model; see our later discussion on this topic in Section 5.2.

1.5. Summary of contributions. A summary of our contributions, and an out-
line for the rest of this paper, are given below:

• In Section 2, we investigate basic properties of the additive trend filtering model:
an equivalent continuous-time formulation, a condition for uniqueness of com-
ponent function estimates, and a simple formula for the effective degrees of
freedom of the additive fit.

• In Section 3, we derive error bounds for additive trend filtering. Assuming that
the underlying regression function is additive, denoted by f0 = ∑d

j=1 f0j , and

that TV(f
(k)
0j ) is bounded, for j = 1, . . . , d , we prove that the kth order additive

trend filtering estimator converges to f0 at the rate n−(2k+2)/(2k+3) when the di-
mension d is fixed (under weak assumptions), and at the rate dn−(2k+2)/(2k+3)

when d is growing (under stronger assumptions). We prove that these rates are
optimal in a minimax sense, and also show that additive smoothing splines (gen-
erally, additive models built from linear smoothers of any kind) are suboptimal
over such a class of functions f0.

• In Section 4, we study the backfitting algorithm for additive trend filtering mod-
els, and give a connection between backfitting and an alternating projections
scheme in the additive trend filtering dual problem. This inspires a new paral-
lelized backfitting algorithm.



3040 V. SADHANALA AND R. J. TIBSHIRANI

• In Section 5, we present empirical experiments and comparisons, and we also
investigate the use of multiple tuning parameter models. In Section 6, we give a
brief discussion.

2. Basic properties. In this section, we derive a number of basic properties of
additive trend filtering estimates, starting with a representation for the estimates as
continuous functions over Rd (rather than simply discrete fitted values at the input
points).

2.1. Falling factorial representation. We may describe additive trend filter-
ing in (7) as an estimation problem written in analysis form. The components are
modeled directly by the parameters θj , j = 1, . . . , d , and the desired structure is
established by regularizing the discrete derivatives of these parameters, through
the penalty terms ‖D(Xj ,k+1)Sj θj‖1, j = 1, . . . , d . Here, we present an alternative
representation for (7) in basis form, where each component is expressed as a linear
combination of basis functions, and regularization is applied to the coefficients in
this expansion.

Before we derive the basis formulation that underlies additive trend filtering, we
first recall the falling factorial basis (Tibshirani (2014), Wang, Smola and Tibshi-
rani (2014)). Given knot points t1 < · · · < tn ∈ R, the kth order falling factorial
basis functions h1, . . . , hn are defined by

hi(t) =
i−1∏
�=1

(
t − t�

)
, i = 1, . . . , k + 1,

hi+k+1(t) =
k∏

�=1

(
t − t i+�) · 1

{
t > ti+k}, i = 1, . . . , n − k − 1.

(8)

We denote 1{t > a} = 1 when t > a, and 0 otherwise. (Also, our convention is
to define the empty product to be 1, so that h1(t) = 1.) The functions h1, . . . , hn

are piecewise polynomial functions of order k, and appear very similar in form to
the kth order truncated power basis functions. In fact, when k = 0 or k = 1, the
two bases are equivalent (meaning that they have the same span). Similar to an
expansion in the truncated power basis, an expansion in the falling factorial basis,

g =
n∑

i=1

αihi

is a continuous piecewise polynomial function, having a global polynomial struc-
ture determined by α1, . . . , αk+1, and exhibiting a knot, that is, a change in its kth
derivative at the location t i+k when αi+k+1 �= 0. But, unlike the truncated power
functions, the falling factorial functions in (8) are not splines, and when g (as de-
fined above) has a knot at a particular location, it displays a change not only in
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its kth derivative at this location, but also in all lower order derivatives (i.e., all
derivatives of orders 1, . . . , k − 1).

Tibshirani (2014), Wang, Smola and Tibshirani (2014) establish a connection
between univariate trend filtering and the falling factorial functions, and show that
the trend filtering problem can be interpreted as a sparse basis regression problem
using these functions. As we show next, the analogous result holds for additive
trend filtering.

LEMMA 1 (Falling factorial representation). For j = 1, . . . , d , let h
(Xj )

1 , . . . ,

h
(Xj )
n be the falling factorial basis in (8) with knots (t1, . . . , tn) = SjXj , the j th

dimension of the input points, properly sorted. Then the additive trend filtering
problem (7) is equivalent to the problem

min
α1,...,αd∈Rn

1

2

n∑
i=1

(
Y i − Ȳ −

d∑
j=1

n∑
�=1

α�
jh

(Xj )

�

(
Xi

j

))2

+ λk!
d∑

j=1

n∑
�=k+2

∣∣α�
j

∣∣

subject to
n∑

i=1

n∑
�=1

α�
jh

(Xj )

�

(
Xi

j

) = 0, j = 1, . . . , d,

(9)

in that, at any solutions in (7), (9), we have

θ̂ i
j =

n∑
�=1

α̂�
jh

(Xj )

�

(
Xi

j

)
, i = 1, . . . , n, j = 1, . . . , d.

An alternative way of expressing problem (9) is

min
fj∈Hj ,j=1,...,d

1

2

n∑
i=1

(
Y i − Ȳ −

d∑
j=1

fj

(
Xi

j

))2

+ λ

d∑
j=1

TV
(
f

(k)
j

)

subject to
n∑

i=1

fj

(
Xi

j

) = 0, j = 1, . . . , d,

(10)

where Hj = span{h(Xj )

1 , . . . , h
(Xj )
n } is the span of the falling factorial basis over

the j th dimension, and f
(k)
j is the kth weak derivative of fj , j = 1, . . . , d . In this

form, at any solutions in (7), (10),

θ̂ i
j = f̂j

(
Xi

j

)
, i = 1, . . . , n, j = 1, . . . , d.

PROOF. For j = 1, . . . , d , define the kth order falling factorial basis matrix
H(Xj ,k) ∈ R

n×n by

(11) H
(Xj ,k)

i� = h
(Xj )

�

(
Xi

j

)
, i = 1, . . . , n, � = 1, . . . , n.
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Note that the columns of H(Xj ,k) follow the order of the sorted inputs SjXj , but
the rows do not; however, for SjH

(Xj ,k), both its rows and columns of follow the
order of SjXj . From Wang, Smola and Tibshirani (2014), we know that

(
SjH

(Xj ,k))−1 =
⎡
⎣ C(Xj ,k+1)

1

k!D
(Xj ,k+1)

⎤
⎦ ,

for some matrix C(Xj ,k+1) ∈ R
(k+1)×n, that is,

(12)
(
H(Xj ,k))−1 =

⎡
⎣ C(Xj ,k+1)

1

k!D
(Xj ,k+1)

⎤
⎦Sj .

Problem (9) is given by reparameterizing (7) according to θj = H(Xj ,k)αj , for
j = 1, . . . , d . As for (10), the equivalence between this and (9) follows by noting

that for fj = ∑n
�=1 α�

jh
(Xj )

� , we have

f
(k)
j (t) = k! + k!

n∑
�=k+2

α�
j · 1

{
t > X�−1

j

}
,

and so TV(f
(k)
j ) = k!∑n

�=k+2 |α�
j |, for each j = 1, . . . , d . �

This lemma not only provides an interesting reformulation for additive trend
filtering, it is also practically useful in that it allows us to perform interpolation
or extrapolation using the additive trend filtering model. That is, from a solution
θ̂ = (θ̂1, . . . , θ̂d) in (7), we can extend each component fit θ̂j to the real line, by
forming an appropriate linear combination of falling factorial functions:

(13) f̂j (xj ) =
n∑

�=1

α̂�
jh

(Xj )

� (xj ), xj ∈R.

The coefficients above are determined by the relationship α̂j = (H (Xj ,k))−1θ̂j , and
are easily computable given the highly structured form of (H (Xj ,k))−1, as revealed
in (12). Writing the coefficients in block form, as in α̂j = (âj , b̂j ) ∈ R

(k+1) ×
R

(n−k−1), we have

âj = C(Xj ,k+1)Sj θ̂j ,(14)

b̂j = 1

k!D
(Xj ,k+1)Sj θ̂j .(15)

The first k+1 coefficients âj index the pure polynomial functions h
(Xj )

1 , . . . , h
(Xj )

k+1 .
These coefficients will be generically dense (the form of C(Xj ,k+1) is not important
here, so we omit it for simplicity, but details are given in Appendix A.1.1 in the
Supplementary Material, Sadhanala and Tibshirani (2019)). The last n − k − 1
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coefficients b̂j index the knot-producing functions h
(Xj )

k+2 , . . . , h
(Xj )
n , and when

(b̂j )� = 1
k!(D

(Xj ,k+1)Sj θ̂j )� �= 0, the fitted function f̂j exhibits a knot at the

(� + k)th sorted input point among SjXj , that is, at X
(�+k)
j . Figure 3 gives an

example.
We note that the coefficients α̂j = (âj , b̂j ) in (14), (15) can be computed in

O(n) operations and O(1) memory. This makes extrapolation of the j th fitted

FIG. 3. An example of extrapolating the fitted additive trend filtering model, where n = 1000

and d = 2. We generated input points Xi i.i.d.∼ Unif[0,1]2, i = 1, . . . ,1000, and responses

Y i i.i.d.∼ N(
∑2

j=1 f0j (Xi
j ), σ 2), i = 1, . . . ,1000, where we f01(x1) = √

x1 sin(3π/(x1 + 1/2)) and
f02(x2) = x2(x2 − 1/3), and σ = 0.36. The top row shows three perspectives of the data. The bot-
tom left panel shows the fitted values from additive trend filtering (7) (with k = 2 and λ = 0.004),
where points are colored by their depth for visualization purposes. The bottom right panel shows the
2d surface associated with the trend filtering estimate, f̂1(x1) + f̂2(x2) over (x1, x2) ∈ [0,1]2, with
each component function extrapolated as in (13).
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function f̂j in (13) highly efficient. Details are given in Appendix A.1.1 in the
Supplementary Material (Sadhanala and Tibshirani (2019)).

2.2. Uniqueness of component fits. It is easy to see that, for the problem (7),
the additive fit

∑d
j=1 θ̂j is always uniquely determined: denoting

∑d
j=1 θj = T θ

for a linear operator T and θ = (θ1, . . . , θd) ∈ R
nd , the loss term ‖y − T θ‖2

2
is strictly convex in the variable T θ , and this, along with the convexity of the
problem (7), implies a unique additive fit T θ̂ , no matter the choice of solution
θ̂ = (θ̂1, . . . , θ̂d) ∈R

nd .
On the other hand, when d > 1, the criterion in (7) is not strictly convex in

θ , and hence there need not be a unique solution θ̂ , that is, the individual com-
ponents fits θ̂j , j = 1, . . . , d need not be uniquely determined. We show next
that uniqueness of the component fits can be guaranteed under some conditions
on the input matrix X = [X1 · · ·Xd ] ∈ R

n×d . We will rely on the falling facto-
rial representation for additive trend filtering, introduced in the previous subsec-
tion, and on the notion of general position: a matrix A ∈ R

m×p is said to have
columns in general position provided that, for any � < min{m,p}, subset of � + 1
columns denoted Ai1, . . . ,Ai�+1 , and signs s1, . . . , s�+1 ∈ {−1,1}, the affine span
of {s1Ai1, . . . , s�+1Ai�+1} does not contain any element of {±Ai : i �= i1, . . . , i�+1}.

LEMMA 2 (Uniqueness). For j = 1, . . . , d , let H(Xj ,k) ∈ R
n×n be the falling

factorial basis matrix constructed over the sorted j th dimension of inputs SjXj ∈
R

n, as in (11). Decompose H(Xj ,k) into its first k +1 columns P (Xj ,k) ∈R
n×(k+1),

and its last n − k − 1 columns K(Xj ,k) ∈ R
n×(n−k−1). The former contains eval-

uations of the pure polynomials h
(Xj )

1 , . . . , h
(Xj )

k+1 ; the latter contains evaluations

of the knot-producing functions h
(Xj )

k+2 , . . . , h
(Xj )
n . Also, let P̃ (Xj ,k) denote the ma-

trix P (Xj ,k) with its first column removed, for j = 1, . . . , d , and M = I − 11T /n.
Define

(16) P̃ = M
[
P̃ (X1,k) . . . P̃ (Xd,k)

]
∈ R

n×dk,

the product of M and the columnwise concatenation of P̃ (Xj ,k), j = 1, . . . , d . Let
UUT denote the projection operator onto the space orthogonal to the column span
of P̃ , where U ∈ R

n×(n−kd−1) has orthonormal columns, and define

(17) K̃ = UT M
[
K(X1,k) . . . K(Xd,k)

]
∈ R

(n−kd−1)×(n−k−1)d,

the product of UT M and the columnwise concatenation of K(Xj ,k), j = 1, . . . , d .
A sufficient condition for uniqueness of the additive trend filtering solution in (7)
can now be given in two parts:

1. If K̃ has columns in general position, then the knot-producing parts of all com-
ponent fits are uniquely determined, that is, for each j = 1, . . . , d , the projec-
tion of θ̂j onto the column space of K(Xj ,k) is unique.
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2. If in addition P̃ has full column rank, then the polynomial parts of component
fits are uniquely determined, that is, for each j = 1, . . . , d , the projection of
θ̂j onto the column space of P (Xj ,k) is unique, and thus the component fits θ̂j ,
j = 1, . . . , d are all unique.

The proof is deferred to Appendix A.1.2 in the Supplementary Material
(Sadhanala and Tibshirani (2019)). To rephrase, the above lemma decomposes
each component of the additive trend filtering solution according to

θ̂j = θ̂
poly
j + θ̂knot

j , j = 1, . . . , d,

where θ̂
poly
j exhibits a purely polynomial trend over SjXj , and θ̂knot

j exhibits
a piecewise polynomial trend over SjXj , and hence determines the knot loca-
tions, for j = 1, . . . , d . The lemma shows that the knot-producing parts θ̂knot

j ,

j = 1, . . . , d are uniquely determined when the columns of K̃ are in general posi-
tion, and the polynomial parts θ̂knot

j , j = 1, . . . , d are unique when the columns of

K̃ are in general position, and the columns of P̃ are linearly independent.
The conditions placed on P̃ , K̃ in Lemma 2 are not strong. When n > kd , and

the elements of input matrix X are drawn from a density over Rnd , it is not hard to
show that P̃ has full column rank with probability 1. We conjecture that, under the
same conditions, K̃ will also have columns in general position with probability 1,
but do not pursue a proof.

2.3. Dual problem. Let us abbreviate Dj = D(Xj ,k+1), j = 1, . . . , d for the
penalty matrices in the additive trend filtering problem (7). Basic arguments
in convex analysis, deferred to Appendix A.1.3 in the Supplementary Material
(Sadhanala and Tibshirani (2019)), show that the dual of problem (7) can be ex-
pressed as

min
u∈Rn

‖Y − Ȳ1 − u‖2
2 subject to u ∈ U = U1 ∩ · · · ∩ Ud,

where Uj = {
SjD

T
j vj : ‖vj‖∞ ≤ λ

}
, j = 1, . . . , d,

(18)

and that primal and dual solutions in (7), (18) are related by

(19)
d∑

j=1

θ̂j = Y − Ȳ1 − û.

From the form of (18), it is clear that we can write the (unique) dual solution as û =
	U(Y − Ȳ1), where 	U is the (Euclidean) projection operator onto U . Moreover,
using (19), we can express the additive fit as

∑d
j=1 θ̂j = (Id − 	U)(Y − Ȳ1),

where Id − 	U is the operator that gives the residual from projecting onto U .
These relationships will be revisited in Section 4, where we return to the dual
perspective, and argue that the backfitting algorithm for the additive trend filtering
problem (7) can be seen as a type of alternating projections algorithm for its dual
problem (18).
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2.4. Degrees of freedom. In general, given data Y ∈ R
n with E(Y ) = η,

Cov(Y ) = σ 2I , and an estimator η̂ of η, recall that we define the effective degrees
of freedom of η̂ as (Efron (1986), Hastie and Tibshirani (1990)):

df(η̂) = 1

σ 2

n∑
i=1

Cov
(
η̂i(Y ), Y i),

where η̂(Y ) = (η̂1(y), . . . , η̂n(Y )). Roughly speaking, the above definition sums
the influence of the ith component Y i on its corresponding fitted value η̂i(Y ),
across i = 1, . . . , n. A precise understanding of degrees of freedom is useful for
model comparisons (recall the x-axis in Figure 2), and other reasons. For linear
smoothers, in which η̂(Y ) = SY for some S ∈ R

n×n, it is clear that df(η̂) = tr(S),
the trace of S. (This also covers additive models whose components are built from
univariate linear smoothers, because in total these are still just linear smoothers:
the additive fit is still just a linear function of Y .)

Of course, additive trend filtering is a not a linear smoother; however, it is a
particular type of generalized lasso estimator, and degrees of freedom for such a
class of estimators is well understood (Tibshirani and Taylor (2011, 2012)). The
next result is a consequence of existing generalized lasso theory, proved in Ap-
pendix A.1.4 in the Supplementary Material (Sadhanala and Tibshirani (2019)).

LEMMA 3 (Degrees of freedom). Assume the conditions of Lemma 2, that is,
that the matrix P̃ in (16) has full column rank, and the matrix K̃ in (17) is in
general position. Assume also that the response is Gaussian, Y ∼ N(η,σ 2I ), and
treat the input points Xi ∈ R

d , i = 1, . . . , n as fixed and arbitrary, as well as the
tuning parameter value λ ≥ 0. Then the additive trend filtering fit from (7) has
degrees of freedom

df

(
d∑

j=1

θ̂j

)
= E

(
d∑

j=1

(number of knots in θ̂j )

)
+ kd.

REMARK 1 (The effect of shrinkage). Lemma 3 says that for an unbiased
estimate of the degrees of freedom of the additive trend filtering fit, we count the
number of knots in each component fit θ̂j (recall that this is the number of nonzeros
in D(Xj ,k+1)θ̂j , that is, the number of changes in the discrete (k + 1)st derivative),
add them up over j = 1, . . . , d , and add kd . This may seem surprising, as these
knot locations are chosen adaptively based on the data Y . But, such adaptivity is
counterbalanced by the shrinkage induced by the �1 penalty in (7) (i.e., for each
component fit θ̂j , there is shrinkage in the differences between the attained kth
derivatives on either side of a selected knot). See Tibshirani (2015) for a study of
this phenomenon.
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2.5. Two related additive spline estimators. From its equivalent formulation in
(10), additive trend filtering is seen to be closely related to two other additive spline
estimators, which we introduce here. Consider, for univariate function classes Sj ,
j = 1, . . . , d , the problem

min
fj∈Sj j=1,...,d

1

2

n∑
i=1

(
Y i − Ȳ −

d∑
j=1

fj

(
Xi

j

))2

+ λ

d∑
j=1

TV
(
f

(k)
j

)

subject to
n∑

i=1

fj

(
Xi

j

) = 0, j = 1, . . . , d.

(20)

When each Sj , j = 1, . . . , d is the set of k times weakly differentiable functions,
we call the solution in (20) the additive locally adaptive regression spline of or-
der k ≥ 0, as it is the natural extension of the univariate estimator considered in
Mammen and van de Geer (1997). Denote by f̂j , j = 1, . . . , d this solution; the
representation arguments used by these authors apply immediately to the additive
setting, and imply that each f̂j , j = 1, . . . , d is indeed a spline of degree k (justi-
fying the choice of name). The same arguments show that, for k = 0 or k = 1, the
knots of the spline f̂j lie among the j th dimension of the input points X1

j , . . . ,X
n
j ,

for j = 1, . . . , d , but for k ≥ 2, this need not be true, and in general the components
will be splines with knots at locations other than the inputs.

We can facilitate computation by taking Sj = Gj , where Gj is the set of splines
of degree k with knots lying among the j th dimension of inputs X1

j , . . . ,X
n
j , for

j = 1, . . . , d . We call the resulting solution the restricted additive locally adaptive
regression spline of order k ≥ 0. More precisely, we require that the splines in Gj

have knots in a set Tj , which, writing tj = SjXj for the sorted inputs along the j th
dimension, is defined by

(21) Tj =
⎧⎨
⎩

{
t
k/2+2
j , . . . , t

n−k/2
j

}
if k is even,{

t
(k+1)/2+1
j , . . . , t

n−(k+1)/2
j

}
if k is odd,

that is, defined by removing k + 1 input points at the boundaries, for j = 1, . . . , d .
Setting Sj = Gj , j = 1, . . . , d makes (20) a finite-dimensional problem, just like
(10). When k = 0 or k = 1, as is evident from their form in (8), the falling factorial
functions are simply splines, which means that Hj = Gj for j = 1, . . . , d , hence
additive trend filtering and restricted additive locally adaptive regression splines
are the same estimator. When k ≥ 2, this is no longer true, and they are not the
same. Additive trend filtering will be much easier to compute, since TV(g(k)) does
not admit a nice representation in terms of discrete derivatives for a kth order spline
(and yet it does for a kth order falling factorial function, as seen in (7)).

To summarize, additive locally adaptive splines, restricted additive locally adap-
tive splines, and additive trend filtering all solve a problem of the form (20) for dif-
ferent choices of function classes Sj , j = 1, . . . , d . For k = 0 or k = 1, these three
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estimators are equivalent. For k ≥ 2, they will be generically different, though our
intuition tells us that their differences should not be too large: the unrestricted
problem admits a solution that is a spline in each component; the restricted prob-
lem simply forces these splines to have knots at the input points; and the trend
filtering problem swaps splines for falling factorial functions, which are highly
similar in form. Next, we give theory that confirms this intuition, in large samples.

3. Error bounds. We derive error bounds for additive trend filtering and ad-
ditive locally adaptive regression splines (both the unrestricted and restricted vari-
ants), when the underlying regression function is additive, and has components
whose derivatives are of bounded variation. These results are actually special
cases of a more general result we prove in this section, on a generic roughness-
regularized additive estimator, where we assume a certain decay for the entropy of
the unit ball in the roughness operator. We treat separately the settings in which
the dimension d of the input space is fixed and growing. We also complement our
error rates with minimax lower bounds. We start by introducing helpful notation.

3.1. Notation. Given a distribution Q supported on a set D, and i.i.d. samples
Xi , i = 1, . . . , n from Q, denote by Qn the associated empirical distribution. We
define the L2(Q) and L2(Qn) inner products, denoted 〈·, ·〉L2(Q) and 〈·, ·〉L2(Qn),
respectively, over functions m,r : D → R,

〈m,r〉L2(Q) =
∫
D

m(x)r(x) dQ(x) and 〈m,r〉L2(Qn) = 1

n

n∑
i=1

m
(
Xi)r(

Xi).
Definitions for the corresponding L2(Q) and L2(Qn) norms, denoted ‖ · ‖L2(Q)

and ‖ · ‖L2(Qn), respectively, arise naturally from these inner products, defined by

‖m‖2
2 = 〈m,m〉2 =

∫
D

m(x)2 dQ(x) and ‖m‖2
n = 〈m,m〉n = 1

n

n∑
i=1

m
(
Xi)2

.

Henceforth, we will abbreviate subscripts when using these norms and inner prod-
ucts, writing ‖ · ‖2 and ‖ · ‖n for the L2(Q) and L2(Qn) norms, respectively, and
similarly for the inner products. This abbreviated notation omits the underlying
distribution Q; thus, unless explicitly stated otherwise, the underlying distribution
should always be interpreted as the distribution of the input points. We will of-
ten call ‖ · ‖2 the L2 norm and ‖ · ‖n the empirical norm, and similarly for inner
products.

In what follows, of particular interest will be the case when D = [0,1]d , and
m : [0,1]d → R is an additive function, of the form

m =
d∑

j=1

mj,
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which we write to mean m(x) = ∑d
j=1 mj(xj ). In a slight abuse of notation (over-

load of notation), for each j = 1, . . . , d , we will abbreviate the L2(Qj ) norm by
‖ · ‖2, where Qj is the j th marginal of Q, and will also abbreviate L2(Qjn) norm
by ‖ · ‖n, where Qjn is the empirical distribution of Xi

j , i = 1, . . . , n. We will use
similar abbreviations for the inner products.

A few more general definitions are in order. We denote the L∞ norm, also called
the sup norm, of a function f : D → R by ‖f ‖∞ = ess supz∈D |f (z)|. For a func-
tional ν, acting on functions from D to R, we write Bν(δ) for the ν-ball of radius
δ > 0, that is, Bν(δ) = {f : ν(f ) ≤ δ}. We abbreviate Bn(δ) for the ‖ · ‖n-ball of
radius δ, B2(δ) for the ‖ · ‖2-ball of radius δ, and B∞(δ) for the ‖ · ‖∞-ball of ra-
dius δ. We will use these concepts fluidly, without explicit reference to the domain
D (or its dimensionality), as the meaning should be clear from the context.

Lastly, for a set S and norm ‖ · ‖, we define the covering number N(δ,‖ · ‖, S)

to be the smallest number of ‖ · ‖-balls of radius δ to cover S, and the packing
number M(δ,‖ · ‖, S) to be the largest number of disjoint ‖ · ‖-balls of radius δ

that are contained in S. We call logN(δ,‖ · ‖, S) the entropy number.

3.2. Error bounds for a fixed dimension d . We consider error bounds for the
generic roughness-penalized estimator defined as a solution of

min
fj∈Sj ,j=1,...,d

1

2

n∑
i=1

(
Y i − Ȳ −

d∑
j=1

fj

(
Xi

j

))2

+ λ

d∑
j=1

J (fj )

subject to
n∑

i=1

fj

(
Xi

j

) = 0, j = 1, . . . , d,

(22)

where Sj , j = 1, . . . , d are univariate function spaces, and J is a regularizer that
acts on univariate functions. We assume in this subsection that the dimension d of
the input space is fixed, that is, it does not grow with n. Before stating our main
result in this setting, we list our other assumptions, starting with our assumptions
on the data generation process.

ASSUMPTION A1. The input points Xi , i = 1, . . . , n are i.i.d. from a contin-
uous distribution Q supported on [0,1]d .

ASSUMPTION B1. The responses Y i , i = 1, . . . , n follow the model

Y i = μ + f0
(
Xi) + εi, i = 1, . . . , n,

with overall mean μ ∈ R, where
∑n

i=1 f0(X
i) = 0 for identifiability. The errors εi ,

i = 1, . . . , n are uniformly sub-Gaussian and have mean zero, that is,

E(ε) = 0 and E
[
exp

(
vT ε

)] ≤ exp
(
σ 2‖v‖2

2/2
)

for all v ∈R
n,

for a constant σ > 0. The errors and input points are independent.
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Next, we present our assumptions on the regularizer J . We write ‖ · ‖Zn for the
empirical norm defined over a set of univariate points Zn = {z1, . . . , zn} ⊆ [0,1],
that is, ‖g‖2

Zn
= 1

n

∑n
i=1 g2(zi).

ASSUMPTION C1. The regularizer J is a seminorm, and its domain is con-
tained in the space of k times weakly differentiable functions, for an integer k ≥ 0.
Furthermore, its null space contains all kth order polynomials.

ASSUMPTION C2. There is a constant L > 0 such that

ess sup
t∈[0,1]

g(k)(t) − ess inf
t∈[0,1] g(k)(t) ≤ L for g ∈ BJ (1),

where g(k) is the kth weak derivative of g.

ASSUMPTION C3. There are constants 0 < w < 2 and K > 0 such that

sup
Zn={z1,...,zn}⊆[0,1]

logN
(
δ,‖ · ‖Zn,BJ (1) ∩ B∞(1)

) ≤ Kδ−w.

We now state our main result in the fixed d case, which is proved in Ap-
pendices A.1.5, A.1.6 in the Supplementary Material (Sadhanala and Tibshirani
(2019)).

THEOREM 1. Assume A1, B1 on the data distribution, and assume C1, C2,
C3 on the seminorm J . Also, assume that the dimension d of the input space is
fixed. Let Cn ≥ 1 be an arbitrary sequence. There exist constants c1, c2, c3, n0 > 0,
that depend only on d,σ, k,L,K,w, such that for all c ≥ c1, n ≥ n0, and tuning
parameter values λ ≥ cnw/(2+w)C

−(2−w)/(2+w)
n , any solution in (22) satisfies

(23)

∥∥∥∥∥
d∑

j=1

f̂j − f0

∥∥∥∥∥
2

n

≤
∥∥∥∥∥

d∑
j=1

f̃j − f0

∥∥∥∥∥
2

n

+ 6λ

n
max

{
Cn,

d∑
j=1

J (f̃j )

}
,

with probability at least 1 − exp(−c2c) − exp(−c3
√

n), simultaneously over all
f̃ = ∑d

j=1 f̃j , feasible for the problem (22), such that ‖f̃ − f0‖n ≤ max{Cn,∑d
j=1 J (f̃j )}.

REMARK 2 (Error bound for additive, J -smooth f0). Assume f0 = ∑d
j=1 f0j ,

where f0j ∈ Sj , j = 1, . . . , d , and
∑d

j=1 J (f0j ) ≤ Cn. Letting f̃ = f0, the ap-
proximation error term in (23) (the first term on the right-hand side) is zero, and
for λ = cnw/(2+w)C

−(2−w)/(2+w)
n , the result in the theorem reads

(24)

∥∥∥∥∥
d∑

j=1

f̂j −
d∑

j=1

f0j

∥∥∥∥∥
2

n

≤ 6cn−2/(2+w)C2w/(2+w)
n ,
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with probability at least 1 − exp(−c2c) − exp(−c3
√

n). As we will see in the
minimax lower bound in Theorem 3 (plugging in cn = Cn/d , and taking d to be a
constant), the rate n−2/(2+w)C

2w/(2+w)
n is optimal for such a class of functions.

REMARK 3 (Distance to best additive, J -smooth approximation of f0). The
arguments used to establish the oracle-type inequality (23) also imply a result on
the empirical norm error between f̂ and the best additive approximation of f0. To
be precise, let (f best

1 , . . . , f best
d ) denote a solution in the population-level problem

min
fj∈Sj ,j=1,...,d

1

2

n∑
i=1

(
f0

(
Xi) −

d∑
j=1

fj

(
Xi

j

))2

+ λ

2

d∑
j=1

J (fj )

subject to
n∑

i=1

fj

(
Xi

j

) = 0, j = 1, . . . , d.

(25)

We note that (25) has “half” of the regularization of problem (22), as it uses a
penalty parameter of λ/2 versus λ. We can think of f best = ∑d

j=1 f best
j as the best

additive, J -smooth approximation of f0, where λ as usual controls the level of
smoothness. The following is a consequence of the proof of Theorem 1, verified in
Appendix A.1.7 in the Supplementary Material (Sadhanala and Tibshirani (2019)):
assume that ‖f best − f0‖n ≤ max{Cn,

∑d
j=1 J (f best

j )} almost surely (with respect
to Q), for sufficiently large λ; then any solution in (22) satisfies for all c ≥ c1,
n ≥ n0, and λ ≥ cnw/(2+w)C

−(2−w)/(2+w)
n ,

(26)

∥∥∥∥∥
d∑

j=1

f̂j −
d∑

j=1

f best
j

∥∥∥∥∥
2

n

≤ 6λ

n
max

{
Cn,

d∑
j=1

J
(
f best

j

)}
,

with probability at least 1 − exp(−c2c) − exp(−c3
√

n), where as before c1, c2,

c3, n0 > 0 are constants that depend only on d,σ, k,L,K,w. Notably, the right-
hand side in the bound (26) does not depend on the approximation error; in partic-
ular, we do not even require ‖f best − f0‖n to converge to zero. This is analogous
to classical results from Stone (1985).

We examine a special case of the generic problem (22) when the regularizer
is J (g) = TV(g(k)), and derive implications of the above Theorem 1 for additive
locally regression adaptive splines and additive trend filtering, corresponding to
different choices of the function classes Sj , j = 1, . . . , d in (22). We must intro-
duce an additional (weak) assumption on the input distribution, for the results on
restricted locally adaptive regression splines and trend filtering.

ASSUMPTION A2. The density of the input distribution Q is bounded below
by a constant b0 > 0.
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Here is our result for additive locally adaptive splines and additive trend filter-
ing. The proof is given in Appendices A.1.8, A.1.9 in the Supplementary Material
(Sadhanala and Tibshirani (2019)).

COROLLARY 1. Assume A1, B1 on the data distribution. Also, assume that
the dimension d of the input space is fixed, and that the underlying regression
function is additive, f0 = ∑d

j=1 f0j , where the components f0j , j = 1, . . . , d are k

times weakly differentiable, such that
∑d

j=1 TV(f
(k)
0j ) ≤ Cn for a sequence Cn ≥ 1.

For J (g) = TV(g(k)), Assumptions C1, C2, C3 hold with L = 1 and w = 1/(k+1).
Furthermore, the following is true of the estimator defined by problem (22):

(a) Let Sj be the set of all k times weakly differentiable functions, for
each j = 1, . . . , d . There are constants c1, c2, c3, n0 > 0, depending only on
d,σ, k, such that for all c ≥ c1 and n ≥ n0, any solution in the additive lo-
cally adaptive regression spline problem (22), with tuning parameter value λ =
cn1/(2k+3)C

−(2k+1)/(2k+3)
n , satisfies

(27)

∥∥∥∥∥
d∑

j=1

f̂j −
d∑

j=1

f0j

∥∥∥∥∥
2

n

≤ cn−(2k+2)/(2k+3)C2/(2k+3)
n ,

with probability at least 1 − exp(−c2c) − exp(−c3
√

n).
(b) Let Sj = Gj , the set of kth degree splines with knots in the set Tj in (21),

for j = 1, . . . , d , and assume A2 on the input density. Then there are constants
c1, c2, c3, n0 > 0, that depend only on d, b0, σ, k, such that for all c ≥ c1 and

n(logn)−(1+1/k) ≥ n0C
(2k+2)/(2k2+2k−1)
n , any solution in the restricted additive lo-

cally adaptive spline problem (22), with λ = cn1/(2k+3)C
−(2k+1)/(2k+3)
n , satisfies

the same result in (27), with probability at least 1 − exp(−c2c) − c3/n.
(c) Let Sj = Hj , the set of kth degree falling factorial functions defined over

Xj (the j th dimension of inputs), for j = 1, . . . , d , and assume A2. Then there
exist constants c1, c2, c3, n0 > 0, that depend only on d, b0, σ, k, such that for all
c ≥ c1 and n(logn)−(2k+3) ≥ n0C

4k+4
n , any solution in the additive trend filtering

problem (22), with λ = cn1/(2k+3)C
−(2k+1)/(2k+3)
n , satisfies (27), with probability

at least 1 − exp(−c2c) − c3/n.

REMARK 4 (Spline and falling factorial approximants). For part (a) of the
corollary, the approximation error (the first term on the right-hand side) in (24) is
zero by definition, and we need only verify Assumptions C1, C2, C3 for the regu-
larizer J (g) = TV(g(k)). Parts (b) and (c) require control over the approximation
error, because the underlying regression function f0 = ∑d

j=1 f0j need not have
components that lie in the chosen function spaces Sj , j = 1, . . . , d . To be clear:
for k = 0 or k = 1, as discussed in Section 2.5, all three problems considered in
parts (a), (b), (c) are equivalent; hence parts (b) and (c) really only concern the case
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k ≥ 2. For both of these parts, we control the approximation error by controlling
the univariate approximation error and then applying the triangle inequality. For
part (b), we use a special spline quasi-interpolant from Proposition 7 in Mammen
and van de Geer (1997) (who in turn construct this using results from de Boor
(1978)); for part (c), we develop a new falling factorial approximant that may be
of independent interest.

3.3. Error bounds for a growing dimension d . In this subsection, we allow the
input dimension d to grow with the sample size n. To keep our analysis as clean as
possible, we consider a constrained version of the problem (22), namely

min
fj∈Sj ,j=1,...,d

1

2

n∑
i=1

(
Y i − Ȳ −

d∑
j=1

fj

(
Xi

j

))2

subject to
n∑

i=1

fj

(
Xi

j

) = 0, J (fj ) ≤ δ, j = 1, . . . , d,

(28)

for a tuning parameter δ > 0. (The penalized problem (22) can also be analyzed in
the setting of growing d , but we find that the analysis is messier and requires more
assumptions in order to obtain the same results.) Instead of A1, we now use the
following assumption in the input distribution.

ASSUMPTION A3. The input points Xi , i = 1, . . . , n are i.i.d. from a contin-
uous distribution Q supported on [0,1]d that decomposes as Q = Q1 × · · · × Qd ,
where the density of each Qj is lower and upper bounded by constants b1, b2 > 0,
for j = 1, . . . , d .

Assumption A3 is fairly restrictive, since it requires the input distribution Q

to be independent across dimensions of the input space. The reason we use this
assumption: when Q = Q1 × · · · × Qd , additive functions enjoy a key decom-
posability property in terms of the (squared) L2 norm defined with respect to Q.
In particular, if m = ∑d

j=1 mj has components with L2 mean zero, denoted by

m̄j = ∫ 1
0 mj(xj ) dQj (xj ) = 0, j = 1, . . . , d , then we have

(29)

∥∥∥∥∥
d∑

j=1

mj

∥∥∥∥∥
2

2

=
d∑

j=1

‖mj‖2
2.

This is explained by the fact that each pair of components mj , m� with j �= � are
orthogonal with respect to the L2 inner product, since

〈mj,m�〉2 =
∫
[0,1]2

mj(xj )m�(x�) dQj(xj ) dQ�(x�) = m̄j m̄� = 0.

The above orthogonality, and thus the decomposability property in (29), is only
true because of the product form Q = Q1 ×· · ·×Qd . Such decomposability is not



3054 V. SADHANALA AND R. J. TIBSHIRANI

generally possible with the empirical norm. In the proof of Theorem 2, we move
from considering the empirical norm of the error vector to the L2 norm, in order
to leverage the property in (29), which eventually leads to an error rate that has a
linear dependence on the dimension d . In the absence of L2 decomposability, the
same error rate can be achieved with a weaker incoherence bound, as in (34); see
Remark 7 after the theorem.

We now state our main result in the growing d case, whose proof is in Ap-
pendices A.1.10, A.1.11 in the Supplementary Material (Sadhanala and Tibshirani
(2019)).

THEOREM 2. Assume A3, B1 on the data distribution, and assume C1, C2,
C3 on the seminorm J . Let δ ≥ 1 be arbitrary. There are constants c1, c2, c3, n0 >

0, that depend only on b1, b2, σ, k,L,K,w, such that for all c ≥ c1 and n ≥
n0(dδ)1+w/2, any solution in (28) satisfies both∥∥∥∥∥

d∑
j=1

f̂j − f0

∥∥∥∥∥
2

n

≤
∥∥∥∥∥

d∑
j=1

f̃j − f0

∥∥∥∥∥
2

n

+ cdn−2/(2+w)δ,(30)

∥∥∥∥∥
d∑

j=1

f̂j − f0

∥∥∥∥∥
2

2

≤ 2

∥∥∥∥∥
d∑

j=1

f̃j − f0

∥∥∥∥∥
2

2

+ 24

∥∥∥∥∥
d∑

j=1

f̃j − f0

∥∥∥∥∥
2

n

+ cdn−2/(2+w)δ2,(31)

with probability at least 1 − exp(−c2c) − c3/n, simultaneously over all functions
f̃ = ∑d

j=1 f̃j , feasible for the problem (28).

REMARK 5 (Error bound for additive, J -smooth f0). Assume f0 = ∑d
j=1 f0j ,

where f0j ∈ Sj and J (f0j ) ≤ cn, j = 1, . . . , d , for a sequence cn ≥ 1. Letting
f̃ = f0, and δ = cn, the results in (30), (31) translate to∥∥∥∥∥

d∑
j=1

f̂j −
d∑

j=1

f0j

∥∥∥∥∥
2

n

≤ cdn−2/(2+w)cn and

∥∥∥∥∥
d∑

j=1

f̂j −
d∑

j=1

f0j

∥∥∥∥∥
2

2

≤ cdn−2/(2+w)c2
n,

(32)

with probability at least 1 − exp(−c2c) − c3/n, provided that n ≥ n0(dcn)
1+w/2.

From the minimax lower bound in Theorem 3, we can see that the optimal rate
for such a class of functions is in fact dn−2/(2+w)c

2w/(2+w)
n , which reveals that the

rates in (32) are tight when cn is a constant, but not when cn grows with n. It is
worth noting that the dependence of the bounds on cn in Theorem 2 (and hence
in (32)) can be improved to have the optimal scaling of c

2w/(2+w)
n by assuming

that f0 is sup norm bounded, and additionally placing a sup norm bound on the
components in (28). This feels like an unnecessary restriction, so we prefer to
present results without it, as in Theorem 2 (and (32)).
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REMARK 6 (Distance to best additive, J -smooth approximation of f0).
A consequence of the proof of (30) is a bound on the empirical norm error between
f̂ and the best additive approximation of f0. To be precise, let f best = ∑d

j=1 f best
j

minimize ‖∑d
j=1 f̃j − f0‖2

n over all additive functions f̃ = ∑d
j=1 f̃j feasible for

problem (28). Then following directly from (A.36) in the proof of Theorem 2, we
have for all c ≥ c1 and n ≥ n0(dδ)1+w/2,

(33)

∥∥∥∥∥
d∑

j=1

f̂j −
d∑

j=1

f best
j

∥∥∥∥∥
2

n

≤ cdn−2/(2+w)δ,

with probability at least 1 − exp(−c2c) − c3/n, where again c1, c2, c3, n0 > 0 are
constants that depend on b1, b2, σ, k,L,K,w. Just as we saw in fixed d case, the
right-hand side in (33) does not depend on the approximation error ‖f best − f0‖n,
which is analogous to classical results from Stone (1985).

REMARK 7 (L2 decomposability and incoherence). The decomposability
property in (29) is critical in obtaining the sharp (linear) dependence on d in the
error rates (30), (31). However, it is worth noting that all that is needed in the proof
is in fact a lower bound of the form

(34)

∥∥∥∥∥
d∑

j=1

mj

∥∥∥∥∥
2

2

≥ φ0

d∑
j=1

‖mj‖2
2,

for a constant φ0 > 0, rather than an equality, as in (29). The above is an incoher-
ence condition that can hold for nonproduct distributions Q, over an appropriate
class of functions (additive functions with smooth components), provided that the
correlations between components of Q are not too large. See Meier, van de Geer
and Bühlmann (2009), van de Geer (2014) for similar incoherence conditions.

Next, we present our results for additive locally adaptive regression splines
(both unrestricted and restricted variants) and additive trend filtering. The proof
is in Appendix A.1.12 in the Supplementary Material (Sadhanala and Tibshirani
(2019)).

COROLLARY 2. Assume A3, B1 on the data distribution. Also, assume that
the underlying regression function is additive, f0 = ∑d

j=1 f0j , where the compo-

nents f0j , j = 1, . . . , d are k times weakly differentiable, such that TV(f
(k)
0j ) ≤ cn,

j = 1, . . . , d , for a sequence cn ≥ 1. Then for J (g) = TV(g(k)), the following is
true of the estimator defined by problem (28):

(a) Let Sj be the space of all k times weakly differentiable functions, for
each j = 1, . . . , d . There exist constants c1, c2, c3, n0 > 0, that depend only on
b1, b2, σ, k, such that for all c ≥ c1 and n ≥ n0(dcn)

(2k+3)/(2k+2), any solution in
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the constrained-form additive locally adaptive spline problem (28), with tuning
parameter δ = cn, satisfies∥∥∥∥∥

d∑
j=1

f̂j −
d∑

j=1

f0j

∥∥∥∥∥
2

n

≤ cdn−(2k+2)/(2k+3)cn and

∥∥∥∥∥
d∑

j=1

f̂j −
d∑

j=1

f0j

∥∥∥∥∥
2

2

≤ cdn−(2k+2)/(2k+3)c2
n,

(35)

with probability at least 1 − exp(−c2c) − c3/n.
(b) Let Sj = Gj , the set of kth degree splines with knots in the set Tj in

(21), for j = 1, . . . , d . There exist constants c1, c2, c3, n0 > 0, that depend only
on b1, b2, σ, k, such that for c ≥ c1 and n ≥ (dcn)

(2k+3)/(2k+2), any solution in
the constrained-form restricted additive locally adaptive spline problem (28), with
tuning parameter δ = akcn, where ak ≥ 1 is a constant that depends only on k,
satisfies (35), with probability at least 1 − exp(−c2c) − c3d/n.

(c) Let Sj = Hj , the set of kth degree falling factorial functions defined over
Xj (the j th dimension of input points), for j = 1, . . . , d . Then there are constants
c1, c2, c3, n0 > 0, depending only on b1, b2, σ, k, such that for all c ≥ c1 and n ≥
n0(dcn)

(2k+3)/(2k+2), any solution in the constrained-form additive trend filtering
problem (28), with tuning parameter δ = akcn, where ak ≥ 1 is a constant depend-
ing only on k, satisfies (35), with probability at least 1 − exp(−c2c) − c3d/n.

3.4. Minimax lower bounds. We consider minimax lower bounds for estima-
tion over the class of additive functions whose components are smooth with respect
to the seminorm J . We allow the dimension d to grow with n. As for the data dis-
tribution, we will use the following assumptions in place of A1, A2, A3, B1.

ASSUMPTION A4. The inputs Xi , i = 1, . . . , n are i.i.d. from the uniform
distribution on [0,1]d .

ASSUMPTION B2. The responses Y i , i = 1, . . . , n follow

Y i = μ +
d∑

j=1

f0j

(
Xi

j

) + εi, i = 1, . . . , n,

with mean μ ∈ R, where
∫
[0,1]d f0(x) dx = 0 for identifiability. The errors εi , i =

1, . . . , n are i.i.d. N(0, σ 2), for some constant σ > 0. The errors and input points
are independent.

For the regularizer J , assumed to satisfy Assumptions C1, C2, we will replace
Assumption C3 by the following assumption, on the log packing and log covering
(entropy) numbers.
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ASSUMPTION C4. There exist constants 0 < w < 2 and K1,K2 > 0 such that

logM
(
δ,‖ · ‖2,BJ (1) ∩ B∞(1)

) ≥ K1δ
−w,

logN
(
δ,‖ · ‖2,BJ (1) ∩ B∞(1)

) ≤ K2δ
−w.

(To be clear, here ‖ · ‖2 is the L2 norm defined with respect to the uniform distri-
bution on [0,1].)

Let us introduce the notation

Bd
J (δ) =

{
d∑

j=1

fj : J (fj ) ≤ δ, j = 1, . . . , d

}
.

Now we state our main minimax lower bound. The proof is given in Appendices
A.1.13, A.1.14 in the Supplementary Material (Sadhanala and Tibshirani (2019)).

THEOREM 3. Assume A4, B2 on the data distribution, and C1, C2, C4 on
the seminorm J . Then there exist constants c0, n0 > 0, that depend only on
σ, k,L,K1,K2,w, such that for all cn ≥ 1 and n ≥ n0d

1+w/2cw
n , we have

(36) inf
f̂

sup
f0∈Bd

J (cn)

E‖f̂ − f0‖2
2 ≥ c0dn−2/(2+w)c2w/(2+w)

n .

When we choose J (g) = TV(g(k)) as our regularizer, the additive function class
Bd

J (δ) becomes

Fd
k (δ) =

{
d∑

j=1

fj : TV
(
f

(k)
j

) ≤ δ, j = 1, . . . , d

}
,

and Theorem 3 implies the following result, whose proof is in Appendix A.1.15 in
the Supplementary Material (Sadhanala and Tibshirani (2019)).

COROLLARY 3. Assume A4, B2 on the data distribution. Assume further
that f0j , j = 1, . . . , d are k times weakly differentiable. Then there are con-
stants c0, n0 > 0, that depend only on σ, k, such that for all cn ≥ 1 and and
n ≥ n0d

(2k+3)/(2k+2)c
1/(k+1)
n ,

(37) inf
f̂

sup
f0∈Fd

k (cn)

E‖f̂ − f0‖2
2 ≥ c0dn−(2k+2)/(2k+3)c2/(2k+3)

n .

REMARK 8 (Optimality for a fixed dimension d). For a fixed d , the estimator
defined by (22) is minimax rate optimal over the class of additive functions f0 such
that

∑d
j=1 J (f0j ) ≤ Cn. To see this, note that such a class of functions contains

Bd
J (Cn/d), therefore plugging cn = Cn/d into the right-hand side in (36) yields a
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lower bound rate of n−2/(2+w)C
2w/(2+w)
n , which matches the upper bound rate in

(24).
Furthermore, when J (g) = TV(g(k)), the lower bound rate given by plugging

cn = Cn/d into the right-hand side in (37) is n−(2k+2)/(2k+3)C
2/(2k+3)
n , matching

the upper bound rate in (27). Hence additive locally adaptive regression splines,
restricted additive locally adaptive regression splines, and additive trend filtering
all achieve the minimax rate over the space of additive functions f0 such that∑d

j=1 TV(f
(k)
0j ) ≤ Cn.

REMARK 9 (Optimality for a growing dimension d). For growing d , the esti-
mator defined by (28) is minimax rate optimal over the class of additive functions
f0 such that J (f0j ) ≤ c, j = 1, . . . , d , where c > 0 is a constant. This is verified
by noting that the lower bound rate of dn−2/(2+w) in (36) matches the upper bound
rates in (30), (31).

When J (g) = TV(g(k)), and again, cn = c (a constant), the lower bound rate
of dn−(2k+2)/(2k+3) in (37) matches the upper bound rates in (35). Thus additive
locally adaptive regression splines, restricted additive locally adaptive regression
splines, and additive trend filtering all attain the minimax rate over the space of
additive functions f0 with TV(f

(k)
0j ) ≤ c, j = 1, . . . , d .

For growing cn, we note that the upper bounds in (32) and (35) have an inflated
dependence on cn, compared to (36) and (37). It turns out that the latter (lower
bounds) are tight, and the former (upper bounds) are loose. The upper bounds can
be tightened under further boundedness assumptions (see Remark 5).

REMARK 10 (Suboptimality of additive linear smoothers). Seminal the-
ory from Donoho and Johnstone (1998) on minimax linear rates over Besov
spaces shows that, under Assumption B2, and with the inputs Xi , i = 1, . . . , n

being now nonrandom and occurring over the regular d-dimensional lattice
{1/N,2/N, . . . ,1}d ⊆ [0,1]d with N = n1/d , we have

(38) inf
f̂ additive linear

sup
f0∈Fd

k (cn)

E‖f̂ − f0‖2
2 ≥ c0dn−(2k+1)/(2k+2)c2/(2k+2)

n ,

for all n ≥ n0, where c0, n0 > 0 are constants, depending only on σ, k. On the
left-hand side in (38), the infimum is taken over all additive linear smoothers, that
is, estimators f̂ = ∑d

j=1 f̂j such that each component f̂j is a linear smoother, for
j = 1, . . . , d . The additive linear smoother lower bound (38) is verified in Ap-
pendix A.1.16 in the Supplementary Material (Sadhanala and Tibshirani (2019)).

For a fixed d , we can see that all additive linear smoothers, for example, ad-
ditive smoothing splines, additive kernel smoothing estimators, additive RKHS
estimators, etc. are suboptimal over the class of additive functions f0 with∑d

j=1 TV(f
(k)
0j ) ≤ Cn, as the optimal linear rate in (38) (set cn = Cn/d) is
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n−(2k+1)/(2k+2)C
2/(2k+2)
n , slower than the optimal rate n−(2k+2)/(2k+3)C

2/(2k+2)
n

of additive locally adaptive splines and additive trend filtering in (27).
For growing d , and cn = c (a constant), we also see that additive linear

smoothers are suboptimal over the class of additive functions f0 such that
TV(f

(k)
0j ) ≤ c, j = 1, . . . , d , as the optimal linear rate in (38) is dn−(2k+1)/(2k+2),

slower than the optimal rate dn−(2k+2)/(2k+3) of additive locally adaptive regres-
sion splines and additive trend filtering in (35).

4. Backfitting and the dual. We now examine computational approaches for
the additive trend filtering problem (7). This is a convex optimization problem,
and many standard approaches can be applied. For its simplicity and its ubiquity
in additive modeling, we focus on the backfitting algorithm in particular.

4.1. Backfitting. The backfitting approach for problem (7) is described in Al-
gorithm 1. We write TFλ(r,Xj ) for the univariate trend filtering fit, with a tuning
parameter λ > 0, to a response vector r = (r1, . . . , rn) ∈ R

n over an input vector
Xj = (X1

j , . . . ,X
n
j ) ∈ R

n. In words, the algorithm cycles over j = 1, . . . , d , and at
each step updates the estimate for component j by applying univariate trend filter-
ing to the j th partial residual (i.e., the current residual excluding component j ).
Centering in Step 2b part (ii) is optional, because the fit TFλ(r,Xj ) will have mean
zero whenever r has mean zero, but centering can still be performed for numerical
stability. In general, the efficiency of backfitting hinges on the efficiency of the
univariate smoother employed; to implement Algorithm 1 in practice we can use
fast interior point methods (Kim et al. (2009)) or fast operator splitting methods
(Ramdas and Tibshirani (2016)) for univariate trend filtering, both of which result
in efficient empirical performance.

Algorithm 1 is equivalent to block coordinate descent (BCD), also called exact
blockwise minimization, applied to problem (7) over the coordinate blocks θj ,

Algorithm 1 Backfitting for additive trend filtering

Given responses Y i ∈ R and input points Xi ∈ R
d , i = 1, . . . , n.

1. Set t = 0 and initialize θ
(0)
j = 0, j = 1, . . . , d .

2. For t = 1,2,3, . . . (until convergence):
a. For j = 1, . . . , d :

(i) θ
(t)
j = TFλ

(
Y − Ȳ1 − ∑

�<j

θ
(t)
j − ∑

�>j

θ
(t−1)
j , Xj

)

(ii) (Optional) θ
(t)
j = θ

(t)
j − 1

n
1T θ

(t)
j

3. Return θ̂j , j = 1, . . . , d (parameters θ
(t)
j , j = 1, . . . , d at convergence).
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j = 1, . . . , d . A general treatment of BCD is given in Tseng (2001), who shows
that for a convex criterion that decomposes into smooth plus separable terms, as
does that in (7), all limit points of the sequence of iterates produced by BCD are
optimal solutions. We are primarily interested in developing a connection between
BCD for problem (7) and alternating projections in its dual problem (18), which is
the topic of the next subsection.

4.2. Dual alternating projections. Using the additive trend filtering problem
(7) and its dual (18), related by the transformation (19), we see that for any
dimension j = 1, . . . , d , the univariate trend filtering fit with response vector
r = (r1, . . . , rn) and input vector Xj = (X1

j , . . . ,X
n
j ) becomes

(39) TFλ(r,Xj ) = (Id − 	Uj
)(r),

where Uj = {SjD
T
j vj : ‖u‖∞ ≤ λ}, and recall, we abbreviate Dj = D(Xj ,k+1).

Reparametrizing in terms of the primal-dual relationship u = Y − Ȳ1 − ∑d
j=1 θj

(and ignoring the optional centering step), the backfitting approach in Algorithm 1
can thus be viewed as performing the updates, for t = 1,2,3, . . . ,

u
(t)
0 = Y − Ȳ1 −

d∑
j=1

θ
(t−1)
j ,

u
(t)
j = 	Uj

(
u

(t)
j−1 + θ

(t−1)
j

)
, j = 1, . . . , d,

θ
(t)
j = θ

(t−1)
j + u

(t)
j−1 − u

(t)
j , j = 1, . . . , d.

(40)

Thus the backfitting algorithm for (7), as expressed above in (40), is seen to be
a particular type of alternating projections method applied to the dual problem
(18), cycling through projections onto Uj , j = 1, . . . , d . Interestingly, as opposed
to the classical alternating projections approach, which would repeatedly project
the current iterate u

(t)
j−1 onto Uj , j = 1, . . . , d , the steps in (40) repeatedly project

an “offset” version u
(t)
j−1 + θ

(t−1)
j of the current iterate, for j = 1, . . . , d .

4.3. Parallelized backfitting. We have seen that backfitting is a special type of
alternating projections algorithm, applied to the dual problem (18). For set inter-
section problems (where we seek a point in the intersection of given closed, convex
sets), the optimization literature offers a variety of parallel projections methods (in
contrast to alternating projections methods) that are provably convergent. One such
method can be derived using ADMM (e.g., see Section 5.1 of Boyd et al. (2011)),
and a similar construction can be used for the dual problem (18). We first rewrite
this problem as

min
u0,u1,...,ud∈Rn

1

2
‖Y − Ȳ1 − u0‖2

2 +
d∑

j=1

IUj
(uj )

subject to u0 = u1, u0 = u2, . . . , u0 = ud,

(41)
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where we write IS for the indicator function of a set S (equal to 0 on S, and ∞
otherwise). Then we define the augmented Lagrangian, for an arbitrary ρ > 0, as

Lρ(u0, u1, . . . , ud, γ1, . . . , γd)

= 1

2
‖Y − Ȳ1 − u0‖2

2 +
d∑

j=1

(
IUj

(uj ) + ρ

2
‖u0 − uj + γj‖2

2 − ρ

2
‖γj‖2

2

)
.

The ADMM steps for (41) are now given by repeating, for t = 1,2,3, . . . ,

u
(t)
0 = 1

ρd + 1

(
Y − Ȳ1 + ρ

d∑
j=1

(
u

(t−1)
j − γ

(t−1)
j

))
,

u
(t)
j = 	Uj

(
u

(t)
0 + γ

(t−1)
j

)
, j = 1, . . . , d,

γ
(t)
j = γ

(t−1)
j + u

(t)
0 − u

(t)
j , j = 1, . . . , d.

(42)

Now compare (42) to (40)—the key difference is that in (42), the updates to uj ,
j = 1, . . . , d , that is, the projections onto Uj , j = 1, . . . , d , completely decouple
and can hence be performed in parallel. Run properly, this could provide a large
speedup over the sequential projections in (40).

Of course, for our current study, the dual problem (41) is really only interesting
insofar as it is connected to the additive trend filtering problem (7). In Algorithm 2,
we transcribe the iterations in (42) into an equivalent primal form, and we provide
a convergence guarantee in the next theorem. For details, see Appendix A.1.17 in
the Supplementary Material (Sadhanala and Tibshirani (2019)).

THEOREM 4. Initialized arbitrarily, the ADMM steps (42) produce parame-
ters γ̂j , j = 1, . . . , d (i.e., the iterates γ

(t)
j , j = 1, . . . , d at convergence) such that

Algorithm 2 Parallel backfitting for additive trend filtering

Given responses Y i ∈ R, input points Xi ∈ R
d , i = 1, . . . , n, and ρ > 0.

1. Initialize u
(0)
0 = 0, θ

(0)
j = 0 and θ

(−1)
j = 0 for j = 1, . . . , d .

2. For t = 1,2,3, . . . (until convergence):
a. u

(t)
0 = 1

ρd+1(Y − Ȳ1 − ∑d
j=1 θ

(t−1)
j ) + ρd

ρd+1(u
(t−1)
0 + 1

ρd

∑d
j=1(θ

(t−2)
j −

θ
(t−1)
j ))

b. For j = 1, . . . , d (in parallel):

(i) θ
(t)
j = ρ · TFλ(u

(t)
0 + θ

(t−1)
j /ρ,Xj )

(ii) (Optional) θ
(t)
j = θ

(t)
j − 1

n
1T θ

(t)
j

3. Return θ̂j , j = 1, . . . , d (parameters θ
(t)
j , j = 1, . . . , d at convergence).
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the scaled parameters ργ̂j , j = 1, . . . , d solve additive trend filtering (7). Further,
the outputs θ̂j , j = 1, . . . , d of Algorithm 2 solve additive trend filtering (7).

Written in primal form, we see that the parallel backfitting approach in Algo-
rithm 2 differs from what may be considered the “naive” approach to parallelizing
the usual backfitting iterations in Algorithm 1. Consider ρ = 1. If we were to re-
place Step 2a in Algorithm 2 with u

(t)
0 = r(t−1), the full residual

r(t−1) = Y − Ȳ1 −
d∑

j=1

θ
(t−1)
j ,

then the update steps for θ
(t)
j , j = 1, . . . , d that follow would be just given by ap-

plying univariate trend filtering to each partial residual (without sequentially up-
dating the partial residuals between trend filtering runs). This naive parallel method
has no convergence guarantees, and can fail even in simple practical examples to
produce optimal solutions. Importantly, Algorithm 2 does not take u

(t)
0 to be the

full residual, but as Step 2a shows, uses a less greedy choice: it basically takes u
(t)
0

to be a convex combination of the residual r(t−1) and its previous value u
(t−1)
0 , with

higher weight on the latter. The subsequent parallel updates for θ
(t)
j , j = 1, . . . , d

are still given by univariate trend filtering fits, and though these steps do not exactly
use partial residuals (since u

(t)
0 is not exactly the full residual), they are guaranteed

to produce additive trend filtering solutions upon convergence (as per Theorem 4).
An example of cyclic versus parallelized backfitting is given in Appendix A.1.18
in the Supplementary Material (Sadhanala and Tibshirani (2019)).

5. Experiments. Through empirical experiments, we examine the perfor-
mance of additive trend filtering relative to additive smoothing splines. We also
examine the efficacy of cross-validation for choosing the tuning parameter λ, as
well as the use of multiple tuning parameters. All experiments were performed
in R. For the univariate trend filtering solver, we used the trendfilter func-
tion in the glmgen package; for the univariate smoothing spline solver, we used
the smooth.spline function in base R.

5.1. Simulated heterogeneously-smooth data. We sampled n = 2500 input
points in d = 10 dimensions, by assigning the inputs along each dimension
Xj = (X1

j , . . . ,X
n
j ) to be a different permutation of the equally spaced points

(1/n,2/n, . . . ,1), for j = 1, . . . ,10. For the componentwise trends, we examined
sinusoids with Doppler-like spatially-varying frequencies:

g0j (xj ) = sin
(

2π

(xj + 0.1)j/10

)
, j = 1, . . . ,10.
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FIG. 4. The left panel shows the MSE curves for additive trend filtering (7) (of quadratic order) and
additive smoothing splines (1) (of cubic order), computed over 10 repetitions from the heterogeneous
smoothness simulation with n = 2500 and d = 10, described in Section 5.1, where the SNR is set to
4. Vertical segments denote ±1 standard deviations. The right panel displays the best-case MSE for
each method (the minimum MSE over its regularization path), in a problem setup with n = 1000 and
d = 6, as the signal-to-noise ratio (SNR) varies from 0.7 to 16, in equally spaced values on the log
scale.

We then defined the component functions as f0j = ajg0j − bj , j = 1, . . . , d ,
where aj , bj were chosen so that f0j had empirical mean zero and empirical
norm ‖f0j‖n = 1, for j = 1, . . . , d . The responses were generated according to

Y i i.i.d.∼ N(
∑d

j=1 f0j (X
i
j ), σ

2), i = 1, . . . ,2500. By construction, in this setup,
there is considerable heterogeneity in the levels of smoothness both within and
between the component functions.

The left panel of Figure 4 shows a comparison of the MSE curves from additive
trend filtering in (7) (of quadratic order, k = 2) and additive smoothing splines in
(1) (of cubic order). We set σ 2 in the generation of the responses so that the signal-
to-noise ratio (SNR) was ‖f0‖2

n/σ
2 = 4, where f0 = ∑d

j=1 f0j . The two methods
(additive trend filtering and additive smoothing splines) were each allowed their
own sequence of tuning parameter values, and results were averaged over 10 rep-
etitions from the simulation setup described above. As we can see, additive trend
filtering achieves a better minimum MSE along its regularization path, and does
so at a less complex model (lower df).

The right panel of Figure 4 shows the best-case MSEs for additive trend filtering
and additive smoothing splines (i.e., the minimum MSE over their regularization
paths) as the noise level σ 2 is varied so that the SNR ranges from 0.7 to 1.6, in
equally spaced values on the log scale. The results were again averaged over 10
repetitions of data drawn from a simulation setup essentially the same as the one
described above, except that we considered a smaller problem size, with n = 1000
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and d = 6. The plot reveals that additive trend filtering performs increasingly well
(in comparison to additive smoothing splines) as the SNR grows—not surprising,
as here it is able to better capture the heterogeneity in the component functions.

Lastly, in Appendix A.1.19 in the Supplementary Material (Sadhanala and Tib-
shirani (2019)), we present results from an experimental setup mimicking that in
this subsection, except with the component functions f0j , j = 1, . . . , d having
homogeneous smoothness throughout. Here, additive trend filtering and additive
smoothing splines perform very similarly.

5.2. Cross-validation and multiple tuning parameters. Sticking to the simula-
tion setup from the last subsection, but at the smaller problem size, n = 1000 and
d = 6 (used to produce the right panel of Figure 4), we study in the left panel of
Figure 5 the use of 5-fold cross-validation (CV) to select the tuning parameter λ for
additive trend filtering and additive smoothing splines. Displayed are the resulting
MSE curves as the SNR varies from 0.7 to 16. Also shown on the same plot are
the oracle MSE curves (which are the same as those the right panel of Figure 4), in
which λ has been chosen to minimize the MSE for each method. We can see that
the performance of each method degrades using CV, but not by much.

In the right panel of the figure, we examine the use of multiple tuning parameters
for additive smoothing splines and additive trend filtering, that is, replacing the

FIG. 5. Both panels display results from the same simulation setup as that in the right panel of
Figure 4. The left panel shows MSE curves when the estimators are tuned by 5-fold cross-validation
(CV), and also by the oracle (reflecting the minimum possible MSE). The right panel displays MSE
curves when we allow each estimator to have d tuning parameters, tuned by a hybrid backfit-CV
method explained in the text, versus the oracle MSE curves for a single tuning parameter.
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penalties in (1) and (7) by

d∑
j=1

λjθ
T
j Qjθj and

d∑
j=1

λj

∥∥D(Xj ,k+1)Sj θj

∥∥
1,

respectively, which means we would now have d tuning parameters λj , j =
1, . . . , d . When the function we are estimating has different amounts of smooth-
ness along different dimensions, we have argued (and seen through examples) that
additive trend filtering—using only a single tuning parameter λ—can accommo-
date these differences, at least somewhat, thanks to its locally adaptive nature. But,
when these differences in smoothness are drastic enough, it may be worthwhile to
use multiple tuning parameters.

When d is moderate (even just for d = 6), cross-validation over a d-dimensional
grid of values for λj , j = 1, . . . , d can be prohibitive. However, as pointed out by
a referee of this article, there has been a considerable amount of work dedicated
to this problem by authors studying additive models built from splines (or other
linear smoothers), for example, Fahrmeir and Lang (2001), Gu and Wahba (1991),
Kim and Gu (2004), Rue, Martino and Chopin (2009), Ruppert, Wand and Carroll
(2003), Wood (2000, 2004, 2011), Wood, Goude and Shaw (2015), Wood, Pya
and Säfken (2016). Many of these papers use an efficient computational approach
based on restricted maximum likelihood (REML) for selecting λj , j = 1, . . . , d;
see also Wood (2017) for a nice introduction and description of this approach.
Unfortunately, as far as we see it, REML does not easily apply to additive trend
filtering.

We thus use the following simple approach for multiple tuning parameter se-
lection: within each backfitting loop, for each component j = 1, . . . , d , we use
(univariate) CV to choose λj . While this does not solve a particular convex opti-
mization problem, and is not guaranteed to converge in general, we have found it to
work quite well in practice. The right panel of Figure 5 compares the performance
of this so-called backfit-CV tuning to the oracle, that chooses just a single tuning
parameter. Both additive trend filtering and additive smoothing splines are seen to
improve with d tuning parameters, tuned by backfit-CV, in comparison to the ora-
cle choice of tuning parameter. Interestingly, we also see that additive smoothing
splines with d tuning parameters performs on par with additive trend filtering with
the oracle choice of tuning parameter. (In this example, REML tuning for additive
smoothing splines—as implemented by the mgcv R package—performed worse
than backfit-CV tuning, and so we only show results from the latter.)

6. Discussion. We have studied additive models built around the univariate
trend filtering estimator, that is, defined by penalizing according to the sum of
�1 norms of discrete derivatives of the component functions. We examined ba-
sic properties of these additive models, such as extrapolation of the fitted values
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to a d-dimensional surface, and uniqueness of the component fits. When the un-
derlying regression function is additive, with components whose kth derivatives
are of bounded variation, we derived error rates for kth order additive trend fil-
tering: n−(2k+2)/(2k+3) for a fixed input dimension d (under weak assumptions),
and dn−(2k+2)/(2k+3) for a growing dimension d (under stronger assumptions).
We showed these rates are sharp by establishing matching minimax lower bounds.
On the computational side, we devised a provably convergent parallel backfitting
algorithm for additive trend filtering. It is worth noting that our parallel backfitting
method is not specific to additive trend filtering, but it can be embedded in a more
general parallel coordinate descent framework (Tibshirani (2017)).

A natural extension of our work is to consider the high-dimensional case, where
d is comparable or possibly even much larger than n, and we fit a sparse additive
model by employing an additional sparsity penalty in problem (7). Another nat-
ural extension is to consider responses Y i |Xi , i = 1, . . . , n from an exponential
family distribution, and we fit a generalized additive model by changing the loss
in (7). After we completed an initial version of this paper, both extensions have
been pursued: Tan and Zhang (2017) develop a suite of error bounds for sparse
additive models, with various forms of penalties (which include total variation on
derivatives of components); and Haris, Simon and Shojaie (2018) give comprehen-
sive theory for sparse generalized additive models, with various types of penalties
(which again include total variation on derivatives of components).
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SUPPLEMENTARY MATERIAL

Supplement to “Additive models with trend filtering” (DOI: 10.1214/19-
AOS1833SUPP; .pdf). Proofs and additional simulations.
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