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CROSS VALIDATION FOR LOCALLY STATIONARY PROCESSES1

BY STEFAN RICHTER AND RAINER DAHLHAUS

Heidelberg University

We propose an adaptive bandwidth selector via cross validation for local
M-estimators in locally stationary processes. We prove asymptotic optimality
of the procedure under mild conditions on the underlying parameter curves.
The results are applicable to a wide range of locally stationary processes such
linear and nonlinear processes. A simulation study shows that the method
works fairly well also in misspecified situations.

1. Introduction. Inference for locally stationary time series models is
strongly connected to the estimation of parameter curves which determine the
degree of nonstationarity. The estimation of these curves was discussed for sev-
eral specific models such as tvARMA processes [5], the tvARCH and tvGARCH
processes [4, 7, 8] and time-varying random coefficient models [16]. Of interest is
also a time-varying TAR process which was considered in [18].

Local estimators such as kernel estimators require the selection of a bandwidth.
Unlike nonparametric regression, there exist only very few theoretical results about
adaptivity for locally stationary processes. We mention [14] who discussed adap-
tive covariance estimation for a general class of locally stationary processes. Other
results are constructed for specific models and are partly dependent on further tun-
ing parameters: Giraud, Roueff and Sanchez-Perez [9] discussed online-adaptive
forecasting of tvAR processes and [1, 2] proposed methods for sequential and
minimax-optimal bandwidth selection for tvAR processes of order 1.

In this paper, we treat the problem for arbitrary locally stationary time series
models determined by a time varying parameter curve. We focus on local M-
estimators and use the functional dependence measure introduced in [17] to for-
mulate mixing conditions. We propose an adaptive bandwidth selection procedure
inspired by cross validation in the i.i.d. regression model which does not need any
tuning parameters. We discuss the theoretic behavior by proving asymptotic op-
timality of the selector (similar to [12] where nonparametric regression has been
treated). We also prove convergence toward the deterministic asymptotic optimal
bandwidth.
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The technical core of the paper is martingale theory applied in particular to
the score function of the objective function and several bounds for moments of
quadratic and cubic forms of locally stationary processes which are needed to pro-
vide convergence of expansions of the estimation error with suitable rates.

In Section 2, we introduce the locally stationary time series model and formalize
the separation of the process into a parametric stationary process and unknown
parameter curves. We define local M-estimators and the cross validation procedure.
We introduce a Kullback–Leibler-type distance measure which can be seen as an
analogue to the averaged squared error in nonparametric regression.

In Section 3, we prove asymptotic optimality of the cross-validation procedure
with respect to the Kullback–Leibler-type distance measure and convergence of
the cross-validation bandwidth toward the deterministic asymptotic optimal band-
width. Furthermore, we derive the limit distribution of the bandwidth chosen by
cross validation. The assumptions are stated in terms of a parametric stationary
time series model which is connected to the locally stationary process. This allows
for easy verification since most of the conditions are standard in M-estimation
theory and were already shown for specific stationary models.

In Section 4, we discuss some processes where the main results are applicable.
The performance of the method for different models such as tvAR, tvARCH and
tvMA is studied in simulations.

In Section 5, a short conclusion is drawn. Many lemmata used in the proofs are
deferred without further reference to the Supplementary Material [15].

2. A cross-validation method for locally stationary processes.

2.1. The model. In this paper, we discuss adaptive estimation of a multidi-
mensional parameter curve θ0 : [0,1] → � ⊂ Rp , that is, we restrict to locally
stationary processes Xt,n, t = 1, . . . , n parameterized by curves. As usual, we are
working in the infill asymptotic framework with rescaled time t/n ∈ [0,1], where
n denotes the number of observations.

Following the original idea of locally stationary processes, for fixed u ∈ [0,1],
Xt,n should locally (i.e., for |u − t

n
| � 1) behave like a stationary process X̂t (u).

In this paper, we assume that the time dependence of the approximation X̂t (u) is
solely described by θ0, that is, X̂t (u) = X̃t (θ0(u)), where X̃t (θ), θ ∈ � is some
family of parametric stationary processes. We formulate the assumptions in terms
of X̃t (θ) instead of X̂t (u) leading to a clear separation between the properties of
the model class and the smoothness assumptions on θ0. We formalize this by the
following.

ASSUMPTION 2.1 (Locally stationary time series model). Let q ≥ 1 and
‖W‖q := (E|W |q)1/q . Let Xt,n, t = 1, . . . , n be a triangular array of observations.
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Suppose that for each θ ∈ �, there exists a stationary process X̃t (θ), t ∈ Z such
that for all q ≥ 1, uniformly in θ, θ ′ ∈ �,

(1)
∥∥X̃t (θ) − X̃t

(
θ ′)∥∥

q ≤ CA

∣∣θ − θ ′∣∣
1,

n∑
t=1

∥∥∥∥Xt,n − X̃t

(
θ0

(
t

n

))∥∥∥∥
q

≤ CB,

with some CA = CA(q),CB = CB(q) ≥ 0, and

Dq := max
{

sup
θ∈�

∥∥X̃0(θ)
∥∥
q, sup

n∈N
sup

t=1,...,n

‖Xt,n‖q

}
< ∞.

REMARK 2.2. (i) We conjecture that the assumption on the existence of all
moments of Xt,n and X̃t (θ) can be dropped but the calculations would be very te-
dious without much additional insight. The number of moments needed for the
proofs increases if the Hoelder exponent of the unknown parameter curve de-
creases.

(ii) In many models, the second condition in (1) basically means that the un-
known parameter curve θ0 has bounded variation; see also Assumption 3.3.

We first give some examples which are covered by our results. These include
in particular several classical parametric time series models where the constant
parameters have been replaced by time-dependent parameter curves. Let εt , t ∈ Z

be an i.i.d. sequence with mean zero.

EXAMPLE 2.3. (i) The tvARMA(r, s) process: Given parameter curves
ai, bj , σ : [0,1] → R (i = 0, . . . , r , j = 0, . . . , s) with a0(·), b0(·) = 1,

r∑
i=0

ai

(
t

n

)
Xt−i,n =

s∑
j=0

bj

(
t

n

)
σ

(
t − j

n

)
εt−j .

(ii) The tvARCH(r) process (cf. [7]): Given parameter curves ai : [0,1] → R

(i = 0, . . . , r),

Xt,n =
(
a0

(
t

n

)
+ a1

(
t

n

)
X2

t−1,n + · · · + ar

(
t

n

)
X2

t−r,n

)1/2
εt .

(iii) The tvTAR(1) process (cf. [18]): Given parameter curves a1, a2 : [0,1] →
R, define

Xt,n = a1

(
t

n

)
X+

t−1,n + a2

(
t

n

)
X−

t−1,n + εt ,

where x+ := max{x,0} and x− := max{−x,0}.
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As an estimator of θ0(·) we consider local likelihood (or local M-) estimators
weighted by kernels, that is,

(2) θ̂h(u) := argmin
θ∈�

Ln,h(u, θ).

where

(3) Ln,h(u, θ) := 1

n

n∑
t=1

Kh

(
t

n
− u

)
�t,n(θ)

and �t,n(θ) := �(Xt,n, Y
c
t−1,n, θ) with Y c

t−1,n := (Xt−1,n, . . . ,X1,n,0,0, . . .) con-
sisting of the observed past, where � is a given objective function [localized in
Ln,h(u, θ) by the kernel K]. K : R → R is nonnegative with

∫
K = 1, and h ∈

(0,∞) is the bandwidth. For shortening the notation, we used Kh(·) := 1
h
K( ·

h
). In

practice, � is often chosen to be the negative logarithm of the infinite past likeli-
hood of Xt,n given Yt−1,n := (Xs,n : s ≤ t − 1),

(4) �(x, y, θ) = − logpθ(Xt,n = x|Yt−1,n = y),

assuming that θ0(·) = θ ∈ �. In this paper, we allow for general objective functions
� which have to obey some smoothness conditions (see Assumption 3.3).

2.2. Distance measures. Define Ỹt (θ) := (X̃s(θ) : s ≤ t). In the following, we
will use ∇ to denote the derivative with respect to θ ∈ �, and x′ denotes the trans-
pose of a vector or matrix x. As global distance measures, we use the (infeasible)
averaged and the integrated squared error (ASE/ISE) weighted by the Fisher infor-
mation

(5) I (θ) := E
[∇�

(
Ỹ0(a), θ

) · ∇�
(
Ỹ0(a), θ

)′]|a=θ .

and the possibly misspecified Fisher information V (θ) := E∇2�(Ỹ0(a), θ)|a=θ

of the corresponding stationary approximation. In addition, the weight function
w(·) := 1[γ,1−γ ](·) with some γ > 0 is needed to exclude boundary effects. Since
the proof is the same for other weights w(·), we allow in Assumption 3.4 for more
general weights.

More precisely, we set (with |x|2A := x′Ax for x ∈ Rp and A ∈ Rp×p),

(6) dA(θ̂h, θ0) := 1

n

n∑
t=1

∣∣∣∣θ̂h

(
t

n

)
− θ0

(
t

n

)∣∣∣∣2
V (θ0(t/n))

w

(
t

n

)

and

(7) dI (θ̂h, θ0) :=
∫ 1

0

∣∣θ̂h(u) − θ0(u)
∣∣2
V (θ0(u))w(u)du.

It can be shown that for w ≡ 1, 2dA and 2dI are approximations of the global
Kullback–Leibler divergence between models with parameter curves θ̂h(·) and
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θ0(·) which can be seen as follows: If � is the correct likelihood (4) and we as-
sume that all observations including the negative indices are available, we obtain
with a Taylor expansion

1

n

n∑
t=1

Eθ0 log
(

dPXt,n|Yt−1,n,θ0

dPXt,n|Yt−1,n,θ1

)

≈ 1

n

n∑
t=1

Eθ0

[
�

(
Xt,n, Yt−1,n, θ1

(
t

n

))
− �

(
Xt,n, Yt−1,n, θ0

(
t

n

))]

≈ 1

n

n∑
t=1

Eθ0∇�

(
Xt,n, Yt−1,n, θ0

(
t

n

))
·
(
θ1

(
t

n

)
− θ0

(
t

n

))

+ 1

2n

n∑
t=1

Eθ0

∣∣∣∣θ1

(
t

n

)
− θ0

(
t

n

)∣∣∣∣2∇2�(Xt,n,Yt−1,n,θ0(
t
n
))

.

(8)

The first approximation holds since the evolution from Yt−1,n to Xt,n is mainly
affected by θ0 through θ0(

t
n
); see (1). Since � is the correct likelihood, it holds that

Eθ0∇�(Xt,n, Yt−1,n, θ0(
t
n
)) ≈ 0 which shows that only the second summand in (8)

remains, which is approximately dA(θ1, θ0), and thus justifies the definition of dA.
To use our approach, it is necessary that this property is still maintained even

if � is not the correct likelihood, see Assumption 3.3(2). This is fulfilled for many
time series models; cf. Section 4.

To give a feeling of the arising quantities, we discuss them for the simple exam-
ple of the tvAR(1) process.

EXAMPLE 2.4 (tvAR(1) process). Let Xt,n = θ0(
t
n
)Xt−1,n + εt with i.i.d.

εt , where Eεt = 0, Eε2
t = 1 and θ0 : [0,1] → (−1,1). With �(x, y, θ) := 1

2(x −
θy1)

2 + const chosen as the negative log Gaussian likelihood, we obtain

θ̂h(u) = ĉ1,h(u)

ĉ0,h(u)
, ĉj,h(u) := 1

n

n∑
t=1

Kh

(
t

n
− u

)
Xt−j,nXt−1,n,

and V (θ) = (1 − θ2)−1 which leads to

dA(θ̂h, θ0) = 1

n

n∑
t=1

(
1 − θ0

(
t

n

)2)−1
·
(
θ̂h

(
t

n

)
− θ0

(
t

n

))2
w

(
t

n

)
.

Unlike the direct ASE 1
n

∑n
t=1(θ̂h(

t
n
) − θ0(

t
n
))2, the Kullback–Leibler-type dis-

tance dA(θ̂h, θ0) takes care of the fact that θ0 has to be well estimated if it attains
values near 1 to guarantee that the model described by θ̂h is near to the model
described by θ0.
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In Theorem 3.8 below, we will prove that under suitable conditions, dA(θ̂h, θ0)

can be approximated uniformly in h by a deterministic distance measure d∗
M,2(h),

which has a unique minimizer h0 = h0,n ∼ n−1/5. h0 can be seen as the (determin-
istic) optimal bandwidth.

2.3. The cross-validation method. We now choose the bandwidth h by a gen-
eralized cross-validation method. The main idea is to approximate the infeasible
distance measure dA(θ̂h, θ0) by an estimator CV(h). Motivated by (8), we replace
θ1 therein with an estimator θ̂h,−t of θ0 which guarantees unbiasedness. We define
a “quasi-leave-one-out” local likelihood

(9) Ln,h,−t (u, θ) := 1

n

n∑
s=1,s �=t

Kh

(
s

n
− u

)
�s,n(θ)

and a “quasi-leave-one-out” estimator of θ0 by

(10) θ̂h,−t (u) := argmin
θ∈�

Ln,h,−t (u, θ).

Here, “leave-one-out” does not mean that we ignore the t th observation of the pro-
cess (Xs,n)s=1,...,n, but that we ignore the term which is contributed by the likeli-
hood �t,n at time step t . In case of a Gaussian likelihood, this can be interpreted as
leaving out the t th projection error. Because of that, we refer to the estimator as a
quasi-leave-one-out method.

We then choose ĥ via minimizing the cross-validation functional

(11) CV(h) := 1

n

n∑
t=1

�t,n

(
θ̂h,−t

(
t

n

))
w

(
t

n

)
.

Note that there may not exist a unique minimizer ĥ of CV(h) due to its piecewise
constancy. For the mathematical considerations, we therefore choose some ĥ such
that

(12) CV(ĥ) − inf
h∈Hn

CV(h) ≤ 1

n
,

where Hn is a suitable subinterval of (0,1), see Assumption 3.4, which covers all
relevant values of h.

Let us specify the corresponding estimators in the tvAR(1) from Example 2.4
above.

EXAMPLE 2.5 (tvAR(1) process ctd). We have

θ̂h,−t (u) = ĉ1,h,−t (u)

ĉ0,h,−t (u)
, ĉj,h,−t (u) := 1

n

n∑
s=1,s �=t

Kh

(
s

n
− u

)
Xs−j,nXs−1,n,
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and, ignoring the changes for the first summand t = 1,

CV(h) = 1

2n

n∑
t=1

(
Xt,n − θ̂h,−t

(
t

n

)
Xt−1,n

)2
w

(
t

n

)

= −1

n

n∑
t=1

n∑
t=1

εtXt−1,n

(
θ̂h,−t

(
t

n

)
− θ0

(
t

n

))
w

(
t

n

)

+ 1

2n

n∑
t=1

X2
t−1,n

(
θ̂h,−t

(
t

n

)
− θ0

(
t

n

))2
w

(
t

n

)

+ 1

n

n∑
t=1

ε2
t w

(
t

n

)
.

(13)

While the first equation in (13) shows how to use CV(h) in practice, the second
equation gives a glance how CV(h) is used to approximate dA(θ̂h, θ0) in this sit-
uation: the second summand 1

n

∑n
t=1 X2

t−1,n(θ̂h,−t (
t
n
) − θ0(

t
n
))2w( t

n
) is a direct

approximation of dA(θ̂h, θ0).

3. Main results. In this chapter, we present our main results concerning the
bandwidth ĥ chosen by cross validation. Our results are twofold. By assuming that
θ0 is only Hoelder continuous and of bounded variation, we prove in Theorem 3.6
that ĥ is asymptotically optimal with respect to dA, that is,

lim
n→∞

dA(θ̂
ĥ
, θ0)

infh∈Hn dA(θ̂h, θ0)
= 1 a.s.

This result especially holds for nonsymmetric one-sided kernels which is of spe-
cial interest in prediction. Recall that dA(θ̂h, θ0) can be interpreted as a Kullback–
Leibler-type distance between the two time series models associated to θ̂h and θ0.
Thus, the cross-validation procedure yields an estimator θ̂

ĥ
of θ0 such that the

distributions of the associated time series coincide best.
In the special situation that K is a symmetric kernel and θ0 is twice continu-

ously differentiable, we show in Theorem 3.9 that ĥ is consistent in the sense that
ĥ/h0 → 1 a.s., where h0 is the deterministic optimal bandwidth defined in (22).
Furthermore, we derive the asymptotic distribution and the convergence rate of
ĥ, more precisely we show that n3/10(ĥ − h0) is asymptotically normal in Theo-
rem 3.10.

3.1. Assumptions for asymptotic optimality of ĥ. We split the assumptions into
three parts. Assumption 3.1 asks the stationary approximation X̃t (θ) to fulfill some
mixing conditions stated with the dependence measure introduced in [17], which
is necessary to prove asymptotic results. Assumption 3.3 states conditions on the
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objective function �, ensuring the application of typical maximum likelihood tech-
niques. Assumption 3.4 collects some requirements on the kernel K and the weight
function w which are usually satisfied in practice and are only dependent on the
choice of the user.

It is important to note that all our assumptions are stated in terms of the station-
ary approximation X̃t (θ) which are therefore easily verifiable due to known results
on stationary time series. In Section 4, it is shown that a large class of time series
models such as tvARMA or tvARCH models fulfill these assumptions.

Mixing conditions: We use the functional dependence measure introduced in
[17]. Let εt , t ∈ Z be a sequence of i.i.d. random variables. For t ≥ 0, let Ft :=
(εt , εt−1, . . .) be the shift process and F∗

t := (εt , . . . , ε1, ε
∗
0, ε−1, . . .), where ε∗

0 is a
random variable which has the same distribution as ε0 and is independent of all εt ,
t ∈ Z. For a stationary process Wt = H(Ft ) ∈ Lq with deterministic H : R∞ →R

define W ∗
t := Ht(F∗

t ) and the functional dependence measure

(14) δW
q (k) := ∥∥Wt − W ∗

t

∥∥
q.

ASSUMPTION 3.1 (Dependence assumption). Suppose that for each θ ∈ �,
there exists a representation X̃t (θ) = H(θ,Ft ) with some measurable H(θ, ·) and

δq(k) := supθ∈� δ
X̃(θ)
q (k) = O(k−(3+η)) for some η > 0.

Conditions on �: To state smoothness conditions on the objective function �

in a concise way, we introduce the class of Lipschitz-continuous functions from
R∞ to R where we allow the Lipschitz constant to depend on the location at most
polynomially.

DEFINITION 3.2 (The class L(M,χ,C)). We say that a function g : R∞ ×
� → R is in the class L(M,χ,C) if C = (C1,C2), M ≥ 1, χ = (χi)i=1,2,3,... ∈
R∞≥0 and for all z ∈ R∞, θ ∈ �:

(15)

sup
z �=z′

|g(z, θ) − g(z′, θ)|
|z − z′|χ,1(1 + |z|M−1

χ,1 + |z′|M−1
χ,1 )

≤ C1,

sup
θ �=θ ′

|g(z, θ) − g(z, θ ′)|
|θ − θ ′|1(1 + |z|Mχ,1)

≤ C2,

where |z|χ,1 :=∑∞
i=1 χi · |zi | and

∑∞
i=1 χi < ∞.

We now state the necessary conditions on �.

ASSUMPTION 3.3. Suppose that � is three times differentiable with respect to
θ , and:
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(1) � ⊂ Rd is compact. For all u ∈ [0,1], θ0(u) lies in the interior of � and
θ0 is Hoelder continuous with exponent β > 0 and has componentwise bounded
variation Bθ0 .

(2) θ0(u) is the unique minimizer of L(u, θ) := E�(Ỹ0(θ0(u)), θ).
(3) the minimal eigenvalue of V (θ) := E[∇2�(Ỹ0(θ

′), θ)|θ ′=θ ] is bounded from
below by some constant λ0 uniformly in θ ∈ �.

(4) ∇�(Ỹ0(θ
′), θ)|θ ′=θ is an uncorrelated sequence.

(5) each component of g ∈ {�,∇�,∇2,∇3�} lies in L(M,χ,C) for some χ =
(χj )j=1,2,..., where χj = O(j−(3+η)) for some η > 0.

The conditions are discussed more detailed in Remark 3.5.

Conditions on K , Hn, w: Finally, let us formalize the conditions on the set
of bandwidths Hn, the localizing kernel K appearing in the estimation procedure
and the weight function w which arises in the cross-validation functional and the
distance measures.

ASSUMPTION 3.4. Suppose that:

(1) For n ∈ N, Hn = [h,h], where h = hn ≥ c0n
δ−1, h = hn ≤ c1n

−δ for some
constants c0, c1 > 0, δ ∈ (0,1).

(2) The kernel K :R→R has compact support ⊂ [−1
2 , 1

2 ], fulfills
∫

K(x)dx =
1 and is Lipschitz continuous with Lipschitz constant LK .

(3) The weight function w : [0,1] → R≥0 is bounded by |w|∞, has bounded
variation Bw and compact support ⊂ [γ,1 − γ ] with some γ > 0.

REMARK 3.5 (Discussion of the assumptions). 1. Note that Assumptions
3.3(1), 3.3(2), 3.3(3) are standard conditions on the objective function � which en-
sure the validity of basic results (such as Taylor expansions) from maximum likeli-
hood theory. Condition 3.3(2) also implies that E∇�(Ỹ0(θ0(u)), θ0(u)) = 0 which
is important to support the interpretation of dA(θ̂h, θ0) as a Kullback–Leibler-type
distance measure in (8). Furthermore, it ensures the approximation of dA(θ̂h, θ0)

by CV(h); cf. Section 3.6.
2. Assumption 3.3(4) is crucial to prove that CV(h) is an unbiased estimator of

dA(θ̂h, θ0) which leads to the necessary rate of convergence. In many time series
models which are based on i.i.d. innovations, ∇�(Ỹ0(θ

′), θ)|θ ′=θ is a martingale
difference which is even stronger; cf. Section 4. The Lipschitz assumptions 3.3(5)
are used in three ways: They allow to replace Xt,n by its stationary approximations,
they guarantee uniform convergence results in θ which are needed in maximum
likelihood theory and they are used to transfer the mixing conditions of X̃t (θ) to
functions of X̃t (θ) such as �(Ỹt (θ

′), θ). Let us emphasize that we have to ask �

and its derivatives to decay with a certain rate χ in y to deal with the truncated
past which is used in our approach (3).
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3. In principle, δ ∈ (0,1) and c0 > 0 in Assumption 3.4 can be chosen very
small and c1 > 0 arbitrarily large, which ensures that all relevant bandwidths are
covered by Hn. In most practical applications, one can even choose Hn = [0,∞)

without having any drawbacks. A standard choice for the weight function is w(·) =
1[γ,1−γ ](·) with some γ > 0.

3.2. Asymptotic optimality of ĥ. Let us emphasize that the following result
asks θ0 to be only Hoelder continuous and of bounded variation. The kernel is
allowed to be one-sided which may be of interest in prediction settings.

THEOREM 3.6 (Asymptotic optimality of cross validation). Under Assump-
tions 2.1, 3.1, 3.3 and 3.4, the bandwidth ĥ chosen by cross validation is asymp-
totically optimal in the sense that

lim
n→∞

d(θ̂
ĥ
, θ0)

infh∈Hn d(θ̂h, θ0)
= 1 a.s.,

where d is dA or dI from (6) and (7).

3.3. Assumptions for twice continuously differentiable θ0. To ensure that usual
second-order bias decompositions hold for dA, we state natural specifications of
the smoothness properties of � and the underlying process X̃t (θ).

ASSUMPTION 3.7 (Bias expansion conditions). Suppose that:

(1) K is symmetric and θ0 is twice continuously differentiable.
(2) For all θ ∈ �, z ∈ R∞, z �→ ∇�(z, θ) is twice partially differentiable and

∂zi
∂zj

∇�(·, θ) ∈ L(max{M − 2,1}, χ, ψ̃1(i)ψ̃2(j)) for all i, j ≥ 1 with absolutely
summable sequences ψ̃1, ψ̃2.

(3) θ �→ X̃t (θ) is twice continuously differentiable almost surely. It holds that
‖ supθ∈� |∇X̃0(θ)|1‖M and ‖ supθ∈� |∇2X̃0(θ)|1‖M are finite, and

sup
θ �=θ ′

‖|∇2X̃0(θ) − ∇2X̃0(θ
′)|1‖M

|θ − θ ′|1 < ∞.

3.4. Results on convergence rates of ĥ. We know from standard asymptotics
that

θ̂h(u) − θ0(u) ≈ −∇2Ln,h

(
u, θ̄(u)

)−1∇Ln,h

(
u, θ0(u)

)
≈ −V

(
θ0(u)

)−1∇Ln,h

(
u, θ0(u)

)
,

(16)

which motivates the following approximation of dI (θ̂h, θ0):

(17) d∗
I (h) :=

∫ 1

0

∣∣∇Ln,h

(
u, θ0(u)

)∣∣2
V (θ0(u))−1w(u)du.
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While dI (θ̂h, θ0) contains the implicitly defined θ̂h, the quantity d∗
I (h) can be

stated explicitly which allows the explicit calculation of its expectation. We now
set (with “M” for mean)

d∗
M(h) := Ed∗

I (h),

which can be seen as an approximation of the weighted mean integrated squared er-
ror EdI (θ̂h, θ0) of θ̂h. If additionally to Assumptions 2.1, 3.1, 3.3, 3.4, we suppose
Assumption 3.7, Proposition 1.1 implies the usual bias-variance decomposition for
d∗
M :

(18) d∗
M(h) = μKV0

nh
+ h4

4
d2
KB0 + o

(
(nh)−1)+ o

(
h4)

uniformly in h ∈ Hn, where μK := ∫
K(x)2 dx, dK := ∫

K(x)x2 dx and

V0 :=
∫ 1

0
tr
{
V
(
θ0(u)

)−1
I
(
θ0(u)

)}
w(u)du > 0,(19)

B0 :=
∫ 1

0

∣∣E[∂2
u∇�

(
Ỹt

(
θ0(u)

)
, θ
)|θ=θ0(u)

]∣∣2
V (θ0(u))−1w(u)du ≥ 0,(20)

leading to the definition of the deterministic bias-variance decomposition d∗
M,2(h)

without any smaller-order terms and the resulting asymptotically optimal band-
width in the following two theorems.

THEOREM 3.8 (Approximation of distance measures). Let Assumptions 2.1,
3.1, 3.3, 3.4 and 3.7 hold. Define

(21) d∗
M,2(h) := μKV0

nh
+ h4

4
d2
KB0.

If the bias B0 is not degenerated, that is, B0 > 0, then it holds that

sup
h∈Hn

∣∣∣∣d(θ̂h, θ0) − d∗
M,2(h)

d∗
M,2(h)

∣∣∣∣→ 0 a.s.,

where d is dA or dI from (6) and (7).

THEOREM 3.9 (Consistency of the cross-validation bandwidth). Let Assump-
tions 2.1, 3.1, 3.3, 3.4 and 3.7 hold and assume that B0 > 0. Then the bandwidth
ĥ chosen by cross validation fulfils

ĥ

h0
→ 1 a.s.,

where

(22) h0 =
(

V0μK

B0d
2
K

)1/5
n−1/5

is the unique minimizer of d∗
M,2(h) from (21).
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Note that Theorem 3.9 does not give any information about the convergence rate
of ĥ toward h0. Under some additional regularity assumptions on the kernel K , it
is possible to obtain the exact asymptotic behavior.

THEOREM 3.10 (Asymptotic normality of the cross-validation bandwidth).
Let Assumptions 2.1, 3.1, 3.3, 3.4 and 3.7 hold. Additionally, assume that B0 > 0,
the second derivative of θ0 is Lipschitz continuous and that K is continuously dif-
ferentiable with Lipschitz continuous derivative K ′. Put K̂(x) := −K ′(x)x and
K̃(x) = K − K̂ . Then it holds with C0 := nh5

0 that

(23) n3/10(ĥ − h0)
d→ N

(
0,

8

25
·
∫

fvar(u)du

V 2
0

·
∫
(K̃ − K ∗ K̃)2

μ2
K

· C3/5
0

)
,

where ∗ denotes convolution, V0 is defined in (19), μK is defined below (18), the
matrices I , V are defined in (5) and

fvar(u) := w(u)2 tr
{
V
(
θ0(u)

)−1
I
(
θ0(u)

)
V
(
θ0(u)

)−1
I
(
θ0(u)

)}
.

Since h0 ∼ n−1/5 in the above situation, the relative proportion ĥ−h0
h0

has a con-

vergence rate of order n1/10 which is common for standard cross-validation se-
lectors (see [11]). Note especially that our model covers the i.i.d. regression case
which was discussed in [11]. The additional Lipschitz assumption on the second
derivative of θ0 is necessary to quantify the residual terms of d∗

M(h) in (18) more
detailed.

REMARK 3.11. It is seen in the examples in Section 4 that if the model is
correctly specified but higher moments of ε0 are not known, it may hold that
I (θ) = κ · I (θ) with some real number κ > 0, usually only depending on prop-
erties of the i.i.d. innovations εt . In this case, it holds that V0 = p · κ · ∫ w(u)du

(p is the dimension of the parameter space) and
∫

fvar(u)du = p · κ2 · ∫ w(u)2 du,
leading to simpler forms of V0 and the asymptotic variance term in (23). Especially
in the case that the whole model (including the distribution of ε0) is correctly spec-
ified, it holds that κ = 1.

REMARK 3.12. Theorem 3.10 can also be used to provide confidence inter-
vals for h0. Such results may be useful to adjust the cross validation chosen band-
width. If the simplifications from Remark 3.11 do not hold, one may estimate V0
and

∫
fvar(u)du by V̂0 and

∫
f̂var(u)du which are obtained by replacing V (θ0(u)),

I (θ0(u)) by V̂
n,ĥ

(u, θ̂
ĥ
(u)), Î

n,ĥ
(u, θ̂

ĥ
(u)), respectively, where

V̂n,h(u, θ) := 1

nh

n∑
t=1

Kh

(
t

n
− u

)
∇2�

(
Y c

t,n, θ
)
,

În,h(u, θ) := 1

nh

n∑
t=1

Kh

(
t

n
− u

)
∇�
(
Y c

t,n, θ
) · ∇�

(
Y c

t,n, θ
)′
.
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The asymptotic theory is provided in the Supplementary Material [15]; see
Lemma 3.6 (applied to g = ∇2� or g = ∇� · ∇�′ therein). Then an asymptotic
(1 − α) confidence interval for h0 is given by

[ĥ − D̂, ĥ + D̂],
where

D̂ := q1− α
2

√
8

5
·
√∫

f̂var(u)du

V̂0
·
√∫

(K̃ − K ∗ K̃)2

μK

· ĥ3/2

and q1− α
2

denotes the (1 − α
2 )-quantile of the standard normal distribution. Note

especially that by the form of the asymptotic variance (23), the bias term B0 does
not have to be estimated separately.

3.5. Possible generalizations. In the following, some immediate generaliza-
tions of the cross-validation approach (11), (12) are discussed.

REMARK 3.13 (Local linear estimation). Let �̃ = [−R,R]p with some R > 0
large enough. If the parameter curve θ0 is known to be twice continuously differ-
entiable, instead of (9), (10) and (11) one can also use a local linear approach to
estimate h0 via minimizing

CVlin(h) := 1

n

n∑
t=1

�t,n

(
θ̃h,−t

(
t

n

))
w

(
t

n

)
,

where (
θ̃h,−t (u), θ̃ ′

h,−t (u)
) := argmin

(θ,θ̃)∈�×�̃

Llin
n,h,−t (u, θ, θ̃)

and

Llin
n,h,−t (u, θ, θ̃) := 1

n

n∑
s=1,s �=t

Kh

(
s

n
− u

)
�s,n

(
θ +

(
s

n
− u

)
θ̃

)
.

We conjecture that similar results as given in Theorems 3.6, 3.8, 3.9 and 3.10 can
be shown under the stated assumptions. The main difference is the change of the
bias term B0 to

B̃0 =
∫ 1

0

∣∣θ ′′
0 (u)

∣∣2
V (θ0(u))−1w(u)du,

due to local linear estimation; cf. [13].

REMARK 3.14 (Computational time). In general, the calculation of CV(h)

proposed in (11) asks to provide n estimators θ̂h,−t (
t
n
) which are obtained by non-

linear optimizations in (10). If one needs to evaluate CV(h) for m different values
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of h, one has to perform O(n · m) nonlinear optimizations which may be compu-
tationally hard.

Note that in some special models like tvAR(r) processes, explicit estimators
are available (cf. Remark 4.2). Due to the structure of the estimators, it is even
possible to calculate all estimators θ̂h,−t (t/n), t = 1, . . . , n simultaneously via a
convolution approach, which can be used to speed up computation.

For time series with length at most n = 1000, the computation of ĥ usually only
takes seconds. For larger time series, we propose to use a reduced J -fold cross-
validation approach as described in Remark 3.15.

REMARK 3.15 (Reduced J -fold cross validation). The typical J -fold cross-
validation routine (J ∈ N) from i.i.d. regression can be adapted in our model:
Based on the decomposition {1, . . . , n} = ⋃J

j=1 Tn,j , where Tn,j := {j + J · i :
i ∈N0} ∩ {1, . . . , n}, the J -fold cross-validation functional CV(J ) reads

CV(J )(h) = 1

J

J∑
j=1

CV(J,j)(h),

where the “reduced” J -fold cross-validation functional is based on the validation
set Tn,j ,

CV(J,j)(h) = 1

#Tn,j

∑
t∈Tn,j

�t,n

(
θ̂

(−j)
h

(
t

n

))
w

(
t

n

)
,

and the corresponding estimators θ̂
(−j)
h (u) := argminθ∈� L

(−j)
n,h (u, θ) with

L
(−j)
n,h (u, θ) := 1

(n − #Tn,j )

∑
t∈{1,...,n}\Tn,j

Kh

(
t

n
− u

)
�t,n(θ)

are based on the training set {1, . . . , n} \ Tn,j .
Note that CV(n)(h) coincides with the original cross-validation routine CV(h).

In view of computational time, CV(J ) has no advantage compared to CV(h)

since still n possibly nonlinear optimizations have to be performed for calculat-
ing θ̂

(−j)
h (t/n), t ∈ Tn,j , j = 1, . . . , J .

We therefore propose to fix some j0 ∈ {1, . . . , J } and choose ĥ(j0) as a min-
imizer of only one “reduced” functional CV(J,j0)(h). Since then the “effective”
training data has only size n · (1 − 1

J
), we expect that ĥ(j0) provides a reasonable

estimator of h0 · (1 − 1
J
)−1/5. As long as J is constant in n, we conjecture that our

proofs for the properties of ĥ and CV(h) also apply in this situation which means,
especially that if Assumptions 2.1,3.1, 3.3, 3.4 and 3.7 are fulfilled,

n3/10
(
ĥ(j0) − h0

(
1 − 1

J

)−1/5)
d→ N

(
0, σ 2

ĥ
· (J − 1) ·

(
1 − 1

J

)−3/5)
,

where σ 2
ĥ

is the variance of the limit distribution of ĥ given in Theorem 3.10, (23).
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Using this approach, only n
J

nonlinear optimizations for calculating θ̂
(−j0)
h (t/n),

t ∈ Tn,j0 have to be performed, but in turn the cross-validation routine has a higher
variance. A typical choice of J is 5 or 10.

3.6. Proofs. Here, we present the main ideas of the proofs of the theorems. For
the proof of Theorem 3.6, we only discuss the result for d = dA, the proof for dI is
similar. The main idea is to show that 2 CV(h) approximates dA(θ̂h, θ0) uniformly
in h ∈ Hn, which then shows that their minima ĥ and argminh∈Hn

dA(θ̂h, θ0) con-
verge to each other, giving the result.

Let Assumptions 2.1, 3.1, 3.3 and 3.4 hold. Recall from (18) that d∗
M(h) can

be seen as a deterministic MSE of the estimation problem which has a typical
bias-variance decomposition and, therefore, describes the squared rate with which
θ0 is estimated by θ̂h. In the following we show that certain quantities can be
approximated by each other with a rate smaller than that given by d∗

M(h). Define

(24) dA,−(h) := 1

n

n∑
t=1

∣∣∣∣θ̂h,−t

(
t

n

)
− θ0

(
t

n

)∣∣∣∣2
V (θ0(t/n))

w

(
t

n

)
,

which is the same as dA(θ̂h, θ0) but with θ̂h replaced by the corresponding leave-
one-out estimators θ̂h,−t . In a sequence of lemmas in the Supplementary Material
[15] (cf. Section 2, Lemmas 2.1, 2.2, 2.3 and 2.4 therein), we show that

(25) sup
h∈Hn

∣∣∣∣dA(θ̂h, θ0) − dA,−(h)

d∗
M(h)

∣∣∣∣→ 0 a.s.,

which means that omitting the t th prediction error in dA(θ̂h, θ0) is negligible in
comparison to the MSE rate d∗

M(h). Furthermore, we show that

(26) sup
h∈Hn

∣∣∣∣dA(θ̂h, θ0) − d∗
M(h)

d∗
M(h)

∣∣∣∣→ 0 a.s.,

that is, dA(θ̂h, θ0) can be approximated by d∗
M(h) with a rate which is negligible

in comparison to d∗
M(h). As a second auxiliary result, we need the following.

LEMMA 3.16. Let Assumptions 2.1, 3.1, 3.3, 3.4 hold. Then

(27) sup
h∈Hn

∣∣∣∣2[CV(h) − 1
n

∑n
t=1 �t,n(θ0(

t
n
))w( t

n
)] − dA,−(h)

d∗
M(h)

∣∣∣∣→ 0 a.s.,

which contains the connection between CV(h) and dA,−(h).
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The proof of Lemma 3.16 is based on a Taylor argument similar to (8): By a
Taylor expansion, it holds that

2

[
CV(h) − 1

n

n∑
t=1

�t,n

(
θ0

(
t

n

))
w

(
t

n

)]

= 2

n

n∑
t=1

∇�t,n

(
θ0

(
t

n

))′{
θ̂h,−t

(
t

n

)
− θ0

(
t

n

)}
w

(
t

n

)

+ 1

n

n∑
t=1

∣∣∣∣θ̂h,−t

(
t

n

)
− θ0

(
t

n

)∣∣∣∣2∇2�t,n(θ0(t/n))

w

(
t

n

)

+ 1

n

n∑
t=1

∣∣∣∣θ̂h,−t

(
t

n

)
− θ0

(
t

n

)∣∣∣∣2∇2�t,n(θ̃h,−t (t/n))−∇2�t,n(θ0(t/n))

× w

(
t

n

)
,

(28)

where θ̃h,−t (t/n) is some intermediate value between θ̂h,−t (t/n) and θ0(t/n). Us-
ing (16), the first summand in (28) can be approximated by

(29)

2 CV∗(h) = −2

n

n∑
t=1

∇�t,n

(
θ0

(
t

n

))′
V

(
θ0

(
t

n

))−1

× ∇Ln,h,−t

(
t

n
, θ0

(
t

n

))
w

(
t

n

)
which has approximately expectation 0 zero due to Assumption 3.3(4) which
mainly justifies 2 CV(h) as an unbiased estimator of dA and shows that CV∗(h) has
a smaller rate than d∗

M(h). The second summand in (28) is approximately dA,−(h)

due to E[∇2�t,n(θ0(t/n))] ≈ V (θ0(t/n)), and thus eliminated in the difference
(27). Finally, the third term can be shown to be of smaller order than d∗

M(h) since
it has order O((θ̂h,−t (t/n) − θ0(t/n))3). Details for the proof of Lemma 3.16 can
be found in the Supplementary Material [15], Section 2 therein.

To prove the results (25), (26) and (27), we use as a main tool a general bound
for moments on quadratic and cubic forms of functions of locally stationary pro-
cesses (cf. Proposition 8.1 in the Supplementary Material [15]) which may be
of independent interest. Note that for instance (29) can be seen as a quadratic
form in the terms ∇�t,n(θ0(t/n)) and ∇�s,n(θ0(t/n)) [the last one coming from
∇Ln,h,−t (t/n, θ0(t/n))].

With the help of these results, we can now prove Theorem 3.6.

PROOF OF THEOREM 3.6. Using the result (25), Lemma 3.16 and (26) [which
allows to replace d∗

M(h) in the denumerator], we have

(30) sup
h∈Hn

∣∣∣∣2[CV(h) − 1
n

∑n
t=1 �t,n(θ0(

t
n
))w(t/n)] − dA(θ̂h, θ0)

dA(θ̂h, θ0)

∣∣∣∣→ 0 a.s.
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This shows that 2 CV(h) approximates dA(θ̂h, θ0) uniformly in h ∈ Hn (up to a
constant) with a rate smaller than dA(θ̂h, θ0). In the following, we show that this
implies that the minimizer ĥ of CV(h) (up to a term n−1) converges to the mini-
mizer h′ of dA(θ̂h, θ0) (up to a term n−1) which then shows the result.

An immediate consequence of (30) is (use x1+x2
y1+y2

≤ x1
y1

+ x2
y2

for positive numbers
x1, x2, y1, y2 > 0)

sup
h,h′∈Hn

∣∣∣∣dA(θ̂h, θ0) − dA(θ̂h′, θ0) − 2(CV(h) − CV(h′))
dA(θ̂h, θ0) + dA(θ̂h′, θ0)

∣∣∣∣→ 0 a.s.

Choosing h = ĥ and h′ such that

dA(θ̂h′, θ0) − inf
h∈Hn

dA(θ̂h, θ0) ≤ n−1

yields

0 ← dA(θ̂
ĥ
, θ0) − dA(θ̂h′, θ0) − (CV(ĥ) − CV(h′))

dA(θ̂
ĥ
, θ0) + dA(θ̂h′, θ0)

≥ dA(θ̂
ĥ
, θ0) − infh∈Hn dA(θ̂h, θ0) − (infh∈Hn CV(h) − CV(h′))

dA(θ̂
ĥ
, θ0) + infh∈Hn dA(θ̂h, θ0) + n−1

+ 2n−1

dA(θ̂
ĥ
, θ0) + dA(θ̂h′, θ0)

almost surely. By Proposition 1.1, it holds that d∗
M(h) = μKV0

nh
+ Bh + o((nh)−1)

uniformly in h ∈ Hn, where Bh is some nonnegative bias term. Together with (26),
we conclude that suph∈Hn

n−1

dA(θh,θ0)
→ 0 a.s. Thus,

dA(θ̂
ĥ
, θ0) − infh∈Hn dA(θ̂h, θ0)

dA(θ̂
ĥ
, θ0) + infh∈Hn dA(θ̂h, θ0)

→ 0 a.s.,

from which

dA(θ̂
ĥ
, θ0)

infh∈Hn dA(θ̂h, θ0)
→ 1 a.s.

follows. The same can be done for dI . �

The work done for the proof of Theorem 3.6 directly allows to prove Theo-
rem 3.8 and 3.9.

PROOF OF THEOREM 3.8. Because of B0 > 0 and (18), we have

(31) sup
h∈Hn

∣∣∣∣d
∗
M(h) − d∗

M,2(h)

d∗
M,2(h)

∣∣∣∣→ 0 a.s.
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Application of (26), that is, suph∈Hn
|dA(θ̂h,θ0)−d∗

M(h)

d∗
M(h)

| → 0 a.s., completes the
proof. �

PROOF OF THEOREM 3.9. We start with (30) from the proof of Theorem 3.6.
Using (31) from the proof of Theorem 3.8 and (26), we obtain

sup
h∈Hn

∣∣∣∣CV(h) − 1
n

∑n
t=1 �t,n(θ0(t/n))w(t/n) − d∗

M,2(h)

d∗
M,2(h)

∣∣∣∣→ 0 a.s.

Using the same methods as in the proof of Theorem 3.6, we have almost surely

d∗
M,2(ĥ)

d∗
M,2(h0)

= d∗
M,2(ĥ)

infh∈Hn d∗
M,2(h)

→ 1.

The structure of d∗
M,2(h) implies ĥ/h0 → 1 a.s. �

Finally, we state the proof of Theorem 3.10, the asymptotic normality of ĥ.
Again some lemmas from the Supplementary Material [15], Section 4 are used
which provide uniform convergences of arising quadratic or cubic forms of lo-
cally stationary processes. The core result for proving asymptotic normality is
Lemma 4.8 which is based on a general central limit theorem for quadratic forms
of locally stationary processes, Theorem 7.1, which may be of independent inter-
est.

PROOF OF THEOREM 3.10. If K is differentiable, then h �→ CV(h) is differ-
entiable in h and ĥ can be chosen as a minimizer. ĥ is in the interior of Hn for n

large enough due to Theorem 3.9. The proof is based on the following expansion:

0 = 2∂h CV(ĥ) = ∂hd
∗
M,2(ĥ) + ∂hD(ĥ)

= ∂2
hd∗

M,2
(
h∗) · (ĥ − h0) + ∂hD(ĥ),

where D(h) := 2 CV(h)−d∗
M,2(h), h0 is the unique minimizer of d∗

M,2(h) defined
in (22), and h∗ is some intermediate value between ĥ and h0. Thus

(32) ĥ − h0 = − ∂hD(ĥ)

∂2
hd∗

M,2(h
∗)

.

By Theorem 3.9, we have ĥ/h0 → 1 a.s. and thus h∗/h0 → 1 a.s. The structure of

∂2
hd∗

M,2 implies that
∂2
hd∗

M,2(h
∗)

∂2
hd∗

M,2(h0)
→ 1. We conclude that

n3/10(ĥ − h0) = n7/10∂hD(ĥ)

n2/5∂2
hd∗

M,2(h0)
+ o(1) a.s.,
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with n2/5∂2
hd∗

M,2(h0) = 5(μKV0)
2/5(B0d

2
K)3/5. In Lemma 4.3, it is shown that

(33) sup
h∈H̃n

h1/2
∣∣∣∣∂hD(h) − ∂hD̃(h)

d∗
M(h)

∣∣∣∣→ 0,

where D̃(h) := {d∗
I (h) − d∗

M(h)} + 2 CV∗(h) and CV∗(h) is defined in (29) and

H̃n = [c0n
− 1

3 +δ, c1n
−δ].

Since ĥ
h0

→ 1 a.s., we have that almost surely, ĥ ∈ H̃n for n large enough. By

(31) we have
d∗
M(ĥ)

d∗
M,2(ĥ)

→ 1 a.s. By the structure of d∗
M,2, we obtain

d∗
M,2(ĥ)

d∗
M,2(h0)

→ 1. So

inserting ĥ in (33) yields

n7/10∣∣∂hD(ĥ) − ∂hD̃(ĥ)
∣∣→ 0 a.s.,

that is,

(34) n3/10(ĥ − h0) = n7/10∂hD̃(ĥ)

n2/5∂2
hd∗

M,2(h0)
+ o(1) a.s.

By Lemmas 4.4 and 4.7 we have for each γ > 0 that

sup
h∈H̃n

n−γ · h1/2 |∂hD̃(h)|
d∗
M(h)

→ 0 a.s.

Together with (34) we conclude that

(35) n3/10(ĥ − h0) = O
(
nγ ) a.s.

By Lemmas 4.4, 4.5 and 4.6 it holds for each γ̃ > 0 that

sup
h,h′∈H̃n,

|h−h′|
h

≤n−γ̃

h1/2 |∂hD̃(h) − ∂hD̃(h′)|
d∗
M(h)

→ 0 a.s.

Inserting h = h0, h′ = ĥ [which is possible due to (35) with γ = 1
10 − γ̃ , γ̃ ∈

(0, 1
10)], we obtain

n7/10(∂hD̃(h0) − ∂hD̃(ĥ)
)→ 0 a.s.

Inserting this into (34) yields

n3/10(ĥ − h0) = n7/10∂hD̃(h0)

n2/5∂2
hd∗

M,2(h0)
+ o(1) a.s.

Lemma 4.8 in connection with Lemma 4.4 provides a central limit theorem for the
joint vector (2∂h CV∗(h), ∂h{d∗

I (h) − d∗
M(h)})′, that is,

(
n2h3

0
)1/2

(
2∂h CV∗(h)

∂h

{
d∗
I (h) − d∗

M(h)
})

d→ N

(
0,8

∫
fvar(u)du · �K + 4C0d

2
K

∫
fbias(u)du ·

(
1 −1

−1 1

))
,
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where ∗ denotes convolution, C0 = nh5
0 = V0μK

B0d
2
K

and

�K :=
⎛
⎜⎝

∫
(K̃)2 −

∫
K̃ · (K ∗ K̃)

−
∫

K̃ · (K ∗ K̃)

∫
(K ∗ K̃)2

⎞
⎟⎠ ,

fbias(u) := w(u)2 tr
{
bias(u)′V

(
θ0(u)

)−1
I
(
θ0(u)

)
V
(
θ0(u)

)−1 bias(u)
}
,

bias(u) = E
[
∂2
u∇�

(
Ỹt

(
θ0(u)

)
, θ
)|θ=θ0(u)

]
.

Furthermore, n2/5∂2
hd∗

M,2(h0) = n2/5(
2μKV0

nh3
0

+3h2
0d

2
KB0) = 5(B0d

2
K)3/5(V0μK)2/5

and n7/10(n2h3
0)

−1/2 = (
V0μK

B0d
2
K

)−3/10. We conclude that

n3/10(ĥ − h0)
d→ N

(
0,

8
∫

fvar(u)du · ∫ (K̃ − K ∗ K̃)2

25(V0μK)7/5 · (B0d
2
K)3/5

)

= N

(
0,

8

25

∫
fvar(u)du

V 2
0

·
∫
(K̃ − K ∗ K̃)2

μ2
K

· C3/5
0

)
. �

4. Examples and simulations.

4.1. Examples. Assumptions 2.1, 3.1, 3.3 and 3.7 are fulfilled for a large class
of locally stationary time series models. Here, we discuss how the conditions trans-
form in the case of some special linear and recursively defined time series. The
proofs of this section can be found in the Supplementary Material [15] (Section 5
therein). There one can also find a more general statement about linear time series
in Proposition 5.1.

Recall that εt , t ∈ Z is a sequence of i.i.d. real random variables. We will use a
Gaussian likelihood for � defined in (4), but allow for a non-Gaussian distribution
of εt .

An important special case of locally stationary linear processes is given by
tvARMA processes, see also Proposition 2.4. in [5]. Since in this case, the lin-

ear filter Aθ(λ) = σ · β(eiλ)

α(eiλ)
and the spectral density fθ (λ) = σ 2

2π
· |β(eiλ)

α(eiλ)
|2 have a

simple form, the conditions in Proposition 5.1 are obviously fulfilled. The likeli-
hood (4) takes the form

(36) �(z, θ) = 1

2
log

(
2π

γθ(0)2

)
+ 1

2

( ∞∑
j=0

γθ (j)zj+1

)2

,

where γθ (j) := 1
2π

∫ π
−π Aθ(λ)−1e−iλj dλ.
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EXAMPLE 4.1 (tvARMA(r, s) process). Assume that εt , t ∈ Z are i.i.d. with
existing moments of all order. Suppose that Eε0 = 0 and Eε2

0 = 1. Let Assump-
tion 3.3(1) hold. Assume that Xt,n obeys

Xt,n +
r∑

j=1

αj

(
t

n

)
Xt−j,n

= σ

(
t

n

)
εt +

s∑
k=1

βk

(
t

n

)
σ

(
t − k

n

)
εt−k, t = 1, . . . , n,

where θ0 = (α1, . . . , αr , β1, . . . , βs, σ )′ : [0,1] → Rr+s+1. Define β(z) := 1 +∑s
k=0 βkz

k , α(z) := 1 +∑r
k=0 αkz

k , and let � be an arbitrary compact subset of{
θ = (α1, . . . , αr , β1, . . . , βs, σ )′ ∈ Rr+s+1 : σ > 0,

α(z), β(z) have no zeros in common and

only zeros outside the unit circle
}
.

Then Assumptions 2.1, 3.1, 3.3 are fulfilled for � chosen as in (36). If addition-
ally Assumption 3.7(1) is fulfilled, then Assumption 3.7 is fulfilled. It holds that
V (θ) = 1

4π

∫ ∇ logfθ (λ) ·∇ logfθ (λ)′ dλ and I (θ) = V (θ)+κ4(ε0) · ∇γθ (0)∇γθ (0)′
γθ (0)2 ,

where κ4(ε0) is the fourth cumulant of ε0.

Explicit formulas for the bias (20) are available and can be found in the Supple-
mentary Material [15], Proposition 5.1.

REMARK 4.2 (tvAR(r) processes). In the special case of tvAR(r) pro-
cesses, closed forms for the estimators based on �(z, θ) = 1

2 log(2πσ 2) +
1

2σ 2 (z1 + ∑r
j=1 αjzj+1)

2 are available: α̂h(u) = −�̂h(u)−1γ̂h(u) and σ̂h(u)2 =
1
n

∑n
t=r+1(Xt,n +∑r

j=1 α̂j (u)Xt−j,n)
2, where Y ◦

t−1,n = (Xt−1,n, . . . ,Xt−r,n)
′ and

�̂h(u) := 1

n

n∑
t=r+1

Kh

(
t

n
− u

)
Y ◦

t−1,n

(
Y ◦

t−1,n

)′
,

γ̂h(u) := 1

n

n∑
t=r+1

Kh

(
t

n
− u

)
Xt,nY

◦
t−1,n.

We now discuss recursively defined nonlinear time series models with additive
innovations εt . Let us fix some r > 0 and define the vectors of the last r lags
Y ◦

t−1,n = (Xt−1,n, . . . ,Xt−r,n)
′, Ỹ ◦

t−1(θ) = (X̃t−1(θ), . . . , X̃t−r (θ))′ as the vector
of the r past values of the locally stationary and the stationary time series, re-
spectively. Here, we use the superscript ◦ to clearly separate between the infinite-
dimensional vector Y c

t−1,n used in the likelihood (3) and Y ◦
t−1,n, the lags used to
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create the next observations of the model. Many popular locally stationary mod-
els assume that the conditional mean and/or variance is a linear combination of
unknown parameter curves and functions of Y ◦

t−1,n, that is,

Xt,n = μ
(
Y ◦

t−1,n, θ0(t/n)
)+ σ

(
Y ◦

t−1,n, θ0(t/n)
)
εt , t = 1, . . . , n,

with some measurable μ, σ . In this case, the likelihood (4) with y◦ = (y1, . . . , yr)
′

for y = (y1, y2, y3, . . .) takes the form

(37) �(x, y, θ) := 1

2
log

(
2πσ

(
y◦, θ

)2)+ 1

2

(
x − μ(y◦, θ)

σ (y◦, θ)

)2
.

We adapt a result from [13] (Example 5.1 therein) which deals with μ, σ 2 having
a linear structure in the parameters. The following example covers tvAR-, tvTAR
and tvARCH processes.

PROPOSITION 4.3 (Time-varying recursively defined time series models).
Consider the recursion

(38) Xt,n = μ
(
Y ◦

t−1,n, θ0(t/n)
)+ σ

(
Y ◦

t−1,n, θ0(t/n)
)
εt ,

where θ0 = (α1, . . . , αk, β0, . . . , βl)
′ and

μ(y, θ) :=
k∑

i=1

αimi(y), σ (y, θ) :=
(

l∑
i=0

βiνi(y)

)1/2

,

with some functions m = (m1, . . . ,mk) : Rr → Rk , ν = (ν0, . . . , νl) : Rr → R
l+1
≥0 .

Assume that:

1. εi are i.i.d. with Eεi = 0, Eε2
i = 1 and Eε

q
i < ∞ for all q > 0.

2. For all θ ∈ �, the sets{
m1
(
Ỹ ◦

0 (θ)
)
, . . . ,mk

(
Ỹ ◦

0 (θ)
)}

,
{
ν0
(
Ỹ ◦

0 (θ)
)
, . . . , νl

(
Ỹ ◦

0 (θ)
)}

are (separately) linearly independent in L2.
3. There exist (κij ) ∈R

k×r
≥0 , (ρij ) ∈R

(l+1)×r
≥0 such that for all i:

(39) sup
y �=y′

|mi(y) − mi(y
′)|

|y − y′|κi·,1
≤ 1, sup

y �=y′

|√νi(y) − √
νi(y′)|

|y − y′|ρi·,1
≤ 1.

Let νmin > 0 be some constant such that for all y ∈ Rr , ν0(y) ≥ νmin. With some
βmin > 0, choose �̃ ⊂ Rk ×R

l+1
≥βmin

such that for all q > 0,

(40)
p∑

j=1

(
sup
θ∈�̃

k∑
i=1

|αi |κij + ‖ε0‖q · sup
θ∈�̃

l∑
i=0

√
βiρij

)
< 1.

4. Assumption 3.3(1) is valid with some � ⊂ �̃.
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Then Assumptions 2.1, 3.1 and 3.3 are fulfilled for � chosen to be proportional to
the negative log Gaussian conditional likelihood (37) with M = 3. In the special
case σ(x, θ)2 ≡ β0, one can choose M = 2.

With the shortcuts m = m(Ỹ ◦
0 (θ)), ν = ν(Ỹ ◦

0 (θ)) it holds that

V (θ) =

⎛
⎜⎜⎝
E

mm′

〈β, ν〉 0

0 E
νν′

2〈β, ν〉2

⎞
⎟⎟⎠ ,(41)

I (θ) =

⎛
⎜⎜⎜⎝

E
mm′

〈β, ν〉 E
[
ε3

0
] ·E mν′

2〈β, ν〉3/2

E
[
ε3

0
] ·E νm′

2〈β, ν〉3/2

Eε4
0 − 1

4
·E νν′

2〈β, ν〉2 ,

⎞
⎟⎟⎟⎠ .(42)

If additionally, Assumption 3.7(1) is fulfilled and mi , νi are twice continuously
differentiable such that for all j1, j2 = 1, . . . , r and all i,

sup
y �=y′

|∂yj1
∂yj2

mi(y) − ∂yj1
∂yj2

mi(y
′)|

|y − y′|1 < ∞,(43)

sup
y �=y′

|∂yj1
∂yj2

νi(y) − ∂yj1
∂yj2

νi(y
′)|

|y − y′|1 < ∞,(44)

then Assumption 3.7 is fulfilled for � from (37).

REMARK 4.4. 1. If (i) Eζ 3
0 = 0, or (ii) μ(z, θ) ≡ 0 or (iii) σ(z, θ) ≡ β0 and

Em(Ỹ ◦
0 (θ)) = 0, then

I (θ) =
(
Ik 0
0

(
Eε4

0 − 1
)
Il+1/2

)
· V (θ),

where Id denotes the d-dimensional identity matrix. If additionally Eε4
0 = 3 (as it

is the case for ε0 having a standard normal distribution), we have I (θ) = V (θ).
2. Note that in many special cases (for instance, tvAR or tvARCH processes)

where mi, νi have simple forms and explicit representations of the processes are
available, the restrictive conditions on the parameter space (40) can be relaxed by
rewriting the recursion (38) as a r-dimensional recursion with only one lag and
using matrix arguments.

3. In the tvARCH case [or, more general in cases where σ(z, θ) is dependent
on z in a nontrivial way], condition (40) can only be satisfied if there exists Cε > 0
such that ‖ε0‖q ≤ Cε for all q ≥ 1. By Markov’s inequality, this directly implies
that ε0 has to be bounded almost surely, that ist, |ε0| ≤ Cε a.s.

4. Explicit formulas for the bias (20) are available in the Supplementary Mate-
rial [15], Lemma 5.2.
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A simulation study. Here, we study the behavior of the presented cross- val-
idation algorithm for different time series models. We assume that εt is standard
Gaussian distributed, and consider:

(a) tvAR(1) processes Xt,n = α( t
n
)Xt−1,n +σ( t

n
)εt , with α(u) = 0.9 sin(2πu)

and σ(u) = 0.3 sin(2πu) + 0.5.
(b) tvMA(1) processes Xt,n = σ( t

n
)εt + α( t

n
)σ ( t−1

n
)εt−1, with α(u) = 0.9 ×

sin(2πu) and σ(u) = 0.3 sin(2πu) + 0.5.
(c) tvARCH(1) processes Xt,n =

√
α1(

t
n
) + α2(

t
n
)X2

t−1,n · εt−1, with α1(u) =
0.2 sin(2πu) + 0.4 and α2(u) = 0.1 sin(2πu) + 0.2.

(d) tvTAR(1) processes Xt,n = α1(
t
n
)X+

t−1,n +α2(
t
n
)X−

t−1,n +εt , with α1(u) =
0.4 sin(2πu) and α2(u) = 0.5 cos(2πu) and y+ := max{y,0}, y− := max{−y,0}
for real numbers y.

We performed a Monte Carlo study by generating in each case N = 2000 re-
alizations of time series with length n ∈ {200,500}. For estimation, we used the
weight function w(·) = 1[0.01,0.99](·) which already excludes most of the boundary
effects and the Epanechnikov kernel K(x) = 3

2(1 − (2x)2)1[− 1
2 , 1

2 ](x).

We chose Hn = [0.01,1.0] and calculated the cross-validation bandwidth ĥ, the
ao-bandwidth h0 from Theorem 3.9 [for models (a)–(c), model (d) does not satisfy
the smoothness conditions] and the optimal theoretical bandwidth

h∗ = argmin
h∈Hn

dA(θ̂h, θ0).

Note that ĥ, h∗ depend on the current realization while h0 is deterministic and
fixed. h∗ and h0 depend on the unknown true curve θ0(·) and are unavailable in
practice. More explicit formulas for the bias term (20) which is necessary to cal-
culate h0 can be found in the Supplementary Material [15], Section 6.

Figure 1 shows the results ĥ, h∗ for the four models, respectively. The his-
tograms show the chosen cross-validation bandwidths ĥ, the bandwidth h0 is
marked via a black vertical line and the dashed normal distribution is the theoreti-
cal expected limit distribution of ĥ given by Theorem 3.10. The boxplots show the
achieved values of dA(θ̂h, θ0) for the different selectors h ∈ {ĥ, h0, h

∗} (labeled
as “CV,” “Plugin” and “Optimal”). Each box contains 50% while the whiskers
contain 90% of the values of dA(θ̂h, θ0). It can be seen that the cross-validation
procedure works well even for the case of a time series length of only n = 200.
Compared to the theoretical limit distribution of ĥ given by Theorem 3.10, we ob-
serve that ĥ seems to be biased, tending to be slightly greater than h0, depending on
the variance of the limit distribution. The bias reduces significantly if n increases.
For the models (a), (d), we observe that the distances dA attained by the cross-
validation approach are nearly as good as the distances obtained by the optimal
selector h∗ which is remarkable. For the models (b) and (c), the values of dA asso-
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FIG. 1. Simulation results for the models (a), (b), (c), (d) for time series lengths n = 200 (left) and
n = 500 (right) and N = 2000 replications. The left plot shows a histogram of the chosen cross-val-
idation bandwidths ĥ, the vertical line therein represents the asymptotically optimal bandwidth h0.
The right box plots show the values of dA(θ̂h, θ0) achieved for h ∈ {ĥ, h0, h∗}.

ciated to ĥ have a higher variance. This can be explained by the higher variance of
the maximum likelihood estimators θ̂h in these models; a theoretical justification
can be found in the corresponding limit distribution of ĥ given in Theorem 3.10.
In all cases, the distances produced by the estimator based on the cross-validation
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TABLE 1
Minimizers (αms(u), σms(u)) of (αms, σms) = θ �→ L(u, θ) =

(σms)−2 ·E[X̃t (u) − αms · X̃t−1(u))]2 + log[(σms)2] in the case
of model misspecification

True model αms(u) σms(u)

tvMA α(u)

1+α(u)2 (
1+α(u)2+α(u)4

1+α(u)2 )1/2 · σ(u)

tvARCH 0 (
α1(u)

1−α2(u)
)1/2

procedure are of course greater in average, but they still look quite satisfying in
our opinion.

Note that in case of a more general theory for derivative processes (see [6] for
a discussion) it is possible to show similar results as given in Theorems 3.9, 3.10
for the TAR process (d).

Model misspecifications. We observed in simulations that the performance of
the cross-validation procedure is robust against the distribution of εt , leading to
similar results even if εt is uniformly, exponentially or Pareto distributed (meaning
that the moment conditions from Assumption 2.1 are violated).

Due to the fact that our cross-validation method is a natural generalization of
the version for i.i.d. regression it works even well if the underlying model itself
is misspecified. In the following, we estimate parameters with a Gaussian likeli-
hood which assumes that the time series model follows a tvAR(1) model Xt,n =
αms(t/n)Xt−1,n + σms(t/n)εt , but in fact the underlying model is either tvMA
(b) or tvARCH (c). The cross-validation method then tries to estimate the min-
imizer θms

0 (u) = (αms(u), σms(u))′ of θ �→ L(u, θ), that is, αms(u) = c(1,u)
c(0,u)

and

σms(u) = ( c(0)2−c(1)2

c(0)
)1/2 with the covariances c(k,u) := E[X̃0(θ0(u))X̃k(θ0(u))]

(see Table 1). To compare the distances, we use dA(θ̂h(u), θms
0 (u)) with V from

the tvAR(1) model. The simulations are performed in the same way as for the
correctly specified case above. In Figure 2, it is seen that even in the misspecified
case the bandwidth selector ĥ produces reasonable estimators which are compara-
ble with the optimal bandwidth choice h∗ in the case of tvMA estimators and still
satisfying in the tvARCH case [note that a lot of information is lost due to the fact
that αms(u) ≡ 0 in this case].

5. Concluding remarks. In this paper we have introduced a data adaptive
bandwidth selector via cross validation which is applicable for a large class of
locally stationary processes. An important property of the method is the fact that
it does not involve any tuning parameters.

In simulations, we have seen that the proposed cross-validation method yields
nearly optimal bandwidth choices with respect to an Kullback–Leibler-type dis-
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FIG. 2. Simulation results in the misspecified case: The underlying processes are either (b), (c) but
for the estimation it is assumed that a tvAR(1) process is present.

tance measure in the case of correctly specified models and still leads to satisfy-
ing results in the case of model misspecification. It remains an open question if
a similar cross-validation procedure can be defined which is asymptotically opti-
mal with respect to a simple quadratic distance measure (i.e., without a weighting
matrix) which would then lead to estimates of θ0 which do not optimize the predic-
tion properties of the associated model but the estimation quality of the parameter
curve θ0 itself.

We worked out the convergence rate of ĥ toward the asymptotically optimal
bandwidth h0, which is ĥ = h0 + Op(n−3/10), and showed that n3/10(ĥ − h0)

d→
N(0, σ 2

ĥ
) with some explicit formula for σ 2

ĥ
. From this, it could be seen that the

convergence rate in practice is strongly dependent on the underlying model; σ 2
ĥ

can be large if θ0 is hard to estimate. This raises the question if there are improved
cross-validation methods like [3] (via Fourier transform) or [10] (via presmooth-
ing) proved in the i.i.d. kernel density estimation case that attain the optimal rate
of n1/2 if further smoothness assumptions on θ0 are supposed.

We mention that it is not hard to generalize the proposed method and the proofs
to multidimensional time series which may be of interest in many practical appli-
cations.

An interesting open problem is the adaptive estimation in time series models
with several parameter curves coming from different smoothness class, in particu-
lar since these curves are not observed separately but via a single time series.
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Let us point out the fact that cross-validation procedures in general are not sta-
ble if applied locally. Thus it remains an open question to find an local adaptive
bandwidth selector.

Acknowledgments. We are grateful to two anonymous referees whose com-
ments lead to a considerable improvement of the organisation of the paper. In par-
ticular, showing the asymptotic normality of ĥ and providing the strong connection
between the Kullback–Leibler divergence and the cross-validation functional was
motivated by their remarks.

SUPPLEMENTARY MATERIAL

Supplement: Technical proofs (DOI: 10.1214/18-AOS1743SUPP; .pdf). This
material contains some details of the proofs in the paper as well as the proofs of
the examples.
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