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HIGH-DIMENSIONAL CHANGE-POINT DETECTION UNDER
SPARSE ALTERNATIVES1
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Université de Poitiers∗, IITP† and University of Washington‡

We consider the problem of detecting a change in mean in a sequence of
high-dimensional Gaussian vectors. The change in mean may be occurring
simultaneously in an unknown subset components. We propose a hypothe-
sis test to detect the presence of a change-point and establish the detection
boundary in different regimes under the assumption that the dimension tends
to infinity and the length of the sequence grows with the dimension. A re-
markable feature of the proposed test is that it does not require any knowledge
of the subset of components in which the change in mean is occurring and yet
automatically adapts to yield optimal rates of convergence over a wide range
of statistical regimes.

1. Introduction. Consider a sequence of n independent d-dimensional Gaus-
sian vectors X

n = (X1, . . . ,Xn) with a possible change in mean at an unknown
location τ ∈ T ,

(1) Xi = θ + �θτ 1{i > τ } + ξi, i = 1, . . . , n,

where (ξi)1≤i≤n are i.i.d. random vectors drawn from N (0, Id), �θτ ∈ R
d , θ ∈ R

d

and T = {1, . . . , n− 1} is the set of possible change-point locations. Our goal is to
propose a hypothesis test for the change-point problem

H0 : �θτ = 0 against HA : ∃τ ∈ T such that �θτ �= 0.

Under the null hypothesis H0, there is no change in mean, that is, �θτ = 0. Under
the alternative HA, a change in mean occurs at a location τ ∈ T , that is, �θτ �= 0.
The change occurs in exactly p coordinates of the mean vector θ that correspond to
the support supp(�θτ ) of the jump vector �θτ ∈ R

d . Neither the change-point τ ,
nor the set supp(�θτ ) nor its dimension p ∈ {1, . . . , d} are known. We will test
the hypothesis of no change in mean against this composite alternative.

Change-point problems with multivariate Gaussian observations have received
a lot of attention for decades. The usual setting assumes that the change occurs in
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all components. Then the problem is studied in a classical asymptotic regime, that
is, by letting the number of observations n grow to infinity while the dimension of
the vector d remains fixed. We refer the reader to, for example, [4, 7, 10, 11, 20,
27] for a review.

We consider the problem in a high-dimensional double-asymptotic setting,
where both the number of observations and their dimension grow to infinity.
Such a setting is particularly appropriate for recent instances of change-point
problems that arise in real-world applications where observations are typically
high-dimensional, for example, in biostatistics [30, 32], in network traffic data
analysis [23], in multimedia indexation [14] and in astro-statistics [6, 24]. In
all these applications, one is interested in detecting change-points in relatively
short sequences of observations (say, n = 100) whose dimension can be high
(say, d = 103). However, in these applications, prior information suggests that
the change is likely to occur only in a small subset of components. Therefore,
the effective dimension of the change-point problem is actually the dimension of
supp(�θτ ), instead of d . Thus the statistical problem is potentially tractable even
for observations living in a high-dimensional ambient space [15].

Korostelev and Lepski [21] studied high-dimensional change-point problems in
the white noise framework. The change is assumed to occur simultaneously in all
components, that is, p = d . The authors propose an asymptotically minimax esti-
mator of the change-point location, under double-asymptotics with the Euclidean
norm ‖�θ‖2 → ∞ as d → ∞. See also [28] for an early treatment of a related
problem. Recently, Xie and Siegmund [31] considered a problem similar to ours
from a methodological point of view. In [31], a Bayes-type test statistic is pro-
posed, where the authors introduce a mixture model that hypothesizes an assumed
fraction of changing components.

In this work, we establish the detection boundary for the change-point problem
under sparse alternatives. The detection boundary is an asymptotic condition on
the norm of �θτ defining the minimax separability of the hypotheses H0 and HA.
It depends on the location of the change-point and on the number of changing
components p. The proposed test is based on two test statistics: a linear statistic
that considers all components simultaneously, and a scan statistic that searches for
a change over all possible combinations of changing components. Although the
latter problem has a combinatorial structure that seems challenging at first sight,
we show that the scan test statistic can actually be computed efficiently, in almost
linear time with respect to the dimension of the problem. We derive the minimax
separation rate of our test, prove that it is adaptive to the unknown set of changing
components and establish that it is rate-optimal in the high sparsity regime.

2. Statement of the problem. We first consider the problem of testing the
hypothesis of no change against the alternative of a change in mean at a given
location τ in exactly p components. We will later describe the test that is adaptive
to the case of unknown p and τ .
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We use the following notation throughout the text: M(d,p) stands for the col-
lection of all subsets of {1, . . . , d} of cardinality p, and M stands for the set of all
possible subsets of {1, . . . , d}. We denote by �mv the projection of a vector v ∈ R

d

onto a subspace indexed by m ∈ M. The location of a change is parametrized by
t ∈ T , where T = {1, . . . , n − 1}. For two sequences xd and yd , we write xd 
 yd

if xd/yd → c ∈ R \ {0} as d → ∞.
Both the null and the alternative hypotheses can be simply formulated in terms

of the norm of the jumps of the mean vector �θτ , so that we have no change if the
norm of the jumps is zero, ‖�θτ‖ = 0. In what follows, ‖ · ‖ denotes the Euclidean
norm. We say that the change occurs at location τ , if the norm of the jumps at
location τ satisfies ‖�θτ‖ ≥ r for some r > 0.

Define the set �p[r] = {v ∈ V d
p : ‖v‖ ≥ r}, where V d

p is the subspace of Rd -
vectors with exactly p nonzero components

V d
p =

{
v = (ε1v1, . . . ,εdvd) : vj ∈ R,εj ∈ {0,1},

d∑
j=1

εj = p

}
.

Recall the notation T = {1, . . . , n − 1} and denote by D the set {1, . . . , d}. We
consider two general problems based on model (1).

(P1) Testing a change in exactly p ∈ D unknown components of the mean at a
given location τ ∈ T :

H0 : �θτ = 0 against HA : �θτ ∈ �p[r],
where r > 0 may depend on τ , p, d and n.

(P2) Testing the presence of a change in an unknown number of components
p ∈ D that occurs within the time interval T = {1, . . . , n − 1}:

H0 : �θτ = 0 against HA : ∃τ ∈ T : such that �θτ ∈ �[r],
where �[r] =⋃

p∈D �p[r]. Note that r might depend on τ , p, d and n as well,
r = r(τ,p, d, n). To keep the notation as light as possible, we omit the explicit
dependence on these parameters and simply write r .

Note that problem (P1) corresponds to a two-sample testing problem [22], with
a difference in mean lying on a subset of changing components and equal variance;
see [9] for a review of recent works on this topic.

A test ψ = ψ(Xn) is a measurable function of observations from model (1)
taking values in {0,1}. We say that there is a change if ψ(Xn) = 1.

Let P0,θ be the measure corresponding to the null hypothesis case of no change
in mean and P�θτ ,θ be the measure corresponding to the case of a �θτ change in
mean at location τ . The parameter θ ∈ R

d is a nuisance parameter and we will see
that the errors of our test do not depend on it. For any test ψ , define the type I error
as

α(ψ) = sup
θ∈Rd

P0,θ {ψ = 1}.
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The type II errors for problems (P1) and (P2) are respectively defined as

β
(
ψ,�p[r], τ )= sup

(θ,�θτ )∈Rd×�p[r]
P�θτ ,θ {ψ = 0}

and

β∗(ψ,�[r])= sup
τ∈T

sup
(θ,�θτ )∈Rd×�[r]

P�θτ ,θ {ψ = 0} ≡ sup
τ∈T

sup
p∈D

β
(
ψ,�p[r], τ ).

Define the global testing errors [19] for the two problems:

γ
(
ψ,�p[r], τ ) := α(ψ) + β

(
ψ,�p[r], τ ),

γ ∗(ψ,�[r]) := α(ψ) + β∗(ψ,�[r]).
We could also define the global testing error as a linear combination of the

two errors γ (ψ,�p[r], τ ) = α(ψ) + sβ(ψ,�p[r], τ ) with s > 0. The results of
the paper will still hold in the case where s does not depend on the dimension d .
Choosing the error weights to be dependent on the sparsity index p might be useful
in applications. However, the thresholds for the tests will be different from those
ones proposed in the present paper.

We make the following Assumptions (A1)–(A2)–(A3) on the asymptotic be-
havior of n, d , p and τ . Throughout the paper, the asymptotics of p and n are
parametrized by d , where d → ∞. The asymptotic of the location τ is naturally
parametrized by n, which, in turn, depends on d .

(A1) The number of observations n > 1 can be fixed or grow with the vector
dimension, n = n(d) → ∞ as d → ∞.

(A2) The number of components with a change is sufficiently large

p → ∞ and p/d → 0 as d → ∞.

(A3) For problem (P2), we need an additional assumption, namely that

sup
p∈D

logn

p log(d/p)
→ 0, d → ∞.

Thus, we have log(np)/ log
(d
p

)→ 0 as d → ∞ if (A2) holds. Therefore, the num-
ber of observations n cannot be too large.

We consider an asymptotic setting where both the number of observations n

and the dimension d are growing. Therefore, the rates we shall establish depend
also on the dimension d . We choose here to parameterize the quantities involved
in the asymptotics with respect to d in order to model real-world problems where
the dimension of the observations can be large. For example, in the problem of
simultaneous segmentation of several genomic profiles [30], the length of a profile
n can be of order n ≈ 102–103 nucleotides, while the number of profiles d can be
of order d ≈ 104.
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REMARK 1. If p depends on d via a sparsity coefficient β ∈ (0,1), p 
 d1−β ,
then Assumption (A2) is satisfied. We shall distinguish between the cases of high
sparsity, β ∈ (1/2,1) and low sparsity, β ∈ (0,1/2]. Later we shall see why
β = 1/2 defines a boundary between two sparsity regimes (see Remark 6 after
Theorem 2).

We are interested in the minimax separation conditions for problems (P1)
and (P2). The question is how far from the origin the sets �p[r] and �[r] should be
in order to separate the hypotheses H0 and HA in problems (P1) and (P2), respec-
tively. For any γ ∈ (0,1), the sequence rd is called a minimax separation rate [17,
20] for problem (P1) if:

(i) there exists a constant C∗ > 0 and a test ψ∗ such that ∀C > C∗

lim sup
d→∞

γ
(
ψ∗,�p[Crd ], τ )≤ γ ;

(ii) there exists a constant C∗ > 0 such that ∀C < C∗ and for any test ψ

lim inf
d→∞ γ

(
ψ,�p[Crd ], τ )≥ γ.

Conditions (i)–(ii) are respectively upper and lower bounds on the minimax testing
error; we refer to [3, 12, 19, 20] for further discussion about these definitions.
A testing procedure ψ∗ is minimax rate-optimal if conditions (i) and (ii) hold.
Note that the constants and the rate-optimal test may depend on the given overall
significance level γ . We can similarly define the detection boundary conditions for
problem (P2).

By abuse of notation, we shall always denote by γ both the global testing error
and the overall significance level of the test.

3. Testing procedure. Let us first define the following d-dimensional process
describing the change in mean at time t ∈ T ,

(2) Zn(t) =
√

t (n − t)

n

(
1

t

t∑
i=1

Xi − 1

n − t

n∑
i=t+1

Xi

)
, t ∈ T .

The tests we propose for problems (P1)–(P2) are based on two χ2-type test statis-
tics, which we shall refer to as linear statistic and scan statistic.

The linear statistic is given by

(3) Llin(t) = ‖Zn(t)‖2 − d√
2d

, t ∈ T .

For each fixed p ∈ D, the scan statistic is defined as

(4) Lp
scan(t) = max

m∈M(d,p)

{‖�mZn(t)‖2 − p√
2p

}
, t ∈ T .
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For any fixed t , the components of the process Zn(t) are standard Gaussians. Thus
under the null hypothesis, the statistic ‖�mZn(t)‖2, m ∈ M(d,p) has a χ2

p dis-
tribution with mean p and variance 2p. To make the test statistics in (3) and (4)
defined at the same scale, we divide the squared norm of the process Zn(t) by its
standard deviation under the null hypothesis. Note that the normalization is critical
in a high-dimensional setting.

REMARK 2. Assume that �θτ ∈ V d
p and let m ∈ M(d,p) be a given subset

of p components with a change at the location τ . The choice of the test statistics
based on Zn(t) is motivated by the generalized likelihood ratio test. We have

(5) log
max(θ,�θτ )∈Rd×�mR

d L(θ,�θτ ;Xn)

maxθ∈Rd L(θ,0;Xn)
= 1

2

∥∥�mZn(τ)
∥∥2

,

where L(θ,�θτ ;Xn) is the likelihood of the parameters θ and �θτ given the ob-
servations Xn.

3.1. Known number of components with a change and known τ . The proposed
decision rule for problem (P1) is based on the combination of two tests

ψ∗
p = ψlin ∨ ψp

scan,

with

ψlin = 1
{
Llin(τ ) > H

}
, ψp

scan = 1
{
Lp

scan(τ ) > Tp

}
.

The thresholds H and Tp should be set in such a way that the global risk error
γ (ψ∗

p,�p[r], τ ) is asymptotically less than a given global significance level γ

as d → ∞. Theorem 1 answers this question, and provides a guideline to set the
corresponding thresholds depending on d (and henceforth on p and n). For any
significance level α, we could set the thresholds for the two tests using the quantiles
of the corresponding χ2 distributions:

H =
qχ2

d
(1 − αl) − d

√
2d

, Tp =
qχ2

p

(
1 − αs/

(d
p

))− p
√

2p
,

where αl +αs = α, αl, αs > 0. However, such a strategy results in a computational
burden for the scan test, since the quantiles of such a high order could be difficult to
compute precisely even for moderate values of d . We propose instead the following
formulas for the thresholds

H =
√

2 log
1

αl

+
√

2

d
log

1

αl

,(6)

Tp =
√

2

p
log

[(
d

p

)
1

αs

]
+
√√√√2 log

[(
d

p

)
1

αs

]
,(7)

obtained using concentration inequalities for the norm of a d-dimensional Gaus-
sian vector [5].
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REMARK 3. The scan statistic ψ
p
scan and the linear test statistic ψlin be-

have differently depending on the sparsity level. In the case of high sparsity,
β ∈ (1/2,1), the scan test outperforms the linear test, since the scan statistic
searches for a change over all possible subsets of components. Basically, as we
will see later, the scan test can detect a change with much smaller magnitude than
the linear test. In the case of high sparsity, its minimax separation rate is faster than
the one of the linear test.

However, in the case of moderate sparsity, β ∈ (0,1/2], the linear one has a
faster detection rate. In other words, averaging statistical information across all
vector components is more effective than a full search over all possible combi-
nations of components. Therefore, the proposed test statistic ψ∗

p gets the “best of
both worlds,” performing well in both the moderate sparsity and the high sparsity
regimes. The case of no sparsity p = d is also covered by these two tests that
become identical in this case.

3.2. Adaptation to unknown number of components with a change. For prob-
lem (P2), the proposed adaptive decision rule is, again, based on the combination
of two tests

ψ∗ = ψ∗
lin ∨ ψ∗

scan.

Here, the linear test ψ∗
lin maximizes the test statistic with respect to all possible

locations of the change-point

ψ∗
lin = 1

{
max
t∈T Llin(t) > H ∗}.

The corresponding threshold H ∗ providing the significance level αl is now given
by

(8) H ∗ =
√

logd + (1 + ε)

√
2 log

1

αε
+ (1 + ε)

√
2

d
log

1

αε
,

where

(9) αε = αl

log(1 + ε)

logn
, ε =

√
2 logd

d
.

For a given significance level αs , the scan statistic is now defined as

Lscan(T ) := max
p∈D

1

Tp,n

max
t∈T Lp

scan(t)

= max
p∈D

1

Tp,n

max
t∈T max

m∈M(d,p)

{‖�mZn(t)‖2 − p√
2p

}
,

(10)
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where

(11) Tp,n =
√

2

p
log

[(
d

p

)
2np2

αs

]
+
√√√√2 log

[(
d

p

)
2np2

αs

]
.

Note that the threshold Tp,n is built in the scan test statistic. In order to make
the test adaptive to unknown p, we have to compare the values of the statistic
maxt∈T L

p
scan(t) with Tp,n for all p ∈ D. The threshold Tp,n penalizes the number

of combinations of indexes in M(d,p) as well as the length of the sequence. The
adaptive scan test is defined as

ψ∗
scan = 1

{
max
p∈D

1

Tp,n

max
t∈T Lp

scan(t) > 1
}
.

Again, for any overall significance level α = αl + αs , we derive the thresholds (8)
and (11) for the two tests using concentration inequalities [5]; see the proof of
Lemma 3 for details.

REMARK 4. At first sight, the scan statistic may seem difficult to compute,
since it involves a combinatorial search which could be computationally hard. Re-
cent work [1] considered several general classes of problems where scan statistics
are computationally hard to compute. However, in our problem, it turns out that
the scan statistic can be efficiently computed in almost linear-time with respect to
the dimension of the problem. Indeed, we have

max
m∈M(d,p)

‖�mZn(t)‖2 − p√
2p

= 1√
2p

( p∑
j=1

[
Z(j)

n (t)
]2 − p

)
,

where [Z(j)
n (t)]2 are the ordered squared components of the vector Zn(t):[

Z(1)
n (t)

]2
>
[
Z(2)

n (t)
]2

> · · · > [
Z(d)

n (t)
]2

.

Thus the computational complexity of the adaptive test statistic is O(nd logd).
Computation relies on sorting the squared components of vectors Zn(t) for each
t ∈ T .

REMARK 5. Again, the proposed adaptive test statistic ψ∗ covers moderate
and high sparsity cases. This is reflected by our theoretical results in Theorems 3–
4, which show that the proposed adaptive test statistic is minimax-optimal and rate-
adaptive with only a logarithmic loss. The simulations in Section 5 corroborate our
theoretical results.
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4. Main results.

4.1. Upper and lower bounds on minimax testing error in problem (P1). We
shall first derive the rate of testing rd for the test ψ∗

p . In the high sparsity case,
we calculate the testing risk constant of our test (detection boundary condition (i)).
Next, we shall prove that for the same minimax separation rate rd yet with a differ-
ent constant the detection boundary condition (ii) holds. The minimax separation
rate for problems (P1) and (P2) depends on the location of the change-point via
the function

(12) h(τ) = τ

n

(
1 − τ

n

)
,

which commonly arises in change-point problems; see [11] for details.
The following theorem gives the upper bound for the test ψ∗

p in problem (P1).
The upper boundary conditions (13) and (14) correspond, respectively, to the linear
test ψlin and to the scan test ψ

p
scan.

THEOREM 1. Let γ ∈ (0,1). Assume that Assumptions (A1)–(A2) hold and
r = r(d) satisfies either

(13) lim inf
d→∞

r2nh(τ)√
d

≥ 4
(
log[2/γ ])1/2

or

(14) lim inf
d→∞

r2nh(τ)

p log(d/p)
≥ 2.

Let α ∈ (0, γ ) be a given significance level, αl = γ /2 and αs ∈ (0, γ /2) be such
that αl + αs = α. Let ψ∗

p be a test with H and Tp be defined as in (6)–(7). Then
α(ψ∗

p) ≤ α and lim supd→∞ β(ψ∗
p,�p[r], τ ) ≤ γ − α. Moreover, for the test ψ∗

p

we have lim supd→∞ γ (ψ∗
p,�p[r], τ ) ≤ γ .

The following theorem establishes the lower bound on the minimax testing error
in problem (P1) and the minimax separation rates that provide the separability
conditions between the hypotheses.

THEOREM 2. Assume that p 
 d1−β as d → ∞ and Assumption (A1) holds.
For any γ ∈ (0,1) and for any test ψ ,

lim inf
d→∞ γ

(
ψ,�p[r], τ )≥ γ

if r = r(d) satisfies one of the following conditions:

lim sup
d→∞

r2nh(τ)√
d

≤
√

2 log
(
1 + 4(1 − γ )2

)
for β ∈ [0,1/2),(15)

lim sup
d→∞

r2nh(τ)

p log(d/p)
< 2 − 1

β
for β ∈ (1/2,1).(16)
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Note that the result of Theorem 2 is valid even for the nonsparsity case of p = d

components with a change. Since both scan and linear tests coincide in this case,
Theorem 1 will be valid under assumption (13) only. We can find the corresponding
constant when β = 1/2 as well; see Section 4.3 and the proof of Lemma 5 in the
Supplementary Material [13].

REMARK 6. Theorems 1 and 2 give the detection boundaries for two sparsity
regimes. In the case of moderate sparsity when β ∈ (0,1/2) (and in the no-sparsity
case p = d), it is the linear test that can detect a change if (13) holds. On the other
hand, there is no test that can detect a change if (15) is satisfied. Thus the min-
imax separation rate for the moderate sparsity case is of order (

√
d/(nh(τ)))1/2.

In the case of high sparsity, β ∈ (1/2,1), the scan test can detect a change under
condition (14). There is no test that can detect a change if (16) holds. Thus the
separation rate is (p log(d/p)/(nh(τ))1/2 for the case of high sparsity. Note that
in this case the linear test fails if (13) is not satisfied. Roughly speaking, since
p log(d/p)�

√
d , the scan test is able to detect a smaller change in mean than the

linear test can detect. On the contrary, in the case of moderate sparsity, the linear
test can detect a change of order d1/4/

√
nh(τ), whereas the scan test cannot. Thus

the theorem establishes the boundary between high and moderate sparsity regimes,
β = 1/2. We refer to [3] for further discussion.

REMARK 7. Consider the problem of comparing the means of two d-
dimensional Gaussian vectors. This problem is equivalent to the problem of testing
a change at τ = 1 in a sequence of n = 2 vectors X1,X2 defined in (1). This prob-
lem is equivalent to testing p nonzero components in the mean of a Gaussian
vector Z2(1). A related problem were previously considered by Baraud [3] and
by Ingster and Suslina [18]. For the latter problem, we recover in (15)–(16), a de-
tection boundary which is similar to the one given in [3]. The quantity 2 − 1/β

in (16) coincides with the key quantities arising in the problem of classification of
a Gaussian vector with p 
 d1−β nonzero components in the mean [16] and in the
problem of detection [17, 18]. Butucea and Ingster [8] obtained similar results for
the problem of detection of a sparse submatrix of a noisy matrix of growing size.

4.2. Adaptation. The following theorem gives the upper bound for the adap-
tive test ψ∗ = ψ∗

lin ∨ ψ∗
scan.

THEOREM 3. Assume that Assumptions (A1)–(A3) hold and r = r(d) satisfies
either

(17) lim inf
d→∞ min

τ∈T
r2nh(τ)√

d log(d logn)
≥ √

2

or

(18) lim inf
d→∞ min

τ∈T min
p∈D

r2nh(τ)

p log(d/p)
≥ 2.
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Let α be a given significance level and αl, αs > 0 such that αl + αs = α and
the thresholds H and Tp be defined as in (8) and (11). Then α(ψ∗) ≤ α and
lim supd→∞ β∗(ψ∗,�[r]) ≤ α. Moreover, for any γ ∈ (0,1) there exists an adap-
tive test ψ∗ such that its risk of testing is at most γ , lim supd→∞ γ ∗(ψ∗,�[r]) ≤
γ .

The lower bound follows directly from Theorem 2.

THEOREM 4. Assume that (A1) holds. Let γ ∈ (0,1). If there exist τ0 ∈ T and
p0 ∈ D, p0 
 d1−β0 as d → ∞ such that

lim
d→∞

r2nh(τ0)√
d

≤
√

2 log
(
1 + 4(1 − γ )2

)
for β0 ∈ [0,1/2)

and

lim sup
d→∞

r2nh(τ0)

p0 log(d/p0)
< 2 − 1

β 0
for β0 ∈ (1/2,1),

then lim infd→∞ γ ∗(ψ,�[r]) ≥ γ for any test ψ .

REMARK 8. Theorems 3–4 show that in the case of adaptation to an unknown
p the scan test achieves the minimax-optimal rate of convergence with no loss
compared to the minimax separation rate. The linear test achieves a rate with a√

log(d logn) loss compared to the minimax separation rate.

4.3. Discussion: Detection boundary and rates. Suppose that the change size
in each component is constant, �θj = ad,n1{j ∈ m} for m ∈ M(d,p). Thus the
squared norm of the jumps of the vector mean ‖�θτ‖2 equals pa2

d,n if we have p

components with a change. The detection boundary conditions can now be written
in terms of the asymptotic behavior of the jump size ad,n. Recall that p 
 d1−β

where β ∈ [0,1) is the sparsity coefficient.
In the case of high sparsity, we can express the detection boundary condition in

the following way. Suppose that ad,n = Cd [logd/(nh(τ))]1/2. Then the detection
is impossible if lim supd→∞ Cd < (2β − 1)1/2. If lim infd→∞ Cd > (2β)1/2, then
we can always detect a change by applying the scan test. We see that there is a gap
between the constants but they do not depend on γ .

In the case of moderate sparsity, β ∈ [0,1/2), the detection boundary is of
the form a2

d,nd
1/2−βnh(τ) 
 1. Indeed, in this case ‖�θτ‖2 
 d1−βa2

d,n, the up-
per bound of error is attained by the linear test (see Theorem 1) and the lower
bound follows from Theorem 2. There is a gap between the upper and the lower
bound constants that are equal, respectively, to 2 log(2/γ )1/4 and (2 log(1 + 4(1 −
γ )2))1/4. We see that in case of the moderate sparsity, the constants at the minimax
separation rate depend on the overall testing level γ . If β = 1/2 and pd−1/2 → K
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TABLE 1
Detection boundary for two sparsity regimes

High sparsity, β ∈ (1/2,1) Moderate sparsity, β ∈ [0,1/2)

Boundary ad,n = Cd

(
logd
nh(τ)

)1/2
ad,n = Cd

(
dβ−1/2

nh(τ)

)1/2

Upper bound lim infd→∞ Cd >
√

2β lim infd→∞ Cd ≥ 2(log(2/γ ))1/4

Lower bound lim supd→∞ Cd <
√

2β − 1 lim supd→∞ Cd ≤ (2 log(1 + 4(1 − γ )2))1/4

for some constant K > 0, the lower bound constant will also depend on K (see the
proof of Lemma 5). It will satisfy

[C∗(K)]4

2K2 = 1 + log
[

1

K
log
(
1 + 4(1 − γ )2)].

In the case of unknown p, the scan test is adaptive to β with the same rate
[logd/(nh(τ))]1/2. For the linear test, we have a loss in the boundary of order
[log(d logn)]1/2. We conjecture that the log logn loss cannot be improved.

The main results on the detection boundaries are gathered in the Table 1.

5. Simulations. We perform a simulation study to evaluate the empirical be-
havior of the proposed test statistics, depending on the number of observations
n, the sparsity index p, the renormalized size of the jumps ‖�θτ‖/√p and the
dimension d . We consider several situations depending on the sparsity level:
the change in mean in all components (p = d), the case of moderate sparsity
(p � √

d) and the case of high sparsity (p � √
d). We show the dependence of

the power of the tests ψ∗, ψ∗
lin and ψ∗

scan on the sparsity index β (Figure 1) and on
the size of jumps (Figures 2–4). We also propose and evaluate two strategies for
calibrating the proposed test statistics.

We perform 500 replications and report results averaged over all replications.
The significance level is set to α = 0.05. In all simulations, we use the properly
scaled 1 − α/(2n) quantile of the χ2

d -distribution for the calibration of the lin-
ear test at level α/2. We use the 1 − α/(2d) empirical quantiles of the statistics
maxt∈T L

p
scan(t), p = 1, . . . , d under H0 to calibrate the scan test at level α/2.

More precisely, we use these quantiles instead of Tp,n in the adaptive scan test
ψ∗

scan = 1{maxp∈D 1
Tp,n

maxt∈T L
p
scan(t) > 1}.

5.1. Fixed change size, growing dimension. We generate n = 100 independent
Gaussian vectors Xi , i = 1, . . . , n, with independent components with a change in
mean in p = 5 components. The dimension d varies from 5 to 200 while p = 5
is fixed so that the sparsity index β decreases as d → ∞. The change location
is fixed at τ = n/2 or at τ = n/4 (Figure 1 on the left or right). The vector of a
change in mean �θτ has 5 nonzero components with absolute values |�θ

j
τ | = 0.6,
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FIG. 1. Power of three tests for n = 100, p = 5, ‖�θτ ‖2 = 1.8. The change-point is τ = 50 on the
left graph and τ = 25 on the right graph.

j ∈ m, where the subset of the change support m ∈ M(d,p) remains fixed as
d is growing. More precisely, we set the first p = 5 changing components, m =
{1, . . . , p}, we vary the dimension d ≥ p by adding the next d − p components
of the mean vector that do not change. Figure 1 compares the power of the linear
adaptive test ψ∗

lin, the scan adaptive test ψ∗
scan and the final test ψ∗ (in red color)

for two cases of the change-point location. First, we see that the power is greater
if the change is in the middle (left graph). The scan test performs better in the high
sparsity case, whereas the power of the linear test is higher in the moderate sparsity
case. In the transition zone p ≈ √

d , both tests have similar power. The difference
in the power of the two tests for d = 5, . . . ,10 is not very large. This is due to the
fact that the chosen norm of the change is quite large for a rather small dimension,
so both tests can detect the change easily.

5.2. Growing change size, fixed dimension. We also generate n = 100 inde-
pendent d-dimensional Gaussian vectors Xi , i = 1, . . . , n with independent com-
ponents. The dimension of Xi is set to d = 100 and remains fixed. We run simula-
tions in three sparsity regimes, p = 3,10,50 that correspond to the case of the high
sparsity (p = 3), the transition zone (p = 10) and the case of the medium sparsity
(p = 50). The absolute value of the change in mean at each component was the
same for each changing vector component, ∀j ∈ m, m ∈ M(d,p), |�θ

j
τ | = δ > 0.

The norm of the change is then equal to ‖�θτ‖ = δ
√

p. We make δ vary from 0.1
to 0.8. The set m is fixed for each of the three sparsity regimes.

In Figure 2, we report the empirical power of the three tests depending on
δ = ‖�θτ‖/√p. We observe that the detection boundary constant, which is pro-
portional to ‖�θτ‖, increases as p decreases. In the high sparsity case (p = 3),
we observe that the test based on the scan statistics outperforms the linear test. On
the other hand, in the moderate sparsity case (p = 50), the linear test works better
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FIG. 2. Power of the tests for n = 100, d = 100, τ = 25 for different sparsity regimes and fixed
change size δ = ‖�θτ ‖/√p in p coordinates.

than the scan statistic test. In the transition zone, p = 10, the linear test is slightly
better, but we see that both tests contribute to the performance of the final test ψ∗.

5.3. Two calibration strategies. We will now compare the powers of the tests
for two calibration strategies of the scan test. The first calibration strategy consists
in using the simulated quantiles of level 1−α/(2d) of the process maxt∈T L

p
scan(t)

under H0 instead of the thresholds Tp,n. These quantiles are the quantiles of the
norm of the maximum of a centered normalized discrete d-dimensional Brownian
bridge,

max
t∈T Lp

scan(t)
d= max

t∈T
1√
2p

( p∑
j=1

[
ξj
n (t)

]2 − p

)
under H0,

where ξ
j
n (t), j = 1, . . . , d is a normalized discrete Brownian bridge defined

in (21). The second calibration strategy consists in calibrating the scan test us-
ing the theoretical quantiles. Instead of Tp,n given by (11) we used the following
approximate version:

T ∗
p,n =

√
2p log

[
de

p

]
+
√

2

p
log
[

2nd

α

]
,

where we used the bound log
(d
p

) ≤ p log(de/p) and omitted the second-order
terms of Tp,n. The linear test ψ∗

lin is always calibrated by using the appropriately
normalized quantile of level 1 − α/(2n) of the χ2

d distribution instead of H ∗.
In Figures 3 and 4, we present the results of simulations for n = 1000, d =

100 and for n = 100, d = 1000, respectively. In both cases, the change occurs in
the middle of the observation interval, τ = n/2. We consider the cases of high
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FIG. 3. Power of the test for n = 1000, d = 100, τ = n/2 for p = 1,10,100. The red and magenta
markers show the power of the final adaptive test ψ∗ = ψ∗

lin ∨ψ∗
scan for the empirical and theoretical

thresholds, respectively.

sparsity (p = 1), no sparsity (p = d), and the intermediate case when p ≈ √
d .

The absolute value of the change in mean at each component was the same for each
changing vector component: ∀j ∈ m, m ∈ M(d,p), |�θ

j
τ | = δ > 0. The norm of

the change is then equal to ‖�θτ‖ = δ
√

p. We make δ vary from 0 to 0.8 in the
case of d = 100, n = 1000 and from 0 to 2 in case of d = 1000, n = 100. The set
m is fixed for each of the three sparsity regimes.

We can see from Figure 3 that the threshold T ∗
p,n gives satisfactory results. In

the cases of no sparsity and medium sparsity, the powers of both scan tests with
empirical and theoretical calibration are quite comparable (blue and black dashed
lines correspond to the empirical and theoretical thresholds, resp.). The red and
magenta colors show the power of the corresponding test ψ∗ = ψ∗

lin ∨ ψ∗
scan.

In Figure 4, where the dimension d is large, we can see that the linear test is
much less powerful when the sparsity is high, in contrast to the lower-dimensional
setting considered in Figure 3. We refer the reader to the Supplementary Material
[13] for the results in the case of moderate sparsity where p = 900 as well as to
the results in the case of known p and τ .

Estimation of thresholds for the scan statistics using Monte Carlo simulations
suffers from the curse of dimensionality, since for a fixed accuracy the required
number of Monte Carlo replications will grow with the dimension d . Thus the
theoretical thresholds can be attractive options in high-dimensional settings.

5.4. Type I errors. We present empirical type I errors in Figure 5 for the case
of the adaptive test. The dimension d varies from 100 to 750 and the sequence
length is n = 100. The thresholds are set empirically, the level of the test is α =
0.05. We plug in theoretical quantiles of the χ2

d distribution in the threshold of the
linear test, H ∗ = (qχ2

d
(1− α

2n
)−d)/

√
2d . We use the empirical quantiles instead of
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FIG. 4. Power of the test for n = 100, d = 1000, τ = n/2 for p = 1,50. In red and magenta
colors, the power of the proposed test ψ∗ is presented for the empirical and theoretical thresholds,
respectively.

the thresholds Tp,n in the scan test as described in the previous subsections. We can
notice that the type I error of the final decision rule ψ is about two times smaller
than the declared level of the test α. Indeed, the thresholds are conservative, since
we use the Bonferroni procedure. Next, we can see that the empirical type I error
of the linear test is almost always greater than the one of the scan test. This is
explained by the fact that for any p the threshold Tp,n of the scan test is greater
than the threshold of the linear test. Thus, the scan test tends to not reject the null
hypothesis even if the linear test rejects it. In general, the scan test will be useful to
detect a change in a small number of components, since in this case its detection
boundary (14) is smaller than the one of the linear test (13).

Finally, we would like to mention that both tests can be also calibrated by the
empirical quantiles of the corresponding limiting processes. This can potentially
increase the power of the test since the type I error will get closer to the significance
level.

FIG. 5. Empirical type I error of the adaptive tests for n = 100, d = 100, . . . ,750.
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6. Application to real data. We present two illustrations of the method on
real data. The first example is classical. We apply the sliding window version of
our testing procedure to the problem of simultaneous segmentation of comparative
genomic hybridization (CGH) profiles. The second example comes from astro-
physics. We apply our method to the detection of distant galaxies.

6.1. CGH data segmentation. Comparative genomic hybridization (CGH) is a
technique to obtain the number of copies of genes in a DNA profile. The number of
copies of certain genes can vary in a tumor cell with respect to a normal cell. This
phenomenon is called copy-number variation. The task consists in finding which
regions of DNA contain this elevated or lowered copy number for each particular
type of tumor.

We consider a publicly available dataset of bladder tumor profiles [29]. This
dataset contains d = 57 bladder tumor samples. Each profile is a sequence of 2385
relative quantities of DNA that describe the copy number variation. The problem
is to test whether there is a simultaneous change in copy numbers of some of 57
profiles as well as to estimate the location of the change. We remove the obser-
vations corresponding to the sex chromosomes as suggested in [30] since the sex
mismatch between the patients leads to less reliable results. We also remove the
vectors containing outliers for more than 9 patients at the same position on the
chromosome. The final dataset contains N = 2041 observations recorded from 22
chromosomes for each patient.

The problem clearly fits our framework, since the change in the number of
copies does not necessarily occur for all profiles. Moreover, the CGH profiles are
independent. A profile is usually modeled by a piecewise constant regression with
independent Gaussian errors [25]. Thus we observe a sequence of d-dimensional
vectors yi modeled by

yi = θ +
K−1∑
k=0

�θi1{τk < i ≤ τk+1} + ξi, i = 1, . . . ,N,

where θ and �θi are the unknown means of the relative DNA quantities and
their changes, respectively, ξi ∼ N (0,�) are independent with a diagonal co-
variance matrix � and the τk are the unknown copy-number change locations,
k = 0, . . . ,K − 1.

We apply a sliding window version of the proposed testing procedure to estimate
the change-points. The data is normalized before applying our method: we divide
each column yi by its empirical standard deviation calculated for each profile. We
suppose that after this normalization the data can be modeled by the model (1)
within any window of a fixed size h. For a given significance level α, we test
whether there is a change over a sliding window of size h. We use simulated quan-
tiles as the thresholds for both tests for n = h observations. If the change is detected
within the interval (u,u + h], we estimate the change-point as

τ̂ = arg max
u+1≤t≤u+h

{
max

(
Llin(t),Lscan(t)

)}
.
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FIG. 6. Simultaneous segmentation of d = 57 CGH profiles of length n = 2041. The profiles of
different patients are shown in different colors. The black line corresponds to the scaled norm of the
mean multiplied by the sign of the highest profile mean of the segment.

Figure 6 summarizes the results of this analysis. The black piecewise constant line
shows the scaled estimated norm of the mean ‖�θi +θ‖2/

√
d within each segment

(τk, τk+1], multiplied by the sign of the largest empirical mean within the segment.
We have chosen this quantity as a reference value to graphically represent the size
and the direction of the change in mean in the profiles since we cannot plot the
mean changes in all the profiles.

The experimental results are quite similar to the segmentation results obtained
in [30]. The sliding window size is fixed to h = 40, the significance level is set to
α = 0.05 and both tests were calibrated at the level α/2. We present only 20 pro-
files in the figure although the estimation was done using all 57 profiles. Vertical
lines show the chromosome borders. The results are satisfactory. The method can
quickly detect a change in a small subset of components of a high-dimensional
vector. Higher robustness to outliers, which occur in such data, could be an inter-
esting improvement to consider in future work.

6.2. Detection of distant galaxies. The data we consider in this paper was
provided by expert astrophysicists. It represents the spectra of galaxies obtained
by the Multi-Unit Spectroscopic Explorer (MUSE) [2]. The data collected with
the MUSE instrument is massive hyper-spectral data cubes of up to 4000 images
of 300 × 300 pixels, where each image corresponds to a certain wavelength.

First, the simulations of astronomical scenes are run. Then the resulting sim-
ulations are processed by applying the MUSE Instrument Numerical Model. We
therefore have three cubes of data of size 100 × 100 × 3600. Each cube represents
the real value of the linear spectra s, the observed value y and the noise variance
�. More precisely, we observe d-dimensional vectors, d = 3600, modeled by

yij = sij + εij , (i, j) ∈ A,

where (i, j) ∈ A are spatial coordinates, A is indexed by {1, . . . ,100}2, sij ∈ R
d is

the spectral column, and εij ∼ N (0,�ij ) are independent for all (i, j) ∈ A. The
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FIG. 7. The mean signal-to-noise ratio over 3600 spectral values.

covariance matrices �ij are diagonal, with components [σk
ij ]2, k = 1, . . . , d . The

mean of the signal-to-noise ratio yij /sij over the spectra is shown in Figure 7.
The data is sparse with respect to the spectral values as well as with respect to the
spatial coordinates.

The goal is to detect the presence of the galaxies using the information about
their spectra; see [24, 26] for some recent work on this topic. The data is renormal-
ized by dividing the coordinates of each observation by the corresponding standard
deviation σk

ij provided by the astrophysicists. We suppose that within a small win-

dow the new data xij := �−1
ij yij follow model (1) for any fixed i or j . For each

fixed spatial coordinate i ∈ {1, . . . ,100} we test the hypotheses of no change in
mean in each contiguous couple of vectors xi,j and xi,j+1, j = 1, . . . ,99. Thus
we test a change-point at (i, j) ∈ {1, . . . ,100} × {1, . . . ,99}. The same tests are
performed for each fixed j ∈ {1, . . . ,100}. We say that the galaxy is detected at
(i, j) ∈ A if one of the tests, column-wise or row-wise, has detected the change in
mean [we use only one test for the coordinates (i,100) and (100, j)]. The results
are shown in Figure 8 for the significance levels α = 0.001,0.005,0.01,0.05.

To get the overall significance level α, both tests are calibrated at level α/4,
column-wise and row-wise. We use the theoretical thresholds for the scan test
at αs = α/4 and the thresholds based on the chi-squared distribution quantiles
qχ2

3600
(1 −α/4) for the linear test. Comparing the results with Figure 7, we can see

that the locations of six galaxies are detected. However, the test fails in the pres-
ence of faint signals. A possible approach to increase the power of the test is to
take into account the simultaneous change in variance. We refer the reader to [26]
for some other methods as well as for the details about the MUSE instrument data.

7. Conclusion. We have proposed a test for a change in mean of a sequence
of high-dimensional Gaussian vectors under the assumption that the change occurs
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FIG. 8. The results of testing for α = 0.001,0.005,0.01,0.05. The detected galaxies are shown in
white.

in a subset of components of unknown size p of the mean vector. The proposed test
is based on a combination of two basic tests, the linear test and the scan test. The
test is adaptive to the unknown sparsity index p. The obtained detection boundary
conditions provide a correct minimax separation rate up to a constant. The constant
in the lower bound of the minimax testing error matches the constant that appears
in related testing and classification problems. The constant in the upper bound
could potentially be improved. In the case of high-sparsity, a method based on
higher criticism [12] could be worthwhile investigating. The proposed approach
can be readily extended to the case of unknown equal variance across components.

APPENDIX A: UPPER BOUNDS

First, using (2) we reduce model (1) to the model

(19) Zn(t) = −�θτμn(t) + ξn(t), t ∈ T ,

where T = {1, . . . , n − 1},

(20) μn(t) =
√

t (n − t)

n

(
n − τ

n − t
1{t ≤ τ } + τ

t
1{t > τ }

)
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and ξn(t) = (ξ1
n (t), . . . , ξd

n (t))T are Gaussian vectors with N (0,1) dependent
components given by

(21) ξj
n (t) =

√
n

t (n − t)

(
t∑

i=1

ξ
j
i − t

n

n∑
i=1

ξ
j
i

)
, j = 1, . . . , d,

where ξ
j
i are the i.i.d. N (0,1). Note that the process ξ

j
n (t), t ∈ T is a discrete

normalized Brownian bridge.

A.1. Upper bound for problem (P1). The proof of Theorem 1 is based on
the following two lemmas proven in the Supplementary Material [13].

LEMMA 1. Let α be a given significance level and the thresholds H and Tp be
defined in (6) and (7), where αl + αs = α, αl, αs > 0. Then the type I error α(ψ∗

p)

is smaller than α.

In the next lemma we derive the conditions on r that allow us to control the the
Type II error.

LEMMA 2. Let p ∈ D and τ ∈ T be given and αl, αs ∈ (0,1) be given signifi-
cance levels of the linear and the scan test, respectively.

1. Let βl ∈ (0,1) be given. Assume that there exists a λ ∈ (0,1) such that

(22) (1−λ)
r2nh(τ)√

2d
≥
[
2 log

1

αl

]1/2
+
[
2 log

1

βl

]1/2
+
√

2

d

(
log

1

αl

+ 1

λ
log

1

βl

)
.

Then β(ψlin,�p[r], τ ) ≤ βl for the linear test ψlin of level αl .
2. Let βs ∈ (0,1) be given. Assume that there exists a λ ∈ (0,1) such that

(1 − λ)
r2nh(τ)√

2p

≥
[
2 log

1

αs

]1/2
+
[
2 log

1

βs

]1/2
+
√

2

p

(
log

1

αs

+ 1

λ
log

1

βs

)

+
√

2p

(
log

de

p
+
[
log

de

p

]1/2)
.

(23)

Then β(ψ
p
scan,�p[r], τ ) ≤ βs for the scan test ψ

p
scan of level αs .

Now using these lemmas we can prove the theorem.

PROOF OF THEOREM 1. Lemma 1 implies that α(ψ∗
p) ≤ α if H and Tp are

chosen as in (6) and (7). On the other hand,

β
(
ψ∗

p,�p[r], τ )≤ min
(
β
(
ψlin,�p[r], τ ), β(ψp

scan,�p[r], τ )).
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Note that if r satisfies (22) or (23) with the corresponding significance levels αl

and αs , then the type II error of the test ψ∗
p is smaller than min(βl, βs). We have to

show that (22) and (23) are satisfied if (13) and (14) hold true.
Consider the linear test. Inequality (22) becomes

r2nh(τ)√
d

≥ 2

1 − λ

([
log

1

αl

]1/2
+
[
log

1

βl

]1/2)
+ 2√

d(1 − λ)

(
log

1

αl

+ 1

λ
log

1

βl

)
.

Taking λ = logd/
√

d we obtain that the right-hand side of this inequality tends
to 2(

√− logαl + √− logβl) which is minimal for αl = βl = γ /2 under the con-
straints 0 < αl + βl ≤ γ . If condition (13) is satisfied, then the above inequality
holds true for sufficiently large d given that αl = βl = γ /2. Applying Lemma 2,
we obtain limd→∞ β(ψlin,�p[r], τ ) ≤ γ /2.

For the scan test, set λ = 1/
√

p. Then λ → 0 as d → ∞, since p → ∞ as
d → ∞ by Assumption (A2). We can rewrite (23) as follows:

r2nh(τ)

p log(d/p)
≥ 2

1 − λ

1√
p log(d/p)

([
log

1

αs

]1/2
+
[
log

1

βs

]1/2)

+ 2

(1 − λ)p log(d/p)

(
log

1

αs

+ 1

λ
log

1

βs

)

+ 2

(1 − λ) log(d/p)

(
1 + log

d

p
+
[
log

de

p

]1/2)
.

Taking into account Assumption (A2), we can also see that
√

p log(d/p) → ∞
and log(d/p) → ∞. Thus ∀αs,βs ∈ (0,1) the above inequality holds if

r2nh(τ)

p log(d/p)
≥ 2 + o(1), d → ∞,

which follows from condition (14). Take βs ∈ (0,min(γ − α,βl)). Then

lim
d→∞

[
α
(
ψ∗

p

)+ β
(
ψ∗

p,�p[r], τ )]≤ αl + αs + min(βl, βs) ≤ γ. �

A.2. Upper bound for problem (P2). The proof of the upper bound in the
adaptive case is similar to the proof in the case of known p and θ . The detailed
proofs can be found in the Supplementary Material [13].

LEMMA 3. Let 0 < ε < n − 1. The thresholds of the linear and scan test are
given by

Hε = (1 + ε)

√
2 log

[
2 logn

α1 log(1 + ε)

]
(24)

+ (1 + ε)

√
2

d
log
[

2 logn

αl log(1 + ε)

]
+ ε

√
d

2
,
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Tp,n =
√

2

p
log

[(
d

p

)
2np2

αs

]
+
√√√√2 log

[(
d

p

)
2np2

αs

]
,(25)

where αl + αs ≤ α, αl, αs > 0. Then α(ψ∗) ≤ α.

LEMMA 4. Let αl and αs be given significance levels for the linear and the
scan test, respectively. Recall that τ is the true change point. Let βl ∈ (0,1) and
βs ∈ (0,1) be given.

1. Assume that ∀τ ∈ T there exists a λ ∈ (0,1) and an ε > 0 such that

(1 − λ)
r2nh(τ)√

2d
≥
√

2 log
1

βl

+ 1

λ

√
2

d
log

1

βl

+ (1 + ε)

√
2

d
log

1

αε
+ (1 + ε)

√
2 log

1

αε
+ ε

√
d

2
,

(26)

where αε is defined in (9). Then β(ψ∗
lin,�[r], I ) ≤ βl for the linear test ψ∗

lin of
level αl .

2. Assume that ∀p ∈ D and ∀τ ∈ T there exists a λ ∈ (0,1) such that

(1 − λ)
r2nh(τ)√

2p

≥
√

2 log
1

αs

+
√

2

p
log

1

αs

+
√

2 log
1

βs

+ 1

λ

√
2

p
log

1

βs
(27)

+
√

2 log
(
2np2

)+√
2

p
log
(
2np2)

+
√

2p log
de

p
+
√

2p log
de

p
.

Then β(ψ∗
scan,�[r], I ) ≤ βs for the adaptive scan test ψ∗

scan of level αs .

PROOF OF THEOREM 3. As in the proof of Theorem 1, we can easily see that
if the thresholds are chosen as in (8) and (11), then the type II error of the adaptive
test is smaller than α,

β
(
ψ∗,�[r], τ )≤ min

(
β
(
ψ∗

lin,�[r], I ), β(ψ∗
scan,�[r], I ))≤ min(αl, αs) ≤ α.

Thus we need to show that the conditions of Lemma 3 are satisfied if the assump-
tions of Theorem 3 hold.

Let us start with the scan test. Lemma 3 implies that for Tp,n chosen as in (11),
the type I error of the test is bounded by αs , if r satisfies (27) ∀p ∈ D. Rewrite the
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latter inequality as

r2nh(τ)

2p log(d/p)

≥ (1 − λ)−1

√
log 1

αs
+
√

log 1
βs√

p log(d/p)
+ 1

1 − λ

log 1
αs

+ λ−1 log 1
βs

p log(d/p)

+ (1 − λ)−1[1 + [
log(d/p)

]−1](28)

× [(
log(d/p)

)−1/2 + (
1 + log(d/p)

)−1]1/2

+ (1 − λ)−1
[

log(2np2)

p log(d/p)

]1/2
·
[(

log(d/p)
)−1/2 +

(
log(2np2)

p log(d/p)

)1/2]
.

Set λ = 1/
√

p. Note that λ → 0 as d → ∞. Taking into account Assumption (A2),
we can also see that

√
p log(d/p) → ∞, log(d/p) → ∞ and the first three terms

of the above inequality tend to 0 for any αs,βs ∈ (0,1). Assumptions (A3) and
(A2) imply for all p ∈ D

log(np2)

p log(d/p)
= logn

p log(d/p)
+ 2 logp

p log(d/p)
→ 0, d → ∞,

therefore, the last term tends to 1 as d → ∞. If condition (18) is satisfied, then
∀τ ∈ T and ∀p ∈ D

r2nh(τ)

2p log(d/p)
≥ 1 + o(1), d → ∞.

Therefore, inequality (28) holds for any �θτ ∈ �[r], ∀τ ∈ T and ∀p ∈ D, and the
scan test’s type II error is smaller than βs , limd→∞ β(ψ∗

scan,�[r]) ≤ βs .
Let us now turn to the linear test. Rewrite the inequality (26) as follows:

r2nh(τ)√
2d

≥ 1

1 − λ

√
2 log

1

βl

+ 1

λ(1 − λ)

√
2

d
log

1

βl

+ 1 + ε

1 − λ

√
2 log

1

αε

[( log 1
αε

d

)1/2
+ 1

]
+ ε

√
d

2
.

(29)

Set λ = 1/
√

d and ε = √
2 logd/d . Then the threshold Hε becomes H ∗ defined

in (8). Note that for d ≥ 2 we have 0 < ε < 1. We have the following inequalities:

logε − ε ≤ log log(1 + ε) ≤ logε

implying the asymptotic log log(1+ε) 
 − logd as d → ∞. Using this inequality,
we can show that

log
1

αε
= log

1

αl

+ log logn − log log(1 + ε)
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≤ log
1

αl

+ log logn +
√

2 logd

d
− 1

2
log 2 − 1

2
log logd + 1

2
logd.

Thus, we will have a loss of rate of order
√

log(
√

d logn) in the detection boundary.

Indeed, the first two terms in (29) are asymptotically constant if λ = 1/
√

d and

d → ∞. The third term is of order
√

log logn + log
√

d since n,d → ∞. The last
one equals

√
logd . Thus, (26) is satisfied for sufficiently large d , if for any τ ∈ T

lim inf
d→∞

r2nh(τ)√
2d log(d logn)

≥ 1.

This proves the theorem. �

APPENDIX B: PROOF OF THE LOWER BOUND

PROOF OF THEOREM 2. We have to show that under conditions of Theorem 2
for any γ ∈ (0,1) there exist a constant C∗ > 0 such that ∀C < C∗

inf
ψ

γ
(
ψ,�p[Crd ], τ )≥ γ, d → ∞.

The classical approach to the construction of lower bounds in testing problems
with sparsity goes back to the works of [19]. We also refer to [3] for the nonasymp-
totic analysis of the related problem of testing nonzero coordinates in a Gaussian
vector.

Recall that we observe the sequence X
n = (X1, . . . ,Xn) of d-dimensional ran-

dom vectors

Xi = θ + �θτ 1{i > τ } + ξi, i = 1, . . . , n

with a possible change at the location τ ∈ T . Let us define the following class of
mean vectors θ and the changes �θ :

�δ
p[r, τ ] =

{
(θ,�θτ ) ∈R

2d : θ = −δ

(
1 − τ

n

)
,�θτ = δ, δ ∈ V d

p ⊂ R
d,‖δ‖ = r

}
.

Note that if (θ,�θτ ) ∈ �δ
p[r, τ ], then �θτ ∈ �p[r]. Recall the definition of type

II error for problem (P1):

β
(
ψ,�p[r], τ )= sup

(θ,�θτ )∈Rd×�p[r]
P�θτ ,θ {ψ = 0}.

Define the type II error for the alternatives that belong to the class �δ
p[r, τ ]:

β
(
ψ,�δ

p[r, τ ])= sup
(θ,�θτ )∈�δ

p[r,τ ]
P�θτ ,θ {ψ = 0}.
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Let Pπ,r be a prior distribution on the set �δ
p[r, τ ] and P0 be the prior correspond-

ing to the case of no change in mean and zero means before and after the change:
δ = 0 in the definition of �δ

p[r, τ ]. Using the standard lower bound machinery
(see, e.g., [19]), we have

inf
ψ

γ
(
ψ,�p[r], τ )= inf

ψ

(
α(ψ) + β

(
ψ,�p[r], τ ))

≥ inf
ψ

(
α(ψ) + β

(
ψ,�δ

p[r, τ ]))
≥ 1 − 1

2
‖Pπ,r − P0‖1

= 1 − 1

2
E0
∣∣Lπ,r

(
X

n)− 1
∣∣

≥ 1 − 1

2

(
E0L2

π,r

(
X

n)− 1
)1/2

,

where ‖ · ‖1 denotes the total variation norm and Lπ,r (X
n) = dPπ,r

dP0
(Xn) is the cor-

responding likelihood ratio. The second inequality follows from Proposition 2.11
of [19]. The third inequality is true if the measure Pπ,r is absolutely continuous
with respect to P0, and the last one follows from the Cauchy–Schwarz inequality.

The prior Pπ,r is the mixture of priors on �δ
p[r, τ ] ⊂ V d

p and on the set V d
p =⋃

m∈M(p,d) �mR
d , where m is uniformly distributed over M(d,p) according to

the measure π . Define the prior Pm,r on the set �δ
p[r, τ ] ∩ �mR

d by letting

(30) δj = r√
p

εm
j , j = 1, . . . , d,

where εm = (εm
1 , . . . ,εm

d ) is a random vector with components

εm
j =

{±1, j ∈ m,

0, j /∈ m,

such that P{εm
j = 1} = P{εm

j = −1} = 1/2, j ∈ m and P{εm
j = 0} = 1, j /∈ m.

Note that ‖εm‖2 = p, therefore, ‖δ‖2 = r2 and the prior is well defined. Thus, the
likelihood ratio is given by

Lπ,r

(
X

n)= (
d

p

)−1 ∑
m∈M(d,p)

dPm,r

dP0

(
X

n).
To prove the lower detection bound, we need to show that lim infd→∞ γ (ψ,

�p[r], τ ) ≥ γ for any test ψ . Using the above lower bound inequality, we can
see that it remains to show that lim supd→∞E0[L2

π,r (X
n)] ≤ 1 + 4(1 − γ )2 if (15)

and (16) are satisfied. The proof of this statement is given in Lemma 5. �
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LEMMA 5. Let conditions (15) and (16) of Theorem 2 be satisfied for some
γ ∈ (0,1). Let Lπ,r (X

n) be the likelihood ratio that corresponds to the uniform
prior on the subset of coordinates m ∈ M(d,p) and the prior distribution Pm,r

defined in (30). Then

lim sup
d→∞

E0
[
L2

π,r

(
X

n)]≤ 1 + 4(1 − γ )2.
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SUPPLEMENTARY MATERIAL

Supplement to “High-dimensional change-point detection under sparse al-
ternatives” (DOI: 10.1214/18-AOS1740SUPP; .pdf). The supplementary mate-
rial [13] contains omitted proofs and some additional simulation results.
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