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SUPER-RESOLUTION ESTIMATION OF CYCLIC ARRIVAL RATES
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HKUST* and Yale University'

Exploiting the fact that most arrival processes exhibit cyclic behaviour,
we propose a simple procedure for estimating the intensity of a nonhomoge-
neous Poisson process. The estimator is the super-resolution analogue to Shao
(2010) and Shao and Lii [J. R. Stat. Soc. Ser. B. Stat. Methodol. 73 (2011) 99—
122], which is a sum of p sinusoids where p and the amplitude and phase of
each wave are not known and need to be estimated. This results in an inter-
pretable yet flexible specification that is suitable for use in modelling as well
as in high resolution simulations.

Our estimation procedure sits in between classic periodogram methods
and atomic/total variation norm thresholding. Through a novel use of window
functions in the point process domain, our approach attains super-resolution
without semidefinite programming. Under suitable conditions, finite sample
guarantees can be derived for our procedure. These resolve some open ques-
tions and expand existing results in spectral estimation literature.

1. Introduction. Real world arrival patterns typically exhibit cyclic (but not
necessarily periodic) behaviour. Motivated by the need for tractable yet flexible
functional forms for the arrival rate in queuing literature (Chen, Lee and Shen
(2018)), we consider the following problem: Suppose we observe the jump times
{t;}; of a nonhomogeneous Poisson process (NHPP) {N(¢) : t > 0} in [0, T']. Here,
N (t) denotes the number of arrivals in (0, ¢], and the intensity A(¢) and the cumu-
lative rate function A (z) are defined as

t
EN () =/0 Au)du = A(t).

Our goal is to use the observed data to estimate arrival rates of the form

p/2 P
(1.1) At) =cf + X:djA cos(f}‘t + ¢]A) =ch+ chﬁez””’?”
j=1 k=1

where the even number p of frequency components, the frequencies v* = {v,ﬁ}k
in a pre-specified band [— B, 4+ B], and the complex coefficients ct = {c,f}k are all
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Algorithm 1 The proposed estimation procedure
1 Define the windowed periodogram for the point process as

Z w(tj)e—zm'vtj
J

[HW)| =

1

T
for |v| < B, and note that it is symmetric in v. The sum can be computed effi-
ciently using nonuniform FFT algorithms like Dutt and Rokhlin (1993).

2 Identify the frequency region R ={v : r < |v| < B, |H(v)| > t} where the value

of periodogram exceeds the threshold z.
3 Set v())‘ =17p =0, k = 1 and repeat the following steps:

e Find the highest stationary peak of the periodogram in R and set vy as the cor-
responding frequency location. If no peaks exist then exit loop.

e Perform the updates k <— k + 1 and R < R\ (D — r, Vx + r). This removes a
neighbourhood of radius » centred at Uy from R.

4 Compute the estimator (4.1) for c,é.

unknown. Given the connections to Fourier series, this specification is very flexible
and was introduced by (Shao (2010), Shao and Lii (2011)). They resolve the esti-
mation problem under the classical setting where the frequencies are assumed to
be spaced more than order 1/7 apart. In this paper, we examine the problem from
the super-resolution perspective: We propose a simple procedure for estimating
(1.1) when the frequencies can be up to order 1/ T of each other. This is the finest
possible resolution in the sense that no estimator can generally resolve frequencies
separated by less than 1/ T in the presence of noise (Moitra (2015)).

Our approach modifies the classic periodogram and combines it with the super-
resolution literature on total-variation/atomic norm regularization. Three ingredi-
ents (to be specified in Proposition 3) are used in Algorithm 1: (i) A window
function w(¢) supported on [0, T']; (ii) a threshold 7 > 0; and (iii) a neighbour-
hood exclusion radius r > 0. The simple but elegant intuition behind the thresh-
olding idea (Donoho and Johnstone (1994)) as applied to our situation is that the
spectral energy [given by |H (v)]| as defined in the algorithm] should be concen-
trated at the signal frequencies vé, cees v;‘,. If the signals are strong enough that
|H (v())‘)l, .o |H (vlk,)l exceed the ambient noise level, then setting T above the

noise level will result in the algorithm isolating a neighbourhood around each v,ﬁ
(see Figure 1). It will be shown that if the frequencies are separated from one an-
other by a gap (resolution) of at least g(7)/T where g(T) > 4, then with high
probability our procedure will recover each v,é with a precision of 2/ T, provided
that the dynamic range of the amplitudes maxy |c,§| / ming |c,§| is less than 14.5.
This can be dramatically relaxed as the frequency gap is increased: For example
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FI1G. 1. Visualization of Algorithm 1. In the depicted periodogram there are two signal frequencies
v{‘ and v%‘. Setting t (horizontal line) above the ambient noise results in the algorithm selecting

neighbourhoods (between the pairs of vertical lines) that contain v% and v%‘.

if g(T) > 6, then the maximum allowable dynamic range exceeds 100. As dis-
cussed in Section 3 of Shao and Lii (2011), some sort of dynamic range condition
is needed even in the classical setting where the frequency gap is larger than order
1/T. Our analysis provides a way for quantifying the maximum allowable range
when T is finite.

A notable aspect of our methodology is in introducing the windowed peri-
odogram to the point process domain: Bartlett’s (1963) classic “unwindowed” pe-
riodogram for point processes is essentially |}_; e~2™iVij| /T, which is a special
case of |H (v)| when w(t) is the rectangle window on [0, T]. We show that this
window can and should be replaced with one that has faster decaying spectral tails.
Doing so has two benefits. First, super-resolution can be achieved without needing
to solve a semidefinite program. Second, even under the classical setting where
the frequencies are spaced more than order 1/7T apart [g(T) — oo as T — o0],
frequency estimation is more precise with a windowed periodogram. For exam-
ple, Figure 2 presents a log—log plot of the frequency estimation error versus 7
for various choices of g(7"). The details of this experiment are elaborated upon
in Section 5.1. The plots show that the rate of convergence increases with g(7),
with the windowed periodogram outperforming the unwindowed one until g(7)
reaches order 7T1/2, whereupon both achieve the maximum rate of O(T3/?) as
predicted by theory.

The remainder of this paper is organized as follows. Our contributions to exist-
ing literature will be described below. Section 2 reviews some basic results from
signal processing and shows how spectral leakage and windowing manifest them-
selves in arrivals data. This motivates the design of our estimation procedure. Fre-
quency recovery is discussed in Section 3 where w(t), T and r are specified. Un-
der the conditions given in the section, it will be shown that our procedure will
recover all frequencies to within a precision of 2/ T with high probability. We will
also articulate the tradeoffs involved relative to methods designed for the classical
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FIG. 2. Frequency recovery error maxy |Vy — v,i”l for the simulation (5.4) as a function of T, for
g(T) € {6, T1/6 T1/2y “win~ refers to the windowed periodogram and “Unwin” refers to the clas-
sic one. The error rates are maxy, |V — v]i‘l ~ TS where s is the slope of the relevant fitted line.

resolution setting. The estimator for the corresponding amplitudes and phases is
given in Section 4. In Section 5, we use simulations to compare our procedure to
the model selection approach in Shao (2010). Concluding remarks can be found
in Section 6. The proofs of all results can be found in the Supplementary Material
(Chen, Lee and Negahban, 2018).

Contributions to literature. Our estimation procedure sits in between two
streams of literature on spectral estimation. At one end, the classic approach is to
visually inspect the unwindowed periodogram for point processes (Bartlett (1963))
to find frequencies corresponding to peaks in the plot. If it is assumed that there
is only one frequency (Lewis (1970), Vere-Jones (1982)), the frequency corre-
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sponding to the largest peak of the periodogram is selected. Other approaches
(Bebbington and Zitikis (2004), Belitser, Serra and van Zanten (2013), Helmers
and Mangku (2003)) also exist but it is unclear if they generalize to the setting
with multiple frequencies.

Under the classical setting where the frequency gap is assumed to be 1/0(T),
Shao (2010), Shao and Lii (2011) extend the periodogram method to the multiple
frequencies setting. Their procedure corresponds to setting R = {v : r < |v| < B}
in Algorithm 1 and running step 3 until p frequencies have been selected. The
choice of p is determined using the AIC/BIC model selection criterion derived in
the dissertation of Shao (2010). For BIC, Shao (2010) states that the probability of
selecting the true p eventually approaches 1 as T — oo. Our procedure builds on
Shao (2010), Shao and Lii (2011) in two directions. First, the use of windowing en-
ables periodogram methods to achieve super-resolution, and this can be combined
with either thresholding or model selection to estimate p. Second, finite sample
performance bounds can be derived for our thresholding approach. This comple-
ments the BIC approach which does not come with high probability guarantees for
finite data. Moreover, the bounds also provide a way for quantifying the allowable
amplitude dynamic range when 7 is finite. As discussed in Section 3 of Shao and
Lii (2011), some sort of dynamic range condition is needed even if the frequency
gap is larger than order 1/ 7. Of course, this will be more restrictive in the super-
resolution setting, so there will be a cost to using our approach if the frequencies
are in fact spaced far apart. This tradeoff will be discussed in Section 3.

The other related stream of work is the super-resolution literature that uses total-
variation or atomic norm regularization to select frequencies (Bhaskar, Tang and
Recht (2013), Candes and Fernandez-Granda (2013), Fernandez-Granda (2013),
Tang, Bhaskar and Recht (2015)). These papers study a generic spectral estima-
tion problem in a discrete time setting. They generalize the £1-norm for a finite
number of variables to the case where there is a continuum of predictors {el“"},.
An infinite dimensional extension of Lasso is then formulated and solved as a
semidefinite program to select predictors and their coefficients. While the authors
show that this method outperforms existing ones for the setting described, chal-
lenges arise when trying to adapt it to our problem. First, the arrival counts must
be discretized into time bins, which introduces aliasing effects.> Second, the re-
quired computational effort is overly taxing* for the size of problems we consider.
For example, Chen, Lee and Shen (2018) analyzes 652 days of arrivals data from
an emergency department and used 5216 bins of 3-hour widths for the Lasso ex-
tension. The ADMM implementation recommended in Bhaskar, Tang and Recht

3This can, however, be overcome using bins narrower than 1/(2B) (Nyquist sampling).

4A Lasso approximation obtained from discretizing the frequency domain is suggested in Bhaskar,
Tang and Recht (2013) as a speedup. However, this is still more difficult to implement than the
periodogram method, along with the additional downside of a fixed discretized frequency grid.
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(2013) takes at least ten days to run on a computer with Intel i7 6500 cores. By
contrast, our procedure takes only a few minutes.

In terms of frequency recovery, the approaches in Fernandez-Granda (2013),
Tang, Bhaskar and Recht (2015) are guaranteed to pick out one or more frequen-
cies within some C/T of each signal frequency when the resolution is 4/7 . In the
stochastic noise setting of Tang, Bhaskar and Recht (2015), the guarantee holds
with high probability, and they further conjecture that it is possible to prevent the
selection of spurious frequencies. We contribute to this literature by resolving the
conjecture in the affirmative, since our procedure recovers exactly p + 1 frequen-
cies with high probability, one within 2/T of each true signal. The tradeoff with
using a periodogram method is that a bound on the dynamic range of the ampli-
tudes is needed. However, as mentioned earlier, this can be dramatically relaxed
by widening the frequency gap slightly, from 4/7T to 6/ T for example.

2. Overview of the estimation approach. Let the continuum of complex ex-
ponentials {e>7V! }lvj<p be our dictionary for constructing an arrival rate. Suppose
the rate for the underlying NHPP is (1.1), which belongs in the collection

p
2.1 co+cheZ”i”k’:ckeC,p<oo}.
k=1

Since A(¢) is real-valued, (1.1) will lie in the subset where the presence of (ck, Vi)
implies its conjugate (cx, —Vvk), so in particular ¢y will be real and positive. The
quantity of interest is the (p + 1)-vector v* of frequencies in (1.1), where p is
even but unknown. Given these, the coefficients ¢* in (1.1) will be estimated by
the complex-valued least squares solution (4.1) described in Section 4. Since A(¢)
is unobservable, we only see arrivals in the time window [0, T']. Estimating the
intensity therefore becomes a question of recovering v* from the frequency com-
ponents in the trajectory {N (¢)};¢[0,7]. To make the connection between the spec-
trums of the two quantities clearer, rewrite the latter in its Doob—Meyer form of
signal and noise components

{dN(t)}te[O,T] =[dAt) +d{N(@) — A@®)}]L0.11()

= Ao, () dt +de(t)]0,11(),

where (o, 71(¢) is the indicator function of {0 <t < T'}. Even in the absence of
noise, the spectrum of the signal component A(¢)(o,7(¢) is itself a distorted ver-
sion of the one for A(¢): Denoting the Fourier transform of f(¢) as

Foy= / F@Oye=2 d,

we can write the spectrum of A(¢) as the sum of the Dirac delta spikes centred at
(i he:

(2.2)

p
)= "cps(v—p).
k=0
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On the other hand, A(¢)I(,71(¢) is the result of truncating A(t) due to T being
finite, a spectrum distorting operation known as leakage: Denote the convolution
operator * by f x h(t) = [ f(s)h(t — s)ds, the h-smoothed average of f about
the point 7. The spectrum of A(1) I (o, 71(2) is

e~

)4
(2.3) (- To.r)W) = Oux Lo )W) =Y cpdor(v — ),
k=0

a weighted average of A(¢)’s spectral values c,é concentrated at {v,?}k. Thus trun-
cation has the effect of smearing the frequency spikes in A(v) into a continuous
spectrum: For v ¢ Uk{v,ﬁ}, )»-/I\(;T](v) can have a nonzero value, creating an ar-
tificial noise floor. The noise floor around strong signal frequencies may mask
weaker neighbouring signals, leading to resolution loss and making it difficult to
recover v* from A(t)10,11(t). Leakage distortion is a manifestation of the uncer-
tainty principle because perfect frequency localization requires I~(07T](v) =46(v),
but this is only possible if I(o,71(t) = 1, that is, an infinite time window is
needed.

The key idea that Algorithm 1 uses to deal with leakage is to replace I(o,71(¢)
with a suitably chosen window function w(#) to obtain the weighted arrival process
dNY(t) = w(t)dN(t). We see from (2.3) that the extent of leakage depends on
the tail decay of i(o,T], as this dictates the influence that distant frequencies has
on the local spectral value. Since A(#) can be truncated to (0, 7] using any w(¢)
supported on (0, T'], we can multiply A(¢#) with one whose Fourier transform has
lighter tails.

While the usual anti-leakage benefits of nonuniform windows is well known
in signal processing, they are in fact needed in our procedure for attaining fre-
quency resolutions of order 1/7: The tail decay of IN(O,T](v) is of order 1/(Tv).
Thus if {v,ﬁ‘}k are spaced 1/7 apart, the leakage (2.3) around a neighbourhood
of v,ﬁ from the other frequencies can be of order log p for the rectangle win-
dow. This can easily mask the periodogram spike at v,i‘ when p is large enough.
Hence the classic periodogram method is generally unable to attain frequency res-
olutions of order 1/T. Interestingly, the window that is usually considered opti-
mal for signal processing® is actually suboptimal for frequency recovery: Theo-
rem 3.44 of Osipov, Rokhlin and Xiao (2013) shows that the spectral tail decay of
the prolate spheroidal function is also of order 1/(7Tv) when it is time-limited to
[0, T].

5Optimal in the sense that its spectrum is the one that is most concentrated about the origin.
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Returning to the problem of recovering v* from (2.2), consider the (1/7')-scaled
spectrum of the windowed data dNY (t) = w(t) dN (¢):

1T,
H(V): _/ e*Zﬂlvthw(t)
T Jo

_ 1 d —2mivt 1 T —2mivt
(2.4) = ?/0 e w(t))»(t)dt—l—?/o e w(t) de(t)

1 &, v (v
:;Zc,ﬁw(v—v,é)%— 7(,).
k=0

Recall from Algorithm 1 that | H (v)] is defined as the windowed periodogram. For
v sufficiently far from {v,é}k, the noise level outside the vicinity of these frequen-
cies should be low for light-tailed w:

)4 ~ A ~w

lw(v —vp)] le® (V)|

(2.5) |H©w)| < ||c*||OOZ—T k s
k=0 UE[O,B]

If the signal strengths ¢’ are sufficiently strong, then intuitively a neighbourhood
of Uk{v,f} can be isolated by simply excluding frequency regions in [—B, +B]
where |H (v)| is below some threshold t (see Figure 1). This is the idea behind
step 2 of Algorithm 1. The analysis presented in the next section will guide our
choices for w(¢), T and r in our estimation procedure.

3. Frequency recovery. To guarantee that Algorithm 1 will recover the true
signal frequencies v* with high probability, we will assume that conditions A1 and
A2 given in this section hold from the point they are stated. First, since no method
can distinguish among frequencies that are clustered arbitrarily close together, we
impose a minimum separation gap.

Al. For 0 <k, k' < p, mingu v} — v}| = £2 for some g(T') > 4.

The gap g(T)/T represents the frequency resolution for our procedure, and our
recovery results cover all possible rates of growth for g(7) as T — oo. The lower
bound of 4/T benchmarks the frequency gap employed in the super-resolution
literature (Fernandez-Granda (2013), Tang, Bhaskar and Recht (2015)). If instead
the benchmark target is the classical setting in Shao (2010), Shao and Lii (2011),
then A1l may be relaxed to 6/ T, see the remark following Proposition 3 below.
Under A1, we must localize each v,ﬁ to within a neighbourhood of radius 2/ T
to avoid possible ambiguity from overlapping. To achieve this with thresholding,
note from (2.5) that if v is at least 2/ T away from the nearest v,é, then |H (v)| is
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strictly less than®

- A 1% (V)]
(3.1) —Z sup [w(W)|-||c*] « + sup ,
Tz 0v|=2+21 ve[0,B]
M

where the tail sum S; bounds the leakage noise floor outside the vicinity of {v,i‘} k>
and the last term is the statistical noise level. The unknown ||c’ |« can be esti-
mated using the highest peak of the periodogram: It is shown in the Supplementary
Material that

WO 25 ) ) 8 ()]
(3.2) - = sup [ww)|]|c — sup <
( r T12£|v>4l| 1" ve[o,8] T vel0, B]
$
0 S S ~w
(3.3) sup |H(V)}<max(S |w(0)] n 1+ 2>” AH + sup | (v)|'
vel0, B] T 2 ve[0. B]

Substituting the bound (3.2) for lc* |l into (3.1) shows that the threshold level 7
in Algorithm 1 should be

S S |€¥ ()]

B4 ——————— sup |[HO)|+(———+1) sup
[wO)I/T — S2 vefo, 5] lwO)|/T — $2 veio,p] T

in order to remove from the region R all frequencies not within 2/ T of any v,ﬁ. Our

procedure will then select a unique frequency within 2/ 7 of each v} if |H (v})| >
7, so we can set »r = 2/T. In view of (2.4) and (3.3), a sufficient condition for
|H(W)| > T is

Iw(O)I

|E¥ (V)]
¢l - $20¢* ] _
ve [OB]

S w(0 S1+ S e¥ (v
- 1 {max(Sl, | ( )l + 1 2>||CA||OO+ sup | ( )|}
lwO)|/T — $2 T 2 ve(0,81 T

( Si ) [E¥ (V)]
+(—————+1) sup
lwO)|/T — S vero,] T

fork=0,..., p, or equivalently
[w(0)]

S1 max(Sy, W% + #

minci| > { 1B(0)[/T — S,
S w
+ 2(~—1 + 1) sup |8 (V)l .
lwO)|/T — S vefo.] T

5The sum to infinity is needed as p is unknown.

} max|c}|
3.5
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F1G. 3.  Plot of |w(v)| for the Hann window (3.6). Left panel: Most of the energy is concentrated in
the main lobe between v = :i:%. Right panel: The side lobes are of width 1/ T and have successively
lower peaks.

It will be shown that the first two terms are dominant. Hence to first order, as the tail
sums S; and S, become small relative to [w(0)|/ T, a larger margin of separation
between signal and leakage noise is attained in frequency domain. Therefore, win-
dow functions with rapidly decaying spectral tails are desired. Of the commonly
used continuous time windows presented in Table 3.1 of Prabhu (2013) with spec-
tral energy concentrated inside |v| < 2/T, the time-shifted Hann window has the
lightest spectral tails [order 1/(Tv)3]:

w(t) = (sinz ”%)qoﬂ(z) < W)

(3.6)
T/2 v =0,
1
_ —T 4 == )
_|-ra V=t
Ze—iﬂTV sinc(Tv) else.
2 1 — (Tv)?

where sinc(v) = sin(srv) /(7 v) is the sinc kernel. Note from Figure 3 that |w(v)|
is symmetric and most of its energy is concentrated inside the main lobe between
V= j:%. The side lobes are of width 1/7T and have successively lower peaks. The
following lemma provides estimates for S and S>.

LEMMA 1. For the Hann window,

2 o
0.02843 < §1 = — Z sup  |w(v)| < 0.02844,
T 1=0 |v|=%+71
o

2 -
0.00464 < S = 23" sup [(v)] < 0.00465.

I=1 |v|>F1
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Furthermore, if we define W' (v) = %(u), thenfor any v € (v,i‘ — 2, v,i‘ + %),
4 20T

IS g(1)>’ 7 2l =) g(T)

l;ék l;ék

The remaining quantity not yet examined in (3.4) and (3.5) is the supremum
spectral density sup,,c[o p;1€" (V)| of the windowed statistical noise. Noting that

lw@)| <1 and |w'(¢)| = |‘2—’f(t)| <m/T < oo, the following lemma shows that
the scaled spectral noise level is of order (log T/T)/2.

LEMMA 2. Define A = A(T)/T and Ny = N(T)/T, and suppose that
sup;ero.77 W@ < 1, sup;co.1) |lw'(t)| < 0o. Then for any B > 0, y > 1, and
o >y /(y — 1), with probability

—1
- 87/7rB[l/T(VTO{)2_l + T exp{—(A(T)log T)l/z}] 2" MDIB/A
we have
(1-B)Ar <Nr <(1+B)Ar

and

¥ (v)] <40(1_\1/2<10gT>1/2 40(N/ <logT)l/2
T

vel0, B] T a-plz\r

Lemmas 1 and 2 can be used in (3.4) to define the data-driven threshold

1/2 1/2
4.23 N log T
(3.7) T=00574 swp [HW)|+ ( . )
vel0, B] -V T

for the Hann window. Deriving the sufficient condition for frequency recovery
(3.5) for this T and the Hann window yields:

A2. There exist 8 >0,y > 1,and @ > y/(y — 1) such that

1 172y _ loo T\ 1/2
mkin|c,§|>0.0686m£x}c,§|+16,9a{1+(%) }AlT/z( Of* ) |

As T grows the last term in A2 vanishes, so to first order the condition ming |c,§| >
0.0686 maxy |c,f| requires the dynamic range of the amplitudes to be less than 14.5.
The smaller the tailsums S| and S, are, the larger the allowable range. In particular,
if the gap in Al is slightly relaxed from 4/ T to 6/ T, the value of 14.5 can be in-
creased to over 100 by replacing the Hann window with the lighter spectral-tailed
cos* window (Prabhu (2013)). Thus windows with light spectral tails provide a
solution for detecting weak frequency signals in the presence of strong ones. This
addresses a point mentioned in passing on page 110 of Shao and Lii (2011): Is-
sues with the periodogram method arise when the dynamic range is large, even in
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the classical setting where the frequency gap is 1/0(T"). Our analysis provides a
way for quantifying this for both the windowed and unwindowed periodograms
when 7 is finite. In the special case where all the frequencies have the same am-
plitude |c?| =...= |cl*7 |, A2 simplifies to requiring the amplitude to be larger than
a multiple of the statistical noise level (last term of A2).

The main frequency recovery result can now be stated under Al and A2.

PROPOSITION 3. Let w(t) in Algorithm 1 be the Hann window (3.6), and set
r=2/T and t as (3.7). Then with probability at least

—1
1= 8y B[1/T7 "~ 4 T exp|—(A(T) log T)/?}] — 2e= MDA /4

our procedure will select exactly p + 1 frequencies v = {Dy }x with precision ||v* —
V]loo < 2/T. Furthermore,

||v)‘—f)|| <min{3 ZE(T)}
© T T
if
348(||c* A2 1 [logT\'/2) 87
e(T) 2 (e !|00+Aa T )max{ 3,<Og ) }S—.
miny [cy| g(T) T 40

REMARK. Through the use of windowing, we obtain the first periodogram
peak-hunting method that is able to achieve super-resolution. Note from the def-
inition of €(7') that if g(T) — oo then the procedure will recover all frequencies
with precision o(1/T). In particular, if g(7T') is O(T %) or greater then the estima-
tion error is (T ~3/2) up to a log factor. For the unwindowed periodogram in the
closely related time series setting, Theorem 6.8b of Li (2014) shows that the same
rate is achieved when g(7T') is greater than O(T'/?). This is because T3/2(v* — D)
has a bias of O(T'1/2 /g(T)) due to the slower spectral tail decay of the rectangle
window [Remark 6.14 of Li (2014)]. Thus even under the classical resolution set-
ting, windowing is still beneficial since it sharpens the precision of the frequency
estimates.

REMARK. In applications, ¢, § and y are chosen to balance a number
of considerations. First is the expected dynamic range (A2) for the particular
problem being considered. Second is the bandwidth B: If A2 holds for val-
ues of a, y satisfying a(y — 1)/y > /2, then the probability bound above is
1—-8ynB/T — 2e=ADB /4 g leading order in B/ T, in which case B has the
same asymptotic scaling as Shao (2010), Shao and Lii (2011), Vere-Jones (1982).
Third is the desired recovery probability. One possible choice that balances these
considerations is @ =2, B = 2./logT/T, and y = 4, which simplifies the proba-
bility bound to

1 — 327 B[T 5% 4+ T exp{—(A(T) log T)/*}] — 2727
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REMARK. When p is known, no thresholding is necessary, and the asymp-
totic normality results in Shao and Lii (2011) for the classic periodogram can be
extended to the windowed one. The details are provided in the Supplementary Ma-
terial.

When does the approach of Shao (2010), Shao and Lii (2011) perform better?
If {v,é}k are in fact spaced more than order 1/7T apart from one another, then it
follows from (2.5) that the leakage outside a O(g(T)/T)-neighbourhood of the
frequencies is of order 1/g(T)> — 0 for the Hann-windowed periodogram. Hence
the threshold (3.7) is conservative in this setting. While it will still work within
the dynamic range implied by A2, we expect the method in Shao (2010), Shao and
Lii (2011), which was specifically designed for the classical resolution setting, to
recover more of the frequencies with amplitude less than 1/14.5 of the largest one.
Of course, the Hann window analyzed here can also be used with the method in
Shao (2010), Shao and Lii (2011).

Connection to super-resolution literature. There are clear connections between
our results and those arising from the work on super-resolution recovery of dis-
crete time signals (Bhaskar, Tang and Recht (2013), Candes and Fernandez-Granda
(2013), Fernandez-Granda (2013), Tang, Bhaskar and Recht (2015)). In that set-
ting, the authors assume a discrete time signal x = Z,’:: | c,éez” il ¢ R™ and the
observations are of the form y = x 4 e where e € R" is a noise vector.

For a bounded e, Candés and Fernandez-Granda (2013), Fernandez-Granda
(2013) establish signal and support recovery guarantees for their semidefinite
programming approach. On the other hand for ¢; ~ N (0, o'2), the related AST
approach (Bhaskar, Tang and Recht (2013), Tang, Bhaskar and Recht (2015))
achieves near minimax rates. Furthermore, if ming |c,§| is larger than some mul-
tiple of op(logn/n)'/2, then with high probability AST is guaranteed to pick out
one or more frequencies within some C/n of each signal frequency. The authors
conjecture that it is possible to prevent the selection of spurious frequencies, and
that the sparsity p can be dropped from the lower bound on miny |c,§ |. The follow-
ing corollary shows that our procedure resolves these conjectures in the affirmative
when applied to this setting.

COROLLARY 4. Suppose T is replaced by n and At is replaced by o in A2.
Under the discrete time setting above, with high probability our procedure will
select exactly p frequencies within distance |9 — v*||oc < 4/n of the true ones.

Modified threshold. The last term in the threshold (3.7) comes from the spectral
noise bound in Lemma 2, whose constant 41\7}/ 2 may be conservative. As a result,
we observe in experiments that a large value of 7 is sometimes needed for the
guarantees to hold with high probability. To obtain a tighter estimate, one idea is
to approximate the spectral noise level of the underlying nonhomogeneous Poisson
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process with that of a homogeneous one. This is motivated by the fact that the noise
bound in Lemma 2 depends on A(z) only through the average rate N7, regardless
of whether the Poisson process is homogeneous or not. Thus for a given & > 0,
consider the modified threshold

(3.8) (0.0574 + £) |H(v)| + 1.06mi { daly” <1°gT)1/2}
. Te = . Sup V . mingy X7, N
: vel0, B] A-pi2\UT

where x7 is the simulated SUP,¢[0. B] |e¥(v)|/ T for the homogeneous Poisson pro-
cess with rate N7 over [0, T']. It is equivalent to applying the expression (5.2) to
simulated data. Clearly, if the second quantity in the curly bracket is smaller then
we effectively recover (3.7). In experiments, we find that thresholding with 7 per-
forms better than t in practice. The following corollary provides a large sample
recovery guarantee for tz.

COROLLARY 5. Suppose A2 is slightly strengthened to ming |c,)(‘| > (0.0686+

4&) maxy |c,’}|, and T is large enough that a(% . M%j)l/z < 283_55%_ el oo-

Then with probability at least

—1
1= 8y B[1/T"7 " 4 Texp{—(A(T)log T)'/*}] — 2~ ADF*/4

all frequencies will be recovered with the precision stated in Proposition 3 when
we threshold with Tz .

REMARK. If the second condition is to ever hold, & must then be at least of
order ||c* |2}/ Arlog T/T.

4. Amplitude and phase estimation. As noted by Rice and Rosenblatt
(1988) for the case of cyclic time series and Shao (2010), Shao and Lii (2011) for
the case of cyclic Poisson processes, it is necessary for the estimated frequencies
D to be within o(1/T) of v* if we wish to estimate the coefficients ¢’ consistently.
We will therefore let g(7") — oo in Proposition 3 so that €(7") — 0. Our estimator
is the complex-valued least squares solution to (2.2) in the limit d¢ — 0:

A

4.1) é=I"1y,

where the jth entry of the (p + 1)-vector y is % fOT e 20t N (1), and the (j, k)-
entry of the (p + 1) x (p + 1) matrix [is

A 1 T RIS 1.

Djk= —/ e 2O gt = — o 71D — Di),
*=T T ©,71(V; — Vi)

where f(o,T](v) = Te " TVsinc(Tv) is the Fourier transform of the rectangle.

Since {U¢}x are symmetric about zero, it can be shown for vy = —1; that ¢; and

¢; are conjugate pairs, hence the estimator for A(z) is always real-valued. We note
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that the corresponding estimator in Shao (2010), Shao and Lii (2011) can be re-
covered by setting I to the identity matrix, which is asymptotically valid because
r converges to an orthonormal design as g(7) — oco. Our choice of r provides a
second-order correction when T is finite.

PROPOSITION 6. Suppose the conditions for Proposition 3 hold with €(T) <
87/40, and that

LT —amiivi 1 - A
ijz?‘/é e Tl VJ Vi dt:?I(O,T](VJ_vk)
is invertible. Then with probability at least
N
1= 8ymB[1/T7 7' 4 T exp{—(A(T) log ) /?}] — 2e~ADF/4

() T is also invertible for sufficiently large T; and (ii)
lé = c*lo < 2{Cr +20) £ max(fc*

L De).

5. Numerical examples. We use simulations to compare our thresholding
procedure (based on the modified threshold) to the windowed periodogram com-
bined with BIC model selection, and also to the classic periodogram in Shao
(2010), Shao and Lii (2011) combined with BIC. We also use our procedure to an-
alyze arrivals data from an academic emergency department in the United States.
We focus on the BIC because it is asymptotically consistent, and the corresponding
penalized log-likelihood for Poisson processes is derived in Section 3.3.4 of Shao
(2010):

N(T)
(5.1) —2(2 1ogx(tj)—A(T))+(5p+1)1ogT.
j=1

The algorithm for using the windowed periodogram with BIC selection corre-

sponds to setting R = {v : r < |v| < B} in Algorithm 1 and running step 3 until

p frequencies have been selected. The value of p is chosen to minimize (5.1).
Since by default the frequency v = 0 is always selected, we work with the cen-

tralized version of |H (v)| instead:

|H.(v)| = %’/OT e_zm‘”w(t)(dN(t) — Md )‘

(5.2) | N( )
= _|HWv) - —%
FlHw) o).
which is one way to generalize the centralized unwindowed periodogram given
by equation (4) in Shao and Lii (2011). This approximately removes from the
windowed periodogram the peak at the origin.
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The asymptotic analysis in Shao (2010), Shao and Lii (2011) recommends a
minimum exclusion radius’ of r = 3/ T, which corresponds to assuming a fre-
quency gap of at least 6/7 in the finite T setting. Hence, in order to compare
the methods, we also set r =3/7T in Algorithm 1 and assume that g(7") > 6. The
modified threshold 7z corresponding to (3.8) is then

—1/2

. 4aN log T\ /2
(5.3)  (0.0180+&) sup |H.(v) —|—1.02min{x , r ( ) }
Sup |He0)] ma=pe\T

where we choose £ = 0.0001 to be small. In all our analyses, x7 turns out to be
always smaller than the lower bound 4(N7 log T/T)'/? for the second quantity in
the curly bracket. When g(7T) > 6, the maximum allowable dynamic range widens
to 47 under the Hann window.

5.1. Frequency recovery error rate. We use the following simulation to empir-
ically study the error rates for frequency recovery in Proposition 3, which shows
that when g(T) is constant the error ||D — v*||so is no greater than O(1/T). As
remarked after the proposition, the error rate becomes O(T ~3/?) for g(T') equal to
or greater than O(T!/6). In the closely related time series setting, the unwindowed
periodogram achieves the same rate when g(7') is greater than O(TY?) [Theo-
rem 6.8b of Li (2014)]. We will therefore examine || — v* ||« as a function of T
at the frequency resolutions corresponding to g(T') € {6, T'/®, T1/2}. Consider the
following class of arrival rates:

5
(5.4) M) =754 a cos(Zn(O.l + (k — 1)$)t+¢k>

k=1

whose frequencies are spaced apart by g(7')/T. The amplitudes a; are drawn ran-
domly from U[1, 1.5], and the phases ¢y from U[0, 27r). For each combination of
T and g(T), we sample 100 sets of the amplitudes and phases, and then use each
set to simulate the corresponding arrival process up to time 7.

For the values of T considered, all frequencies are detected by the three meth-
ods. Hence BIC selection and thresholding produce the same results when ap-
plied to the windowed periodogram. Figure 2 plots on a log—log scale the error
[ — v*|| averaged across the 100 simulations for each combination of T and
g(T). The slopes of the fitted lines estimate the error rate. For this example, the
windowed periodogram performs even better than what the theory predicts, achiev-
ing an error rate of almost O(T3/%) even for g(T) = 6. All methods attain this
rate when g(7T') = T2,

"In terms of angular frequency, this corresponds to the diameter of 1257/ T in Shao and Lii (2011).
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TABLE 1
Results for the sawtooth intensity (5.5). Column UBIC is the unwindowed periodogram combined
with BIC selection, WBIC is the windowed periodogram with BIC selection, and WThres is the
windowed periodogram with thresholding. Averages over 100 simulations are reported (standard
errors in parentheses)

UBIC WBIC WThres
MSE 0.17 (0.03) 0.19 (0.03) 0.17 (0.03)
#correct frequencies 3.05 (0.86) 2.77 (0.74) 4.41 (1.32)
#spurious frequencies 0.01 (0.10) 0.00 (0.00) 0.36 (0.77)

5.2. Misspecified arrival rate in the classical resolution setting. The sawtooth
wave in Shao and Lii (2011) provides a nice example for testing the robustness of
the methods to misspecifications to (1.1). Consider the arrival rate
. sin(27 (£)t
(5.5) A(t) =0.140.5mod(z, 2r) = 0.1 +0.57 — ) %

k=1

which has an infinite number of Fourier series frequencies spaced 1/(27) apart.
We simulate 100 realizations of the arrival process up to time 7" = 1000, which is
well within the classical setting where the frequencies are spaced 1/0(T') apart. To
assess the accuracies of the three methods at estimating A(¢), we use the average of
the MSE % fOT{k(t) — 5\,(1‘)}2 dt across the 100 samples as the performance metric.
We also report the average number of correct and spurious frequencies® recovered
by each method in Table 1.

Per the discussion in Section 3 regarding when the classic periodogram method
should outperform our approach, (5.5) fits the bill since the frequencies are sepa-
rated by much more than order 1/ T . Interestingly, the differences in performance
among the methods are not statistically significant for this example.

5.3. A super-resolution example with varying dynamic range. The following
arrival rate is inspired by Professor E. H. Kaplan’s analysis of arrivals data to a
psychiatric ward, where the existence of a lunar and a monthly cycle are verified:

2 2
(5.6) At)=Q2r+2)+2r cos(%t + 2.6) + 2cos<%t + 4.5).

The two frequencies at 1/28 and 1/30 are separated by a gap that is slightly larger
than 6/7 when T = 3000. The monthly cycle is r times stronger than the lunar
one, meaning that leakage from the former can easily mask the latter when r is
large. The left panels of Figure 4 display the centralized windowed periodograms

8 A correct recovery is defined as one that is within 3/ T of one of the Fourier frequencies.
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FI1G. 4. Results for (5.6). Left panels: The centralized Hann-windowed periodograms. The thresh-
old is represented by the horizontal line, and the locations of the frequencies and their estimates
are given by the vertical ones. Right panels: The unwindowed centralized periodograms. Top row:
r =10, middle row: r = 15, bottom row: r = 50.
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for different values of the dynamic range r, and the right panels display the cor-
responding unwindowed periodograms. Here, we apply thresholding to the win-
dowed periodograms; BIC selection performs similarly.

For r = 10 (top row), both periodograms are able to resolve the two frequencies.
For r = 15 (middle row), only the windowed periodogram is able to detect the
weaker lunar cycle. Both methods fail to identify the lunar cycle when r = 50
(bottom row), although the windowed periodogram is still able to do so for r =45
(not shown). This illustrates the role of windowing in suppressing leakage, thereby
allowing for super-resolution frequency recovery. Moreover, our findings match
the calculations at the beginning of this section that show the Hann-windowed
periodogram has a maximum allowable dynamic range of 47 when g(7") > 6. If
there are actually more frequencies in (5.6) that are O(1/T) away from the lunar
cycle, then the leakage around 1/28 in the classic periodogram will be of order
log p as explained in Section 2. In such cases, the classic periodogram may not be
able to detect the lunar cycle even if the dynamic range is 1.

5.4. Patient arrivals to an emergency department. Our last example analyzes
arrivals data from the emergency department of an academic hospital in the United
States. We focus in particular on the arrivals of 66,240 mid-acuity level® patients
from 2014 to Q3 of 2015 (T = 652 days).

As shown in the left panel of Figure 5, three intraday frequencies and five week-
based ones are selected from the centralized periodogram. The intraday frequen-
cies include a daily cycle (D] = 1.00), a 12-hour cycle (¥, = 2.00), and an 8-hour
cycle (03 = 3.00). The week-based ones include a weekly cycle (D4 = 0.142), a
half week cycle (D5 = 0.286), a 1/5 week cycle (Vg = 0.714), a 1/6 week cycle
(V7 =0.857) and a 1/8 week cycle (Vg = 1.143). Given that the fitted rate has a
weekly period, we can compare it to the average arrival rate for each of the 168
hours of the week (right panel of Figure 5). Overall, we see that using 8 frequen-
cies to model the arrival rate does almost as well as using 168 piecewise constant
hourly fits. Moreover, the sinusoidal estimate reveals two intraday peaks, the first
at around 11 a.m. and the second at around 5 p.m. We also see that the intensity of
arrivals fade steadily into the weekend.

6. Discussion. By a novel use of windowing, this paper shows that simple
periodogram methods can in fact achieve super-resolution frequency recovery for
cyclic arrival rates. This improves the resolution of classic periodograms, while
being much faster to compute than the SDP approach in super-resolution literature.
Under mild assumptions on the dynamic range of the frequency amplitudes, our
approach guarantees that no spurious frequencies will be recovered. To establish
the consistency of the coefficient estimates, our finite sample results show that if

9Defined as Emergency Severity Index (ESI) level 2.
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F1G. 5. ESI level 2 arrivals. Left panel: The centralized windowed periodogram. The selected
threshold is represented by the dashed horizontal line, and the location of the frequency estimates are
given by the vertical ones. Right panel: The estimated arrival rate (arrivals per day) over the course
of a week is given by the solid line. The dash-dot line represents the empirical average arrival rate
for each hour of the week.

the frequency gap is 1/0(T), then the frequencies can be recovered with precision
o(1/T) as required. Whether the gap can be relaxed to order 1/7T is a question that
is left for future research.

Another area for future research is to extend the cyclic specification (1.1) to
allow for higher order noncyclical components as well. One approach is to add
wavelets to the basis of complex exponentials. It might then be possible to leverage
the rate-optimal procedure in Brown et al. (2010) to estimate the time-localized
components of the arrival rate.
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for stimulating discussions on spectral analysis. The emergency department ar-
rivals data was kindly provided by Dr. Kito Lord.

SUPPLEMENTARY MATERIAL

Proofs and asymptotic normality (DOI: 10.1214/18-A0S1736SUPP; .pdf).
The proofs of all results presented in this paper are provided in Appendix A of the
supplement. Appendix B establishes the asymptotic normality of the windowed
periodogram estimator.
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