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CONVEX REGULARIZATION FOR HIGH-DIMENSIONAL
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In this paper, we present a general convex optimization approach for
solving high-dimensional multiple response tensor regression problems un-
der low-dimensional structural assumptions. We consider using convex and
weakly decomposable regularizers assuming that the underlying tensor lies
in an unknown low-dimensional subspace. Within our framework, we derive
general risk bounds of the resulting estimate under fairly general dependence
structure among covariates. Our framework leads to upper bounds in terms of
two very simple quantities, the Gaussian width of a convex set in tensor space
and the intrinsic dimension of the low-dimensional tensor subspace. To the
best of our knowledge, this is the first general framework that applies to mul-
tiple response problems. These general bounds provide useful upper bounds
on rates of convergence for a number of fundamental statistical models of in-
terest including multiresponse regression, vector autoregressive models, low-
rank tensor models and pairwise interaction models. Moreover, in many of
these settings we prove that the resulting estimates are minimax optimal. We
also provide a numerical study that both validates our theoretical guarantees
and demonstrates the breadth of our framework.

1. Introduction. Many modern scientific problems involve solving high-
dimensional statistical problems where the sample size is small relative to the
ambient dimension of the underlying parameter to be estimated. Over the past
few decades, there has been a large amount of work on solving such problems
by imposing low-dimensional structure on the parameter of interest. In particu-
lar sparsity, low-rankness and other low-dimensional subspace assumptions have
been studied extensively both in terms of the development of fast algorithms and
theoretical guarantees; see, for example, [4] and [9], for an overview. Most of the
prior work has focused on scenarios in which the parameter of interest is a vector
or matrix. Increasingly common in practice, however, the parameter or object to be
estimated naturally has a higher-order tensor structure. Examples include hyper-
spectral image analysis [12], multienergy computed tomography [27], radar signal
processing [19], audio classification [15] and text mining [6] among numerous
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others. It is much less clear how the low dimensional structures inherent to these
problems can be effectively accounted for. The main purpose of this article is to
fill in this void and provide a general and unifying framework for doing so.

Consider a general tensor regression problem where covariate tensors X(i) ∈
R

d1×···×dM and response tensors Y (i) ∈ R
dM+1×···×dN are related through

(1.1) Y (i) = 〈
X(i), T

〉 + ε(i), i = 1,2, . . . , n.

Here, T ∈ R
d1×···×dN is an unknown parameter of interest, and ε(i)s are indepen-

dent and identically distributed noise tensors whose entries are independent and
identically distributed centred normal random variables with variance σ 2. Further,
for simplicity we assume the covariates (X(i))ni=1 are Gaussian, but with fairly
general dependence assumptions. The notation 〈·, ·〉 will refer throughout this pa-
per to the standard inner product taken over appropriate Euclidean spaces. Hence,
for A ∈ R

d1×···×dM and B ∈ R
d1×···×dN ,

〈A,B〉 =
d1∑

j1=1

· · ·
dM∑

jM=1

Aj1,...,jM
Bj1,...,jM

∈ R

is the usual inner product if M = N ; and if M < N , then 〈A,B〉 ∈ R
dM+1×···×dN

such that its (jM+1, . . . , jN) entry is given by

(〈A,B〉)jM+1,...,jN
=

d1∑
j1=1

· · ·
dM∑

jM=1

Aj1,...,jM
Bj1,...,jM,jM+1,...,jN

.

The goal of tensor regression is to estimate the coefficient tensor T based on ob-
servations {(X(i), Y (i)) : 1 ≤ i ≤ n}. In addition to the canonical example of tensor
regression with Y a scalar response (i.e., M = N ), many other commonly encoun-
tered regression problems are also special cases of the general tensor regression
model (1.1). Multiresponse regression (see, e.g., [1]), vector autoregressive model
(see, e.g., [13]), and pairwise interaction tensor model (see, e.g., [25]) are some
of the notable examples. In this article, we provide a general treatment to these
seemingly different problems.

Our main focus here is on situations where the dimensionality dk’s are large
when compared with the sample size n. In many practical settings, the true re-
gression coefficient tensor T may have certain types of low-dimensional structure.
Because of the high ambient dimension of a regression coefficient tensor, it is es-
sential to account for such a low-dimensional structure when estimating it. Sparsity
and low-rankness are the most common examples of such low-dimensional struc-
tures. In the case of tensors, sparsity could occur at the entry-wise level, fiber-wise
level or slice-wise level, depending on the context and leading to different inter-
pretations. There are also multiple ways in which low-rankness may be present
when it comes to higher-order tensors, either at the original tensor level or at the
matricized tensor level.
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In this article, we consider a general class of convex regularization techniques
to exploit either type of low-dimensional structure. In particular, we consider the
standard convex regularization framework

(1.2) T̂ ∈ arg min
A∈Rd1×···×dN

{
1

2n

n∑
i=1

∥∥Y (i) − 〈
A,X(i)〉∥∥2

F + λR(A)

}
,

where the regularizer R(·) is a norm on R
d1×···×dN , and λ > 0 is a tuning param-

eter. Hereafter, for a tensor A, ‖A‖F = 〈A,A〉1/2. We derive general risk bounds
for a family of so-called weakly decomposable regularizers under fairly general
dependence structure among the covariates. These general upper bounds apply
to a number of concrete statistical inference problems including the aforemen-
tioned multiresponse regression, high-dimensional vector autoregressive models,
low-rank tensor models and pairwise interaction tensors where we show that they
are typically optimal in the minimax sense.

In developing these general results, we make several contributions to a fast
growing literature on high-dimensional tensor estimation. First of all, we provide
a unified and principled approach to exploit the low-dimensional structure in these
tensor problems. In doing so, we incorporate an extension of the notion of de-
composability originally introduced by [18] for vector and matrix models to weak
decomposability previously introduced in [31] which allows us to handle more
delicate tensor models such as the nuclear norm regularization for low-rank tensor
models. Moreover, we provide, for the regularized least squared estimate given by
(1.2), a general risk bound under an easily interpretable condition on the design
tensor. The risk bound we derive is presented in terms of merely two geomet-
ric quantities, the Gaussian width which depends on the choice of regularization
and the intrinsic dimension of the subspace that the tensor T lies in. We believe
this is the first general framework that applies to multiple responses and general
dependence structure for the covariate tensor X. Finally, our general results lead
to novel upper bounds for several important regression problems involving high-
dimensional tensors: multiresponse regression, multivariate autoregressive models
and pairwise interaction models, for which we also prove that the resulting esti-
mates are minimiax rate optimal with appropriate choices of regularizers.

Our framework incorporates both tensor structure and multiple responses which
present a number of challenges compared to previous approaches. These chal-
lenges manifest themselves both in terms of the choice of regularizer R and the
technical challenges in the proof of the main result. First, since the notion of low-
dimensional is more generic for tensors meaning there are a number of choices of
convex regularizer R and these must satisfy a form of weak decomposability and
provide optimal rates. Multiple responses and the flexible dependence structure
among the covariates also present significant technical challenges for proving re-
stricted strong convexity, a key technical tool for establishing rates of convergence.
In particular, a one-sided uniform law (Lemma 1.2 in the Supplementary Material
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[23]) is required instead of classical techniques as developed in, for example, [17,
22] that only apply to univariate responses.

The remainder of the paper is organized as follows: In Section 2, we introduce
the general framework of using weakly decomposable regularizers for exploiting
low-dimensional structures in high-dimensional tensor regression. In Section 3, we
present a general upper bound for weakly decomposable regularizers and discuss
specific risk bounds for commonly used sparsity or low-rankness regularizers for
tensors. In Section 4, we apply our general result to three specific statistical prob-
lems, namely, the multiresponse regression, multivariate autoregressive model and
the pairwise interaction model. We show that in each of the three examples ap-
propriately chosen weakly decomposable regularizers leads to minimax optimal
estimation of the unknown parameters. Numerical experiments are presented in
Section 5 to further demonstrate the merits and breadth of our approach. Proofs
are deferred to the Supplementary Material [23].

2. Methodology. Recall that the regularized least-squares estimate is given
by

T̂ = arg min
A∈Rd1×···×dN

{
1

2n

n∑
i=1

∥∥Y (i) − 〈
A,X(i)〉∥∥2

F + λR(A)

}
.

For brevity, we assume implicitly hereafter that the minimizer on its left- hand side
is uniquely defined. Our development here actually applies to the more general
case where T̂ can be taken as an arbitrary element from the set of the minimizers.
Of particular interest here is the so-called weakly decomposable convex regulariz-
ers, extending a similar concept introduced by [18] for vectors and matrices.

Let A be an arbitrary linear subspace of Rd1×···×dN and A⊥ its orthogonal com-
plement:

A⊥ := {
A ∈ R

d1×···×dN | 〈A,B〉 = 0 for all B ∈A
}
.

We call a regularizer R(·) weakly decomposable with respect to a pair (A,B)

where B ⊆ A if there exist a constant 0 < cR ≤ 1 such that for any A ∈ A⊥ and
B ∈ B,

(2.1) R(A + B) ≥ R(A) + cRR(B).

In particular, if (2.1) holds for any B ∈ B = A, we say R(·) is weakly decompos-
able with respect to A. A more general version of this concept was first introduced
in [31]. Because R is a norm, by triangular inequality, we also have

R(A + B) ≤ R(A) +R(B).

Many of the commonly used regularizers for tensors are weakly decomposable or
decomposable for short. When cR = 1, our definition of decomposability naturally
extends from similar notion for vectors (N = 1) and matrices (N = 2) introduced
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by [18]. We also allow for more general choices of cR here to ensure a wider appli-
cability. For example, as we shall see the popular tensor nuclear norm regularizer
is decomposable with respect to appropriate linear subspaces with cR = 1/2, but
not decomposable if cR = 1.

We have now described a catalogue of commonly used regularizers for tensors
and argue that they are all decomposable with respect to appropriately chosen sub-
spaces of Rd1×···×dN . To fix ideas, we shall focus in what follows on estimating
a third-order tensor T , that is, N = 3, although our discussion can be straightfor-
wardly extended to higher-order tensors.

2.1. Sparsity regularizers. An obvious way to encourage entry-wise sparsity
is to impose the vector �1 penalty on the entries of A:

(2.2) R(A) :=
d1∑

j1=1

d2∑
j2=1

d3∑
j3=1

|Aj1j2j3 |,

following the same idea as the Lasso for linear regression (see, e.g., [29]). This is a
canonical example of decomposable regularizers. For any fixed I ⊂ [d1] × [d2] ×
[d3] where [d] = {1,2, . . . , d}, write

(2.3) A(I ) = B(I ) = {
A ∈ R

d1×d2×d3 : Aj1j2j3 = 0 for all (j1, j2, j3) /∈ I
}
.

It is clear that

A⊥(I ) = {
A ∈R

d1×d2×d3 : Aj1j2j3 = 0 for all (j1, j2, j3) ∈ I
}
,

and R(A) defined by (2.2) is decomposable with respect to A with cR = 1.
In many applications, sparsity arises with a more structured fashion for tensors.

For example, a fiber or a slice of a tensor is likely to be zero simultaneously. Mode-
1 fibers of a tensor A ∈ Rd1×d2×d3 are the collection of d1-dimensional vectors{

A·j2j3 = (A1j2j3, . . . ,Ad1j2j3)
� : 1 ≤ j2 ≤ d2,1 ≤ j3 ≤ d3

}
.

Mode-2 and -3 fibers can be defined in the same fashion. To fix ideas, we focus
on mode-1 fibers. Sparsity among mode-1 fibers can be exploited using the group-
based �1 regularizer:

(2.4) R(A) =
d2∑

j2=1

d3∑
j3=1

‖A·j2j3‖�2,

similar to the group Lasso (see, e.g., [32]), where ‖ · ‖�2 stands for the usual vector
�2 norm. Similar to the vector �1 regularizer, the group �1-based regularizer is also
decomposable. For any fixed I ⊂ [d2] × [d3], write

(2.5) A(I ) = B(I ) = {
A ∈R

d1×d2×d3 : Aj1j2j3 = 0 for all (j2, j3) /∈ I
}
.
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It is clear that

A⊥(I ) = {
A ∈ R

d1×d2×d3 : Aj1j2j3 = 0 for all (j2, j3) ∈ I
}
,

and R(A) defined by (2.4) is decomposable with respect to A with cR = 1. Note
that in defining the regularizer in (2.4), instead of vector �2 norm, other �q (q > 1)
norms could also be used; see, for example, [30].

Sparsity could also occur at the slice level. The (1,2) slices of a tensor A ∈
R

d1×d2×d3 are the collection of d1 × d2 matrices{
A··j3 = (Aj1j2j3)1≤j1≤d1,1≤j2≤d2 : 1 ≤ j3 ≤ d3

}
.

Let ‖ · ‖ be an arbitrary norm on d1 × d2 matrices. Then the following group
regularizer can be considered:

(2.6) R(A) =
d3∑

j3=1

‖A··j3‖.

Typical examples of the matrix norm that can be used in (2.6) include Frobenius
norm and nuclear norm among others. In the case when ‖ · ‖F is used, R(·) is again
a decomposable regularizer with respect to

(2.7) A(I ) = B(I ) = {
A ∈ R

d1×d2×d3 : Aj1j2j3 = 0 for all j3 /∈ I
}
,

for any I ⊂ [d3].
Now consider the case when we use the matrix nuclear norm ‖ · ‖∗ in (2.6). Let

P1j and P2j , j = 1, . . . , d3 be two sequences of projection matrices on R
d1 and

R
d2 , respectively. Let

(2.8)
A(P1j ,P2j : 1 ≤ j ≤ d3)

= {
A ∈ R

d1×d2×d3 : P ⊥
1jA··jP ⊥

2j = 0, j = 1, . . . , d3
}

and

(2.9)
B(P1j ,P2j : 1 ≤ j ≤ d3)

= {
A ∈ R

d1×d2×d3 : A··j = P1jA··jP2j , j = 1, . . . , d3
}
.

By pinching inequality (see, e.g., [3]), it can be derived that R(·) is decomposable
with respect to A(P1j ,P2j : 1 ≤ j ≤ d3) and B(P1j ,P2j : 1 ≤ j ≤ d3).

2.2. Low-rankness regularizers. In addition to sparsity, one may also consider
tensors with low-rank. There are multiple notions of rank for higher-order tensors;
see, for example, [11], for a recent review. In particular, the so-called CP rank is
defined as the smallest number r of rank-one tensors needed to represent a tensor
A ∈ R

d1×d2×d3 :

(2.10) A =
r∑

k=1

uk ⊗ vk ⊗ wk,
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where uk ∈ R
d1 , vk ∈ R

d2 and wk ∈R
d3 . To encourage a low rank estimate, we can

consider the nuclear norm regularization. Following [33], we define the nuclear
norm of A through its dual norm. More specifically, let the spectral norm of A be
given by

‖A‖s = max‖u‖�2 ,‖v‖�2 ,‖w‖�2≤1
〈A,u ⊗ v ⊗ w〉.

Then its nuclear norm is defined as

‖A‖∗ = max‖B‖s≤1
〈A,B〉.

We shall then consider the regularizer:

(2.11) R(A) = ‖A‖∗.

We now show this is also a weakly decomposable regularizer.
Let Pk be a projection matrix in R

dk . Define

(P1 ⊗ P2 ⊗ P3)A =
r∑

k=1

P1uk ⊗ P2vk ⊗ P3wk.

Write

Q = P1 ⊗ P2 ⊗ P3 + P ⊥
1 ⊗ P2 ⊗ P3 + P1 ⊗ P ⊥

2 ⊗ P3 + P1 ⊗ P2 ⊗ P ⊥
3 ,

and

Q⊥ = P ⊥
1 ⊗ P ⊥

2 ⊗ P ⊥
3 + P ⊥

1 ⊗ P ⊥
2 ⊗ P3 + P1 ⊗ P ⊥

2 ⊗ P ⊥
3 + P ⊥

1 ⊗ P2 ⊗ P ⊥
3 ,

where P ⊥
k = I − Pk .

LEMMA 2.1. For any A ∈ R
d1×d2×d3 and projection matrices Pk in R

dk , k =
1,2,3, we have

‖A‖∗ ≥ ∥∥(P1 ⊗ P2 ⊗ P3)A
∥∥∗ + 1

2

∥∥Q⊥A
∥∥∗.

Lemma 2.1 is a direct consequence from the characterization of sub-differential
for tensor nuclear norm given by [33], and can be viewed as a tensor version of the
pinching inequality for matrices.

Write

(2.12) A(P1,P2,P3) = {
A ∈ R

d1×d2×d3 : QA = A
}

and

(2.13) B(P1,P2,P3) = {
A ∈ R

d1×d2×d3 : (P1 ⊗ P2 ⊗ P3)A = A
}
.

By Lemma 2.1, R(·) defined by (2.11) is weakly decomposable with respect to
A(P1,P2,P3) and B(P1,P2,P3) with cR = 1/2. We note that a counterexample
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is also given by [33] which shows that, for the tensor nuclear norm, we cannot take
cR = 1.

Another popular way to define tensor rank is through the so-called Tucker de-
composition. Recall that the Tucker decomposition of a tensor A ∈ R

d1×d2×d3 is of
the form

(2.14) Aj1j2j3 =
r1∑

k1=1

r2∑
k2=1

r3∑
k3=1

Sk1k2k3Uj1k1Vj2k2Wj3k3

so that U , V and W are orthogonal matrices, and the so-called core tensor
S = (Sk1k2k3)k1,k2,k3 is such that any two slices of S are orthogonal. The triplet
(r1, r2, r3) are referred to as the Tucker ranks of A. It is not hard to see that if (2.10)
holds, then the Tucker ranks (r1, r2, r3) can be equivalently interpreted as the di-
mensionality of the linear spaces spanned by {uk : 1 ≤ k ≤ r}, {vk : 1 ≤ k ≤ r}, and
{wk : 1 ≤ k ≤ r}, respectively. The following relationship holds between CP rank
and Tucker ranks:

max{r1, r2, r3} ≤ r ≤ min{r1r2, r2r3, r1r3}.
A convenient way to encourage low Tucker ranks in a tensor is through matri-

cization. Let M1(·) denote the mode-1 matricization of a tensor. That is M1(A)

is a d1 × (d2d3) matrix whose column vectors are the the mode-1 fibers of
A ∈ R

d1×d2×d3 . M2(·) and M3(·) can also be defined in the same fashion. It is
clear

rank
(
Mk(A)

) = rk(A).

A natural way to encourage low-rankness is therefore through nuclear norm regu-
larization:

(2.15) R(A) = 1

3

3∑
k=1

∥∥Mk(A)
∥∥∗.

By the pinching inequality for matrices, R(·) defined by (2.15) is also decompos-
able with respect to A(P1,P2,P3) and B(P1,P2,P3) with cR = 1.

3. Risk bounds for decomposable regularizers. We now establish risk
bounds for general decomposable regularizers. In particular, our bounds are given
in terms of the Gaussian width of a suitable set of tensors. Recall that the Gaussian
width of a set S ⊂ R

d1×d2×···×dN is given by

wG(S) := E

(
sup
A∈S

〈A,G〉
)
,

where G ∈ R
d1×d2×···×dN is a tensor whose entries are independent N (0,1) ran-

dom variables; see, for example, [8] for more details on Gaussian width.
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Note that the Gaussian width is a geometric measure of the volume of the set S

and can be related to other volumetric characterizations (see, e.g., [20]). We also
define the unit ball for the norm-regularizer R(·) as follows:

BR(1) := {
A ∈ R

d1×d2×···×dN | R(A) ≤ 1
}
.

We impose the mild assumption that ‖A‖F ≤ R(A) which ensures that the regu-
larizer R(·) encourages low-dimensional structure.

Now we define a quantity that relates the size of the norm R(A) to the Frobe-
nius norm ‖A‖F over the the low-dimensional subspace A. Following [18], for a
subspace A of Rd1×···×dN , define its compatibility constant s(A) as

s(A) := sup
A∈A/{0}

R2(A)

‖A‖2
F

,

which can be interpreted as a notion of intrinsic dimensionality of A.
Now we turn our attention to the covariate tensor. Denote by X(i) = vec(X(i))

the vectorized covariate from the ith sample. With slight abuse of notation, write

X = vec
((

X(1))�, . . . ,
(
X(n))�) ∈ R

n·d1d2···dM

the concatenated covariates from all n samples. For convenience, let DM =
d1d2 · · ·dM . Further for brevity, we assume a Gaussian design so that

X ∼ N (0,�),

where

� = cov(X,X) ∈ R
nDM×nDM .

With more technical work, our results may be extended beyond Gaussian designs.
We note that we do not require that the sample tensors X(i) be independent.

We shall assume that � has bounded eigenvalues which we later verify for a
number of statistical examples. Let λmin(·) and λmax(·) represent the smallest and
largest eigenvalues of a matrix, respectively. In what follows, we shall assume that

(3.1) c2
� ≤ λmin(�) ≤ λmax(�) ≤ c2

u,

for some constants 0 < c� ≤ cu < ∞.
Note that in particular if all covariates {X(i) : i = 1, . . . , n} are independent

and identically distributed, then � has a block diagonal structure, and (3.1) boils
down to similar conditions on cov(X(i),X(i)). However, (3.1) is more general and
applicable to settings in which the X(i)’s may be dependent such as time-series
models, which we shall discuss in further detail in Section 4.

We are now in position to state our main result on the risk bounds in terms
of both Frobenius norm ‖ · ‖F and the empirical norm ‖ · ‖n where for a tensor
A ∈ R

d1×···×dN , which we define as

‖A‖2
n := 1

n

n∑
i=1

∥∥〈
A,X(i)〉∥∥2

F .
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The main reason we focus on random Gaussian design is so that we can prove a
one-sided uniform law that relates the empirical norm defined above to the Frobe-
nius norm of a tensor in A (see Lemma 1.2 in the Supplementary Material [23]).

THEOREM 3.1. Suppose that (1.1) holds for a tensor T from a linear subspace
A0 ⊂ R

d1×···×dN where (3.1) holds. Let T̂ be defined by (1.2) where the regularizer
R(·) is decomposable with respect to A and A0 for some linear subspace A ⊇ A0.
If

(3.2) λ ≥ 2σcu(3 + cR)

cR
√

n
wG

[
BR(1)

]
,

then there exists a constant c > 0 such that with probability at least 1 −
exp{−cw2

G[BR(1)]},

(3.3) max
{‖T̂ − T ‖2

n,‖T̂ − T ‖2
F
} ≤ 6(1 + cR)

3 + cR

9c2
u

c2
�

s(A)λ2,

when n is sufficiently large, assuming that the right-hand side converges to zero as
n increases.

As stated in Theorem 3.1, our upper bound boils down to bounding two quanti-
ties, s(A) and wG[BR(1)] which are both purely geometric quantities. To provide
some intuition, wG[BR(1)] captures how large the R(·) norm is relative to the
‖ · ‖F norm and s(A) captures the low dimension of the subspace A.

Several technical remarks are in order. Note that wG[BR(1)] can be expressed
as expectation of the dual norm of G. According to R (see, e.g., [26], for details),
the dual norm R∗(·) is given by

R∗(B) := sup
A∈BR(1)

〈A,B〉,

where the supremum is taken over tensors of the same dimensions as B . It is
straightforward to see that wG[BR(1)] = E[R∗(G)].

To the best of our knowledge, this is the first general result that applies to mul-
tiple responses. As mentioned earlier, incorporating multiple responses presents a
technical challenge (see Lemma 1.2 in the Supplementary Material [23]) which
is a one-sided uniform law analogous to restricted strong convexity. While The-
orem 3.1 focuses on Gaussian design, results can be extended to random sub-
Gaussian design using more sophisticated techniques (see, e.g., [14, 34]) or for
fixed design by assuming covariates deterministically satisfy the conditions in
Lemma 1.2 in the Supplementary Material [23]. Since the focus of this paper is
on general dependence structure, we assume random Gaussian design.

One important practical challenge is that σ 2, cu and c� are typically unknown
and these clearly influence the choice of λ. This is a common challenge for high-
dimensional statistical inference and we do not address this issue in this paper.
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In practice, λ is typically chosen through cross-validation. A more sophisticated
choice of λ based on estimation of σ 2 and other constants remains an open ques-
tion. Another important and open question is for what choices of A0 is the upper
bound optimal (up to a constant). In Section 4, we provide specific examples in
which we provide minimax lower bounds which match the upper bounds up to
constant. However, as we see for low-rank tensor regression for low-rank tensor
regression discussed in Section 3.2, we are not aware of a convex regularizer that
matches the minimax lower bound.

Now we develop upper bounds on both quantities in different scenarios. As in
the previous section, we shall focus on third-order tensor in the rest of the section
for the ease of exposition.

3.1. Sparsity regularizers. We first consider sparsity regularizers described in
the previous section.

3.1.1. Entry-wise and fiber-wise sparsity. Recall that vectorized �1 regular-
izer:

R1(A) =
d1∑

j1=1

d2∑
j2=1

d3∑
j3=1

|Aj1j2j3 |,

could be used to exploit entry-wise sparsity. Clearly,

R∗
1(A) = max

j1,j2,j3
|Aj1j2j3 |.

We can now show the following.

LEMMA 3.1. There exists a constant 0 < c < ∞ such that

(3.4) wG

[
BR1(1)

] ≤ c
√

log(d1d2d3).

Let

�1(s) =
{
A ∈ R

d1×d2×d3 :
d1∑

j1=1

d2∑
j2=1

d3∑
j3=1

I(Aj1j2j3 �= 0) ≤ s

}
.

For an arbitrary A ∈ �1(s), write

I (A) = {
(j1, j2, j3) ∈ [d1] × [d2] × [d3] : Aj1j2j3 �= 0

}
.

Then R1(·) is decomposable with respect to A(I (A)) as defined by (2.3). It is easy
to verify that for any A ∈ �1(s),

(3.5) s1
(
A(I )

) = sup
B∈A(I (A))/{0}

R2
1(B)

‖B‖2
F

≤ s.
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In light of (3.5) and (3.4), Theorem 3.1 implies that

sup
T ∈�1(s)

max
{‖T̂1 − T ‖2

n,‖T̂1 − T ‖2
F
}
� s log(d1d2d3)

n
,

with high probability by taking

λ �
√

log(d1d2d3)

n
,

where T̂1 is the regularized least squares estimate defined by (1.2) when using
regularizer R1(·).

A similar argument can also be applied to fiber-wise sparsity. To fix ideas, we
consider here only sparsity among mode-1 fibers. In this case, we use a group
Lasso type of regularizer:

R2(A) =
d2∑

j2=1

d3∑
j3=1

‖A·j2j3‖�2 .

Then

R∗
2(A) = max

j2,j3
‖A·j2j3‖�2 .

LEMMA 3.2. There exists a constant 0 < c < ∞ such that

(3.6) wG

[
BR2(1)

] ≤ c

√
max

{
d1, log(d2d3)

}
.

Let

�2(s) =
{
A ∈ R

d1×d2×d3 :
d2∑

j2=1

d3∑
j3=1

I(A·j2j3 �= 0) ≤ s

}
.

Similar to the previous case, for an arbitrary A ∈ �1(s), write

I (A) = {
(j2, j3) ∈ [d2] × [d3] : A·j2j3 �= 0

}
.

Then R2(·) is decomposable with respect to A(I (A)) as defined by (2.5). It is easy
to verify that for any A ∈ �2(s),

(3.7) s2
(
A(I )

) = sup
B∈A(I (A))/{0}

R2
2(B)

‖B‖2
F

≤ s.

In light of (3.7) and (3.6), Theorem 3.1 implies that

sup
T ∈�2(s)

max
{‖T̂2 − T ‖2

n,‖T̂2 − T ‖2
F
}
� s max{d1, log(d2d3)}

n
,
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with high probability by taking

λ �
√

max{d1, log(d2d3)}
n

,

where T̂2 is the regularized least squares estimate defined by (1.2) when using
regularizer R2(·).

Comparing with the rates for entry-wise and fiber-wise sparsity regularization,
we can see the benefit of using group Lasso type of regularizer R2 when spar-
sity is likely to occur at the fiber level. More specifically, consider the case when
there are a total of s1 nonzero entries from s2 nonzero fibers. If an entry-wise �1
regularization is applied, we can achieve the risk bound

‖T̂1 − T ‖2
F � s1 log(d1d2d3)

n
.

On the other hand, if fiber-wise group �1 regularization is applied, then the risk
bound becomes

‖T̂2 − T ‖2
F � s2 max{d1, log(d2d3)}

n
.

When nonzero entries are clustered in fibers, we may expect s1 � s2d1. In this case,
T̂2 enjoys performance superior to that of T̂1 since s2d1 log(d1d2d3) is larger than
s2 max{d1, log(d2d3)}.

3.1.2. Slice-wise sparsity and low-rank structure. Now we consider slice-wise
sparsity and low-rank structure. Again, to fix ideas, we consider here only sparsity
among (1,2) slices. As discussed in the previous section, two specific types of
regularizers could be employed:

R3(A) =
d3∑

j3=1

‖A··j3‖F

and

R4(A) =
d3∑

j3=1

‖A··j3‖∗,

where recall that ‖ · ‖∗ denotes the nuclear norm of a matrix, that is, the sum of all
singular values.

Note that

R∗
3(A) = max

1≤j3≤d3
‖A··j3‖F.

Then we have the following result.
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LEMMA 3.3. There exists a constant 0 < c < ∞ such that

(3.8) wG

[
BR3(1)

] ≤ c

√
max

{
d1d2, log(d3)

}
.

Let

�3(s) =
{
A ∈ R

d1×d2×d3 :
d3∑

j3=1

I(A··j3 �= 0) ≤ s

}
.

For an arbitrary A ∈ �1(s), write

I (A) = {
j3 ∈ [d3] : A··j3 �= 0

}
.

Then R3(·) is decomposable with respect to A(I (A)) as defined by (2.7). It is easy
to verify that for any A ∈ �3(s),

(3.9) s3
(
A

(
I (A)

)) = sup
B∈A(I (A))/{0}

R2
3(B)

‖B‖2
F

≤ s.

Based on (3.9) and (3.8), Theorem 3.1 implies that

sup
T ∈�3(s)

max
{‖T̂3 − T ‖2

n,‖T̂3 − T ‖2
F
}
� s max{d1d2, log(d3)}

n
,

with high probability by taking

λ �
√

max{d1d2, log(d3)}
n

,

where T̂3 is the regularized least squares estimate defined by (1.2) when using
regularizer R3(·).

Alternatively, for R4(·),
R∗

4(A) = max
j3

‖A··j3‖s,

we have the following.

LEMMA 3.4. There exists a constant 0 < c < ∞ such that

(3.10) wG

[
BR4(1)

] ≤ c

√
max

{
d1, d2, log(d3)

}
.

Now consider

�4(r) =
{
A ∈ R

d1×d2×d3 :
d3∑

j3=1

rank(A··j3) ≤ r

}
.

For an arbitrary A ∈ �4(r), denote by P1j and P2j the projection onto the row and
column space of A··j , respectively. It is clear that A ∈ B(P1j ,P2j : 1 ≤ j ≤ d3)
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as defined by (2.9). In addition, recall that R4 is decomposable with respect to
B(P1j ,P2j : 1 ≤ j ≤ d3) and A(P1j ,P2j : 1 ≤ j ≤ d3) as defined by (2.8). It is
not hard to see that for any A ∈ �4(r), A(P1j ,P2j : 1 ≤ j ≤ d3) ⊂ �4(2r), from
which we can derive the following.

LEMMA 3.5. For any A ∈ �4(r),

(3.11) s4
(
A(P1j ,P2j : 1 ≤ j ≤ d3)

) ≤ sup
B∈A/{0}

R2
4(B)

‖B‖2
F

≤ 2r.

In light of (3.11) and (3.10), Theorem 3.1 implies that

sup
T ∈�4(r)

max
{‖T̂4 − T ‖2

n,‖T̂4 − T ‖2
F
}
� r max{d1, d2, log(d3)}

n
,

with high probability by taking

λ �
√

max{d1, d2, log(d3)}
n

,

where T̂4 is the regularized least squares estimate defined by (1.2) when using
regularizer R4(·).

Comparing with the rates for estimates with regularizers R3 and R4, we can
see the benefit of using R4 when the nonzero slices are likely to be of low-rank.
In particular, consider the case when there are s1 nonzero slices and each nonzero
slice has rank up to r . Then applying R3 leads to risk bound

‖T̂3 − T ‖2
F � s1 max{d1d2, log(d3)}

n
,

whereas applying R4 leads to

‖T̂4 − T ‖2
F � s1r max{d1, d2, log(d3)}

n
.

It is clear that T̂4 is a better estimator when r � d1 = d2 = d3.

3.2. Low-rankness regularizers. We now consider regularizers that encour-
ages low-rank estimates. We begin with the tensor nuclear norm regularization:

R5(A) = ‖A‖∗.

Recall that R∗
5(A) = ‖A‖s .

LEMMA 3.6. There exists a constant 0 < c < ∞ such that

(3.12) wG

[
BR5(1)

] ≤ c
√

(d1 + d2 + d3).
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Now let

�5(r) = {
A ∈ R

d1×d2×d3 : max
{
r1(A), r2(A), r3(A)

} ≤ r
}
.

For an arbitrary A ∈ �5(r), denote by P1, P2, P3 the projection onto the linear
space spanned by the mode-1, -2 and -3 fibers, respectively. As we argued in the
previous section, R5(·) is weakly decomposable with respect to A(P1,P2,P3) and
B(P1,P2,P3), and A ∈ B(P1,P2,P3) where A(P1,P2,P3) and B(P1,P2,P3) are
defined by (2.12) and (2.13), respectively.

LEMMA 3.7. For any A ∈ �5(r),

s5
(
A(P1,P2,P3)

) = sup
B∈A(P1,P2,P3)/{0}

R2
5(B)

‖B‖2
F

≤ r2.

Lemmas 3.6 and 3.7 show that

sup
T ∈�5(r)

max
{‖T̂5 − T ‖2

n,‖T̂5 − T ‖2
F
}
� r2(d1 + d2 + d3)

n
,

with high probability by taking

λ �
√

d1 + d2 + d3

n
,

where T̂5 is the regularized least squares estimate defined by (1.2) when using
regularizer R5(·).

Next, we consider the low-rankness regularization via matricization:

R6(A) = 1

3

(∥∥M1(A)
∥∥∗ + ∥∥M2(A)

∥∥∗ + ∥∥M3(A)
∥∥∗

)
.

It is not hard to see that

R∗
6(A) = 3 max

{∥∥M1(A)
∥∥
s,

∥∥M2(A)
∥∥
s,

∥∥M3(A)
∥∥
s

}
.

LEMMA 3.8. There exists a constant 0 < c < ∞ such that

(3.13) wG

[
BR6(1)

] ≤ c
√

max{d1d2, d2d3, d1d3}.

On the other hand, we have the following.

LEMMA 3.9. For any A ∈ �5(r),

s6
(
A(P1,P2,P3)

) = sup
B∈A(P1,P2,P3)/{0}

R2
6(B)

‖B‖2
F

≤ r.
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Lemmas 3.8 and 3.9 suggest that

sup
T ∈�5(r)

max
{‖T̂6 − T ‖2

n,‖T̂6 − T ‖2
F
}
� r max{d1d2, d2d3, d1d3}

n
,

with high probability by taking

λ �
√

max{d1d2, d2d3, d1d3}
n

,

where T̂6 is the regularized least squares estimate defined by (1.2) when using
regularizer R6(·).

Comparing with the rates for estimates with regularizers R5 and R6, we can
see the benefit of using R5. For any T ∈ �5(r), If we apply regularizer R5, then

‖T̂5 − T ‖2
F � r2(d1 + d2 + d3)

n
.

This is to be compared with the risk bound for matricized regularization:

‖T̂6 − T ‖2
F � r max{d1d2, d2d3, d1d3}

n
.

Obviously, T̂5 always outperform T̂6 since r ≤ min{d1, d2, d3}. The advantage of
T̂5 is typically rather significant since in general r � min{d1, d2, d3}. On the other
hand, T̂6 is more amenable for computation.

Both upper bounds on Frobenius error on T̂5 and T̂6 are novel results and com-
plement the existing results on tensor completion [7, 16] and [33]. Neither T̂5 nor
T̂6 is minimax optimal and remains an interesting question as to whether there
exists a convex regularization approach that is minimax optimal.

4. Specific statistical problems. In this section, we apply our results to sev-
eral concrete examples where we are attempting to estimate a tensor under certain
sparse or low-rank constraints, and show that the regularized least squares estimate
T̂ is typically minimiax rate optimal with appropriate choices of regularizers. In
particular, we focus on the multiresponse aspect of the general framework to pro-
vide novel upper bounds and matching minimax lower bounds.

4.1. Multiresponse regression with large p. The first example we consider is
the multiresponse regression model:

Y
(i)
k =

p∑
j=1

m∑
�=1

X
(i)
j� Tj�k + ε

(i)
k ,

where 1 ≤ i ≤ n represents the index for each sample, 1 ≤ k ≤ m represents the
index for each response and 1 ≤ j ≤ p represents the index for each feature. For
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the multiresponse regression problem, we have N = 3, M = 2, d1 = d2 = m which
represents the total number of responses and d3 = p, which represent the total
number of parameters.

Since we are in the setting where p is large but only a small number s are
relevant, we define the subspace

T1 =
{
A ∈ R

m×m×p

∣∣∣∣ p∑
j=1

I
(‖A··j‖F �= 0

) ≤ s

}
.

Furthermore, for each i we assume X(i) ∈ R
m×p where each entry of X(i),

[X(i)]k,j , corresponds to the j th feature for the kth response. For simplicity, we
assume the X(i)’s are independent Gaussian with covariance �̃ ∈ R

mp×mp . The
penalty function we are considering is

(4.1) R(A) =
p∑

j=1

‖A··j‖F,

and the corresponding dual function applied to the i.i.d. Gaussian tensor G is

R∗(G) = max
1≤j≤p

‖G..j‖F.

THEOREM 4.1. Under the multiresponse regression model with T ∈ T1 and
independent Gaussian design where c2

� ≤ λmin(�̃) ≤ λmax(�̃) ≤ c2
u, if

λ ≥ 3σcu

√
max{m2, logp}

n
,

such that
√

sλ converges to zero as n increases, then there exist some constants
c1, c2 > 0 such that with probability at least 1 − p−c1

max
{‖T̂ − T ‖2

n,‖T̂ − T ‖2
F
} ≤ c2c

2
u

c2
�

sλ2,

when n is sufficiently large, where T̂ is the regularized least squares estimate de-
fined by (1.2) with regularizer given by (4.1). In addition,

min
T̃

max
T ∈T1

‖T̃ − T ‖2
F ≥ c3σ

2s max{m2, logp/s}
c2
un

,

for some constant c3 > 0, with probability at least 1/2, where the minimum is taken
over all estimators T̃ based on data {(X(i), Y (i)) : 1 ≤ i ≤ n}.

Theorem 4.1 shows that when taking

λ �
√

max{m2, logp}
n

,
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the regularized least squares estimate defined by (1.2) with regularizer given by
(4.1) achieves minimax optimal rate of convergence over the parameter space T1.

Alternatively, there are settings where the effect of covariates on the multiple
tasks may be of low-rank structure. In such a situation, we may consider

T2 =
{
A ∈ R

m×m×p

∣∣∣∣ p∑
j=1

rank(A··j ) ≤ r

}
.

An appropriate penalty function in this case is

(4.2) R(A) =
p∑

j=1

‖A··j‖∗,

and the corresponding dual function applied to G is

R∗(G) = max
1≤j≤p

‖G··j‖s .

THEOREM 4.2. Under the multiresponse regression model with T ∈ T2 and
independent Gaussian design where c2

� ≤ λmin(�̃) ≤ λmax(�̃) ≤ c2
u, if

λ ≥ 3σcu

√
max{m, logp}

n
,

such that
√

rλ converges to zero as n increases, then there exist some constants
c1, c2 > 0 such that with probability at least 1 − p−c1 ,

max
{‖T̂ − T ‖2

n,‖T̂ − T ‖2
F
} ≤ c2c

2
u

c2
�

rλ2

when n is sufficiently large, where T̂ is the regularized least squares estimate de-
fined by (1.2) with regularizer given by (4.2). In addition,

min
T̃

max
T ∈T2

‖T̃ − T ‖2
F ≥ c3σ

2r max{m, log(p/r)}
c2
un

,

for some constant c3 > 0, with probability at least 1/2, where the minimum is taken
over all estimators T̃ based on data {(X(i), Y (i)) : 1 ≤ i ≤ n}.

Again Theorem 4.2 shows that by taking

λ �
√

max{m, logp}
n

,

the regularized least squares estimate defined by (1.2) with regularizer given by
(4.2) achieves minimax optimal rate of convergence over the parameter space T2.
Comparing with optimal rates for estimating a tensor from T1, one can see the
benefit and importance to take advantage of the extra low rankness if the true
coefficient tensor is indeed from T2. As far as we are aware, these are the first
results that provide upper bounds and matching minimax lower bounds for high-
dimensional multiresponse regression with sparse or low-rank slices.
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4.2. Multivariate sparse autoregressive models. Now we consider the setting
of vector autoregressive models. In this case, our generative model is

(4.3) X(t+p) =
p∑

j=1

AjX
(t+p−j) + ε(t),

where 1 ≤ t ≤ n represents the time index, 1 ≤ j ≤ p represents the lag index,
{X(t)}n+p

t=0 is an m-dimensional vector and ε(t) ∼ N (0, σ 2Im×m) represents the ad-
ditive noise. Note that the parameter tensor T is an m × m × p tensor so that
T··j = Aj , and Tk�j represents the co-efficient of the kth variable on the �th vari-
able at lag j . This model is studied by [2] where p is relatively small (to avoid
introducing long-range dependence) and m is large. Our main results allow more
general structure and regularization schemes than those considered in [2].

Since we assume the number of series m is large, and there are m2 possible
interactions between the series we assume there are only s � m2 interactions in
total:

(4.4) T3 =
{
A ∈ R

m×m×p

∣∣∣∣ m∑
k=1

m∑
�=1

I(Ak�· �= 0) ≤ s

}
.

The penalty function we are considering is

(4.5) R(A) =
m∑

k=1

m∑
�=1

‖Ak�·‖�2,

and the corresponding dual function applied to G is

R∗(G) = max
1≤k,�≤m

‖Gk,�,·‖�2 .

The challenge in this setting is that the X’s are highly dependent and we use the
results developed in [2] to prove that (3.1) is satisfied.

Prior to presenting the main results, we introduce concepts developed in [2] that
play a role in determining the constants c2

u and c2
� which relate to the stability of

the autoregressive processes. A p-variate Gaussian time series is defined by its
autocovariance matrix function

�X(h) = Cov
(
X(t),X(t+h)),

for all t, h ∈ Z. Further, we define the spectral density function:

fX(θ) := 1

2π

∞∑
�=−∞

�X(�)e−i�θ , θ ∈ [−π,π ].

To ensure the spectral density is bounded, we make the following assumption:

M(fX) := ess sup
θ

�max
(
fX(θ)

)
< ∞.
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Further, we define the matrix polynomial

A(z) = Im×m −
p∑

j=1

Ajz
j ,

where {Aj }pj=1 denote the back-shift matrices, and z represents any point on the
complex plane. Note that for a stable, invertible AR(p) process,

fX(θ) = 1

2π
A−1(

e−iθ )
A−1

(
e−iθ

)
.

We also define the lower extremum of the spectral density:

m(fX) := ess inf
θ

�min
(
fX(θ)

)
.

Note that m(fX) and M(fX) satisfy the following bounds:

m(fX) ≥ 1

2πμmax(A)
and M(fX) ≤ 1

2πμmin(A)
,

where

μmin(A) := min|z|=1
�min

(
A(z)A(z)

)
and

μmax(A) := max|z|=1
�max

(
A(z)A(z)

)
.

From a straightforward calculation, we have that for any fixed �

(4.6)
1

μmax
‖�‖2

F ≤ E
[‖�‖2

n

] ≤ 1

μmin
‖�‖2

�2
.

Hence c2
u = 1/μmin and c2

� = 1/μmax. Now we state our main result for autore-
gressive models.

THEOREM 4.3. Under the vector autoregressive model defined by (4.3) with
T ∈ T3, if

λ ≥ 3σ

√
max{p,2 logm}

nμmin
,

such that
√

sλ converges to zero as n increases, then there exist some constants
c1, c2 > 0 such that with probability at least 1 − m−c1 ,

max
{‖T̂ − T ‖2

n,‖T̂ − T ‖2
F
} ≤ c2μmax

μmin
sλ2,
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when n is sufficiently large, where T̂ is the regularized least squares estimators
defined by (1.2) with regularizer given by (4.5). In addition,

min
T̃

max
T ∈T3

‖T̃ − T ‖2
F ≥ c3μminσ

2 s max{p, log(m/
√

s)}
n

,

for some constant c3 > 0, with probability at least 1/2, where the minimum is taken
over all estimators T̃ based on data {X(t) : t = 0, . . . , n + p}.

Theorem 4.3 provides, to our best knowledge, the only lower bound result
for multivariate time series. The upper bound is also novel and is different from
Proposition 4.1 in [2] since we impose sparsity only on the large m directions
and not over the p lags, whereas [2] impose sparsity through vectorization. Note
that Proposition 4.1 in [2] follows directly from Lemma 3.1 with d1 = p and
d2 = d3 = m. Using the sparsity regularizer, [2] vectorize the problem and prove
restricted strong convexity whereas since we leave the problem as a multiresponse
problem, we required the more refined technique used for proving Lemma 1.2 in
the Supplementary Material [23].

4.3. Pairwise interaction tensor models. Finally, we consider the tensor re-
gression (1.1) where T follows a pairwise interaction model. More specifically,
(X(i), Y (i)), i = 1,2, . . . , n are independent copies of a random couple X ∈
R

d1×d2×d3 and Y ∈ R such that

Y = 〈X,T 〉 + ε

and

Tj1j2j3 = A
(12)
j1j2

+ A
(13)
j1j3

+ A
(23)
j2j3

.

Here, A(k1,k2) ∈ R
dk1×dk2 such that

A(k1,k2)1 = 0 and
(
A(k1,k2)

)�1 = 0.

The pairwise interaction was used originally by [24, 25] for personalized tag rec-
ommendation, and later analyzed in [5]. Hoff [10] briefly introduced a single index
additive model (among other tensor models) which is a subclass of the pairwise in-
teraction model. The regularizer we consider is

(4.7) R(A) = ∥∥A(12)
∥∥∗ + ∥∥A(13)

∥∥∗ + ∥∥A(23)
∥∥∗.

It is not hard to see that R defined above is decomposable with respect to
A(P1,P2,P3) for any projection matrices:

Let

T4 =
{
A ∈ R

d1×d2×d3 : Aj1j2j3 = A
(12)
j1j2

+ A
(13)
j1j3

+ A
(23)
j2j3

,A(k1,k2) ∈ R
dk1×dk2 ,

A(k1,k2)1 = 0, and
(
A(k1,k2)

)�1 = 0,

max
k1,k2

rank
(
A(k1,k2)

) ≤ r
}
.

For simplicity, we assume i.i.d. Gaussian design so c2
� = c2

u = 1.
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THEOREM 4.4. Under the pairwise interaction model with T ∈ T4, if

λ ≥ 3σ

√
max{d1, d2, d3}

n
,

such that
√

rλ converges to zero as n increases, then there exist constants c1, c2 >

0 such that with probability at least 1 − min{d1, d2, d3}−c1 ,

max
{‖T̂ − T ‖2

n,‖T̂ − T ‖2
F
} ≤ c2rλ

2,

when n is sufficiently large, where T̂ is the regularized least squares estimate de-
fined by (1.2) with regularizer given by (4.7). In addition,

min
T̃

max
T ∈T4

‖T̃ − T ‖2
F ≥ c3σ

2r max{d1, d2, d3}
n

,

for some constant c3 > 0, with probability at least 1/2, where the minimum is taken
over all estimate T̃ based on data {(X(i), Y (i)) : 1 ≤ i ≤ n}.

As in the other settings, Theorem 4.4 establishes the minimax optimality of the
regularized least squares estimate (1.2) when using an appropriate convex decom-
posable regularizer. Since this is single response and the norm involves matriciza-
tion, this result is a straightforward extension to earlier results.

5. Numerical experiments. In this section, we provide a series of numerical
experiments that both support our theoretical results and display the flexibility of
our general framework. In particular, we consider several different models includ-
ing: third-order tensor regression with a scalar response (Section 5.1); fourth-order
tensor regression (Section 5.2); matrix-response regression with both group spar-
sity and low-rankness regularizers (Section 5.3); multivariate sparse autoregressive
models (Section 5.4) and pairwise interaction models (Section 5.5). To perform the
simulations in a computationally tractable way, we adapt the block coordinate de-
scent approaches in multiresponse case developed by [28], and those developed by
[21] for univariate response settings, to capture group sparsity and low-rankness
regularizers.

To fix ideas, in all numerical experiments, the covariate tensors X(i)s were inde-
pendent standard Gaussian ensembles (except for the multivariate auto-regressive
models); and the noise ε(i)s are i.i.d. random tensors with elements following
N(0, σ 2) independently. As to the choice of tuning parameter, we adopt grid search
on λ to find the one with the least estimation error (in terms of mean squared error)
in all our numerical examples.
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5.1. Third-order tensor regression. First, we consider a third-order tensor re-
gression model:

Y (i) = 〈
B,X(i)〉 + ε(i),

where B ∈ R
d×d×d, Y (i), ε(i) ∈ R, X(i) ∈ R

d×d×d . The regression coefficient ten-
sor B was generated as follows: the first s slices B··1, . . . ,B··s are i.i.d. standard
normal ensembles; and the remaining slices B··s+1, . . . ,B··d3 are set to be zero.
Naturally, we consider here the group-sparsity regularizer:

min
A∈Rd×d×d

{
1

2n

n∑
i=1

∥∥Y (i) − 〈
A,X(i)〉∥∥2

F + λ

d∑
j3=1

‖A··j3‖F

}
.

Figure 1 shows the mean squared error of the estimate averaged over 50 runs (with
standard deviation) versus d , n and s respectively. In the left and middle panels,
we set s = 2, whereas in the right panel, we fixed d = 16. As we can observe, the
mean squared error increases approximately according to d2, s, and 1/n which
agrees with the risk bound given in Lemma 3.3.

We also considered a setting where B is slice-wise low rank. More specifically,
the s nonzero slices B··1, . . . ,B··s were random rank-r matrices. In this case, the
slice-wise low-rankness regularizer can be employed:

min
A∈Rd1×d2×d3

{
1

2n

n∑
i=1

∥∥Y (i) − 〈
A,X(i)〉∥∥2

F + λ

d3∑
j3=1

‖A··j3‖∗
}
.

The performance of the estimate, averaged over 50 simulation runs, is summarized
by Figure 2 where in the left and middle panels r = 2, and in the right panel,
d = 16. Once again, our results are consistent with our theoretical results.

FIG. 1. Mean squared error of the group-sparsity regularization for third-order tensor regression.
The plot was based on 50 simulation runs and the error bars in each panel represent ± one standard
deviation.
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FIG. 2. Mean squared error for third-order tensor regression with low-rank slices tensor coeffi-
cients. The plot was based on 50 simulation runs and the error bars in each panel represent ± one
standard deviation.

5.2. Fourth-order tensor regression. Although we have focused on third- or-
der tensors for brevity, our treatment applies to higher-order tensors as well. As
an illustration, we now consider fourth-order models where B ∈ R

d×d×d×d, Y (i),
ε(i) ∈ R, X(i) ∈ R

d×d×d×d .
To generate low-rank fourth-order tensors, we impose low CP rank as follows:

generate four independent groups of r independent random vectors of unit length,
{uk,1}rk=1, {uk,2}rk=1, {uk,3}rk=1 and {uk,4}rk=1 via performing an SVD of Gaussian
random matrix two times and keeping the r pairs of leading singular vectors, and
then compute the outer-product yielding a rank-r tensor B = ∑r

k=1 uk,1 ⊗ uk,2 ⊗
uk,3 ⊗ uk,4.

We consider two different regularization schemes. First, we impose low-rank
structure through mode-1 matricization:

min
A∈Rd×d×d×d

{
1

2n

n∑
i=1

∥∥Y (i) − 〈
A,X(i)〉∥∥2

F + λ
∥∥M1(A)

∥∥∗

}
.

Second, we use the square matricization as follows:

min
A∈Rd×d×d×d

{
1

2n

n∑
i=1

∥∥Y (i) − 〈
A,X(i)〉∥∥2

F + λ
∥∥M12(A)

∥∥∗

}
,

where M12(·) reshape a fourth-order tensor into a d2 × d2 matrix by collapsing
its first two indices, and last two indices, respectively. Table 1 shows the average
root-mean-square error (RMSE, for short) for both approaches. As we can see, the
2-by-2 approach appears superior to the 1-by-3 approach which is also predicted
by the theory.
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TABLE 1
Tensor regression with fourth-order tensor covariates and scale response based on matricization:
RMSE were computed based on 50 simulations runs. Numbers in parentheses are standard errors

n d r σ SNR RMSE (Mode-1) RMSE (Square deal)

2000 7 5 10 3.0 (0.1) 0.53 (0.01) 0.51 (0.01)
2000 7 3 10 1.5 (0.1) 0.58 (0.02) 0.49 (0.02)
4000 10 3 10 1.7 (0.1) 0.67 (0.01) 0.51 (0.02)

5.3. Matrix-response regression. Our general framework can handle matrix-
responses in a seamless fashion. For demonstration, we consider here matrix-
response regression with both group sparsity and low-rankness regularizer. More
specifically, the following model was considered:

Y (i) = 〈
B,X(i)〉 + ε(i),

where B ∈ R
d×d×d , Y (i), ε(i) ∈R

d×d , X(i) ∈ R
d . As before, to impose group spar-

sity, the first s slices of B were generated as Gaussian ensembles and the remaining
slices were set to zero.

For both the group sparsity and low-rankness regularizers, we used the matrix-
version algorithm for group-penalized multiresponse regression in [28]. For each
block of the coordinate descent, the subproblem with both �1 and nuclear norm
penalty have closed-form solutions.

Figure 3 shows the average (with standard deviation) mean squared error over
50 runs versus the d , n and s parameter. (Here, d1 = d2 = d3 = d .) As we ob-
serve, the mean-squared error increase approximately according to logd , s, and
1/n which supports our upper bound in Theorem 4.1.

FIG. 3. Matrix response regression with sparse slices tensor coefficients. The plot was based on 50
simulation runs and the error bars in each panel represent ± one standard deviation.
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FIG. 4. Matrix response regression with low-rank slices tensor coefficients. The plot was based on
50 simulation runs and the error bars in each panel represent ± one standard deviation.

We also generated low-rank B in the same fashion as before. Figure 4 plots the
average (with standard deviation) mean squared error against d , n and r , respec-
tively. These results are consistent with the main result in Theorem 4.2.

5.4. Multivariate sparse autoregressive models. Now we consider dependent
covariates and responses through the multivariate autoregressive model. Recall that
the generative model is

X(t+p) =
p∑

j=1

B··jX(t+p−j) + ε(t),

where 1 ≤ t ≤ n represents the time index, 1 ≤ j ≤ p represents the lag index,
{X(t)}(n+p)

t=0 is an m-dimensional vector, ε(t) ∼ σN (0, Im×m) represents the addi-
tive noise.

We consider four different low-dimensional structures for B and we choose the
entries of B to be sufficiently small to ensure the time series is stable.

• Slice-wise sparsity: B··1, . . . ,B··s are s nonzero slices of diagonal matrix, where
diagonal elements are constants ρ with ρ = 2. B··s+1, . . . ,B··d3 are zero slices.

• Sparse low-rank slices: B··1, . . . ,B··s are s nonzero slices, which are inde-
pendent random rank-r matrix [truncated matrix with i.i.d. elements from
N(0, τ 2)]. B··s+1, . . . ,B··d3 are zero slices. Here, τ = 1/150 for m = 10 and
τ = 1/500 for m = 20.

• Group sparsity by lag (sparse normal slices):B··1, . . . ,B··s are s nonzero slices,
where elements follow i.i.d. N(0, τ 2) with τ = 0.05. B··s+1, . . . ,B··d3 are zero
slices.
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TABLE 2
Multivariate autoregressive model with various sparsity/low-rankness: RMSE were computed based

on 50 simulations runs. Numbers in parentheses are standard errors

Regularizer Coefficient tensor n m p s/r σ SNR (sd) RMSE (sd)

Vectorized s diagonal slices 2000 10 10 5 2 5.5 (1.4) 0.43 (0.15)
sparsity s diagonal slices 2000 20 20 5 2 2.9 (0.7) 0.25 (0.04)

Low-rank s rank-r slices 2000 10 10 10, 5 0.05 1.0 (0.1) 0.37 (0.01)
slices s rank-r slices 2000 20 20 10, 5 0.05 1.2 (0.1) 0.82 (0.02)

Group sparsity s Gaussian slices 2000 10 10 5 0.2 0.42 (0.02) 0.40 (0.01)
(by lag) s Gaussian slices 2000 20 20 5 0.2 0.42 (0.01) 0.64 (0.02)

Group sparsity s Gaussian fibers 2000 10 10 10 0.02 0.93 (0.2) 0.35 (0.04)
(by coordinate) s Gaussian fibers 2000 20 20 10 0.02 1.2 (0.1) 0.72 (0.07)

• Group sparsity by coordinate (sparse normal fibers): Bs1s2· is a vector of i.i.d.
normal elements following N(0, τ 2) (τ = 0.1) when (s1, s2) ∈ S , which is a
random sample of size s from {1, . . . ,m} × {1, . . . ,m}, and zero otherwise.

Table 2 shows the average RMSE for 50 runs of each case as a function of m,
p, s and r . In general, the smaller the n is, or the larger the m (or p) is, the harder
it is to recover the coefficient B . These findings are consistent with our theoretical
developments.

5.5. Pairwise interaction tensor models. Finally, we consider the so-called
pairwise interaction tensor models as described in Section 4.3. To implement this
regularization scheme, we kept iterating among the matrix slices A1,2, A1,3 and
A2,3 and updating one of the three at a time while assuming the other two compo-
nents are fixed. For the update of Ak1,k2 , we conducted an approximated projection
onto the zero-row-sum/zero-column-sum subspace after each generalized gradient
descent (soft thresholding) step

A
(i+1)
k1,k2

= P̂
(
P̂λη

(
A

(i)
k1,k2

− η∇f
))

,

where η is the step size for the gradient step, ∇f is the gradient of the least square
objective function, P̂λη is the singular space soft-thresholding operator with thresh-
old λη and P̂ is the approximated projection operator that make any given ma-
trix have zero row sums (by shifting rows) and zero column sums (by shifting
columns). We simulated independent random low-rank matrix Ck1,k2s and make
them have zero column sums and row sums by Bk1,k2 = P̂ (Ck1,k2).

Table 3 shows the average (with standard deviation) RMSE under different r ,
d , n combinations under 50 runs. In general, the RMSE in estimating the tensor
coefficient increases as s and d increases.
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TABLE 3
Pairwise interaction model: RMSE were computed based on 50 simulations runs. Numbers in

parentheses are standard errors

n d1 d2 d3 s σ RMSE SNR

2000 40 40 40 5 10 0.54 (0.02) 2.4 (0.1)
2000 40 40 40 10 10 0.70 (0.01) 3.4 (0.1)
2000 20 20 20 5 10 0.39 (0.01) 1.7 (0.1)
2000 20 20 20 10 10 0.37 (0.01) 2.3 (0.1)
1000 20 20 20 5 10 0.58 (0.02) 1.6 (0.1)
1000 20 20 20 10 10 0.63 (0.02) 2.3 (0.1)

SUPPLEMENTARY MATERIAL

Proofs (DOI: 10.1214/18-AOS1725SUPP; .pdf). We provide all the proofs to
the main theorem.
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