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APPROXIMATING FACES OF MARGINAL POLYTOPES IN
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The existence of the maximum likelihood estimate in a hierarchical log-
linear model is crucial to the reliability of inference for this model. Determin-
ing whether the estimate exists is equivalent to finding whether the sufficient
statistics vector t belongs to the boundary of the marginal polytope of the
model. The dimension of the smallest face Ft containing t determines the
dimension of the reduced model which should be considered for correct in-
ference. For higher-dimensional problems, it is not possible to compute Ft

exactly. Massam and Wang (2015) found an outer approximation to Ft us-
ing a collection of submodels of the original model. This paper refines the
methodology to find an outer approximation and devises a new methodology
to find an inner approximation. The inner approximation is given not in terms
of a face of the marginal polytope, but in terms of a subset of the vertices
of Ft .

Knowing Ft exactly indicates which cell probabilities have maximum
likelihood estimates equal to 0. When Ft cannot be obtained exactly, we can
use, first, the outer approximation F2 to reduce the dimension of the prob-
lem and then the inner approximation F1 to obtain correct estimates of cell
probabilities corresponding to elements of F1 and improve the estimates of
the remaining probabilities corresponding to elements in F2 \ F1. Using both
real-world and simulated data, we illustrate our results, and show that our
methodology scales to high dimensions.

1. Introduction. Discrete hierarchical models are an essential tool for the
analysis of categorical data given under the form of a contingency table. The study
of these models goes back more than a century, and a detailed history of their devel-
opment is given in Fienberg and Rinaldo (2007). Nowadays, discrete hierarchical
models are used for the analysis of large sparse contingency tables where many, if
not most, of the entries are small or zero counts. It is well known that in such cases,
the maximum likelihood estimate (henceforth abbreviated MLE) of the parameters
may not exist. The nonexistence of the MLE has problematic consequences for in-
ference, clearly for estimation, but also for testing and model selection. Fienberg
and Rinaldo (2012) list the statistical implications of the nonexistence of the MLE,
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such as the unreliability of the estimates of some of the parameters or the usage of
the wrong degrees of freedom for testing one model against another. Geyer (2009)
describes the problems attached to the nonexistence of the MLE and presents an R
program that yields meaningful confidence intervals and tests. Letac and Massam
(2012) study the statistical implications of the nonexistence of the MLE on model
selection in Bayesian inference.

Fienberg and Rinaldo (2012) also give necessary and sufficient conditions for
the existence of the MLE, which are not restricted to hierarchical models, but ap-
ply to all discrete exponential families (log-linear models). These conditions are
extensions of results given earlier by Haberman (1974), Barndorff-Nielsen (1978)
and Eriksson et al. (2006). They are essentially as follows. Denote by I the set of
outcomes of a statistical experiment, that is, the set of cells of the contingency table
where the data is classified. Let I+ = {i1, . . . , iN } be the outcome of N indepen-
dent repetitions of the experiment within either a multinomial or Poisson setting.
The data I+ is summarized by the vector t of sufficient statistics, which is of the
form t = ∑N

j=1 fij for some vectors fi , i ∈ I , determined by the given hierarchical
log-linear model. Under these assumptions, the distribution of the data belongs to
a natural exponential family with density

(1) f (i1, . . . , iN ; θ) = exp
{〈θ, t〉 − Nk(θ)

}
with respect to the counting measure, where θ is a log-linear parameter. To each
exponential family is associated a polytope P, called the marginal polytope, which
is the convex hull of the vectors fi, i ∈ I . Furthermore, P contains all possible
realizations of t

N
for arbitrary repetitions of the statistical experiment. For given

data and a given hierarchical model, the MLE then exists if and only if t
N

belongs
to the relative interior of P. If the MLE does not exist, then t

N
belongs to the

relative interior of a face denoted Ft . It is the smallest face of P containing t
N

, and
it is proper (i.e., Ft �= P). Thus, determining whether, for a given data set, the MLE
of the parameter of a discrete hierarchical log-linear model exists is equivalent
to determining whether t

N
belongs to a proper face of P. The parameter may be

the log-linear parameter θ , or the cell probabilities p = (p(i), i ∈ I ) obeying the
constraints of the model and in 1–1 correspondence with θ . The MLE can thus be
thought of in terms of θ , or in terms of p.

If the MLE does not exist, it is still possible to compute the extended MLE
(EMLE) [Barndorff-Nielsen (1978), Csiszár and Matúš (2008), Lauritzen (1996)],
which is a probability distribution that maximizes the likelihood over the closure
of the hierarchical model (i.e., the EMLE can be approximated arbitrarily well by
distributions from the hierarchical model). The support of the EMLE is given by
Ft = {i ∈ I : fi ∈ Ft }, called the facial set of Ft . When this support is known,
computing the EMLE is equivalent to an ordinary MLE computation on a smaller
exponential family EFt , of dimension dim(Ft ), generated by a measure with sup-
port Ft [Geyer (2009)]. Therefore, precise knowledge of Ft and Ft yields which
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is the proper dimension of the model to be used in testing and which outcomes
i ∈ I are attributed a probability of 0 by the EMLE, and it allows us to compute
the EMLE. One should also note that the usual regularity conditions used for the
asymptotic properties of the MLE, which are not satisfied for the given model
when the MLE does not exist, are satisfied for the reduced model EFt .

The problem is then to find Ft . This is easy when the face lattice of P is known
or can be computed using a standard discrete geometry toolkit such as, for ex-
ample, polymake [Gawrilow and Joswig (2000)]. For some classes of marginal
polytopes, the face lattice is known, for example, for decomposable models and
no-three-way-interaction models with small variables [Vlach (1986)]. For binary
variables, the marginal polytope is a cut polytope [Deza and Laurent (2010)]. Other
authors have studied convex support polytopes, which replace marginal polytopes
for more general exponential families. Notably, many such polytopes have been
described for exponential random graph models; see, for example, Karwa and
Slavković (2016) and papers cited therein. When the face lattice of P cannot be
computed, algorithms to compute Ft that are based on linear programming have
been proposed by Eriksson et al. (2006), by Geyer (2009) and by Fienberg and
Rinaldo (2012). These methods, however, become computationally infeasible in
large dimensions, which happens, in our experience, for hierarchical models when
the set of random variables V contains more than 16 binary variables (or corre-
spondingly fewer larger variables).

For larger models, Massam and Wang (2015) propose to approximate Ft by re-
lating it to faces of smaller hierarchical models as follows. A hierarchical model for
the discrete random vector X = (Xv, v ∈ V ) is determined by a set of interactions
among its components Xv , v ∈ V , that is represented by a simplicial complex �.
Massam and Wang (2015) consider subsets Vi , i = 1, . . . , k, of V containing less
than 16 variables and the hierarchical models Markov with respect to the induced
simplicial subcomplexes. Linear programming can be used to compute the small-
est faces Fti containing the corresponding sufficient statistic ti , i = 1, . . . , k. These
faces, which a priori are faces of the marginal polytopes of the submodels, nat-
urally correspond to faces of the original marginal polytope. Massam and Wang
(2015) prove that the intersection of these is a face F2 of P containing Ft . Thus, if
F2 is a proper face of P, then Ft is also a proper face and, therefore, the MLE does
not exist. While Massam and Wang (2015) work with graphical models, we show
that their results also hold for hierarchical log-linear models.

We call F2 an outer approximation to Ft . This is similar to the notion of an outer
approximation in optimization, which describes a polytope that contains the orig-
inal polytope of interest. While the outer approximation polytope in optimization
usually has the same dimension as the original polytope, the outer approximation
face F2 does not necessarily have the same dimension as Ft .

The purpose of this paper is to add to this outer approximation F2 an inner
approximation F1 that is a subset of Ft . While F2 is derived from looking at sim-
plicial subcomplexes of �, the inner approximation is constructed by enlarging the
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simplicial complex through added interactions. In particular, we propose a process
of “completing a separator,” which leads to a decomposable simplicial complex
which, in turn, can be studied by looking at the subsimplices corresponding to its
components with a small number of vertices in V . Thus, both F1 and F2 can be
obtained by computing facial sets on smaller hierarchical models involving fewer
nodes.

The inner and outer approximations satisfy F1 ⊆ Ft ⊆ F2. Clearly, we want
F1 as large as possible and F2 as small as possible to have as much information
about Ft as possible. In our simulations, we observe that Ft = F2 most of the time
and that Ft = F1 quite often. The approximations F1 and F2 allow to bound the
dimension of Ft . This can be taken into account whenever the dimension of Ft

plays a role, for example, in hypothesis testing.
When the MLE does not exist, even though the maximum likelihood procedure

cannot be used to obtain a point estimate for the parameter vector θ , some of its
components θj may still be finite and well defined in this situation. In Section 4,
we introduce a log-linear parametrization μ, different from θ , that allows to say
precisely which parameter combinations have a finite well-defined limit, and thus
remain meaningful for statistical inference. Moreover, we demonstrate that even
when Ft is unknown, the parametrization μ can be adjusted to incorporate knowl-
edge that is available in the form of inner and outer approximations F1 and F2.

We extend the work of Fienberg and Rinaldo (2012) and that of Geyer (2009)
in several directions: first, we construct approximations to Ft in high dimensions
when a direct computation of Ft is not feasible. Second, we explicitly identify all
parameter combinations that remain finite and meaningful when the MLE does not
exist and Ft is known, and we also discuss what can be said when only approxi-
mations to Ft are available.

The remainder of this paper is organized as follows. In Section 2, we give pre-
liminaries on hierarchical models, and faces and facial sets. Section 3 contains the
original methodology to obtain the approximations F1 and F2. In Section 4, we
show how to use F1 and F2 to identify the parameters of the hierarchical models
that can be estimated and those that cannot. In Section 5, we present two exam-
ples. A simulated data set is used to assess how often our approximations succeed
to identify the true facial set Ft . The NLTCS data set, studied by Dobra, Erosheva
and Fienberg (2004) and Dobra and Lenkoski (2011), illustrates how the outer ap-
proximation F2 improves estimates of cell probabilities and log-linear parameters.
Both of these examples have 16 nodes. In Section 6, we discuss how to apply the
methodology to larger models and how to use for inference the information that
it yields. Two examples illustrate this: simulated data from the graphical model of
the 5 × 10 grid, and the real-world data set of voting records in the US Senate.

Our results apply not only to hierarchical models, but to arbitrary discrete ex-
ponential families. In this paper, the focus is on hierarchical and graphical models,
for which the construction of the inner and outer approximations can be described
in terms of the underlying simplicial complex or graph.
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2. Preliminaries. In the following four subsections, we recall basic facts
about hierarchical models, discrete exponential families, polytopes and the closure
of exponential families, and we define the extended MLE.

2.1. Hierarchical models and discrete exponential families. For details and
proofs on the material in this subsection, we refer to Letac and Massam (2012)
and Rauh, Kahle and Ay (2011). Let X = (Xv, v ∈ V ) be a discrete random vector
with components indexed by a finite set V . Each variable Xv takes values in a finite
set Iv, v ∈ V . The vector X takes its values in I = ∏

v∈V Iv , the set of cells i =
(iv, v ∈ V ) of a p-dimensional contingency table. For any D ⊆ V , the subvector
XD = (Xv)v∈D takes its values in ID = ∏

v∈D Iv . The D-marginal cell of i ∈ I

will be denoted by iD = (iv)v∈D . The corresponding restriction is the coordinate
projection map i �→ iD and is denoted by πD .

Let � be a simplicial complex on V , that is, � is a set of subsets of V such that
D ∈ � and D′ ⊆ D imply D′ ∈ �. The joint distribution of X is hierarchical with
underlying simplicial complex � (or generating set �) if the probability p(i) =
P(X = i) of a single cell i = (iv, v ∈ V ) is of the form

(2) logp(i) = ∑
D∈�

θD(iD),

where θD(iD) is a function of the marginal cell iD = (iv, v ∈ D) only. To make
precise the dependence on θ , we also write pθ(i) instead of p(i). The set of all
such distributions E� := {pθ } is called the hierarchical model of �.

Equation (2) is a linear condition on logp(i). It is possible to parametrize the
hierarchical model using a finite vector of parameters (θj )j∈J such that

(3) logpθ(i) = ∑
j∈J

θjaj,i − k(θ),

where A� = (aj,i)j∈J,i∈I is a fixed real matrix (depending on �) and where
k(θ) = log

∑
i exp(

∑
i θj aj,i) ensures that

∑
i∈I pθ (i) = 1. This parametrization

is not unique. In the examples, we use an explicit parametrization that is used,
for example, by Letac and Massam (2012). For convenience, we recall this
parametrization in Supplementary Material Appendix A [Wang, Johannes and
Massam (2018)].

An important subclass of hierarchical models is the class of graphical models.
Let G = (V ,E) be an undirected graph with vertex set V and edge set E. A subset
D ⊆ V is a clique of G if for any i, j ∈ D, i �= j , the edge (i, j) is in E. The set of
cliques of G, denoted by �(G), is a simplicial complex. The graphical model of
G is defined as the hierarchical model of �(G). Graphical models are important
because of their interpretation in terms of conditional independence; see Lauritzen
(1996).

Hierarchical models are examples of discrete exponential families; see
Barndorff-Nielsen (1978), Fienberg (1980), Rauh, Kahle and Ay (2011). Gen-
eralizing (3), let I and J be finite sets and let A ∈ RJ×I be a real matrix. Denote
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the columns of A by fi , i ∈ I . The discrete exponential family corresponding to
A, denoted by EA, consists of all probability distributions on I of the form

(4) pθ(i) = exp
{〈θ, fi〉 − k(θ)

} = exp
{(

Atθ
)
i − k(θ)

}
, θ ∈ RJ ,

where, as above, k(θ) = log
∑

i exp(
∑

j θj aj,i). It is convenient to write Ã for the

(1 + |J |) × I matrix with columns equal to
( 1
fi

)
, i ∈ I , and to set θ0 := −k(θ) and

θ̃ = (θ0, θ) (as a column vector). Then (4) rewrites to

(5) pθ(i) = exp
(
Ãt θ̃

)
, θ ∈ RJ .

Both A and Ã are called design matrices of the model. The convex hull of the
columns fi , i ∈ I , is called the convex support polytope, denoted by PA. In the
case of a hierarchical model, P� := PA� is called a marginal polytope.

The parametrization θ → pθ is identifiable if and only if Ã has full rank. If Ã

does not have full rank, then one can drop rows of A to obtain a submatrix A′ such
that Ã′ has full rank. This is equivalent to setting certain parameters to zero until
the remaining parameters are identifiable.

Later, the following reparametrization will be useful: select an element of I ,
which we will denote by 0. Let A0 be the matrix with columns fi −f0, i ∈ I \ {0}.
It is not difficult to see that A and A0 define the same exponential family (since Ã

and Ã0 have the same row span). Let h′ = rank(A0) = rank(Ã0) − 1, and select a
set L of h′ linearly independent vectors among the columns of A0. For i ∈ L, let
μi = μi(θ) := 〈θ, fi − f0〉, and let μL = (μi, i ∈ L). Then the μL are identifiable
parameters on EA: in fact, their number is equal to h′, and they are independent by
construction.

The definition of μi(θ) can be extended to all i ∈ I . However, only the μi with
i ∈ L are free parameters, while the μi with i ∈ I \ L are linear functions of μL.
The μi can be interpreted as log-likelihood ratios:

μi(θ) = log
pθ(i)

pθ (0)
, μ0(θ) = 0.

Let n = (n(i), i ∈ I ) be an I -dimensional column vector of cell counts summa-
rizing the outcome of a statistical experiment. Then

(6) Ãn =
(
N

t

)
and An = t,

where N = ∑
i∈I n(i) is the total cell counts and t is the column vector of sufficient

statistic. The likelihood can be written under the form of a natural exponential
family. Indeed,

∏
i∈I

pθ (i)
n(i) = exp

(〈Ãn, θ̃〉) = exp
{∑

j∈J

θj tj − Nk(θ)

}
.
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The log-likelihood function for the log-linear parameters θ of EA is therefore

(7) l(θ) = ∑
j∈J

θj tj − Nk(θ).

It is well known that l(θ) is concave. If the parameters are identifiable, then it
is strictly concave. We can also express the log-likelihood as a function of μ =
(μi, i ∈ I ):

(8) l(μ) = ∑
i∈I

n(i) logp(i) = ∑
i∈I

n(i)μi − N log
(∑

i∈I

expμi

)
.

As stated before, only a subset μL of the parameters μ are independent, and the
remaining μi , i /∈ L, can be expressed as linear functions of μL.

2.2. The convex support and its facial sets. We next recall some facts about
facial sets. We refer to Ziegler (1995) for a general introduction to polytopes and
their face lattices.

The convex support polytope PA is defined as the convex hull of a finite number
of points fi , i ∈ I . It is of interest to know which subsets of {fi}i∈I lie on a given
face F. Thus, we describe a face F by identifying the corresponding facial set
F = {i ∈ I : fi ∈ F}. For any subset S ⊆ I , denote by FA(S) the smallest facial set
that contains S. The intersection of facial sets is again facial, and so FA(S) is well
defined. When PA = P� is a marginal polytope, we abbreviate FA�(S) by F�(S).

As mentioned in the Introduction, to derive the inner approximation F1 to Ft

and its outer approximation F2, we need to consider submodels of a given model.
When one exponential family EA′ is a subset of another family EA, then the convex
support polytope PA′ is a linear projection of PA, and the columns f ′

i of A′ are in-
dexed by the same set I as the columns fi of A. Since inverses of linear projections
preserve faces, it follows from basic results about polytopes that FA(S) ⊆ FA′(S);
see Chapter 1 in Ziegler (1995). For hierarchical models, these facts are summa-
rized in the following result.

LEMMA 2.1. Let � and �′ be simplicial complexes on the same vertex set
with �′ ⊆ �. Then P�′ is a coordinate projection of P�. The inverse image of any
face of P′ is a face of P. Moreover, for any S ⊆ I , we have F�(S) ⊆ F�′(S).

REMARK 2.2. It is convenient to embed PA in a vector space with one addi-
tional dimension using a map Rh → Rh+1, t �→ t̃ := (1, t). This has the advantage
that all defining inequalities are brought into a homogeneous form with vanishing
constant: note that 〈g,fi〉 − c = 〈g̃c, f̃i〉, where g̃c := (−c, g).

When a defining inequality of a face F is given, its facial set F can be obtained
by checking whether fi ∈ F for each i ∈ I . In the other direction, when a facial set
F is given, it is much more difficult to compute a defining inequality of the cor-
responding face F. However, it is straightforward to compute the linear equations
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defining F: the set of such equations 0 = 〈g, x〉 − c = 〈g̃, x̃〉 corresponds to the set
of vectors g̃ ∈ ker Ãt

F , where ÃF is the matrix obtained from Ã by dropping the
columns not in F .

2.3. The closure of an exponential family and existence of the MLE. For a
family EA and cell counts n = (n(i) : i ∈ I ) given as above, a parameter value θ∗
is an MLE if it is a global maximum of l(θ). A MLE need not exist, since the
domain of the parameters θ is unbounded. The likelihood can also be written as a
function of cell probabilities. For any probability distribution p on I let

l̃(p) = log
{∏

i∈I

p(i)n(i)

}
.

Then l(θ) = l̃(pθ ), and θ∗ is an MLE if and only if pθ∗ maximizes l̃ subject to
the constraint that p ∈ EA. When l̃ has no maximum on EA, we can pass to the
topological closure EA. It can be characterized in terms of the convex support
polytope PA and its facial sets as follows.

THEOREM 2.3 (Barndorff-Nielsen (1978)). The topological closure of EA is
EA = ⋃

F EF,A, where F runs over all facial sets of PA and where EF,A consists of
all probability distributions of the form pF,θ , with

(9) pF,θ (i) =
{

exp
(〈θ, fi〉 − kF (θ)

)
if i ∈ F,

0 otherwise,

where kF (θ) = log
∑

i∈F exp(〈θ, fi〉).

Thus, EA is a finite union of sets EF,A that are exponential families themselves
with a very similar parametrization, using the same number of parameters. The
design matrix of EF,A is the submatrix AF of A consisting of the columns indexed
by F . However, for any proper facial set F �= I , the parametrization θ �→ pF,θ is
never identifiable since all columns of AF lie on a supporting hyperplane defining
F , and thus ÃF never has full rank.

Although the parameters θ on EA and the parameters θ on EF,A look similar,
they behave differently in the following sense: if θ(s) is a sequence of parameters
with pθ(s) → pF,θ for some θ , then, in general, lims→∞ θ(s) �= θ .

THEOREM 2.4 (Barndorff-Nielsen (1978)). For any vector of observed counts
n, there is a unique maximum p∗ of l̃ in EA. This maximum p∗ satisfies: (1) Ap∗ =
t
N

, where t = An, (2) supp(p∗) = Ft , (3) p∗ ∈ EFt ,A.

The maximum p∗ in Theorem 2.4 is called the extended maximum likelihood
estimate (EMLE). By Theorem 2.4, when Ft is known, the EMLE can be computed
by computing the MLE on EFt ,A. If the MLE θ∗ exists, then p∗ = pθ∗ .
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2.4. Decomposable models. Computing Ft or finding an approximation is eas-
ier when the simplicial complex � of the model is decomposable. We need the
following definitions.

Let V ′ ⊆ V . The restriction or induced subcomplex to V ′ is �|V ′ = {S ∈ � |
S ⊆ V ′}. The subcomplex �|V ′ is complete, if �|V ′ contains V ′ (and thus all sub-
sets of V ′). In this case, we also say that V ′ is complete in �.

A subset S ⊂ V is a separator of � if there exist V1,V2 ⊂ V with V1 ∩ V2 = S,
� = �|V1 ∪ �|V2 and V1 �= S �= V2. A simplicial complex that has a complete
separator is called reducible. By extension, we also call the hierarchical model
reducible.

A hierarchical model is decomposable if its generating set is a union � = �1 ∪
�2 ∪ · · · ∪ �r of induced subcomplexes �i = �|Vi

in such a way that:

1. each �i is a complete simplex: �i = {S ⊆ Vi}; and
2. (�1 ∪ · · · ∪ �i) ∩ �i+1 is a complete simplex.

In other words, � arises by iteratively gluing simplices along complete sub-
simplices.

Lemma 2.5 below states that, if � is reducible, then any facial set for � is
the intersection of the preimage of facial sets for its components. It is a simple
reformulation of Lemma 8 in [Eriksson et al. (2006)].

LEMMA 2.5. Let � be reducible into two components �|V1 and �|V2 :

1. If F ⊆ I is facial with respect to �, then πV1(F ) and πV2(F ) are facial
with respect to �|V1 and �|V2 .

2. Conversely, if F1 ⊆ IV1 and F2 ⊆ IV2 are facial with respect to �|V1 and
�|V2 , then π−1

V1
(F1) ∩ π−1

V2
(F2) is facial with respect to �.

Thus, for any T ⊆ I , let T1 = πV1(T ) and T2 = πV2(T ). Then

F�(T ) = π−1
V1

(
F�|V1

(T1)
) ∩ π−1

V2

(
F�|V2

(T2)
)
.

Lemma 2.5 generalizes to more than one separator, and thus to more than two
components. It becomes particularly simple when these components are complete:
in that case, F�|V1

(T1) = T1. Taking the preimage, we obtain

π−1
V1

(
πV1(T )

) = {
i ∈ I : ∃i′ ∈ T such that πV1(i) = πV1

(
i ′

)} ⊇ T .

Thus, for a decomposable complex � = �1 ∪ �2 ∪ · · · ∪ �r , we have

(10) F�(T ) = π−1
1

(
π1(T )

) ∩ π−1
2

(
π2(T )

) ∩ · · · ∩ π−1
r

(
πr(T )

)
for any T ⊆ I , where πi = πV (�i).

3. Approximations of facial sets. We consider a hierarchical model with
simplicial complex � and marginal polytope P�. In this section, we develop the
details of our methodology to obtain inner and outer approximations to the facial
set Ft of the data vector t .
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3.1. Inner approximations. To obtain an inner approximation, our strategy is
to find a separator S of � and to complete it. To be precise, we augment � by
adding all subsets of S. We obtain a simplicial complex �S = � ∪ {M : M ⊆ S}
in which S is a complete separator. We can apply Lemma 2.5 to find the facial set
F�S

(I+), and this is an inner approximation of Ft , because F�S
(I+) ⊆ F�(I+) =

Ft according to Lemma 2.1.
An even simpler approximation is obtained by not only completing the sepa-

rator itself, but also the two parts V1, V2 separated by S: the simplicial complex
�V1,V2 := {M : M ⊆ V1} ∪ {M : M ⊆ V2} is decomposable and contains �. Its
facial sets can be computed from (10).

In general, the approximation obtained from a single separator (or, in general,
a single supercomplex) is not good; that is, Ft = F�(I+) tends to be much larger
than F�S

(I+) or F�V1,V2
(I+). Thus, we need to combine information from sev-

eral separators. For example, given two separators S, S′ ⊆ V , we find a chain of
approximations

G′
0 := I+,

G1 := F�S

(
G′

0
)
, G′

1 := F�S′ (G1),

G2 := F�S

(
G′

1
)
, G′

2 := F�S′ (G2),

...

that satisfy

I+ ⊆ G1 ⊆ G′
1 ⊆ G2 ⊆ · · · ⊆ Ft ,

where all inclusions except the last one are due to the definition of F�S
(T ) or

F�S′ (T ) as the smallest facial sets containing T in �S or �S′ . The last inclusion
is a consequence of Lemma 2.1 since both �S and �S′ contain �. This chain
of approximations has to stabilize, that is, after a certain number of iterations, the
approximations will not improve any more. The limit FS,S′(I+) := ⋃

i Gi = ⋃
i G

′
i

can be characterized as the smallest subset of I that contains I+ and is facial both
with respect to �S and �S′ . The same iteration can be done replacing �S and
�S′ by �V1,V2 and �V ′

1,V
′
2
. Applying in turn F�V1,V2

and F�V ′
1,V ′

2
gives another

approximation F̃S,S′(I+), namely the smallest subset of I that contains I+ and is
facial both with respect to �V1,V2 and �V ′

1,V
′
2
. This latter approximation will be

used in Section 5.1. Clearly, F̃S,S′(I+) is a worse approximation than FS,S′(I+),
since F̃S,S′(I+) ⊆ FS,S′(I+) ⊆ Ft , but it is easier to compute.

We use the following strategies:

1. if possible, use all separators of a graph.

We illustrate this strategy in Section 5.2. It has two problems: First, if S is such
that either V1 or V2 is large, then it becomes difficult to compute F�|V1

and F�|V2
.
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Such “bad” separators always exist: namely, each node i ∈ V is separated by its
neighbors from all other nodes. In this case, V1 consists of i and its neighbors, and
V2 consists of V \ {i}. For such a “bad” separator, we can only compute F�V1,V2

,
but not F�S

. Second, the number of separators may be large. Thus, when com-
puting the inner approximation, it may take a long time until the iteration over all
separators converges. A faster alternative strategy is the following:

2. use all separators such that both V1 \ S and V2 \ S are not too small (e.g.,
min{|V1 \ S|, |V2 \ S|} ≥ 3).

In the case of the grids studied in Sections 5.1 and 6.2, which have a lot of
regularity, we use an adapted strategy:

3. in a grid, use the horizontal, vertical and diagonal separators.

In the case of grids, the vertical separators form a family of pairwise disjoint sep-
arators. In Section 6, we show how to make use of such a family to study faces of
hierarchical models, even if the facial sets are so large that they become computa-
tionally intractable.

3.2. Outer approximations. By Lemma 2.1, the facial set F�′(S) for a sim-
plicial subcomplex �′ ⊆ � provides an outer approximation of F�(S). Removing
sets from � decreases the dimension of the marginal polytope, so it is often easier
to compute F�′(S) than to compute F�(S). Our main strategy is to look at induced
subcomplexes.

When comparing � with an induced subcomplex �|V ′ for some V ′ ⊆ V , we
have to be precise about whether we consider �|V ′ as a complex on V or on V ′.
When we consider it on V , then its design matrix A has columns fi indexed by
i ∈ I . When we consider it on V ′, its design matrix A′ has columns f ′

i indexed by
IV ′ . Because we have the same set of interactions whether we are on V or V ′, we
have for i ∈ I and i ′ ∈ IV ′ ,

(11) fi = f ′
i′ ⇔ i ∈ π−1

V ′
(
i ′

)
.

Therefore, the marginal polytopes of the two models are the same since they are the
convex hull of the same set of vectors {fi, i ∈ I } = {f ′

i′, i
′ ∈ IV ′ }. The relationship

between the facial sets on V and V ′ is as follows.

LEMMA 3.1. Let V ′ ⊆ V . For any K ⊆ I , let F ′
�|V ′ (K) be the facial set when

�|V ′ is considered as a simplicial complex on V ′, and let F�|V ′ (K) be the facial
set when �|V ′ is considered as a simplicial complex on V . Then

F�|V ′ (K) = π−1
V ′

(
F ′

�|V ′
(
πV ′(K)

))
.

PROOF. For any K ⊆ I , the set A = {fi, i ∈ K} is identical to B = {f ′
i′, i

′ ∈
πV ′(K)}. Therefore, the smallest faces of the marginal polytopes for �V ′ on V or
V ′ containing A and B, respectively, are the same.
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By definition of F ′
�V ′ (πV ′(K)), the smallest face containing B is defined

by {f ′
i′, i

′ ∈ F ′
�V ′ (πV ′(K))}. By definition of F�V ′ (K), the smallest face con-

taining A is {fi, i ∈ F�V ′ (K)}. Also, {fi, i ∈ π−1
V ′ (F ′

�V ′ (πV ′(K)))} = {f ′
i′, i

′ ∈
F ′

�V ′ (πV ′(K))} by (11). Thus, F�V ′ (K) = π−1
V ′ (F ′

�V ′ (πV ′(K))). �

In general, F�|V ′ (I+) is not a good approximation of F�(I+). It can be
improved by considering several subsets of V1, . . . , Vr ⊆ V . Then F�(I+) ⊆
F�|Vi

(I+), i = 1, . . . , r , and so F�(I+) ⊆ ⋂r
i=1 F�|Vi

(I+) =: FV1,...,Vr ;�(I+). In
contrast to the case of the inner approximation, no repeated iteration is needed.
Thus, the outer approximation is faster to compute.

The question is now how to choose the subsets Vi . Clearly, the subsets Vi should
cover V , and, more precisely, they should cover �, in the sense that for any D ∈
� there should be one Vi with D ∈ �|Vi

. The larger the sets Vi , the better the
approximation becomes, but the more difficult it is to compute FV1,...,Vr ;�(I+).
One generic strategy is the following:

1. use all subsets of V of fixed cardinality k plus all facets D ∈ � with
|D| ≥ k.

This choice of subsets indeed covers �. The parameter k should be chosen as
large as possible such that computing FV1,...,Vr ;�(I+) is still feasible. Note that
computing F�|D(I+) for D ∈ � is trivial, since P�|D is a simplex. Another natural
strategy, due to Massam and Wang (2015), is the following:

2. for fixed k, use balls Bk(v) = {w : d(v,w) ≤ k} around the nodes v ∈ V ,
where d(·, ·) denotes the edge distance in the graph.

Our general philosophy is that the subsets Vi should be large enough to preserve
some of the structure of �. For example, for the grid graphs, we suggest to use
3 × 3 subgrids. These graphs have two nice properties: first, they already have the
appearance of a small grid. Second, for any vertex v ∈ V , there is a 3 × 3 subgrid
that contains v and all neighbors of v. We will compare two different strategies:

3. for a grid, use all 3 × 3 subgrids;
4. cover a grid by 3 × 3 subgrids.

In Section 6.2, we compare these two methods, and we observe that, in the example
of the 5 × 10 grid, it suffices to only look at a covering.

In general, it is not enough to look at induced subcomplexes, unless � has
a complete separator (see Section 2.4). However, the approximation tends to be
good and gives the correct facial set in many cases.

3.3. Comparing the two approximations. Suppose that we have computed two
approximations F1, F2 of Ft such that F1 ⊆ Ft ⊆ F2. In the lucky case that F1 =
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F2, we know that Ft = F1 = F2. In general, the cardinality of F2 \F1 indicates the
quality of our approximations.

F1, F2 and Ft can also be compared by the ranks of the matrices ÃF1 , ÃF2

and ÃFt obtained from Ã by keeping only the columns indexed by F1, F2 and
Ft , respectively. Clearly, rank ÃF1 ≤ rank ÃFt ≤ rank ÃF2 . Note that rank ÃF2 − 1
equals the dimension of the corresponding face F2 of P, and rank ÃFt − 1 equals
the dimension of Ft . Although F1 does not necessarily correspond to a face of P,
we can bound the codimension of Ft in F2 by

dim F2 − dim Ft ≤ rank ÃF2 − rank ÃF1 .

In particular, if rank ÃF2 = rank ÃF1 , then we know that Ft = F2. In this case, our
approximations give us a precise answer, even if F1 �= F2 and the lower approxi-
mation F1 is not tight.

4. Parameter estimation when the MLE does not exist.

4.1. Computing the extended MLE. When the MLE exists, it can be computed
by numerically maximizing the log-likelihood function l(θ) given in (7). As men-
tioned before, l(θ) is concave (or even strictly concave, if the parameters θ are
identifiable), and thus the maximum is, at least in principle, easy to find [in prac-
tice, for larger models, it may be difficult to evaluate the function k(θ); but we will
not discuss this problem here]. In general, the maximum cannot be found symbol-
ically, but there are efficient numerical algorithms to maximize concave functions.
Any reasonable hill-climbing algorithm should be capable of finding the MLE.
There are also dedicated algorithms, such as iterative proportional fitting (IPF),
which is of Gauss–Seidel type [Csiszár and Shields (2004)].

When the MLE does not exist but the facial set Ft of the data is known, then it is
straightforward to compute the extended MLE p∗. To find p∗, we need to optimize
the log-likelihood l̃ over EFt ,A = {pFt ,θ : θ ∈ Rh}. Plugging the parametrization
pFt ,θ (see Theorem 2.3) into l̃ tells us that we need to optimize the restricted log-
likelihood function

(12) lFt (θ) = log
( ∏

i∈I+
pFt ,θ (i)

n(i)

)
= ∑

j∈J

θj tj − NkFt (θ).

This problem is of a similar type as the problem to maximize l in the case that the
MLE exists, and the same algorithms as discussed above can be used. The problem
here is slightly easier, since Ft is smaller than I . However, as stated above, the
parametrization θ �→ pFt ,θ is never identifiable. Of course, this problem is easy
to solve by selecting a set of independent parameters among the θj . However,
depending on the choice of the independent subset, the values of the parameters
change, and in particular, it is meaningless to compare the values of the parameters
θj with parameter values of any other distribution in EA or in the closure EA.
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Before explaining how to find better parameters on EFt ,A, let us discuss what
happens if the facial set Ft of the data is not known. As mentioned before, whether
or not the MLE exists, the log-likelihood function l(θ) is always strictly concave
(assuming that the parametrization is identifiable). When the MLE does not exist,
the maximum is not at a finite value θ∗, but lies “at infinity.” Still, as observed by
Geyer (2009), Section 3.15, any reasonable numerical “hill-climbing” algorithm
that tries to maximize the likelihood will tend toward the right direction. Such
an algorithm generates a sequence of parameter values θ(1), θ (2), θ (3), . . . with in-
creasing log-likelihood values l(θ (1)) ≤ l(θ (2)) ≤ . . . . Since l(θ) is concave, our
optimization problem is numerically easy (at least in theory), and for any reason-
able such algorithm, the limit lims→∞ l(θ (s)) will equal supθ l(θ) = maxp∈EA

l̃(p).

The algorithm will stop when the difference l(θ (s+1)) − l(θ (s)) becomes neglige-
ably small. The output, θ(s), then gives a good approximation of the EMLE, in the
sense that p∗ and pθ(s) are close to each other. For many applications, such as in
machine learning, where it is more important to have good values of the parameters
instead of trying to model the “true underlying distribution,” or when doing a like-
lihood test, where the value of the likelihood is more important than the parameter
values, this may be good enough.

However, in this numerical optimization, some of the parameters θj will tend
to ±∞, which may lead to numerical problems. For example, it may happen that
one parameter goes to +∞ and a second parameter to −∞ in such a way that their
sum remains finite [see Supplementary Material Appendix B [Wang, Johannes and
Massam (2018)] for a simple such example with two variables]. This implies that
a difference between two large numbers has to be computed, which is numerically
unstable. Also, it is not clear, which parameters tend to infinity numerically. In
fact, this may depend on the chosen algorithm, that is, different algorithms may
yield approximations of the EMLE that are qualitatively different in the sense that
different parameters diverge.

To avoid such problems, we propose a change of coordinates that allows us to
control which parameters diverge, at least in the case where we know the facial set
Ft . If Ft is unknown, but if we know approximations F1 ⊆ Ft ⊆ F2, we can use this
knowledge to identify some parameters that definitely remain finite, while some
parameters definitely diverge. We cannot control the behavior of the remaining
parameters, but, as will be illustrated in Section 5.2, the MLE obtained with the
model on F2 lies closer to the EMLE than the MLE on the original model. The
more information we have about the facial set Ft , the better we can control the
parameter estimation problems mentioned above.

4.2. An identifiable parametrization. We have seen that when we use the
parametrization θ �→ pFt ,θ of EA,Ft in the case where Ft �= I , we have to expect
the following (interrelated) issues:

1. The parametrization is not identifiable, that is, there are parameters θ , θ ′
with pFt ,θ = pFt ,θ ′ .
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2. While the parametrization θ �→ pFt ,θ of EFt ,A looks similar to the
parametrization θ �→ pθ of EA, the values of the parameters in both parametriza-
tions are not related to each other.

3. When pθ(s) → pFt ,θ as s → ∞ for some parameter values θ(s), θ , then
some of the parameter values θ(s) diverge to ±∞. When computing probabilities,
there may be linear combinations of these diverging parameters that remain finite.

Next, we show that if Ft is known, then, with a convenient choice of L, the pa-
rameters μL (introduced in Section 2.1) solve 1 and 2 and improve 3. Afterward,
we discuss what can be done if Ft is not known. We briefly discuss the general
solution toward 3 in Supplementary Material Appendix C [Wang, Johannes and
Massam (2018)]. In any case, the choice of the parameters will depend on the Ft :
it is not possible to define a single parametrization that works for all facial sets
simultaneously.

Suppose that Ft is known. We choose a zero element in I+ and consider the
parameters μi as in Section 2. Recall that μi(θ) = 〈θ, fi − f0〉 = logp(i)/p(0),
i ∈ I . As mentioned in Section 2, the parameters μi are not independent, and we
need to choose an independent subset L. We do this in two steps:

1. Choose a maximal subset Lt of Ft such that the parameters μi , i ∈ Lt are
independent.

2. Then extend Lt to a maximal subset L ⊆ I such that the parameters μi ,
i ∈ L, are independent by adding elements i ∈ I \ Ft .

It follows from Theorem 2.4 that the following holds:

1. The subset μi , i ∈ Lt , of the parameters μL gives an identifiable
parametrization of EFt ,A.

2. Let μ∗
i , i ∈ Lt , be the parameter values that maximize lFt (and thus give

the EMLE). When the likelihood l(μ) in (8) is maximized numerically on I , then
in successive iterations of the maximization, the estimates μ

(s)
i are such that

μ
(s)
i →

{
μ∗

i i ∈ Lt,

−∞ otherwise.

In particular, no parameter tends to +∞.

The last property ensures a consistency of the parameters μi on EA and on EFt ,A.
This is important in those cases where the parameters have an interpretation and
where it is of interest to know the value of some parameters, if it is well defined. For
example, in hierarchical models, the parameters correspond to “interactions” of the
random variables, and it may be of interest to know, which of these interactions are
important. Thus, it is of interest to know the size of the corresponding parameter.
Usually, it is not the parameter μi , but the original parameters θi that have an
interpretation. But when we understand the parameters μi , we can also tell which
of the paramters θi or which combinations of the parameters θi have finite well-
defined values and can be computed, and which parameters diverge.
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LEMMA 4.1. Let θ(s), s ∈ N, be parameter values such that pθ(s) → p∗ as

s → ∞. For any i ∈ Lt , the linear combination μ
(s)
i = 〈θ(s), fi − f0〉 has a well-

defined finite limit as s → ∞. Any linear combination of the θ
(s)
i with a well-

defined finite limit (i.e., a limit that is independent of the choice of the sequence
θ(s)) is a linear-combination of the μ

(s)
i with i ∈ Lt .

PROOF. The first statement follows from

μ
(s)
i = logpθ(s)(i)/pθ(s)(0) → logp∗(i)/p∗(0).

For the second statement, note that any linear combination of the θ is also a linear
combination of the μ, since the linear map θ �→ μ(θ) is invertible. We now show
that if a linear combination

∑
i aiμi involves some μj with j /∈ Lt , then there exist

sequences μ(s), μ′(s) of parameters with

lim
s→∞pμ(s) = lim

s→∞pμ′(s) and lim
s→∞

∑
i

aiμ
(s)
i �= lim

s→∞
∑
i

aiμ
′(s)
i .

So suppose that μ(s) is a sequence of parameters such that lims→∞ pμ(s) exists and

such that lims→∞
∑

i aiμ
(s)
i is finite. Define

μ
′(s)
i =

{
μ

(s)
j + 1 if i = j,

μ
(s)
i otherwise.

Then an easy computation shows that lims→∞ pμ′(s) = lims→∞ pμ(s) and

lims→∞
∑

i aiμ
′(s)
i = lims→∞

∑
i aiμ

(s)
i + aj . �

Suppose now that we do not know Ft , but that instead we have approximations
F1, F2 that satisfy I+ ⊆ F1 ⊆ Ft ⊆ F2 ⊆ I . In this case, we proceed as follows to
obtain an independent subset L among the parameters μi :

1. Choose a maximal subset L1 of F1 such that the parameters μi , i ∈ L1 are
independent.

2. Then extend L1 to a maximal subset L2 ⊆ F2 such that the parameters μi ,
i ∈ L2 are independent by adding elements i ∈ F2 \ F1.

3. Finally, extend L2 to a maximal subset L ⊆ I such that the parameters μi ,
i ∈ L are independent by adding elements i ∈ I \ F2.

The following properties follow directly from Lemma 4.1.

LEMMA 4.2. Suppose that θ(s), s ∈ N, are parameter values such that pθ(s) →
p∗ as s → ∞, and let μ

(s)
i = 〈θ(s), fi − f0〉:

1. For any i ∈ L1, the linear combination μ
(s)
i = 〈θ, fi − f0〉 has a well-

defined finite limit as s → ∞. Thus, any linear combination of the μ
(s)
i with i ∈ L1

has a well-defined limit as s → ∞.



APPROXIMATING FACES OF MARGINAL POLYTOPES 1219

2. Any linear combination
∑

i aiμ
(s)
i that has a well-defined limit as s → ∞

is in fact a linear combination of the μ
(s)
i with i ∈ L2. Thus, a linear combination

that involves at least one μ
(s)
j with j ∈ L \ L2 does not have a well-defined limit.

5. Simulation study and applications to real data. In this section, we illus-
trate our methodology. In Section 5.1, we simulate data for the graphical model
of the 4 × 4 grid and show how to exploit the various types of separators in or-
der to obtain good inner and outer approximations. We find that our method gives
very accurate result in this model of modest size. In Section 5.2, we work with
the NLTCS data set, a real-world data set. We compare different inner approxi-
mations F1 and find that most of the time, F1 and F2 are equal, and thus they are
both equal to Ft . We also compute the EMLE and compare these exact estimates
to those obtained when maximizing the likelihood functions l and lF2 . We find the
results given by lF2 better than those given by l, and extremely close to the finite
components of the EMLE.

5.1. 4 × 4 grid graph. We generated random samples of varying sizes for the
graphical model of the 4 × 4 grid graph with binary variables [Figure 1(a)]. For
each sample, we compute inner and outer approximations F1 and F2, and we com-
pare them to the true facial set Ft , which we can obtain using linear programming.
To obtain an inner approximation, we use two strategies. Either, we iterate over

FIG. 1. (a) 4×4 grid graph. Graphical model for NLTCS data set. (b) The label “An” abbreviates
ADLn, “In” abbreviates IADLn.
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TABLE 1
Facial set approximation of 4 × 4 grid graph(hierarchical log-linear model with parameters from

standard normal distribution)

Sample size MLE does not exist F1 = Ft F2 = Ft

10 100.0% 97.7% 100.0%
50 89.5% 100.0% 100.0%

100 71.0% 100.0% 100.0%
150 52.0% 100.0% 100.0%

all possible separators, of which there are 106 (Strategy 3.1 in Section 3.1), or we
iterate over the 3 horizontal, 3 vertical and 8 diagonal separators only (Strategy 3.1
in Section 3.1). We obtain the same result with either strategy. Clearly, Strategy 3.1
is much faster. To compute the outer approximation, we cover the 4 × 4 grid by
four 3 × 3 grids (Strategy 3.2 in Section 3.2).

We generate samples from the hierarchical model Pθ , where the parameter vec-
tor θ is drawn from a multivariate standard normal distribution (for each sample,
new parameters were drawn). The results are given in Table 1. For each sample
size, 1000 samples were obtained. Observe that the squared length of the param-
eter vector θ is χ2-distributed with 40 degrees of freedom (since the number of
parameters is 40). Thus, the expected squared length of θ is 40, which is large
enough to move the distribution pθ close to the boundary of the model. Indeed, we
observed that when the MLE does not exist, the squared length of the numerical
estimate of the MLE vector is of the order of magnitude of 40 (see also the exam-
ple in Section 5.2). In all samples that we generated, Ft = F2, and F1 = F2 in the
vast majority of cases. Thus, for this graph of relatively modest size, our approxi-
mations are very good. We present additional simulation results in Supplementary
Material Appendix D [Wang, Johannes and Massam (2018)].

5.2. NLTCS data set. To illustrate how approximate knowledge of the facial
set allows us to say which parameters can be estimated (as explained in Section 4),
we study the NLTCS data set, which consists of 21,574 observations on 16 binary
variables, called ADL1, . . . , ADL6, IADL1, . . . , IADL10. The reader is referred to
Dobra and Lenkoski (2011) for a detailed description of the data set. To associate
a hierarchical model to this data, we rely on the results of Dobra and Lenkoski
(2011) who use a Bayesian approach to estimate the posterior inclusion probabil-
ities of edges. We construct a graph by saying that (x, y) is an edge if and only if
the posterior inclusion probability of (x, y) is at least 0.40: we obtain Figure 1(b).
Then we take the corresponding clique complex of this graph so that our hierarchi-
cal model is a graphical model. There are 314 parameters in this model, including
up to 6-way interactions. In total, the graph has 40 separators.

To compare the estimates obtained with or without worrying about the exis-
tence of the MLE and with or without an approximation to Ft , we maximize the
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log likelihood given in terms of μ, rather than θ , as in (8). First, we ignore the fact
that the MLE might not exist and numerically optimize the likelihood directly: we
call this estimate μ̂MLE. Second, we find Ft and compute the EMLE with param-
eters denoted μ̂EMLE. Third, we obtain an inner and outer approximation to Ft

and consider the resulting information on likelihood maximization. We call the re-
sulting estimate μ̂F ′

2\F ′
1 . All estimates are computed using the MATLAB function

minFunc [Schmidt (2005)].
We first compute the inner approximation F1 that makes use of all the separators

in the graph (Strategy 3.1 in Section 3.1). We also compute an outer approximation
F2 from all

(16
5

) = 4368 size five local models and the cliques of size six (Strat-
egy 3.2 in Section 3.2). We obtain F1 = F2, and thus deduce that Ft = F1 = F2.
We find |Ft | = 49,536. Therefore, |Fc

t | = 216 − 49,536 = 16,000 cell probabilities
are zero in the EMLE, a precise estimate of those cells that we could not obtain
from the MLE. We obtain the EMLE by maximizing the log likelihood function
lFt as in (12). Since rank(ÃFt ) = 303, the dimension of Ft is 302, and there are
only 302 parameters in lFt . This information is most important when testing the
present model against another model M2 of smaller dimension. As pointed out
by Geyer (2009) and Fienberg and Rinaldo (2012), the test statistic, chi-square or
log likelihood, has to be compared to the chi-square distribution with 302 − d2
degrees of freedom, not 314 − d2. Of course, for M2 also, d2 is the dimension of
the smallest face of the corresponding polytope containing the data.

To show how to use the inner and outer approximations when Ft is not known,
we construct coarser inner and outer approximations to Ft , respectively, denoted
F ′

1 and F ′
2, and use them to compute another approximation μ̂F ′

2\F ′
1 to the EMLE.

To compute F ′
1, we just use 10 random separators. We find |F ′

1| = 36,954 and
dim F′

1 = rank ÃF ′
1
− 1 = 300. To compute the outer approximation F ′

2, we con-
sider the 4368 local size-five induced models and select among them the 1000
with the facial sets of smallest cardinality, which we glue together. We find
|F ′

2| = 50,688 and dim F′
2 = rank ÃF ′

2
− 1 = 310. Thus, we know that at least

|I \ F ′
2| = 216 − 50,688 = 14,848 cell probabilities vanish in the EMLE. Since

we pretend not to know Ft , we replace lFt by

(13) lF ′
2
(μ) = ∑

i∈I+
μin(i) − N

∑
i∈F ′

2

exp(μi).

We know that μi is estimable for i ∈ F ′
1, that μi goes to negative infinity for

i ∈ F ′c
2 , and we cannot say anything for μi with i ∈ F ′

2 \ F ′
1.

As explained in Section 4.2, the components of μ are not functionally inde-
pendent. We choose L1 ⊆ F ′

1, L2 ⊆ F ′
2 and L ⊆ I as in Section 4.2 (we note

that the zero cell belongs to I+). Then any μi , i ∈ F ′
2, can be written as a linear

combination of μL2 = (μi, i ∈ L2), and we can write μi = 〈bi,μL2〉 for an appro-
priate vector bi . Thus, lF ′

2
(μ) only depends on μL2 = (μi, i ∈ L2), and (13) can be
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rewritten as

(14) lF ′
2
(μL2) = ∑

i∈I+
〈bi,μL2〉n(i) − N

∑
i∈F ′

2

exp〈bi,μL2〉.

Of course, the maximum of lF ′
2

does not exist but, as for the maximization of l,
the computer still gives us a numerical approximation, μ̂L2 , and thus also a numeri-
cal estimate μ̂F ′

2\F ′
1

i := 〈bi, μ̂L2〉, i ∈ F ′
2. In total, there are |L2| = rank(ÃF ′

2
)−1 =

310 independent parameters in lF ′
2
. Among them, there are |L1| = rank(ÃF ′

1
)−1 =

300 estimable parameters μi, i ∈ L1. We cannot say anything about the 10 param-
eters indexed by L2 \ L1. If we know Ft , we can identify two more estimable
parameters.

Table 2 gives the three estimates μ̂MLE
i , μ̂EMLE

i and μ̂F ′
2\F ′

1
i for 19 arbitrarily

chosen parameters among the 310 possible ones. The naive estimator log ni

n0
is also

listed. The first column indicates whether the index i belongs to F ′
1, Ft or F ′

2.
The second column lists the particular parameters considered. By Theorem 2.4,
the only parameters μi with a finite estimate are those for i ∈ Ft . This is illustrated
in the μ̂EMLE column, with finite values for μ̂EMLE

i , i ∈ Ft (green and pink rows),
and infinite values for μ̂EMLE

i , i ∈ I \ Ft (yellow and blue rows). The last column

TABLE 2
Parameter estimates from 3 methods compared with the relative frequency in the NLTCS data. Here,

each i = (i1, . . . , i16) ∈ I = {0,1}16 is represented by the natural number∑16
j=1 ij 2j−1 ∈ {0, . . . ,216 − 1}
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contains the estimates μ̂F ′
2\F ′

1
i obtained from numerically optimizing (14). The

components μ̂F ′
2\F ′

1
i indexed by i ∈ Ft are excellent. They are finite and close to the

corresponding components of μ̂EMLE. This can be seen by verifying numerically
that the square length of the projection on Ft of the difference between μ̂MLE and
μ̂EMLE is greater than that between μ̂F ′

2\F ′
1 and μ̂EMLE. Indeed, we have∥∥μ̂F ′

2\F ′
1

Ft
− μ̂EMLE

Ft

∥∥2 ≈ 6.49 <
∥∥μ̂MLE

Ft
− μ̂EMLE

Ft

∥∥2 ≈ 8.52.

The components μ̂F ′
2\F ′

1
i indexed by i ∈ F ′

2 \ Ft are finite while the corresponding
components of μ̂EMLE are infinite but they are better than those of μ̂MLE: numeri-
cally, we have ∑

i∈F′
2\Ft

(
μ̂F ′

2\F ′
1

i

)2 ≈ 5184 >
∑

i∈F′
2\Ft

(
μ̂MLE

i

)2 ≈ 4752.

The estimates μ̂F ′
2\F ′

1
i , i ∈ F ′

2 \ Ft are better than the corresponding μ̂MLE
i since

they are larger, and thus “closer to the truth.” For i ∈ I \ F ′
2, corresponding to the

blue rows of Table 2, the components μ̂F ′
2\F ′

1
i are better than the μMLE

i since, by
construction, the μ̂F ′

2\F ′
1

i are infinite.
For reference, we list the estimates of the top five cell counts obtained using

our method and compare them with those obtained by other methods in Dobra and
Lenkoski (2011) in the Supplementary Material Appendix E [Wang, Johannes and
Massam (2018)].

6. Computing faces for large complexes. If our statistical model contains
many variables and is not reducible, the problem of determining Ft quickly be-
comes infeasible. Not only does the marginal polytope become very complicated,
but also the size of the objects that one has to store or compute grows exponen-
tially. Consider for example a 10 × 10 grid of binary random variables. This hi-
erarchical model has 280 parameters, and the total sample space has cardinality
|I | = 2100 ≈ 1.27 × 1030. If Ft is close to I , we cannot even list the elements
of Ft , which consists of approximately 1030 elements. Therefore, we take a local
approach and look for separators.

If the simplicial complex � contains a complete separator separating V into
V1 and V2, we can identify a facial set F implicitly without listing it explic-
itly. We only need the two projections FV1 = πV1(F ) and FV2 = πV2(F ). Since
F = π−1

V1
(FV1) ∩ π−1

V2
(FV2) (by Lemma 2.5), these two projections identify F ,

and they allow us to do most of the operations that we would want to do with F .
For example, for any i ∈ I , we can check whether i ∈ F by checking whether
πV1(i) ∈ FV1 and πV2(i) ∈ FV2 , and we can check whether F ⊇ I by checking
whether FV1 ⊇ IV1 and FV2 ⊇ IV2 . In particular, we can check whether the MLE
exists by looking only at the two subsets V1 and V2.

Similar ideas apply if � contains a separator that is not complete. Suppose
that S separates V1 from V2 in �. We want to use F2 := F�|V1

(I+) ∩ F�|V2
(I+)
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as an outer approximation and F1 := F�S
(I+) as an inner approximation to Ft .

Due to the problems mentioned above, we do not directly compute F1 and F2,
but we compute their projections on V1 and V2. Instead of F2, we compute the
facial set F2,V1 := F�|V1

(πV1(I+)) of the V1-marginal πV1(I+) with respect to
�|V1 . Similarly, we compute F2,V2 := F�|V2

(πV2(I+)). Instead of F1, we compute
F1,V1 := F�S |V1

(πV1(I+)) and F1,V2 := F�S |V2
(πV2(I+)). Then we could recover

F1 and F2 from the equations

F2 = π−1
V1

(F2,V1) ∩ π−1
V2

(F2,V2) and F1 = π−1
V1

(F1,V1) ∩ π−1
V2

(F1,V2).

For any x ∈ I , we can check whether x ∈ F1 by checking whether πV1(x) ∈ F1,V1

and πV2(x) ∈ F1,V2 . More importantly, we can check whether F1 = F2 by checking
whether F1,V1 = F2,V1 and F1,V2 = F2,V2 . This idea can be applied iteratively when
either �|V1 or �|V2 has a separator.

The next two subsections illustrate these ideas. In Section 6.1, we consider a
graph on 100 nodes with no particular regularity pattern. In Section 6.2, we con-
sider a grid graph and work with two families of “parallel” separators.

6.1. US Senate voting records data. We consider the voting record of all 100
US senators on 309 bills from January 1 to November 19, 2015. Similar data for the
years 2004–2006 was analyzed by Banerjee, El Ghaoui and d’Aspremont (2008).
The votes are recorded as “yea,” “nay” or “not voting.” We transformed the “not
voting” into “nay,” and consequently have a 100-dimensional binary data set. To fit
a hierarchical model to this data set, we use the �1-regularized logistic regression
method proposed by Ravikumar, Wainwright and Lafferty (2010) to identify the
neighbors of each variable and construct an Ising model. We set the regularization
parameter to λ = 32

√
logp/n ≈ 0.35. The underlying graph of the Ising model is

given in Figure 2. This figure should not be interpreted as the graph of a graphical
model. Rather, the edges in the graph indicate where the two-way interactions lie.
There are 277 parameters in this model (the number of vertices plus the number of
edges). The graph consists of two large connected components and 14 independent
nodes.

There are 309 sample points, and |I+| = 278. We want to characterize the face
Ft of the data on the marginal polytope. The graph in Figure 2 has many complete
separators, and it decomposes as a union of several small irreducible simplicial
subgraphs and two large irreducible subgraphs, one in each of the large connected
components, as shown in Figure 3. By Lemma 2.5, we can restrict attention to these
irreducible subgraphs. For the small irreducible subgraphs, one easily verifies that
the data does not lie on a proper face of their corresponding marginal polytopes.
We are left with the two large irreducible prime components in Figure 3.

The Democratic party simplicial complex �d consists of 26 variables, which
is too large to use linear programming to compute the face of P�d

containing
the vector td . Therefore, we look for separators in order to obtain inner and outer
approximations. Figure 3(b) indicates (in green and purple) two separators that
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FIG. 2. The graph for the US senate voting records data. Golden nodes are independent senators,
blue nodes are Democratic and red nodes are Republican.

FIG. 3. The simplicial complexes after cutting off the small prime components: (a) the Republican
party prime component �r . (b) the Democratic party prime component �d . The yellow and pink
nodes are the two separator sets we used to compute the facial set.
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TABLE 3
Numbering of some senators

ID Senator ID Senator ID Senator ID Senator

22 Nelson 37 Cardin 52 Murphy 61 Whitehouse
23 Reed 41 Markey 53 Hirono 70 Merkley
26 Schumer 47 Udall 56 Gillibrand 87 Warren

separate �d into three simplicial complexes denoted, from left to right, by �α , �β

and �γ . �α has 9 nodes. The corresponding vector tα lies in the relative interior
of P�α . �β has 13 nodes, and tβ lies on a facet Ftβ of P�β . To simplify the notation,
we denote the 100 senators not by their name but by an integer between 1 and 100.
We only need to identify a few. Their numbers are given in Table 3. The inequality
of Ftβ is

(15) t87 − t56,87 ≥ 0,

where t87 denotes the marginal count of senator Warren voting “yea” and t56,87
denotes the marginal counts of both senators Gillibrand and Warren voting “yea.”
�γ has 11 nodes, and tγ lies on the facet of P�γ with inequality

(16) t23 − t23,53 ≥ 0.

The intersection of (15) and (16) gives the outer approximation F2,d to Ftd .
To get an inner approximation, we complete each separator, that is, the green

vertices are completed and the purple vertices are completed in Figure 3(b). Denote
the three simplicial complexes with complete separators as �α̃ , �β̃ , �γ̃ , respec-
tively, and let �

d̃
= �α̃ ∪ �β̃ ∪ �γ̃ . The smallest face Ft

d̃
of P�

d̃
containing t

d̃
is

our inner approximation. The models of �α̃ , �β̃ , �γ̃ and �
d̃

include main effects,
two-, three- and four-way interactions.

The linear programming method (applied to P�α̃
, P�

β̃
and P�γ̃

separately)
shows that t

d̃
belongs to the face Ft

d̃
of P�

d̃
with defining equations

〈g1, td̃〉 = t41 − t22,41 − t41,70 + t22,41,70 = 0,

〈g2, td̃〉 = t87 − t56,87 = 0,

〈g3, td̃〉 = t37,52 + t26 − t26,52 − t26,37 = 0,

〈g4, td̃〉 = t47,52,61 + t37,52 − t37,52,61 − t37,47,52 = 0,

〈g5, td̃〉 = t37,47,52,61 − t47,52,61 = 0,

〈g6, td̃〉 = t23 − t23,53 = 0,

where g1 is contributed by �α̃ , g1, . . . , g5 are contributed by �β̃ , and g4, g5, g6
are contributed by �γ̃ . Thus, F1,d := Ft

d̃
is a subset of F2,d .
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A refinement of our argument shows that indeed Ftd = F2,d . The orthogonal
complement of the subspace generated by Ft

d̃
is

G = {
g′ ∈ R91|g′ = k1g1 + k2g2 + k3g3 + k4g4 + k5g5 + k6g6

}
.

To describe Ftd , we note that each defining equation of Ftd is of the form 〈g, td〉 =
0, where g is orthogonal to Ftd . For any such g, let g′ be its extension to a vector
in R91 by adding zero components. Then g′ ⊥ Ft

d̃
, which implies that g′ ∈ G.

Therefore, we can find g by finding all vectors g′ ∈ G that vanish on all added
components. This yields a system of linear equations in k1, . . . , k5, k6. We claim
that all solutions must satisfy k1 = k3 = k4 = k5 = 0. Indeed, the coefficient of
any triple or quadruple interaction must vanish (since these do not belong to the
original Ising model), which implies k1 = k4 = k5 = 0, and also the coefficient of
t37,52 must vanish, which implies k3 = 0. On the other hand, the vectors g′

2 and g′
6

only contain interactions that are already present in �, and so the coefficients k2
and k6 are free. Thus, the equations for Ftd are

〈g2, tβ̃〉 = t87 − t56,87 = 0, 〈g6, tγ̃ 〉 = t23 − t23,53 = 0.(17)

This is the same as the outer approximation F2,d .
The Republican simplicial complex �r consists of 20 variables, and the model

induced from �r contains 46 parameters, which is also too large to directly com-
pute Ftr . The green nodes in Figure 3(a) separate �r into two simplicial complexes
denoted (from left to right) by �a and �b. To compute the inner approximation,
we complete the green separator and obtain two new simplicial complexes �ã

and �
b̃
. With linear programming, we find that the corresponding vectors tã and

t
b̃

lie in the relative interior of the polytopes P�ã
and P�

b̃
, respectively. Therefore,

F1 = P�r , from which we conclude that the corresponding vector tr lies in the
relative interior of P�r .

Thus, Ft is now determined: it is characterized by the equalities (17). What
insight is there in the knowledge (i) of the nonexistence of the MLE and (ii) of Ft?
While we have given general remarks in the Introduction, let us illustrate here how
knowledge about Ft points to some issues with the statistical analysis that would
possibly be overlooked if Ft was not known.

First, knowing Ft , and its defining inequalities, for one model also gives infor-
mation about other models. It follows from (17) that the MLE does not exist for any
hierarchical model that includes one of the edges (23,53) or (56,87) [to see this,
note that inequality (16) defines a proper face for any model containing the edge
(23,53), since the corresponding sufficient statistics vector satisfies the equality in
(16)]. Thus, if one wants to find a smaller model, within the realm of hierarchical
models, for which the MLE exists, both edges have to be dropped. However, from
the data, evidence for both edges is quite strong, and thus the edges should not be
dropped.

Second, let us consider the computation of the EMLE. As we know Ft , in-
stead of running an MLE computation for a model with 277 parameters and 2100
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outcomes, we are left with an MLE computation for a model with 277 − 2 =
275 parameters and |Ft | = 9

16 · 2100 outcomes, those without the configurations
(X23,X53) = (1,0) or (X56,X87) = (1,0) that all have counts zero. These num-
bers are still too large for a direct computation, even when taking into account that
the EMLE can be computed by restricting to each of the irreducible components.
So, we turn to an approximate method and compute the maximum composite like-
lihood estimate. The maximum composite likelihood estimate combines estimates
from the local conditional likelihoods derived from the distribution of each variable
given its neighbors; see, for example, Liu and Ihler (2012) or Massam and Wang
(2018). Thus, reliability of the maximum composite likelihood estimates depends
upon the existence of the maximum in each of the local conditional likelihood.
These local conditional likelihoods are derived from the global model built on the
entire cell set I and, certainly in practice, without worrying about the existence
of the global MLE. Let us consider, for example, the likelihood obtained from the
conditional distribution of X23 given its neighbors X19,53,61,78. For convenience,
let 19, 23, 53, 61, 78 be denoted as a, b, c, d , e. This likelihood is the product over
all configurations of iacde in the data set of conditional binomial distributions for
the variable Xb and can be written as

(18)
∏

ia,ib,ic,id ,ie

p
(
Xb = ib|Xacde = (ia, ic, id, ie)

)n(ia,ib,ic,id ,ie),

where n(ia, ib, ic, id, ie) denotes the corresponding marginal cell count. It is easy
to show that the MLE of each p(Xb = 1 | ia, ic, id, ie) is the empirical estimate
n(ia, ib = 1, ic, id, ie)/n(ia, ic, id, ie). In the data set, n(ia, ib = 1, ic = 0, id, ie) =
0 for all ia, id, ie ∈ {0,1}. Thus,

p̂(Xb = 1 | ia = 1, ic = 0, id = 1, ie = 1)

= exp(θ̂b + θ̂ab + θ̂bd + θ̂be)

1 + exp(θ̂b + θ̂ab + θ̂bd + θ̂be)
= 0,

so that θ̂b + θ̂ab + θ̂bd + θ̂be = −∞, and the MLE of at least some of these pa-
rameters, which are the corresponding parameters of the global model, does not
exist. Now the maximum composite likelihood estimate is obtained by averaging
the estimates obtained from various local conditional likelihoods. From the b-local
conditional model, we also obtain p̂(Xb = 1 | ia = 1, ic = 1, id = 1, ie = 0) = 1/2
and p̂(Xb = 1 | ia = 0, ic = 1, id = 0, ie = 1) = 4/5, which yield the linear combi-
nations

(19) θ̂b + θ̂bc + θ̂ab + θ̂bd = 0, θ̂b + θ̂bc + θ̂be = 1.4.

The remarks above are verified numerically. Let θ = (θb, θab, θbc, θbd, θbe), and
denote by llocal(θ) the local conditional likelihood. Starting at θ0 = (0,0,0,0,0)

and optimizing (18) in terms of θ in Matlab, we obtain llocal(θ̂) = 3.88830675
for θ̂ = θ̂1 ≈ (−62.3,−16.8,35.2,43.9,28.5). If we change the starting point
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to θ0 = (100,100,100,100,100), we obtain llocal(θ̂2) = 3.88830648 and θ̂2 =
(−162.2,−26.1,91.2,97.1,72.4). Clearly, the values for θ̂ are unreliable since
the MLE in the local conditional model does not exist. However, both θ̂1 and θ̂2
satisfy equations (19). One can, of course, obtain estimates of θbc, θab, θbd , θbe

from the local conditional models centered at c, a, d and e, respectively, but these
estimates are not true maximum composite likelihood estimates, and it remains to
study their properties.

This example shows that our methods make it possible to obtain Ft for very
large examples. It also illustrates how knowing Ft gives us precious information
on the reliability of the maximum composite likelihood estimate.

6.2. The 5×10 grid. Let � be the simplicial complex of the 5×10 grid graph
(Figure 4). We exploit the regularity of this graph and make use of the vertical
separators in the grid to obtain inner and outer approximations of the facial sets.
The graph has 50 nodes, which is too many to directly compute a facial set or even
to store it. However, the 5 × 10 grid has 8 vertical separators marked in red and
blue in Figure 4, and we can use these to approximate Ft . Since facial sets for 5×3
grids can be computed reasonably fast (3 to 4 seconds on a laptop with 2.50 GHz
processor and 12 GB memory), we only use three of these vertical separators at a
time, say the blue separators

S2 = {11, . . . ,15}, S4 = {21, . . . ,25},
S6 = {31, . . . ,35}, S8 = {41, . . . ,45}

that separate the vertex sets V1 = {1, . . . ,15}, V3 = {11, . . . ,25}, V5 = {21, . . . ,

35}, V7 = {31, . . . ,45}, V9 = {41, . . . ,50}.
Recall that in the Senate example of Section 6.1 it was enough to work with a

single family of disjoint separators to find the facial set Ft for the given vector t .
However, here, the approximations F1 and F2 obtained with only the blue separa-
tors, say, are not tight for most data sets. Therefore, we alternate between the blue
separators and the red separators

S1 = {6, . . . ,10}, S3 = {16, . . . ,20},
S5 = {26, . . . ,30}, S7 = {36, . . . ,40},

FIG. 4. 5 × 10 grid graph, the red and blue nodes are the set of separators we use to compute F1,
they are used iteratively to get a better lower approximation.
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that separate V0 = {1, . . . ,10}, V2 = {6, . . . ,20}, V4 = {16, . . . ,30}, V6 = {26, . . . ,

40}, V8 = {36, . . . ,50}. Our inner approximation is then defined by

G(0) = I+,

G(2i+1) = F�S2;S4;S6;S8

(
G(2i)), i = 0,1, . . .

G(2i) = F�S1;S3;S5;S7

(
G(2i−1)), i = 1,2, . . .

F1 = ⋃
j

G(j).

As explained in Section 3.1, this recursion stabilizes and F1 is obtained after a
finite number of steps.

Since |I | = 250 ≈ 1.1 · 1015, care has to be taken when implementing this recur-
sion, as it is not possible to store arbitrary subsets of I . Using the ideas put forward
at the introduction of this section, it is possible to formulate the recursion in a way
that at most 15 nodes are considered at the same time, corresponding to a 3 × 5
grids. The technical details are in the Supplementary Material Appendix F [Wang,
Johannes and Massam (2018)].

To obtain an outer approximation F2, we adapt Strategy 3.2 of Section 3.2
and cover the graph with 5 × 3 grid subgraphs. These subgrids are supported
on the same vertex subsets Vi, i = 1, . . . ,8 as used when computing F1. This
makes it possible to compare F1 and F2. For i = 1,3, . . . ,8, we compute F2,Vi

=
F�|Vi

(πVi
(I+)). The outer approximation is then F2 = ⋂

i π
−1
Vi

(F2,Vi
). Again, we

do not compute F2 explicitly, but we only store F2,Vi
in a computer as a represen-

tation of F2.
We generated random data of varying sample size. For each fixed sample size,

we generated 100 data samples. The simulation results are shown in Table 4.
For each simulated sample, we compute the sets F1,Vi

and F2,Vi
as described

above. When computing F1,Vi
, we found that 2 iterations actually suffice. Then

we checked whether F2 is a proper subset of I (second column), and we checked
whether F1 = F2 (third column). Both for small and large sample sizes, we found
that the F1 = F2 quite often.

We also investigated what happens when the outer approximation is not com-
puted using all 3 × 5 subgrids, but only a cover of four 3 × 5 subgrids and one
2 × 5 subgrid. In all simulations, this easier approximation gave the same result.
The same is not true for the inner approximation: when using just one of the two
families of parallel separators we obtain an inner approximation that is much too
small.

7. Conclusion. As mentioned before, previous work had made it possible to
identify Ft for hierarchical models with up to 16 variables. In this paper, we offer
a methodology to approximate (and sometimes completely identify) Ft for high-
dimensional models. To find an inner and an outer approximation to Ft , we divide
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TABLE 4
Facial set approximation of 5 × 10 grid graph

Sample size F2 �= I F1 = F2

50 100.0% 94.3%
100 100.0% 82.5%
150 99.9% 76.5%
200 99.6% 81.2%
300 96.4% 87.7%
400 92.9% 91.5%
500 84.8% 93.9%

1000 44.7% 99.9%

the original problem into subproblems with at most 16 variables for which we can
use linear programming. Then we combine the facial sets of the subproblems and
relate them to Ft . Identifying the subproblems and relating the facial sets to Ft is
numerically easy, and the corresponding software can be obtained upon request,
from the authors.

It has long been established that determining the existence of the MLE is essen-
tial to correct statistical inference. In our paper, we have emphasized the problem
of parameter estimation and shown how working with the likelihood lF2 yields
much better estimates of the parameters than when working with l. When testing
one model versus another, the correct degrees of freedom for the asymptotic distri-
bution of the test statistic is the difference between the dimensions of the facial sets
for the two models being compared and not the difference between the dimensions
of the two models. If we only know approximations F1 and F2, we can use their
dimensions to approximate the correct degrees of freedom.

In high dimensions, when the (E)MLE cannot be computed, a popular ap-
proach is to compute the maximum composite likelihood estimate. We have shown
through an example that, when the global MLE does not exist, the local MLE for
some of the same parameters might not exist either. So, combining the values of
the MLE of local likelihoods without being aware that the data lies on a face of the
marginal polytope, one might also obtain misleading estimates of the parameters
through composite likelihood.

We have not addressed the question of how to obtain reliable confidence inter-
vals for the parameters by exploiting the properties of the inner and outer approxi-
mations to Ft . This subject clearly deserves attention and should be the subject of
further work.

SUPPLEMENTARY MATERIAL

Supplement to “Approximating faces of marginal polytopes in discrete hi-
erarchical models.” (DOI: 10.1214/18-AOS1710SUPP; .pdf). Appendix A de-

https://doi.org/10.1214/18-AOS1710SUPP
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scribes the concrete parametrization that we use in the examples. Appendix B dis-
cusses the case of two binary variables to illustrate what happens to the usual
parameters when the MLE does not exist. Appendix C discusses how to further
improve the parametrization μL introduced in Section 2. Appendices D and E give
further results for the examples from Section 5. Appendix F gives the technical
details for the example in Section 6.2.
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