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COVARIATE BALANCING PROPENSITY SCORE
BY TAILORED LOSS FUNCTIONS1

BY QINGYUAN ZHAO

University of Pennsylvania

In observational studies, propensity scores are commonly estimated by
maximum likelihood but may fail to balance high-dimensional pretreatment
covariates even after specification search. We introduce a general framework
that unifies and generalizes several recent proposals to improve covariate
balance when designing an observational study. Instead of the likelihood
function, we propose to optimize special loss functions—covariate balancing
scoring rules (CBSR)—to estimate the propensity score. A CBSR is uniquely
determined by the link function in the GLM and the estimand (a weighted av-
erage treatment effect). We show CBSR does not lose asymptotic efficiency
in estimating the weighted average treatment effect compared to the Bernoulli
likelihood, but CBSR is much more robust in finite samples. Borrowing tools
developed in statistical learning, we propose practical strategies to balance
covariate functions in rich function classes. This is useful to estimate the
maximum bias of the inverse probability weighting (IPW) estimators and
construct honest confidence intervals in finite samples. Lastly, we provide
several numerical examples to demonstrate the tradeoff of bias and variance
in the IPW-type estimators and the tradeoff in balancing different function
classes of the covariates.

1. Introduction. To obtain causal relations from observational data, one cru-
cial obstacle is that some pretreatment covariates are not balanced between the
treatment groups. Exact matching, inexact matching and subclassification on raw
covariates were first used by pioneers like Cochran [8, 9] and Rubin [42]. Later
in the seminal work of Rosenbaum and Rubin [39], the propensity score, defined
as the conditional probability of receiving treatment given the covariates, was es-
tablished as a fundamental tool to adjust for imbalance in more than just a few
covariates. Over the next three decades, numerous methods based on the propen-
sity score have been proposed, most notably propensity score matching (e.g., [1,
41]), propensity score subclassification (e.g., [40]), and inverse probability weight-
ing (e.g., [23, 38]); see Imbens [28], Lunceford and Davidian [34], Caliendo and
Kopeinig [6], Stuart [47] for some comprehensive reviews.
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With the rapidly increasing ability to collect high-dimensional covariates in the
“big data” era (e.g., large number of covariates collected in health care claims
data), propensity-score based methods often fail to produce satisfactory covariate
balance [26]. In the meantime, numerical examples in Smith and Todd [46], Kang
and Schafer [32] have demonstrated that the average treatment effect estimates can
be highly sensitive to the working propensity score model. Conventionally, these
two issues are handled by a specification search—the estimated propensity score is
applicable only if it balances covariates well. A simple strategy is to gradually in-
crease the model complexity by forward stepwise regression ([29], Sections 13.3–
13.4), but as a numerical example below indicates, this has no guarantee to achieve
sufficient covariate balance eventually.

More recently, several new methods were proposed to directly improve covari-
ate balance in the design of an observational study, either by modifying the propen-
sity score model [17, 27] or by directly constructing sample weights for the obser-
vations [7, 19, 21, 31, 53]. These methods have been shown to work very well
empirically (particularly in smaller samples) and some asymptotic justifications
were subsequently provided (e.g., [13, 52]).

In this paper, we will introduce a general framework that unifies and general-
izes these proposals. The solution provided here is conceptually simple: in order
to improve covariate balance of a propensity score model, one just needs to mini-
mize, instead of the most widely used negative Bernoulli likelihood, a special loss
function tailored to the estimand.

1.1. A toy example. To demonstrate the simplicity and effectiveness of the
tailored loss function approach, we use the prominent simulation example of
Kang and Schafer [32]. In this example, for each unit i = 1, . . . , n = 200,
suppose that (Zi1,Zi2,Zi3,Zi4)

T is independently distributed as N(0, I4) and
the true propensity scores are pi = P(Ti = 1|Zi ) = expit(−Zi1 + 0.5Zi2 −
0.25Zi3 − 0.1Zi4) where Ti ∈ {0,1} is the treatment label. However, the ob-
served covariates are nonlinear transformations of Z: Xi1 = exp(Zi1/2), Xi2 =
Zi2/(1 + exp(Zi1)) + 10, Xi3 = (Zi1Zi3/25 + 0.6)3, Xi4 = (Zi2 + Zi4 + 20)2.
To model the propensity score, we use a logistic model with some or all of
{X1,X2,X3,X4,X

2
1,X

2
2,X

2
3,X

2
4} as regressors. Using forward stepwise regres-

sion, two series of models are fitted using the Bernoulli likelihood and the loss
function tailored for estimating the average treatment effect (ATE, see Section 3.1
for more detail). Inverse probability weights (IPW) are obtained from each fitted
model and standardized differences of the regressors are used to measure covariate
imbalance [41].

Figure 1 shows the paths of standardized difference for one realization of the
simulation. A widely used criterion is that a standardized difference above 10% is
unacceptable [3, 37], which is the dashed line in Figure 1. The left panel of Fig-
ure 1 uses the Bernoulli likelihood to fit and select logistic regression models. The
standardized difference paths are not monotonically decreasing and never achieve
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FIG. 1. The tailored loss function proposed in this paper is much better than Bernoulli likelihood
at reducing covariate imbalance. Propensity score is modeled by logistic regression and fitted by
the tailored loss function or Bernoulli likelihood. Standardized difference is computed using inverse
probability weighting (IPW) and pooled variance for the two treatment groups [41]. A standardized
difference above 10% is often viewed unacceptable by many practitioners.

the satisfactory level (10%) for all the regressors. In contrast, the right panel of
Figure 1 uses the tailored loss function and all eight predictors are well balanced
after three steps. In fact, as a feature of using the tailored loss function, all active
regressors (variables in the selected model) are exactly balanced.

The toy example here is merely for presentation, but it clearly demonstrates that
the proposed tailored loss function approach excels in balancing covariates. We
will discuss some practical strategies that are more sophisticated than the forward
stepwise regression in Section 4.

1.2. Related work and our contribution. The tailored loss function frame-
work introduced here unifies a number of existing methods by exploring the (La-
grangian) duality of propensity scores and sample weights. Roughly speaking, the
“moment condition” approaches advocated by Graham, De Xavier Pinto and Egel
[17] and Imai and Ratkovic [27] correspond to the primal problem of minimizing
the tailored loss over propensity score models, while the “empirical balancing”
proposals (e.g., [19, 53]) correspond to the dual problem that solves some con-
vex optimization problem over the sample weights subject to covariate balance
constraints. The framework presented here is largely motivated by the aforemen-
tioned works. Part of the contribution of this paper is to bring together many pieces
scattered in this literature—moment condition of estimating the propensity score,
covariate balance, bias-variance tradeoff, different estimands, link function of a
generalized linear model (the latter two are often overlooked)—and elucidate their
roles in the design and analysis of an observational study.
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A reader familiar with the development of this literature may recognize that
many elements in the framework proposed here have already appeared in some
previous works. Perhaps the closest approach is that of Imai and Ratkovic [27], as
their covariate balancing moment conditions are essentially the first-order condi-
tions of minimizing the tailored loss function. However, there are several benefits
by taking a decision theoretic approach:

• We can visualize the tailored loss functions and obtain more insights. (See
the Supplementary Material [51] for more detail.)

• We can understand when the moment equations have a unique solution by
investigating convexity of the loss function.

• More importantly, we can use predictive algorithms developed in statisti-
cal learning to optimize covariate balance in high-dimensional problems and rich
function classes. Moment constraints methods usually exactly balance several se-
lected covariate functions but leave the others unattended. By regularizing the tai-
lored loss function, the methods proposed in Section 4 can inexactly balance high-
dimensional or even infinite-dimensional covariate functions. This usually results
in more accurate estimates and more robust statistical inference.

Compared to the empirical balancing methods, the tailored loss function frame-
work shows that they are essentially equivalent to certain models of propensity
score. Asymptotic theory that are already established to propensity-score based
estimators can now apply to empirical balancing methods. Our framework also
allows the use of balancing weights in estimating more general estimands. For
example, we can produce balancing weights to estimate the optimally weighted
average treatment effect proposed by Crump et al. [10] that is more stable when
there is limited overlap [33].

Last but not the least, we provide a novel approach to make honest, design-
based and finite-sample inference for the weighted ATE. Instead of the improbable
but commonly required assumption that the propensity score is correctly specified,
the only major assumption we make is that the (unknown) true outcome regression
function is in a given class. The function class can be high-dimensional and very
rich. We give a Bayesian interpretation that underlies any design of an observa-
tional study and provide extensive numerical results to demonstrate the tradeoff in
making different assumptions about the outcome regression function.

The next two sections are devoted to introducing the tailored loss functions.
Section 4 proposes practical strategies motivated by statistical learning. Section 5
then considers some theoretical aspects about the tailored loss functions, including
the dual interpretation, Bayesian interpretation, a new method for design-based in-
ference and how to choose the tuning parameters. Section 6 uses numerical exam-
ples in two new settings to demonstrate the flexibility of the proposed framework
and examine its empirical performance. Section 7 concludes the paper with some
practical recommendations. Technical proofs are provided in the Supplementary
Material [51].
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2. Preliminaries on statistical decision theory. To start with, propensity
score estimation can be viewed as a decision problem and this section introduces
some terminologies in statistical decision theory. In a typical problem of making
probabilistic forecast, the decision maker needs to pick an element as the pre-
diction from P , a convex class of probability measures on some general sample
space �. For example, a weather forecaster needs to report the chance of rain to-
morrow, so the sample space is � = {rain,no rain} and the prediction is a Bernoulli
distribution. Propensity score is a (conditional) probability measure, but recall that
the goal is to achieve satisfactory covariate balance rather than the best prediction
of treatment assignment. At a high level, this is precisely the reason why we want
to tailor the loss function when estimating the propensity score.

2.1. Proper scoring rules. At the core of statistical decision theory is the scor-
ing rule, which can be any extended real-valued function S : P × � → [−∞,∞]
such that S(P, ·) is P-integrable for all P ∈ P [16]. If the decision is P and ω

materializes, the decision maker’s reward or utility is S(P,ω). An equivalent but
more pessimistic terminology is loss function, which is just the negative scoring
rule. These two terms will be used interchangeably in this paper.

If the outcome is probabilistic in nature and the actual probability distribution
is Q, the expected score of forecasting P is

S(P,Q) =
∫

S(P,ω)Q(dω).

To encourage honest decisions, the scoring rule S is generally required to be
proper,

(1) S(Q,Q) ≥ S(P,Q) ∀P,Q ∈ P .

The rule is called strictly proper if (1) holds with equality if and only if P = Q.
In observational studies, the sample space is commonly dichotomous � = {0,1}

(two treatment groups: 0 for control and 1 for treated), though there is no essential
difficulty to extend the approach in this paper to |�| > 2 (multiple treatments) or
� ⊂R (continuous treatment). In the binary case, a probability distribution P can
be characterized by a single parameter 0 ≤ p ≤ 1, the probability of treatment.
A classical result of Savage [45] asserts that every real-valued [except for possibly
S(0,1) = ∞ or S(1,0) = −∞] proper scoring rule S can be written as

S(p,1) = G(p) + (1 − p)G′(p) =
∫

(1 − p)G′′(p)dp + const,

S(p,0) = G(p) − pG′(p) = −
∫

pG′′(p)dp + const,

where G : [0,1] → R is a convex function and G′(p) is a subgradient of G at the
point p ∈ [0,1]. When G is second-order differentiable, an equivalent but more
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convenient representation is

(2)
∂

∂p
S(p, t) = (t − p)G′′(p), t = 0,1.

Since the function G uniquely defines a scoring rule S, we shall call G a scoring
rule as well.

A useful class of proper scoring rules is the following Beta family:

(3) G′′
α,β(p) = pα−1(1 − p)β−1, −∞ < α,β < ∞.

These scoring rules were first introduced by Buja, Stuetzle and Shen [5] to ap-
proximate the weighted misclassification loss by taking the limit α,β → ∞ and
α/β → c. For example, if c = 1, the score Gα,β converges to the zero-one misclas-
sification loss. Many important scoring rules belong to this family. For example,
the Bernoulli log-likelihood function S(p, t) = t logp + (1 − t) log(1 − p) cor-
responds to α = β = 0, and the Brier score or the squared error loss S(p, t) =
−(t − p)2 corresponds to α = β = 1. For our purpose of estimating propensity
score, it will be shown later that the subfamily −1 ≤ α,β ≤ 0 is particularly use-
ful.

2.2. Propensity score modeling by maximizing score. Given i.i.d. observa-
tions (Xi , Ti) ∈ R

d × {0,1}, i = 1,2, . . . , n where Ti is the binary treatment
assignment and Xi is a vector of d pretreatment covariates, we want to fit a
model for the propensity score p(X) = P(T = 1|X) in a prespecified family
P = {pθ (X) : θ ∈ �}. Later on we will consider very rich model family, but for
now let us focus on the generalized linear models with finite-dimensional regres-
sors φ(X) = (φ1(X), . . . , φm(X))T [35]

(4) pθ(X) = l−1(
fθ (X)

) = l−1(
θT φ(X)

)
,

where l is the link function. In our framework, the tailored loss function is deter-
mined by the link function l (and the estimand). The most common choice is the
logistic link

(5) l(p) = log
p

1 − p
, l−1(f ) = ef

1 + ef
,

which will be used in all the numerical examples of this paper.
Given a strictly proper scoring rule S, the maximum score (minimum loss) esti-

mator of θ is obtained by maximizing the average score

(6) θ̂n = arg max
θ

Sn(θ) = 1

n

n∑
i=1

S
(
pθ(Xi ), Ti

)
.

Notice that an affine transformation S(p, t) 
→ aS(p, t) + b(t) for any a > 0 and
−∞ < b(t) < ∞ gives the same estimator θ̂n. Due to this reason, we will not dif-
ferentiate between these equivalent scoring rules and use a single function S(p, t)

to represent all the equivalent ones.
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When S is differentiable and assuming exchangeability of taking expectation
and derivative, the maximizer of E[Sn(θ)], which is indeed θ if the propensity
score is correctly specified p(x) = pθ (x) (a property called Fisher consistency), is
characterized by the following estimating equations:

(7) ∇θE
[
Sn(θ)

] = E
[∇θSn(θ)

] = EX,T

[∇θS
(
l−1(

θT φ(X)
)
, T

)] = 0.

3. Tailoring the loss function.

3.1. Covariate balancing scoring rules. The tailored loss function framework
is motivated by reinterpreting the first-order conditions (7) as covariate balancing
constraints. Using the representation (2) and the inverse function theorem, we can
rewrite (7) as

(8) E
[(

T − (1 − T )
)
w(X, T ) · φ(X)

] = 0,

where the weighting function

(9) w(x, t) = G′′(p(x))

l′(p(x))

[
t
(
1 − p(x)

) + (1 − t)p(x)
]

is determined by the scoring rule through G′′ and the link function l. The maximum
score estimator θ̂n can be obtained by solving (8) with the expectation over the
empirical distribution of (X, T ) instead of the population. When the optimization
problem (6) is strongly convex, the solution to (8) is also unique.

The next key observation is that every weighting function w(x, t) defines a
weighted average treatment effect (ATE). To see this, we need to introduce the
Neyman–Rubin causal model. Let Y(t), t = 0,1 be the potential outcomes and
Y = T Y (1) + (1 − T )Y (0) be the observed outcome. This paper assumes strong
ignorability of treatment assignment [39], so the observational study is free of
hidden bias.

ASSUMPTION 1. T ⊥⊥ (Y (0), Y (1))|X, where ⊥⊥ stands for (conditional) in-
dependence.

Let the observed outcomes be Yi , i = 1, . . . , n. Naturally, the weighted differ-
ence of Yi ,

(10) τ̂ = ∑
i:Ti=1

w(Xi , Ti)Yi − ∑
i:Ti=0

w(Xi , Ti)Yi,

estimates the following population parameter:

τv = EX,T ,Y

{(
T − (1 − T )

)
w(X, T )Y

} = EX,Y

[
v(X)

(
Y(1) − Y(0)

)]
,
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TABLE 1
Correspondence of estimands, sample weighting functions and the covariate balancing scoring

rules (corresponding to the logistic link) in the proposed Beta family. The estimand is a weighted
average treatment effect τα,β = E[vα,β(X)(Y (1) − Y (0))] and τ∗ = τα,β/E[vα,β(X)]

α β Estimand w(x,1) w(x,0) S(p,1) S(p,0)

−1 −1 τ = τ∗ = E[Y (1) − Y (0)] 1
p(x)

1
1−p(x)

log p
1−p

− 1
p log 1−p

p − 1
1−p

−1 0 τ∗ = E[Y (1) − Y (0)|T = 0] 1−p(x)
p(x)

1 − 1
p log 1−p

p

0 −1 τ∗ = E[Y (1) − Y (0)|T = 1] 1 p(x)
1−p(x)

log p
1−p

− 1
1−p

0 0 τ = E[p(X)(1 − p(X))· 1 − p(x) p(x) logp log(1 − p)

(Y (1) − Y (0))]

which is an (unnormalized) weighted average treatment effect. Here

(11)

v(X) = E
[
T · w(X,1)|X] = E

[
(1 − T ) · w(X,0)|X]

= G′′(p(X))p(X)(1 − p(X))

l′(p(X))
.

In practice, it is usually more meaningful to estimate the normalized version τ ∗
w =

τw/E[w(X)] by normalizing the weights wi = w(Xi , Ti), i = 1, . . . , n separately
among the treated and the control: ŵ∗

i = ŵi/
∑

j :Tj=Ti
ŵj , i = 1, . . . , n.

Table 1 shows that four mostly commonly used estimands, the average treat-
ment effect (ATE), the average treatment effect on the control (ATC), the average
treatment effect on the treated (ATT) and the optimally weighted average treatment
effect (OWATE) under homoscedasticity [10], are weighted average treatment ef-
fects with

(12) vα,β(X) = p(X)α+1(
1 − p(X)

)β+1

with different combinations of (α,β).
Therefore, in order to estimate τα,β = E[vα,β(X)(Y (1)−Y(0))], we just need to

equate (11) with (12) and solve for G. The solution in general depends on the link
function l. If the logistic link is used, it is easy to show that the solution belongs to
the Beta family of scoring rules defined in (3). The loss functions corresponding
to the four estimands are also listed in (12).

PROPOSITION 1. Under Assumption 1, if l is the logistic link function, then
τv = τα,β if G = Gα,β .

To use the framework developed here in practice, the user should “invert” the
development in this section. First, the user should determine the estimand by its
interpretation and whether there is insufficient covariate overlap (so OWATE may
be desirable). Second, the user should decide on a link function (we recommend



TAILORED LOSS FUNCTIONS 973

logistic link). Lastly, the user can equate (11) with (12) or look up Table 1 to find
the corresponding scoring rule.

The main advantage of using the “correct” scoring rule is that the weights will
automatically balance the predictors φ(X). This is a direct consequence of the
estimating equations (8) and is summarized in the next theorem. This is precisely
the reason we call Gα,β or the corresponding Sα,β the covariate balancing scoring
rule (CBSR) with respect to the estimand τα,β and the logistic link function in this
paper.

THEOREM 1. If l is the logistic link function and θ̂ is obtained as in (6) by
maximizing the CBSR corresponding to l and the estimand. Then the weights ŵi ,
i = 1, . . . , n computed by (9) exactly balance the sample regressors

(13)
∑

i:Ti=1

ŵiφ(Xi ) = ∑
i:Ti=0

ŵiφ(Xi ).

Furthermore, if the predictors include an intercept term [i.e., 1 is in the linear span
of φ(X)], then ŵ∗ also satisfies (13).

Note that the Bernoulli likelihood (α = β = 0) indeed corresponds to the esti-
mand OWATE instead of the more commonly used ATE or ATT. This corresponds
to the “overlap weights” recently proposed by Li, Morgan and Zaslavsky [33],
where each observation’s weight is proportional to the probability of being as-
signed to the opposite group. Theorem 3 of Li, Morgan and Zaslavsky [33] states
that the “overlap weights” exactly balances the regressors when Bernoulli likeli-
hood is used, which is a special case of our Theorem 1.

3.2. Convexity. To obtain covariate balancing propensity scores, one can solve
the estimating equations (8) directly without using the tailored loss function. This
is essentially the approach taken by Imai and Ratkovic [27], although it is unclear
at this point that (13) has a unique solution. The first advantage of introducing the
tailored loss functions is that some CBSR is strongly concave, so the solution to
its first-order condition is always unique.

PROPOSITION 2. Suppose the estimand is in the Beta-family equation (12)
and let S be the CBSR corresponding to a link function l such that v = vα,β . Then
the score functions S(l−1(f ),0) and S(l−1(f ),1) are both concave functions of
f ∈ R if and only if −1 ≤ α,β ≤ 1. Moreover, if (α,β) �= (−1,0), S(l−1(f ),0) is
strongly concave; if (α,β) �= (0,−1), S(l−1(f ),1) is strongly concave.

Notice that the range of (α,β) in Proposition 2 includes the four estimands
listed in Table 1. As a consequence, their corresponding score maximization prob-
lems can be solved very efficiently (e.g., by Newton’s method). Motivated by this
observation, in the next section we propose to fit propensity score models with
more sophisticated strategies stemming from statistical learning.
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4. Adaptive strategies. The generalized linear model considered in Section 3
amounts to a fixed low-dimensional model space

PGLM = {
p(x) = l−1(

f (x)
) : f (x) ∈ span

(
φ1(x), φ2(x), . . . , φm(x)

)T }
.

As mentioned previously in Section 1, in principle, we should not restrict to a
single propensity score model as it can be misspecified. Propensity score is merely
a nuisance parameter in estimating weighted ATEs. We shall see repeatedly in later
sections that, in finite sample, it is more important to use flexible propensity score
models that balance covariates well than to estimate the propensity score accu-
rately. In this section, we incorporate machine learning methods in our framework
to expand the model space.

4.1. Forward stepwise regression. To increase model complexity, perhaps the
most straightforward approach is forward stepwise regression as illustrated earlier
in Section 1. Instead of a fixed model space, forward stepwise gradually increases
model complexity. Using the tailored loss functions in Section 3, active covariates
are always exactly balanced and inactive covariates are usually well balanced also.

Motivated by this strategy, Hirano, Imbens and Ridder [24] studied the effi-
ciency of the IPW estimator when the dimension of the regressors φ(x) is allowed
to increase as the sample size n grows. Their renowned results claim that this
sieve IPW estimator is semiparametrically efficient for estimating the weighted
ATE. Here we show that the semiparametric efficiency still holds if the Bernoulli
likelihood, the loss function that Hirano, Imbens and Ridder [24] used to esti-
mate the propensity score, is replaced by the Beta family of scoring rules Gα,β ,
−1 ≤ α,β ≤ 0 in (3) or essentially any strongly concave scoring rule. This result
is not too surprising as the propensity score is just a nuisance parameter whose
estimation accuracy is of less importance in semiparametric inference. Conceptu-
ally, however, this result suggests that the investigator has the freedom to choose
the loss function in estimating the propensity score and do not need to worry about
loss of asymptotic efficiency. The advantages of using a tailored loss function are
better accuracy in finite sample and more robustness against model misspecifica-
tion, as detailed later in Section 5.

Let us briefly review the sieve logistic regression in Hirano, Imbens and
Ridder [24]. For m = 1,2, . . . , let φm(x) = (ϕ1m(x), ϕ2m(x), . . . , ϕmm(x))T be
a triangular array of orthogonal polynomials, which are obtained by orthogo-
nalizing the power series: ψkm(x) = ∏d

j=1 x
γkj

j , where γ k = (γk1, . . . , γkd)T is
an d-dimensional multi-index of nonnegative integers and satisfies

∑d
j=1 γkj ≤∑d

j=1 γk+1,j . Let l be the logistic link function (5). Hirano, Imbens and Ridder
[24] estimated the propensity score by maximizing the log-likelihood

θ̂MLE = arg max
θ

1

n

n∑
i=1

Ti log
(
l−1(

φm(Xi )
T θ

))+ (1−Ti) log
(
1− l−1(

φm(Xi )
T θ

))
.

This is a special case of the score maximization problem (6) by setting S = S0,0.
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Theorem 2 below is an extension to the main theorem of Hirano, Imbens and
Ridder [24]. Besides strong ignorability, the other technical assumptions in Hirano,
Imbens and Ridder [24] are listed in the Supplementary Material [51]. Compared
to the original theorem which always uses the maximum likelihood regardless of
the estimand, the scoring rule is now tailored according to the estimand as de-
scribed in Section 3.

THEOREM 2. Suppose we use the Beta-family of covariate balancing scoring
rules defined by equations (2) and (3) with −1 ≤ α,β ≤ 0 and the logistic link (5).
Under Assumption 1 and the technical assumptions in Hirano, Imbens and Ridder
[24], if we choose suitable m growing with n, the propensity score weighting esti-
mator τ̂α,β and its normalized version τ̂ ∗

α,β are consistent for τα,β and τ ∗
α,β . More-

over, they reach the semiparametric efficiency bound for estimating τα,β and τ ∗
α,β .

4.2. Regularized regression. In predictive modeling, stepwise regression is
usually suboptimal especially if we have high-dimensional covariates (see, e.g.,
[20], Section 3). A more principled approach is to penalize the loss function

(14) θ̂λ = arg max
p(·)∈P

1

n

n∑
i=1

S
(
p(Xi ), Ti

) − λJ
(
p(·)), p(x) = l−1(

f (x)
)
,

where J (·) is a regularization function that penalizes overly-complicated propen-
sity score model p(x) and the tuning parameter λ controls the degree of regular-
ization. This estimator reduces to the optimum score estimator (6) when λ = 0.

The penalty term J (θ) should be chosen according to the model space P and the
investigator’s prior belief about the outcome regression function (see Section 5.4).
In this paper, we consider three alternatives of model space and penalty:

1. Regularized GLM: the model space is the same generalized linear model
PGLM with potentially high-dimensional covariates, but the average score is pe-
nalized by the la-norm of θ , J (pθ ) = 1

a

∑m
k=1 |θk|a for some a ≥ 1. Some typ-

ical choices are the l1 norm J (pθ ) = ‖θ‖1 (lasso) and the squared l2 norm
J (pθ ) = ‖θ‖2

2 (ridge regression).
2. Reproducing kernel Hilbert space (RKHS): the model space is the RKHS

generated by a given kernel K , PRKHS = l−1(HK), and the penalty is the corre-
sponding norm of f , J (p(·)) = ‖f ‖HK

.
3. Boosted trees: the model space is the additive trees: Pk-boost = {p(x) =

l−1(f (x)) : f = f1 +f2 +· · ·+fm : fk ∈ Fd-tree, k = 1,2, . . .}, where Fd-tree is the
space of step functions in the classification and regression tree (CART) with depth
at most d [4]. This space is quite large and approximate fitting algorithms (boost-
ing) must be used. There is no exact penalty function, but as noticed by Friedman,
Hastie and Tibshirani [14] and illustrated later, boosting is closely related to the
lasso penalty in regularized regression.

Since all the penalty terms considered here are convex, the regularized opti-
mization problems can be solved very efficiently.
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4.3. RKHS regression. Next we elaborate on the RKHS and boosting ap-
proaches since they might be foreign to researchers in causal inference. RKHS
regression is a popular nonparametric method in machine learning that essentially
extends the regularized GLM with ridge penalty to an infinite dimensional space
[25, 48]. Let HK be the RKHS generated by the kernel function K : X ×X →R,
which describes similarity between two vectors of pretreatment covariates. The
RKHS model is most easily understood through the “feature map” interpretation.
Suppose that K has an eigen-expansion K(x,x′) = ∑∞

k=1 ckφk(x)φk(x
′) with

ck ≥ 0,
∑∞

k=1 c2
k < ∞. Elements of HK have a series expansion

f (x) =
∞∑

k=1

θkφk(x), ‖f ‖2
HK

=
∞∑

k=1

θ2
k /ck.

The eigenfunctions {φ1(x), φ2(x), . . .} can be viewed as new regressors gener-
ated by the low-dimensional covariates X. The standard generalized linear model
(4) corresponds to a finite-dimensional linear reproducing kernel K(x,x′) =∑m

k=1 φk(x)φk(x
′), but in general the eigenfunctions (i.e., predictors) {φk}∞k=1 can

be infinite-dimensional.
Although the parameter θ is potentially infinite-dimensional, the numerical

problem (14) is computationally feasible via the “kernel trick” if the penalty
is a function of the RKHS norm of f (·). The representer theorem (cf. [48])
states that the solution is indeed finite-dimensional and has the form f̂ (x) =∑n

i=1 γ̂iK(x,Xi ). Consequently, the optimization problem (14) can be solved with
the n-dimension parameter vector γ .

As a remark, the idea of using a kernel to describe similarity between covariate
vectors is not entirely new to observational studies. However, most of the previous
literature (e.g., [22]) uses kernel as a smoothing technique for propensity score
estimation (similar to kernel density estimation) rather than generating a RKHS,
although the kernel functions can be the same in principle.

4.4. Boosting. Boosting (particularly gradient boosting) can be viewed as a
greedy algorithm of function approximation [15]. Let f̂ be the current guess of f ,
then the next guess is given by the steepest gradient descent f̂new = f̂ + η̂ĥ, where

ĥ = arg max
h∈Fk-tree

∂

∂η

1

n

n∑
i=1

Sα,β

(
l−1(

f̂ (Xi ) + ηh(Xi )
)
, Ti

)
and(15)

η̂ = arg max
η≥0

1

n

n∑
i=1

Sα,β

(
l−1(

f̂ (Xi) + ηĥ(Xi )
)
, Ti

)
.(16)

When using gradient boosting in predictive modeling, a practical advice is to not
go fully along the gradient direction as it easily overfits the model. Friedman [15]
introduced an tuning parameter ν > 0 (usually much less than 1) and proposed to
shrink each gradient update: f̂new = f̂ + νη̂ĥ. Heuristically, this can be compared
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with the difference between the forward stepwise regression which commits to the
selected variables fully and the least angle regression or the lasso regression which
moves an infinitesimal step forward each time [12]. We shall see in the next section
that, in the context of propensity score estimation, boosting and lasso regression
also share a similar dual interpretation.

4.5. Adjustment by outcome regression. So far we have only considered
design-based estimators by building a propensity score model to weight the ob-
servations. Such estimators do not attempt to build models for the potential out-
comes, Y(0) and Y(1). Design-based inference is arguably more straightforward
as it attempts to mimic a randomized experiment by observation data. Neverthe-
less, in some applications it is reasonable to improve estimation accuracy by fitting
outcome regression models.

Here we describe the augmented inverse probability weighting (AIPW) estima-
tors of ATT and ATE. Let g0(X) = E[Y(0)|X] and g1(X) = E[Y(1)|X] be the true
regression functions of the potential outcomes and ĝ0 and ĝ1 be the correspond-
ing estimates. Let wATT and wATE be the weights obtained by maximizing CBSR
(S0,−1 for ATT and S−1,−1 for ATE) with any of the above adaptive strategies. The
AIPW estimators [38] are

τ̂ATT
AIPW = ∑

Ti=1

wATT
i

(
Yi − ĝ0(Xi )

) − ∑
Ti=0

wATT
i

(
Yi − ĝ0(Xi )

)
and

τ̂ATE
AIPW = 1

n

n∑
i=1

(
ĝ1(Xi ) − ĝ0(Xi)

) + ∑
Ti=1

wATE
i

(
Yi − ĝ1(Xi )

)

− ∑
Ti=0

wATE
i

(
Yi − ĝ0(Xi )

)
.

We will compare IPW and AIPW estimators in the numerical examples in Sec-
tion 6.

5. Theoretical aspects. We have proposed a very general framework and sev-
eral flexible methods to estimate the propensity score. Several important questions
are left unsettled: if different loss functions are asymptotically equivalent as indi-
cated by Theorem 2, why should we use the tailored loss functions in this paper
(or any method listed in Section 1.2)? How should we choose among the adap-
tive strategies in Section 4? What is the bias-variance tradeoff in regularizing the
propensity score model and how should we choose the regularization parameter
λ in equation (14)? After fitting a propensity score model, how do we construct
a confidence interval for the target parameter? This section addresses these ques-
tions through investigating the Lagrangian dual of the propensity score estimation
problem.
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5.1. Covariate imbalance and bias. As in Section 4.5, denote the true out-
come regression functions by gt (X) = E[Y(t)|X], t = 0,1. Except for ATT, in this
section we will only consider bias under the constant treatment effect model that
g1(x) = g0(x) + τ ∗ for all x. By definition, τ ∗ is also the (normalized) weighted
average treatment effects.

Suppose g0(x) has the expansion g0(x) = ∑∞
k=1 βkφk(x) for some functions

{φ1(x), φ2(x), . . .}. Let εi = Yi − gTi
(Xi ) so E[εi |Ti,Xi] = 0. Given any weight-

ing function w(x, t), t = 0,1 on the sample [e.g., equations (11) and (12) with
estimated propensity score] and denote wi = w(Xi , Ti), the IPW-type estimator
τ̂ ∗ defined in (10) has the decomposition

τ̂ ∗ = τ ∗ +
[ ∑
Ti=1

wig0(Xi ) − ∑
Ti=0

wig0(Xi )

]
+

[ ∑
Ti=1

wiεi − ∑
Ti=0

wiεi

]

=
∞∑

k=1

βk ·
[ ∑
Ti=1

wiφk(Xi ) − ∑
Ti=0

wiφk(Xi )

]
+

[ ∑
Ti=1

wiεi − ∑
Ti=0

wiεi

]
.

(17)

The second term always has mean 0, so the bias of τ̂ ∗ is given by the first term
(a fixed quantity conditional on {Ti,Xi}ni=1), which is just the imbalance with
respect to the covariate function g0(x). The second line decomposes the bias into
the imbalance with respect to the basis functions {φ1(x), φ2(x), . . .}.

Equation (17) highlights the importance of covariate balance in reducing the
bias of τ̂ ∗, especially if the propensity score model is misspecified. If the propen-
sity score is modeled by a GLM with fixed regressors φ(x) = (φ1(x), . . . , φm(x))

and fitted by maximizing CBSR as in (6), an immediate corollary is the following.

THEOREM 3. Under Assumption 1 and constant treatment effect that g1(x) ≡
g0(x) + τ ∗ for all x, the estimator τ̂ ∗ obtained by maximizing CBSR with re-
gressors φ(x) that include an intercept term is asymptotically unbiased if g0(x)

is in the linear span of {φ1(x), . . . , φm(x)}, or more generally if infη ‖g0(x) −
ηT φm(x)‖∞ → 0 as n,m(n) → ∞.

The last condition says that g0(x) can be uniformly approximated by functions
in the linear span of φ1(x), . . . , φm(x) as m → ∞. This holds under very mild
assumption of g0. For example, if the support of X is compact and g0(x) is contin-
uous, the Weierstrass approximation theorem ensures that g0(x) can be uniformly
approximated by polynomials.

Finally, we compare the results in Theorems 2 and 3. The main difference is
that Theorem 2 uses propensity score models with increasing complexity, whereas
Proposition 3 assumes uniform approximation for the outcome regression function.
Since the unbiasedness in Proposition 3 does not make any assumption on the
propensity score, the estimator τ̂∗ obtained by maximizing CBSR is more robust
to the misspecified or overfitted propensity score model.
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5.2. Lagrangian duality. In Section 1.2, we mentioned that the recently pro-
posed “moment condition” approaches (e.g., [27]) and the “empirical balancing”
approaches (e.g., [53]) can be unified under the framework proposed in this paper.
We now elucidate this equivalence by exploring the Lagrangian dual of maximiz-
ing CBSR. First let us rewrite the score optimization problem (6) by introducing
new variables fi for each observation i:

maximize
f,θ

1

n

n∑
i=1

S
(
l−1(fi), Ti

)

subject to fi = θT φ(Xi ), i = 1, . . . , n.

(18)

Let the Lagrangian multiplier associated with the ith constraint be (2Ti − 1)wi/n.
By setting the partial derivatives of the Lagrangian equal to 0, we obtain

∂Lag

∂θk

= 1

n

n∑
i=1

(2Ti − 1)wiφk(Xi ) = 0, k = 1, . . . ,m,(19)

∂Lag

∂fi

= 1

n

(
∂S(l−1(fi), Ti)

∂fi

+ (2Ti − 1)wi

)
= 0, i = 1, . . . , n.(20)

Equation (19) is the same as (13), meaning the optimal dual variables w balance
the predictors φ1, . . . , φm. Equation (20) determines w from f . By using the fact
(2) and the scoring rule is CBSR, it turns out that wi = w(Xi , Ti) is exactly the
weights defined in (9), that is, the weights w in our estimator τ̂ are dual variables
of the CBSR-maximization problem (6).

Next we write down the Lagrangian dual problem of (18). In general, there is
no explicit form because it is difficult to invert (9). However, in the particularly
interesting cases α = 0, β = −1 (ATT) and α = −1, β = −1 (ATE), the dual
problems are algebraically tractable. When α = 0, β = −1 and if an intercept term
is included in the GLM, (an equivalent form of) the dual problem is given by

minimize
w≥0

∑
i:Ti=0

wi logwi

subject to
∑

i:Ti=0

wiφk(Xi ) = ∑
j :Tj=1

φk(Xj ), k = 1, . . . ,m.
(21)

When α = β = −1, the inverse probability weights are always greater than 1.
The Lagrangian dual problem in this case is given by

minimize
n∑

i=1

(wi − 1) log(wi − 1) − wi

subject to
∑

i:Ti=0

wiφk(Xi ) = ∑
j :Tj=1

wjφk(Xj ), k = 1, . . . ,m.

wi ≥ 1, i = 1, . . . , n.

(22)
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The objective functions in (21) and (22) encourage the weights w to be close to
uniform. They belong to a general distance measure

∑n
i=1 D(wi, vi) in Deville and

Särndal [11], where D(w,v) is a continuously differentiable and strongly convex
function in w and achieves its minimum at w = v. When the estimand is ATT (or
ATE), the target weight v is equal to 1 (or 2). Estimators of this kind are often
called “calibration estimators” in survey sampling because the weighted sample
averages are empirically calibrated to some known population averages.

All the previously proposed “empirical balancing” methods operate by solv-
ing convex optimization problems similar to (21) or (22). The maximum entropy
problem (21) appeared first in Hainmueller [19] to estimate ATT and is called
“entropy balancing.” Zhao and Percival [52] used the primal-dual connection de-
scribed above to show Entropy Balancing is doubly robust, a stronger property than
Theorems 2 and 3. Unfortunately, the double robustness property does not extend
to other estimands. Chan, Yam and Zhang [7] studied the calibration estimators
with the general distance D and showed the estimator τ̂ is globally semiparamet-
ric efficient. When the estimand is ATE, Chan, Yam and Zhang [7] require the
weighted sums of φk in (22) to be calibrated to

∑n
i=1 φk(Xi )/n also. In view of

Theorem 2, this extra calibration is not necessary for semiparametric efficiency. In
an extension to entropy balancing, Hazlett [21] proposed to empirically balance
kernel representers instead of fixed regressors. This corresponds to unregularized
(λ = 0) RKHS regression introduced in Section 4.3. The unregularized problem
is in general unfeasible, so Hazlett [21] had to tweak the objective to find a us-
able solution. Zubizarreta [53] proposed to solve a problem similar to (22) (the
objective is replaced by the coefficient of variation of w and the exact balancing
constraints are relaxed to tolerance level). Since that problem corresponds to use
the unconventional link function l(p) = 1/p, Zubizarreta [53] needed to include
the additional constraint that w is nonnegative to avoid model extrapolation.

5.3. Inexact balance, multivariate two-sample test and bias-variance tradeoff.
When the CBSR maximization problem is regularized as in (14), its dual objec-
tive functions in (21) and (22) remain unchanged, but the covariate balancing con-
straints are no longer exact. Consider the regularized GLM approach in Section 4.2
with J (pθ ) = ‖θ‖a

a/a for some a ≥ 1, the dual constraints are given by

(23)

∣∣∣∣ ∑
Ti=1

w
θ̂λ

(Xi , Ti)φk(Xi ) − ∑
Ti=0

w
θ̂λ

(Xi , Ti)φk(Xi )

∣∣∣∣
≤ λ · ∣∣(θ̂λ)k

∣∣a−1
, k = 1, . . . ,m.

The equality in (23) holds if (θ̂λ)k �= 0, which is generally true unless a = 1.
Following Section 5.1, if we assume constant treatment effect E[Y(1)|X] ≡

E[Y(0)|X] + τ ∗ and the outcome regression function is in the linear span of the
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regressors g0(x) = gβ(x) = ∑m
k=1 βkφk(x), then the absolute bias of τ̂ ∗

λ is∣∣∣∣∣
∞∑

k=1

βk ·
[ ∑
Ti=1

wiφk(Xi ) − ∑
Ti=0

wiφk(Xi )

]∣∣∣∣∣ ≤ λ

∞∑
k=1

|βk| ·
∣∣(θ̂λ)k

∣∣a−1

≤ λ‖β‖a‖θ̂λ‖a−1
a .

The last inequality is due to Hölder’s inequality and is tight. In other words, the
dual constraints imply that

(24) sup
‖β‖a≤1

∣∣bias
(
τ̂ ∗
λ , gβ

)∣∣ = λ‖θ̂λ‖a−1
a , a ≥ 1.

The next proposition states that the right-hand side of the last equation is de-
creasing as the degree of regularization λ becomes smaller. This is consistent with
the heuristic that the more we regularize the propensity score model, the more bias
our estimator is.

PROPOSITION 3. Given a strictly proper scoring rule S and a link function
l such that S(l−1(f ), t) is strongly concave and second-order differentiable in
f ∈ R for t = 0,1, let θ̂λ be the solution to (14) with J (pθ ) = ‖θ‖a

a/a for a given
a ≥ 1. Then λ‖θ̂λ‖a−1

a is a strictly increasing function of λ > 0.

The Lagrangian dual problems (21) and (22) highlight the bias-variance trade-
off when using CBSR to estimate the propensity score. The dual objective func-
tion measures the uniformity of w (closely related to the variance of τ̂ ∗) and the
dual constraints bound the covariate imbalance of w [the minimax bias of τ̂ ∗ for
g0(x) = gη(x) = ∑m

k=1 ηkφk(x) given ‖η‖a]. The penalty parameter λ regulates
this bias-variance tradeoff. When λ → 0, the solution of (14) converges to the
weights w that minimizes the a/(a − 1)-norm of covariate imbalance. The limit of
r(λ) when λ → 0 can be 0 or some positive value, depending on if the unregular-
ized score maximization problem (6) is feasible or not. When λ → ∞, the solution
of (14) converges to uniform weights (i.e., no adjustment at all) whose estimator
τ̂ ∗ has the smallest variance.

A particularly interesting case is the lasso penalty J (pθ ) = ‖θ‖1. By (23), the
maximum covariate imbalance is bounded by λ. Therefore, the approximate bal-
ancing weights proposed by Zubizarreta [53], Wang and Zubizarreta [49] can be
viewed as putting weighted lasso penalty in propensity score estimation. Bounding
the maximum covariate imbalance can be useful when the dimension of X is high;
see Athey et al. [2].

The RKHS regression in Section 4.3 is a generalization to the regularized re-
gression with potentially infinite-dimensional predictors and weighted l2-norm
penalty. The maximum bias under the sharp null is given by

(25) sup
‖g0‖HK

≤1

∣∣bias
(
τ̂ ∗
λ , g0

)∣∣ ≤ λ‖f̂λ‖HK
.
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The boosted trees in Section 4.4 does not have a dual problem since it is solved
by a greedy algorithm. However, it shares a similar interpretation with the lasso-
regularized GLM. With some algebra, the gradient direction in (15) can be shown
to be

ĥ ∝ arg max
h∈Fk-tree

[ ∑
Ti=1

wih(Xi ) − ∑
Ti=0

wih(Xi )

]
.

That is, ĥ is currently the most imbalanced k-tree. By taking a small gradient step
in the direction ĥ, it reduces the covariate imbalance (bias) in this direction the
fastest among all k-trees. To see this, when k = 1, maximum covariate imbalance
among 1-trees is essentially the largest univariate Kolmogorov–Smirnov statistics.
We illustrate this interpretation of boosting using the toy example in Section 1.1.
Figure 2 plots the paths of Kolmogorov–Smirnov statistics as more trees are added
to the propensity score model (the step size is ν = 0.1). The behavior is similar to
the lasso regularized CBSR-maximization (23) which reduces the largest univari-
ate imbalance (instead of the largest Kolmogorov–Smirnov statistic).

As a final remark, the left-hand side of (24) or (25) indeed defines a distance
metric between two probability distributions (the empirical distributions of the co-
variates over treatment and control). This distance is called integral probability
metric [36] and has received increasing attention recently in the two-sample test-
ing literature. In particular, a very successful multivariate two-sample test [18]

FIG. 2. Boosting with 1-level trees is reducing the maximum Kolmogorov–Smirnov statistics. Two
estimands (ATT and ATE) and their corresponding CBSR are considered. The dashed line is the
upper 0.05 quantile of the asymptotic null distribution of the K-S statistic.
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uses the left-hand side of (25) as its test statistic. Here we have given an alternative
statistical motivation of considering the integral probability metric.

5.4. A Bayesian interpretation. Besides the maximum bias interpretation (25),
the RKHS model in Section 4.3 has another interesting Bayesian interpretation.
Suppose the regression function g0 is also random and generated from a Gaussian
random field prior g0(·) ∼ G(0,K) with mean function 0 and covariance function
K(·, ·). Then the design MSE of τ̂ ∗ (conditional on {Xi , Ti}ni=1) under constant
treatment effect is given by

Eg

[ ∑
Ti=1

wig0(Xi ) − ∑
Ti=0

wig0(Xi )

]2
+

n∑
i=1

w2
i Var(Yi |Xi , Ti)

= w̃T Kw̃ +
n∑

i=1

w2
i Var(Yi |Xi , Ti),

where w̃i = (2Ti − 1)wi , i = 1, . . . , n and (with some abuse of notation) K is
the sample covariance matrix Kij = K(Xi ,Xj ), i, j = 1, . . . , n. This is directly
tied to the dual problem of CBSR maximization. For example, when the estimand
is ATT and the link is logistic, using the “kernel trick” f̂ (Xi ) = Kγ̂ described
in Section 4.3 it is not difficult to show the dual problem minimizes λw̃T Kw̃ +∑n

i=1 wi logwi . Choosing different penalty parameters λ essentially amounts to
different prior beliefs about the conditional variance Var(Y |X, T ). We will explore
this Bayesian interpretation in a simulation example in Section 6.

In practice, optimally choosing the regularization parameter λ is essentially dif-
ficult as it requires prior knowledge about ‖g0‖HK

and the conditional variance
of Y (essentially the signal-to-noise ratio). Such difficulty exists in all previous
approaches and we only attempt to provide a reasonable solution here. Our expe-
rience with the adaptive procedures in Section 4 is that once λ is reasonably small,
the further reduction of maximum bias by decreasing λ becomes negligible in most
cases. Our best recommendation is to plot the curve of the maximum bias versus
λ, and then the user should use her best judgment based on prior knowledge about
the outcome regression. To mitigate the problem of choosing λ, next we describe
how to make valid statistical inference with an arbitrarily chosen λ.

5.5. Design-based finite-sample inference. When the treatment effect is not
homogeneous, the derivation above no longer holds in general, although the bias-
variance tradeoff is still expected if the effect is not too inhomogeneous. One ex-
ception is when the estimand is ATT. In this case, if the weights are normalized so
wi = 1 if Ti = 1, the finite sample bias of τ̂ ∗ is[ ∑

Ti=1

wig1(Xi ) − ∑
Ti=0

wig0(Xi )

]
− 1

n1

[ ∑
Ti=1

g1(Xi ) − g0(Xi )

]

=
[ ∑
Ti=1

wig0(Xi ) − ∑
Ti=0

wig0(Xi )

]
.
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Therefore, the bias of τ̂ ∗ is only determined by how well w balances g0. This fact
was noticed in Zhao and Percival [52], Athey et al. [2], Kallus [31] and will be
used to construct honest confidence interval for the ATT.

To derive design-based inference of weighted ATE, we assume strong ignora-
bility (Assumption 1) and Yi ∼ N(gTi

(Xi ), σ
2). The normality assumption is not

essential when sample size is large, but the homoscedastic assumption is more dif-
ficult to relax. We assume the treatment effect is constant if the estimand is not
ATT. The only other assumption we make is

ASSUMPTION 2. g0(x) is in a known RKHS HK .

Let the basis function of HK be {φ1(x), φ2(x), . . .} and g0(x) = ∑∞
k=1 βkφk(x).

Suppose the propensity score is estimated by the RKHS regression described in
Section 4.3. Then by the decomposition (17) and equation (25),

(26)
∣∣τ̂ ∗ − τ ∗∣∣ � λ‖g0‖HK

‖f̂λ‖HK
+ N

(
0, σ 2

n∑
i=1

w2
i

)
,

where � means stochastically smaller. Therefore, if we can find an upper-(α/2)

confidence limit for ‖g0‖HK
[denoted by CL(‖g0‖HK

,1 − α/2)] and a good esti-
mate of σ (denoted by σ̂ ), then a (1 − α)-confidence interval of τ ∗ is given by

(27) τ̂ ∗ ± [
λ‖f̂λ‖HK

· CL
(‖g0‖HK

,1 − α/2
) + σ̂‖w‖2z1−α/2

]
,

where z1−α/2 is the upper-(α/2) quantile of the standard normal distribution. This
inferential method can be further extended when an outcome regression adjustment
is used (see Section 4.5) by replacing g0 with g0 − ĝ0. Notice that in this case ĝ0
and ‖ĝ0‖HK

should be estimated using independent sample in order to maintain
validity of (27).

Note that our Assumption 2 also covers the setting where X is high dimensional
(d � n) and g0(x) = ∑d

k=1 βkxk . In this case, estimating ‖g0‖HK
= ‖β‖2

2 is of
high interest in genetic heritability and we shall use a recent proposal by Janson,
Foygel Barber and Candès [30] in our numeric example below. Estimating ‖g0‖HK

when X is low dimensional can be done in a similar manner by weighting the
coefficients.

Athey et al. [2] considered the inference of ATT when X is high dimensional,
but a crucial assumption they require is that β is a very sparse vector so that g0 can
be accurately estimated by lasso regression. In this case, the maximum bias λ‖ĝ0 −
g0‖HK

‖f̂λ‖HK
is negligible if λ is carefully chosen. Our confidence interval above

does not require the sparsity assumption since the procedure in Janson, Foygel
Barber and Candès [30] does not need sparsity. Balancing functions in a kernel
space is also considered in Hazlett [21] and Kallus [31], but they did not consider
the statistical inference of weighted average treatment effects.
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5.6. Choosing the tuning parameters. To use our framework, the user needs
to choose three different parameters:

1. The estimand, indexed by α and β .
2. The function class F used to model the propensity score. All the functions

in F are (approximately) balanced in the sample.
3. The regularization parameter λ.

In general, the estimand should be chosen according to the application. ATE
(α = β = −1) and ATT (α = 0, β = −1) are the most common estimands, and
there are certain benefits of using OWATE (α = β = 0) [10, 33].

The function class F should be chosen according to prior knowledge of the
outcome regression function g0(x). When the covariate dimension is low, we rec-
ommend using a universal kernel (such as a Gaussian or Laplacian kernel, see, e.g.,
Gretton et al. [18]) to estimate the propensity score, so the model space is dense in
the space of continuous functions. Proposition 3 shows that this results in estima-
tors with low bias. When the covariate dimension is high, more assumptions on the
outcome regression function (such as linearity and sparsity) are often necessary.

The regularization parameter λ controls the bias-variance tradeoff of the propen-
sity score weighting estimator. As shown in Section 5.4, the optimal choice of λ

hinges on the signal-to-noise ratio of the outcome regression. In general, this is a
very challenging and mostly unsolved open problem [50]. Here we propose several
ways to choose λ in practice:

1. Choose the largest λ such that satisfactory covariate balance is achieved (e.g.,
if the standardized differences of prespecified covariate functions are no more than
10%). It is also useful to compare the coefficient of variation of the weights w at
λ and at λ → 0.

2. Estimate the signal-to-noise ratio of the outcome regression and choose the λ

that minimizes the maximal mean squared error derived from equation (26). Note
that this requires estimator of ‖g‖HK

and σ 2 and the design-based inference in
Section 5.5 is no longer guaranteed to be valid because it uses the outcome data.

3. Choose λ by cross-validation. Cross-validation is routinely used in statistical
learning to avoid overfitting [20]. Typically, the user first splits the data into K

nonoverlapping groups, then cyclically use K − 1 groups to train the statistical
model and use the 1 group left to validate the model. In predictive tasks, it is
common to select the λ which minimizes the average loss in the validation groups.
In our case, the loss function is a surrogate for covariate imbalance and it is more
reasonable to directly minimize the covariate imbalance in the validation groups.
In the simulations below, we will use the λ that minimizes the average norm of the
gradient of the tailored loss function evaluated at the validation samples.

6. Numerical examples. This section provides two simulation examples to
demonstrate the flexibility of the proposed framework.
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6.1. Simulation: Low-dimensional covariates. To illustrate the bias-variance
tradeoff in selecting model space and regularization parameter, in the following
simulation we use a random regression function instead of a manually selected
regression function to generate outcome observations. This is motivated by the
Bayesian interpretation in Section 5.3. We believe this novel simulation design
also better reflects the philosophy of design-based causal inference—the weights
generated by the estimated propensity score should be robust against any reason-
able outcome regression function.

In this simulation, we consider propensity score models fitted using six kernels:
the Gaussian kernel k(x,x′) = exp(−σ‖x−x′‖2) with σ = 0.1 or 0.3, the Laplace
kernel k(x,x′) = exp(−σ‖x −x ′‖) with σ = 0.1 or 0.3 and the polynomial kernel
k(x,x′) = (xT x′ + 0.5)d with d = 1 or 3. The sample size is n = 1000 and the co-
variates are generated by Xi

i.i.d.∼ N(0, I 5). The true propensity score is a random
function generated by logit(P(T = 1|X = x)) = f (x) ∼ G(0,K(·, ·)) where the
covariance function is either the polynomial kernel with degree 1 or the Gaussian
kernel with σ = 0.1. Potential outcomes are generated from the sharp null model
Yi(0) = Yi(1) = g0(Xi ) + εi where g0(Xi ) is a random function generated by the
same Gaussian process with any of the six considered kernels and εi ∼ N(0,1).
Note that for Gaussian and Laplace kernels, smaller σ indicates smoother random
functions. For the polynomial kernels, a randomly generated function is just a lin-
ear or cubic function with random coefficients.

Along the regularization path of the RKHS regression described in Section 4.3,
we consider three rules of choosing λ:

1. Stop early: choose the largest λ such that the coefficient of variation of wλ is
greater than 0.5 times the largest coefficient of variation in the regularization path.

2. Stop late: choose the λ with the largest coefficient of variation.
3. Cross validation as described in Section 5.6.

Table 2 reports the root mean squared error (RMSE) and average absolute bias
over 100 simulations of the IPW estimators under different simulation settings and
propensity score models. Some observations from this table:

1. There is no uniformly best kernel in fitting the propensity score. In particular,
polynomial kernels perform poorly when g0 is not a polynomial. Laplace kernel
with σ = 0.1 performs relatively well in most of the simulation settings.

2. Under all settings, the lowest bias is always achieved when the fitting ker-
nel is the same kernel that generates the outcome regression function g0. This is
expected from our Bayesian interpretation in Section 5.4.

3. When the fitting kernel is chosen correctly, the cross-validation rule of se-
lecting λ has almost the same bias as “stop late” and usually smaller RMSE. When
the fitting kernel is different from the kernel that generates g0, cross-validation
sometimes has even smaller bias.
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TABLE 2
Simulation: low-dimensional covariates. Outcome regression function g0 and logit of propensity

score f are randomly generated from some kennels. Three stopping criterion are considered: early,
late and cross-validation (C-valid). Reported numbers are 100 times root mean squared error and
average absolute bias (in the bracket) over 1000 simulations. In each block, numbers are bolded if

no other method has smaller RMSE and smaller bias

f ∼ poly(d = 1) f ∼ gau(σ = 0.1)

g0 Fitting kernel Early Late C-valid Early Late C-valid

lap(σ = 0.1) lap(σ = 0.1) 2.3 (1.5) 1.9 (0.7) 1.9 (0.7) 2.0 (1.2) 1.7 (0.6) 1.7 (0.6)
lap(σ = 0.3) 2.4 (1.7) 1.8 (0.7) 1.8 (0.7) 2.0 (1.3) 1.7 (0.6) 1.6 (0.6)
poly(d = 1) 2.4 (1.2) 4.2 (1.6) 3.9 (1.5) 2.2 (1.3) 2.5 (1.1) 2.4 (1.1)
poly(d = 3) 2.1 (1.0) 4.0 (1.2) 3.2 (1.1) 2.0 (0.9) 3.4 (1.1) 2.7 (0.9)
gau(σ = 0.1) 2.0 (1.0) 3.3 (0.9) 3.0 (0.8) 1.7 (0.8) 2.7 (0.8) 2.5 (0.7)
gau(σ = 0.3) 2.4 (1.5) 2.3 (0.9) 2.2 (0.9) 1.9 (1.1) 2.0 (0.7) 1.9 (0.7)

lap(σ = 0.3) lap(σ = 0.1) 3.5 (2.8) 3.0 (1.8) 2.9 (1.8) 3.4 (2.6) 2.8 (1.6) 2.7 (1.6)
lap(σ = 0.3) 3.8 (3.2) 2.8 (1.8) 2.8 (1.8) 3.5 (2.7) 2.7 (1.5) 2.6 (1.6)
poly(d = 1) 3.7 (2.6) 6.4 (3.8) 6.0 (3.6) 3.7 (2.9) 4.0 (2.8) 4.0 (2.7)
poly(d = 3) 3.4 (2.4) 5.6 (3.3) 4.6 (2.8) 3.2 (2.1) 5.4 (3.0) 4.3 (2.4)
gau(σ = 0.1) 3.1 (2.1) 4.5 (2.5) 4.1 (2.4) 2.9 (2.0) 4.2 (2.2) 3.8 (2.0)
gau(σ = 0.3) 3.6 (2.9) 3.3 (2.1) 3.2 (2.1) 3.2 (2.4) 3.1 (1.7) 3.0 (1.7)

poly(d = 1) lap(σ = 0.1) 7.9 (7.0) 2.3 (1.0) 2.3 (1.1) 5.6 (4.7) 1.6 (0.4) 1.6 (0.4)
lap(σ = 0.3) 9.2 (8.4) 2.8 (1.6) 2.9 (1.8) 6.3 (5.5) 1.9 (0.7) 1.9 (0.8)
poly(d = 1) 4.8 (3.6) 2.7 (0.1) 2.5 (0.1) 5.1 (4.2) 1.4 (0.0) 1.4 (0.0)
poly(d = 3) 3.8 (2.6) 3.3 (0.7) 2.8 (0.8) 2.8 (1.7) 3.0 (0.7) 2.6 (0.8)
gau(σ = 0.1) 4.9 (3.8) 3.2 (0.8) 3.0 (0.9) 2.9 (1.9) 2.5 (0.4) 2.3 (0.4)
gau(σ = 0.3) 9.0 (8.1) 4.6 (3.2) 4.7 (3.4) 5.7 (4.7) 3.0 (1.5) 3.0 (1.6)

poly(d = 3) lap(σ = 0.1) 5.7 (4.8) 3.9 (2.5) 3.9 (2.5) 6.1 (5.1) 3.6 (2.5) 3.6 (2.5)
lap(σ = 0.3) 6.1 (5.2) 4.0 (2.6) 4.0 (2.7) 6.3 (5.4) 3.7 (2.5) 3.7 (2.6)
poly(d = 1) 5.8 (4.4) 8.0 (5.3) 7.8 (5.1) 6.6 (5.6) 7.9 (6.7) 7.8 (6.5)
poly(d = 3) 3.7 (2.4) 4.0 (1.5) 3.6 (1.6) 3.5 (2.3) 3.6 (1.2) 3.1 (1.2)
gau(σ = 0.1) 4.6 (3.4) 4.4 (2.3) 4.2 (2.3) 4.7 (3.6) 3.9 (1.9) 3.7 (1.9)
gau(σ = 0.3) 6.2 (5.3) 4.6 (3.1) 4.7 (3.2) 6.0 (5.0) 4.1 (2.6) 4.1 (2.7)

gau(σ = 0.1) lap(σ = 0.1) 5.0 (4.1) 2.1 (0.9) 2.1 (0.9) 4.7 (3.9) 2.1 (0.9) 2.1 (0.9)
lap(σ = 0.3) 5.5 (4.7) 2.1 (1.0) 2.2 (1.1) 5.0 (4.1) 2.1 (1.0) 2.1 (1.0)
poly(d = 1) 4.1 (2.8) 4.7 (2.3) 4.4 (2.1) 4.9 (4.0) 4.0 (2.6) 3.9 (2.6)
poly(d = 3) 3.1 (2.0) 4.1 (1.4) 3.4 (1.3) 3.2 (2.2) 3.7 (1.3) 3.1 (1.3)
gau(σ = 0.1) 3.0 (2.0) 2.8 (0.6) 2.6 (0.6) 3.1 (2.1) 2.5 (0.6) 2.3 (0.6)
gau(σ = 0.3) 4.9 (4.1) 2.5 (1.2) 2.5 (1.3) 4.3 (3.4) 2.4 (1.0) 2.3 (1.1)

gau(σ = 0.3) lap(σ = 0.1) 4.5 (3.8) 3.6 (2.3) 3.6 (2.3) 4.9 (4.4) 3.5 (2.4) 3.5 (2.4)
lap(σ = 0.3) 4.7 (4.0) 3.3 (2.2) 3.3 (2.2) 5.0 (4.5) 3.3 (2.3) 3.3 (2.3)
poly(d = 1) 5.2 (4.0) 8.9 (6.0) 8.6 (5.9) 5.5 (4.8) 6.3 (5.0) 6.1 (4.9)
poly(d = 3) 4.3 (3.1) 7.0 (4.1) 5.7 (3.5) 4.3 (3.5) 6.4 (3.9) 5.2 (3.4)
gau(σ = 0.1) 3.8 (2.7) 5.1 (2.6) 4.7 (2.5) 4.0 (3.2) 4.7 (2.7) 4.3 (2.6)
gau(σ = 0.3) 4.0 (3.2) 3.2 (1.8) 3.1 (1.8) 4.3 (3.7) 3.3 (2.0) 3.2 (2.0)
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4. Surprisingly, the kernel used to generate f (logit of the true propensity score)
does not alter the qualitative conclusions above. Even if the “correct” kernel is
used to fit the propensity score model, there is no guarantee that this better reduces
the average bias than other “incorrect” kernels. For example, when f is simulated
from poly(d = 1), that is, f is a random linear function, using the linear propensity
score model performs poorly unless g0 is also a linear function.

6.2. Simulation: High-dimensional covariates. In our second example, we
consider the case that the covariates X are high dimensional. In this simulation,
the sample size n = 1000 and Xi ∈ R

100 i.i.d.∼ N(0,�) where �ij = 0.5|i−j |. The
true propensity score is logit(P(Ti = 1|Xi )) = ρXT

i θ where ρ = 1 or 2, θ is a
100-dimensional vector whose first st entries are 1/

√
st and the rest are zero, and

st = 5 or 100. The potential outcomes are generated from the sharp null model
Yi(0) = Yi(1) = XT

i β + εi , where the first sy entries of β are 1/
√

sy and the rest
are zero, sy = 5,20 or 100, and εi is an independent Gaussian noise with standard
deviation σ = 5.

In this simulation, the propensity score model is fitted by maximizing the CBSR
corresponding to ATT (α = 0, β = −1) with ridge penalty. The regularization pa-
rameter λ is chosen so that the coefficient of variation of the weights is just be-
low 1. Three estimators are considered: the weighted difference estimator with no
outcome adjustment (IPW), outcome adjustment fitted by the lasso (AIPW-L) and
outcome adjustment fitted by the ridge regression (AIPW-R). The outcome regres-
sions, either fitted by the lasso or the ridge penalty, are tuned by cross-validation.

Averaging over 1000 simulations, we report in Table 3 the root-mean-square
error of the estimators (RMSE), the absolute bias (Bias), the estimated maximum
bias as described in Section 5.5 which uses the EigenPrism method of Janson,
Foygel Barber and Candès [30] to estimate ‖β‖2 (Max Bias), coverage of the 95%
confidence interval ignoring covariate imbalance as in Athey et al. [2] (CI), cov-
erage of the honest 95%-confidence interval (27) (Honest CI) and the ratio of the
length between the two confidence intervals (CI Ratio).

As shown in Table 3, outcome regression adjustment often improves estimation
accuracy substantially. As expected, when θ is dense ridge outcome regression
performs better and when θ is sparse lasso outcome regression performs better.
In many settings, the actual bias is a substantial portion of the estimated maxi-
mum bias. Ignoring this bias in the construction of confidence interval can lead
to serious undercoverage of the causal parameter, as indicated by the CI col-
umn in Table 3. Note that the sparsity assumption in Athey et al. [2] requires
sy � √

n/ log(d) ≈ 6.9, so the lack of coverage does not violate the theoretical
results in Athey et al. [2] as the smallest sy in this simulation is 5. Using the honest
confidence interval derived in Section 5.5 ensures the desired coverage, although
the confidence interval is about two to three times as wide and quite conservative
as expected.
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TABLE 3
Simulation: high-dimensional covariates. Reported values are the average RMSE, average absolute

bias, average estimated maximum bias, coverage of the confidence interval ignoring bias due to
inexact balance, coverage of the honest confidence interval proposed in Section 5.5 and the average

ratio between the two confidence intervals over 1000 simulations

sy st ρ Method RMSE Bias Max bias CI Honest CI CI ratio

5 5 1 IPW 0.22 0.16 0.27 0.82 1 2.28
AIPW-L 0.16 0.06 0.14 0.92 1 1.92
AIPW-R 0.19 0.11 0.21 0.87 1 2.15

2 IPW 0.48 0.45 0.56 0.24 1 3.25
AIPW-L 0.29 0.22 0.33 0.72 1 2.71
AIPW-R 0.41 0.36 0.42 0.40 1 3.02

100 1 IPW 0.15 0.03 0.27 0.94 1 2.38
AIPW-L 0.14 0.01 0.14 0.95 1 1.95
AIPW-R 0.15 0.02 0.21 0.94 1 2.22

2 IPW 0.18 0.10 0.59 0.89 1 3.60
AIPW-L 0.16 0.03 0.31 0.93 1 2.73
AIPW-R 0.18 0.07 0.44 0.90 1 3.27

20 5 1 IPW 0.17 0.08 0.28 0.90 1 2.38
AIPW-L 0.16 0.05 0.22 0.91 1 2.24
AIPW-R 0.16 0.06 0.21 0.92 1 2.23

2 IPW 0.27 0.22 0.58 0.68 1 3.53
AIPW-L 0.24 0.17 0.45 0.77 1 3.25
AIPW-R 0.23 0.17 0.44 0.78 1 3.23

100 1 IPW 0.16 0.07 0.28 0.91 1 2.38
AIPW-L 0.16 0.05 0.21 0.92 1 2.22
AIPW-R 0.16 0.06 0.21 0.92 1 2.21

2 IPW 0.25 0.19 0.59 0.74 1 3.56
AIPW-L 0.20 0.12 0.46 0.85 1 3.28
AIPW-R 0.22 0.14 0.45 0.82 1 3.24

100 5 1 IPW 0.15 0.04 0.27 0.93 1 2.39
AIPW-L 0.15 0.03 0.26 0.93 1 2.42
AIPW-R 0.15 0.03 0.21 0.93 1 2.23

2 IPW 0.18 0.09 0.58 0.90 1 3.60
AIPW-L 0.18 0.08 0.55 0.89 1 3.63
AIPW-R 0.18 0.07 0.45 0.91 1 3.27

100 1 IPW 0.22 0.16 0.27 0.82 1 2.29
AIPW-L 0.20 0.13 0.25 0.85 1 2.29
AIPW-R 0.19 0.11 0.21 0.88 1 2.16

2 IPW 0.48 0.45 0.59 0.23 1 3.29
AIPW-L 0.45 0.41 0.48 0.33 1 3.16
AIPW-R 0.41 0.37 0.43 0.43 1 3.01
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7. Discussion. We have proposed a general method of obtaining covariate bal-
ancing propensity score which unifies many previous approaches. Our proposal is
conceptually simple: the investigator just needs to tailor the loss function accord-
ing to the link function and estimand. This offers great flexibility in incorporat-
ing adaptive strategies developed in statistical learning. We have given a through
discourse on the dual interpretation of minimizing the tailored loss function, espe-
cially how regularization is linked to the bias-variance tradeoff in estimating the
weighted average treatment effects. We provide honest inference that account for
the bias incurred by inexact balance.

Throughout the paper we have taken an outright design perspective: without
looking at the outcome data, the investigator tries to balance pre-treatment co-
variates as well as possible to mimic a randomized experiment, echoing the rec-
ommendations by Rubin [43, 44]. This allows us to give an interesting Bayesian
interpretation of covariate balance: when checking covariate imbalance and de-
ciding which propensity score model is “acceptable,” the investigator is implicitly
assuming a prior on the unknown outcome regression function.

Although the optimal choice of the regularization parameter λ depends on the
signal-to-noise ratio of the outcome regression, simulation examples in Section 6
show that the λ selected by cross-validation usually results in a low biased estima-
tor without overfitting the propensity score model. Thus we recommend selecting
λ by cross-validation in practice. Moreover, when the covariate dimension is low
we recommend using a universal kernel (particularly the Laplacian kernel) to es-
timate the propensity score. We encourage the user to try different kernels (e.g.,
Laplace kernel with different σ ) as a secondary sensitivity analysis and report how
the confidence interval changes with different modeling assumptions. When the
covariate dimension is high, more assumptions on the outcome regression func-
tion g0(x) are necessary. One simplifying assumption is that g0(x) is linear, and it
is tempting to further assume that g0(x) is sparse. However, our simulation results
suggest that the user should be cautious about the inference assuming sparsity, as
this modeling assumption essentially dismisses the bias due to inexact balance.
Honest confidence interval can be constructed without assuming sparsity, but the
interval can also be much wider if the covariate dimension is much larger than the
sample size.

Acknowledgments. The author thanks Trevor Hastie, Hera Y. He, Dylan S.
Small and three anonymous reviewers for valuable comments.

SUPPLEMENTARY MATERIAL

Supplement to “Covariate balancing propensity score by tailored loss func-
tions” (DOI: 10.1214/18-AOS1698SUPP; .pdf). In this supplement we provide
the detailed proof for the theoretical results and some graphical illustration of the
Beta-family of scoring rules.

https://doi.org/10.1214/18-AOS1698SUPP
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