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CROSS: EFFICIENT LOW-RANK TENSOR COMPLETION

BY ANRU ZHANG1

University of Wisconsin-Madison

The completion of tensors, or high-order arrays, attracts significant at-
tention in recent research. Current literature on tensor completion primar-
ily focuses on recovery from a set of uniformly randomly measured en-
tries, and the required number of measurements to achieve recovery is not
guaranteed to be optimal. In addition, the implementation of some previ-
ous methods are NP-hard. In this article, we propose a framework for low-
rank tensor completion via a novel tensor measurement scheme that we
name Cross. The proposed procedure is efficient and easy to implement.
In particular, we show that a third-order tensor of Tucker rank-(r1, r2, r3)

in p1-by-p2-by-p3 dimensional space can be recovered from as few as
r1r2r3 + r1(p1 − r1) + r2(p2 − r2) + r3(p3 − r3) noiseless measurements,
which matches the sample complexity lower bound. In the case of noisy mea-
surements, we also develop a theoretical upper bound and the matching min-
imax lower bound for recovery error over certain classes of low-rank tensors
for the proposed procedure. The results can be further extended to fourth or
higher-order tensors. Simulation studies show that the method performs well
under a variety of settings. Finally, the procedure is illustrated through a real
dataset in neuroimaging.

1. Introduction. Tensors, or high-order arrays, commonly arise in a wide
range of applications, including neuroimaging [Guhaniyogi, Qamar and Dunson
(2017), Li and Zhang (2017), Li, Zhou and Li (2013), Sun and Li (2016), Zhou,
Li and Zhu (2013)], recommender systems [Karatzoglou et al. (2010), Rendle and
Schmidt-Thieme (2010), Sun et al. (2017)], hyperspectral image compression [Li
and Li (2010)], multienergy computed tomography [Li et al. (2014), Semerci et al.
(2014)], computer vision [Liu et al. (2013)], 3D light field displays [Wetzstein et
al. (2012)] and scientific computation [Oseledets and Tyrtyshnikov (2009)]. With
the revolutionary development of modern technologies, the rapid increase in data
dimension, memory and time expenses outgrows the power of computing devices,
which makes it difficult to work directly on the complete datasets and models. For
example, a tensor of dimension 104-by-104-by-104 would be difficult to upload
into the Random Access Memory (RAM) of a typical computer, making it hard
to directly perform operations that involves all entries of the tensor. In order to
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conduct various statistical tensor data analyses, such as SVD or PCA [Richard and
Montanari (2014), Zhang and Xia (2017)] and Monte Carlo algorithms for compu-
tations on large tensors [Guhaniyogi, Qamar and Dunson (2017), Johndrow, Bhat-
tacharya and Dunson (2017)] when limited computation power is available, a fast
and sufficient tensor compression is essential. To this end, a natural idea is to sam-
ple a small portion of entries from the original tensor dataset that preserves the
important structural information and allows efficient recovery. By storing these
entries to RAM, the follow-up tensor data analysis can be highly facilitated.

Tensor completion, whose central goal is to recover low-rank tensors based on
limited numbers of measurable entries, is a plausible idea for compression and
decompression of high-dimensional low-rank tensors. Such problems have been
central and well studied for order-2 tensors (i.e., matrices) in the fields of high-
dimensional statistics and machine learning for the last decade. A large body of
matrix completion literatures focused on the scenario of uniformly randomly sam-
pled observations [Agarwal, Negahban and Wainwright (2012), Candès and Tao
(2010), Keshavan, Montanari and Oh (2010), Koltchinskii, Lounici and Tsybakov
(2011), Negahban and Wainwright (2011), Rohde and Tsybakov (2011)], but there
exists another line of works where the observations are collected by other means,
such as deterministically sampling patterns [Pimentel-Alarcón, Boston and Nowak
(2016)], column-subset-selection [Cai, Cai and Zhang (2016), Krishnamurthy and
Singh (2013), Rudelson and Vershynin (2007), Wang and Singh (2015)] and gen-
eral sampling distributions [Klopp (2014)]. There are efficient procedures for ma-
trix completion with strong theoretical guarantees. For example, for a p1-by-p2
matrix of rank-r , whenever roughly O(r(p1 + p2)polylog(p1 + p2)) uniformly
randomly selected entries are observed, one can achieve nice recovery with high
probability using convex algorithms such as matrix nuclear norm minimization
[Candès and Tao (2010), Recht (2011)] and max-norm minimization [Cai and
Zhou (2016), Srebro and Shraibman (2005)]. For matrix completion, the required
number of measurements nearly matches the degrees of freedom, O((p1 + p2)r),
for p1-by-p2 matrices of rank-r .

Although significant progress has been made for matrix completion, similar
problems for order-3 or higher tensors are far more difficult. There have been
some recent literature, including Barak and Moitra (2016), Bhojanapalli and Sang-
havi (2015), Gandy, Recht and Yamada (2011), Kressner, Steinlechner and Van-
dereycken (2014), Mu et al. (2014), Shah, Rao and Tang (2015), Yuan and Zhang
(2016, 2017) that studied tensor completion based on similar formulations. To be
specific, let X ∈ R

p1×p2×p3 be an order-3 low-rank tensor, and � be a subset of
[1 : p1] × [1 : p2] × [1 : p3]. The goal of tensor completion is to recover X based
on the observable entries indexed by �. Most of the previous literature focuses on
the setting where the indices of the observable entries are uniformly randomly se-
lected. For example, Gandy, Recht and Yamada (2011), Liu et al. (2013) proposed
the matricization nuclear norm minimization, which requires O(rp2 polylog(p))

observations to recover order-3 tensors of dimension p-by-p-by-p and Tucker
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rank-(r, r, r). Later, Bhojanapalli and Sanghavi (2015), Jain and Oh (2014) consid-
ered an alternative minimization method for completion of low-rank tensors with
CP decomposition and orthogonal factors. Yuan and Zhang (2016, 2017) proposed
the tensor nuclear norm minimization algorithm for tensor completion with noise-
less observations and further proved that their proposed method has guaranteed
performance for p-by-p-by-p tensors of Tucker rank-(r, r, r) with high probabil-
ity when |�| ≥ O((r1/2p3/2 + r2p)polylog(p)). However, it is unclear whether
the required number of measurements in this literature could be further improved
or not. In addition, some of these proposed procedures, such as tensor matrix nu-
clear norm minimization, are proved to be computationally NP-hard, making them
very difficult to apply in real problems. Recently, Barak and Moitra (2016) further
showed that the completion of p-by-p-by-p low-rank tensors is computationally
infeasible when only O(p3/2) uniform random entries are observable, unless a
more efficient algorithm exists for boolean satisfiability problem.

The central goal of this paper is to address the following question: is it possible
to perform efficient low-rank tensor completion with a small number of observable
entries? If so, what is the sample complexity, that is, the minimal number of entries
one needs to observe, so that there exist fast algorithms for tensor completion
with guaranteed performance? This problem is important to statistical learning
theory and is inevitable in many high-dimensional tensor data analyses. Given
the previous discussions, to sample entries uniformly at random may not be an
optimal strategy to achieve the central goal. Instead, we propose a novel tensor
measurement scheme and the corresponding efficient low-rank tensor completion
algorithm. We name our methods Cross Tensor Measurement Scheme because the
measurement set is in the shape of a high-dimensional cross contained in the tensor.
We show that one can recover an unknown, Tucker rank-(r1, r2, r3), and p1-by-p2-
by-p3 tensor X with

|�| = r1r2r3 + r1(p1 − r1) + r2(p2 − r2) + r3(p3 − r3)

noiseless Cross tensor measurements. This outperforms the previous methods in
literature, and matches the degrees of freedom for all rank-(r1, r2, r3) tensors of
dimensions p1-by-p2-by-p3. To the best of our knowledge, we are among the first
to achieve this optimal rate. We also develop the corresponding recovery method
for more general cases where measurements are taken with noise. The central idea
is to transform the observable matricizations by singular value decomposition and
perform the adaptive trimming scheme to denoise each block.

To illustrate the properties of the proposed procedure, both theoretical analyses
and simulation studies are provided. We derive upper- and lower-bound results
to show that the proposed recovery procedure can accommodate different levels
of noise and achieve the optimal rate of convergence for a large class of low-rank
tensors. Although the exact low-rank assumption is used in the theoretical analysis,
some simulation settings show that such an assumption is not really necessary in
practice, as long as the singular values of each matricization of the original tensor
decays sufficiently.
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It is worth emphasizing that because the proposed algorithms only involve basic
matrix operations such as matrix multiplication and singular value decomposition,
it is tuning-free in many general situations and can be implemented efficiently to
handle large-scale problems. In fact, our simulation study shows that the recovery
of a 500-by-500-by-500 tensor can be done stably within, on average, 10 seconds.

We also apply the proposed procedure to a 3-d MRI imaging dataset that comes
from a study on Attention-deficit/hyperactivity disorder (ADHD). We show that
with a limited number of Cross tensor measurements and the corresponding tensor
completion algorithm, one can estimate the underlying low-rank structure of 3-d
images as well as if one observes all entries of the image.

This work also relates to some previous results other than tensor completion
in the literature. Mahoney, Maggioni and Drineas (2008) considered the tensor
CUR decomposition, which aims to represent the tensor as the product of a sub-
tensor and two matrices. However, simply applying their work cannot lead to op-
timal results in tensor completion since treating tensors as matrix slices would
lose useful structures of tensors. Krishnamurthy and Singh (2013) proposed a se-
quential tensor completion algorithm under adaptive samplings. Their result re-
quires O(pr2.5 log(r)) number of entries for p-by-p-by-p order-3 tensors under
the more restrictive CP rank-r condition, which is much larger than that of our
method. Rauhut, Schneider and Stojanac (2017) considered a tensor recovery set-
ting where each observation is a general linear projections of the original ten-
sor. However, their theoretical analysis heavily relies on a conjecture that is diffi-
cult to check. Oseledets, Savostianov and Tyrtyshnikov (2008) provided an exis-
tence proof for rank-r Tucker-like approximations for p-by-p-by-p tensors with
O(r3 + pr) parameters. Caiafa and Cichocki (2010) introduced representations
for p1-by-p2-by-p3 Tucker rank-(r, r, r) tensors based on r3 + r(p1 + p2 + p3)

selected entries. In Caiafa and Cichocki (2015), they further introduced a multi-
way projection scheme for stable, robust, and fast low-rank tensor reconstruction,
which requires O(pr2) measurements and some tuning parameters, such as the
rank of the tensor, for implementation. To the extent of our knowledge, we are
among the first to develop the tensor completion scheme that is efficient, easy to
implement, tuning-free, and allows exact tensor completion in the noiseless set-
ting and achieves optimal estimation error in the noisy setting under the minimal
sample size.

The rest of the paper is organized as follows. After an introduction to the no-
tation and preliminaries in Section 2.1, we present the Cross tensor measurement
scheme in Section 2.2. Based on the proposed measurement scheme, the tensor
completion algorithms for both noiseless and noisy case are introduced in Sec-
tions 2.3 and 2.4, respectively. We further analyze the theoretical performance of
the proposed algorithms in Section 3. The numerical performance of algorithms
are investigated in a variety of simulation studies in Section 4. We then apply the
proposed procedure to a real dataset of brain MRI imaging in Section 5. In Sec-
tion 6, we briefly discuss the extensions of main results. The proofs of the main
results are finally collected in the Supplementary Material [Zhang (2019)].
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2. Cross tensor measurements and completion: Methodology.

2.1. Basic notation and preliminaries. We start with basic notation and re-
sults that will be used throughout the paper. The upper case letters, for exam-
ple, X, Y , Z, are generally used to represent matrices. For X ∈ R

p1×p2 , the sin-
gular value decomposition can be written as X = U�V �. Suppose diag(�) =
(σ1(X), . . . , σmin{p1,p2}(X)), then σ1(X) ≥ σ2(X) ≥ · · · ≥ σmin{p1,p2}(X) ≥ 0 are
the singular values of X. Especially, we note σmin(X) = σmin{p1,p2}(X) and
σmax(X) = σ1(X) as the smallest and largest singular value of X. Additionally, the
matrix spectral norm and Frobenius norm are denoted as ‖X‖ = maxu∈Rp2

‖Xu‖2‖u‖2

and ‖X‖F =
√∑p1

i=1
∑p2

j=1 X2
ij =
√∑min{p1,p2}

i=1 σ 2
i (X), respectively. We denote

PX ∈ R
p1×p1 as the projection operator onto the column space of X. Specifically,

PX = X(X�X)†X� = XX†. Here, (·)† is the Moore–Penrose pseudo-inverse. Let
Op,r be the set of all p-by-r orthogonal columns, that is, Op,r = {V ∈ R

p×r :
V �V = Ir}, where Ir represents the identity matrix of dimension r .

We use bold upper case letters, for example, X, Y, Z to denote tensors. If X ∈
R

p1×p2×p3 , Et ∈ R
mt×pt , t = 1,2,3. The mode products (tensor-matrix product)

is defined as

X ×1 E1 ∈ R
m1×p2×p3, (X ×1 E1)ijk =

p1∑
s=1

E1,isXsjk,

where i ∈ [1 : m1], j ∈ [1 : p2], k ∈ [1 : p3]. The mode-2 product X ×2 E2 and
mode-3 product X×3 E3 can be defined similarly. Interestingly, the products along
different modes satisfy the commutative law, for example, X ×t Et ×s Es = X ×s

Es ×t Et if s �= t . The matricization (or unfolding, flattening in literature), Mt (X),
maps a tensor X ∈ R

p1×p2×p3 into a matrix Mt (X) ∈ R
pt×∏s �=t ps , so that for any

i ∈ {1, . . . , p1}, j ∈ {1, . . . , p2}, k ∈ {1, . . . , p3},
Xijk = (M1(X)

)
[i,(j+p2(k−1))]

= (M2(X)
)
[j,(k+p3(i−1))] = (M3(X)

)
[k,(i+p1(j−1))].

The tensor Hilbert–Schmidt norm and tensor spectral norm, which are defined as

‖X‖HS =
√√√√√ p1∑

i=1

p2∑
j=1

p3∑
k=1

X2
ijk,

‖X‖op = max
u∈Rp1 ,v∈Rp2 ,w∈Rp3

X ×1 u ×2 v ×3 w

‖u‖2‖v‖2‖w‖2
,

will be intensively used in this paper. It is also noteworthy that the general cal-
culation of the tensor operator norm is NP-hard [Hillar and Lim (2013)]. Unlike
matrices, there is no universal definition of rank for third or higher-order tensors.
Standing out from various definitions, the Tucker rank [Tucker (1966)] has been
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widely utilized in literature, and its definition is closely associated with the follow-
ing Tucker decomposition: for X ∈ R

p1×p2×p3 ,

X = S ×1 U1 ×2 U2 ×3 U3, or equivalently

Xijk = ∑
i′j ′k′

si′j ′k′U1,ii′U2,jj ′U3,kk′ .(2.1)

Here, S ∈ R
r1×r2×r3 is referred to as the core tensor, Uk ∈ Opk,rk . The minimum

number of triplets (r1, r2, r3) are defined as the Tucker rank of X which we denote
as rank(X) = (r1, r2, r3). The Tucker rank can be calculated easily by the rank
of each matricization: rt = rank(Mt (X)). It is also easy to prove that the triplet
(r1, r2, r3) satisfies rt ≤ pt ,max2{r1, r2, r3} ≤ r1r2r3. For a more detailed survey
of tensor decomposition, readers are referred to Kolda and Bader (2009).

We also use the following symbols to represent subarrays. For any subsets �1,
�2, etc., we use X[�1,�2] to represent the submatrix of X with row indices �1 and
column indices �2. The subtensors are denoted similarly: X[�1,�2,�3] represents
the tensors with mode-t indices in �t for t = 1,2,3. For better presentation, we
use bracket to represent index sets. Particularly for any integers a ≤ b, let [a : b] =
{a, . . . , b} and let “:” alone represent the whole index set. Thus, U[:,1:r] represents
the first r columns of U ; X[�1,�2,:] represents the subtensor of X with mode-1
indices �1, mode-2 indices �2 and all mode-3 indices.

Now we establish the lower bound for the minimum number of measurements
for Tucker low-rank tensor completion based on counting the degrees of freedom.

PROPOSITION 1 [Degrees of freedom for rank-(r1, r2, r3) tensors inRp1×p2×p3 ].
Assume that r1 ≤ p1, r2 ≤ p2, r3 ≤ p3, max2{r1, r2, r3} ≤ r1r2r3, then the degrees
of freedom of all rank-(r1, r2, r3) tensors in R

p1×p2×p3 is

r1r2r3 + (p1 − r1)r1 + (p2 − r2)r2 + (p3 − r3)r3.

REMARK 1. Beyond order-3 tensors, we can show the degrees of freedom
for rank-(r1, . . . , rd) order-d tensors in R

p1×···×pd is
∏d

t=1 rt +∑d
t=1 rt (pt − rt )

similarly.

Proposition 1 provides a lower bound and the benchmark for the number of
measurements to guarantee low-rank tensor completion, that is, r1r2r3 +∑3

t=1 rt ×
(pt − rt ). Since the previous methods are not guaranteed to achieve this lower
bound, we focus on developing the first measurement scheme that can both work
efficiently and reach this benchmark.

2.2. Cross tensor measurements. In this section, we propose a novel Cross
tensor measurement scheme. Suppose the targeting unknown tensor X is of p1-by-
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p2-by-p3, we let

�1 ⊆ [1 : p1], �2 ⊆ [1 : p2], �3 ⊆ [1 : p3],
|�t | = mt, t = 1,2,3;
�1 ⊆ �2 × �3, �2 ⊆ �3 × �1, �3 ⊆ �1 × �2,

|�t | = gt , t = 1,2,3.

(2.2)

Then we measure the entries of X using the following indices set:

� = (�1 × �2 × �3) ∪ ([1 : p1] × �1
)

∪ ([1 : p2] × �2
)∪ ([1 : p3] × �3

)
,

(2.3)

where
�1 × �2 × �3 = {(i, j, k) : i ∈ �1, j ∈ �2, k ∈ �3

}
are body measurements;

[1 : p1] × �1 = {(i, j, k) : i ∈ [1 : p1], (j, k) ∈ �1
}

[1 : p2] × �2 = {(i, j, k) : j ∈ [1 : p2], (k, i) ∈ �2
}

[1 : p3] × �3 = {(i, j, k) : k ∈ [1 : p3], (i, j) ∈ �3
}
⎫⎬
⎭

are arm measurements.

(2.4)

Meanwhile, the intersections among body and arm measurements, which we refer
to as joint measurements, also play important roles in our analysis:

�1 × �1 = (�1 × �2 × �3) ∩ ([1 : p1] × �1
)

= {(i, j, k) : i ∈ �1, (j, k) ∈ �1
}
,

�2 × �2 = (�1 × �2 × �3) ∩ ([1 : p2] × �2
)

= {(i, j, k) : j ∈ �2, (k, i) ∈ �2
}
,

�3 × �3 = (�1 × �2 × �3) ∩ ([1 : p3] × �3
)

= {(i, j, k) : k ∈ �3, (i, j) ∈ �3
}
.

(2.5)

A pictorial illustration of the body, arm and joint measurements is provided in
Figure 1. Since the measurements are generally cross-shaped, we refer to � as
the Cross Tensor Measurement Scheme. It is easy to see that the total number of
measurements for the proposed scheme is m1m2m3 + g1(p1 − m1) + g2(p2 −
m2) + g3(p3 − m3) and the sampling ratio is

(2.6)
#Observable samples

#All parameters
= m1m2m3 +∑3

t=1 gt (pt − mt)

p1p2p3
.

Based on these measurements, we focus on the following model:

(2.7) Y� = X� + Z�, that is, Yijk = Xijk + Zijk, (i, j, k) ∈ �,

where X, Y and Z correspond to the original tensor, observed values and unknown
noise term, respectively.



LOW-RANK TENSOR RECOVERY 943

(a) �t , �t illustration (b) All measurements

(c) Body measurements Y[�1,�2,�3] (d) Arm measurements Y�1

(e) Arm measurements Y�2 (f) Arm measurements Y�3

(g) Joint measurements Y�1×�1 (h) Joint measurements Y�2×�2

FIG. 1. Illustrative example for the Cross Tensor Measurements Scheme. For a better illustration,
here we assume �t = [1 : mt ], p1 = p2 = p3 = 10, m1 = m2 = m3 = g1 = g2 = g3 = 4.
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(i) Joint measurements Y�3×�3

FIG. 1. (Continued).

Algorithm 1 Cross: Tensor Completion with Noiseless Observations
1: Input: noiseless observations Yijk , (i, j, k) ∈ � from (2.3).
2: Construct Y�1 , Y�2 , X�3 , Y�1×�1 , Y�2×�2 , Y�3×�3 as (2.8).
3: Calculate

R1 = Y�1Y
†
�1×�1

∈ R
p1×m1, R2 = Y�2Y

†
�2×�2

∈R
p2×m2,

R3 = Y�3Y
†
�3×�3

∈ R
p3×m3 .

4: Calculate the final estimator

X̂ = Y[�1,�2,�3] ×1 R1 ×2 R2 ×3 R3.

2.3. Recovery algorithm—noiseless case. When X is exactly low-rank and the
observations are noiseless, that is, Yijk = Xijk , we can recover X with the follow-
ing algorithm. We first construct the arm matricizations, joint matricizations and
body matricizations based on (2.4) and (2.5),

Y�t = Mt (Y[1:pt ]×�t ) ∈R
pt×gt , (Arm matricizations)(2.8)

Yt,� = Mt (Y[�1,�2,�3]) ∈R
mt×∏s �=t ms , (Body matricizations)(2.9)

Y�t×�t = Mt (Y�t×�t ) ∈R
mt×gt . (Joint matricizations)(2.10)

In the noiseless setting, we propose the following formula to complete X:

X̂ = Y[�1,�2,�3] ×1 R1 ×2 R2 ×3 R3,(2.11)

where Rt = Y�t Y
†
�t×�t

∈ R
pt×mt , t = 1,2,3.(2.12)

The procedure is summarized in Algorithm 1. The theoretical guarantee for this
proposed algorithm is provided in Theorem 1.

THEOREM 1 (Exact recovery in noiseless setting). Suppose X ∈ R
p1×p2×p3 ,

rank(X) = (r1, r2, r3). Assume all Cross tensor measurements are noiseless, that
is, Y� = X�. If rank(Y�t×�t ) = rt and min{mt, gt} ≥ rt for t = 1,2,3 [so that
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|�| ≥ r1r2r3 + r1(p1 − r1) + r2(p2 − r2) + r3(p3 − r3)], then

X = Y[�1,�2,�3] ×1 R1 ×2 R2 ×3 R3,

Rt = Y�t Y
†
�t×�t

, t = 1,2,3.
(2.13)

Moreover, if there are M̃t ∈ R
mt×rt , Ñt ∈ R

gt×rt such that M̃�
t X�t×�t Ñt ∈ R

rt×rt

is nonsingular for t = 1,2,3, then we further have

X = Y[�1,�2,�3] ×1 R̃1 ×2 R̃2 ×3 R̃3, R̃t = Y�t Ñ
�
t

(
M̃�Y�t×�t Ñ

)−1
M̃�

t .

Theorem 1 shows that, in the noiseless setting, as long as min{mt, gt} ≥ rt ,
both Mt (Y) and its mt -by-gt submatrix Y�t×�t are of rank rt , exact recov-
ery by Algorithm 1 can be guaranteed. Therefore, the minimum required num-
ber of measurements for the proposed Cross tensor measurement scheme is
r1r2r3 + r1(p1 − r1)+ r2(p2 − r2)+ r3(p3 − r3) when we set mt = gt = rt , which
exactly matches the lower bound established in Proposition 1 and outperforms the
previous methods in the literature.

On the other hand, Algorithm 1 heavily relies on the noiseless assumption. In
fact, calculating Y

†
�t×�t

= (X�t×�t +Z�t×�t )
† is unstable even with low levels of

noise, which ruins the performance of Algorithm 1. Since we rarely have noiseless
observations in practice, we focus on the setting with nonzero noise for the rest of
the paper.

2.4. Recovery algorithm—noisy case. In this section, we propose the follow-
ing procedure for recovery in the noisy setting. The proposed algorithm is divided
into four steps and an illustrative example is provided in Figure 2 for readers’ better
understanding.

• (Step 1: Construction of matricizations.) Same as Algorithm 1, Construct the
arm, body and joint matricizations as (2.8) and (2.9) [see Figure 2(a)],

Arm : Y�1, Y�2, Y�3; Body : Y1,�, Y2,�, Y3,�;
Joint : Y�1×�1, Y�2×�2, Y�3×�3 .

• (Step 2: Rotation.) For t = 1,2,3, we calculate the singular value decomposi-
tions of Y�t and Yt,�, then store

V
(A)
t ∈Ogt as the right singular vectors of Y�t ,

U
(B)
t ∈Omt as the left singular vectors of Yt,�.

(2.14)

Here, the superscripts “(A), (B)” represent arm and body, respectively. We cal-
culate the following rotation for arm and joint matricizations based on SVDs
[see Figure 2(b), (c)]:

At = Y�t · V (A)
t ∈ R

pt×gt ,

Jt = (U(B)
t

)� · Y�t×�t · V (A)
t ∈ R

mt×gt .
(2.15)
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(a) Step 1. All matricizations: Yt,�, Y�t and Y�t×�t

(b) Heatmap illustration of Y�t , Y�t×�t

(darker blocks mean larger absolute values)
(c) Step 2. We obtain At , Jt

after rotation

(d) Step 3. Intermediate process of trimming (e) Step 3. Eventually located
at r̂t = 4

FIG. 2. Illustration of the proposed procedure in noisy setting.
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As we can see from Figure 2(c), the magnitude of At ’s columns and Jt ’s both
columns and rows decreases front to back. Therefore, the important factors of
Y�t and Y�t×�t are moved to front rows and columns in this step.

• (Step 3: Adaptive trimming.) Since At and Jt are contaminated with noise, in
this step we denoise them by trimming the lower ranking columns of At and
both lower ranking columns and rows of Jt . To decide the number of rows
and columns to trim, it will be good to have an estimate for (r1, r2, r3), say
(r̂1, r̂2, r̂3). We will show later in theoretical analysis that a good choice of r̂t
should satisfy

(2.16) (Jt )[1:r̂t ,1:r̂t ] is nonsingular and
∥∥(At )[:,1:r̂t ](Jt )

−1
[1:r̂t ,1:r̂t ]

∥∥≤ λt

for t = 1,2,3. λt = ct

√
pt/mt is the tuning parameter here, and the discussion

of selection method is provided a little while later. Our final estimator for rt is
the largest r̂t that satisfies Condition (2.16), and can be found by verifying (2.16)
for all possible rt ’s. It is worth mentioning that this step shares similar ideas with
structured matrix completion in Cai, Cai and Zhang (2016) [see Figure 2(d) and
(e)].

• (Step 4: Assembling.) Finally, given r̂1, r̂2, r̂3 obtained from Step 3, we calculate

(2.17) R̄t = (At )[:,1:r̂t ](Jt )
−1
[1:r̂t ,1:r̂t ]

(
V

(A)

t,[1:r̂t ,:]
)� ∈ R

pt×mt , t = 1,2,3,

and recover the original low-rank tensor X by

(2.18) X̂ = Y[�1,�2,�3] ×1 R̄1 ×2 R̄2 ×3 R̄3.

The procedure is summarized as Algorithm 2. It is worth mentioning that both
Algorithms 1 and 2 can be easily extended to fourth and higher-order tensors.

Selection of tuning parameter. The tuning parameter λt is a key factor to the
performance of final estimation. Intuitively speaking, a larger value of λt yields
a higher trimming level and a lower-rank estimation. As we will illustrate in the
theoretical and numerical analyses, one can simply choose λt = 3

√
pt/mt in a

variety of situations. When more computing power is available, a practical data-
driven approach for selecting ct via K-fold subsampling cross-validation can be
applied instead. The procedure is described as below, and the detailed numerical
analyses for tuning parameter selection is provided in Section 4.

Suppose the body and arms of X are observed as (2.2)–(2.7) and let T ⊆ [1.5,4]
be a grid of candidate values of ct . For l = 1, . . . ,L, we randomly select subset
�

(train,l)
t ⊆ �t with cardinality |�(train,l)

t | ≈ |�t | · (K − 1)/K . Recall �t ⊆ �t+1 ×
�t+2, we further denote �

(train,l)
t = �t ∩(�

(train,l)
t+1 ×�

(train,l)
t+2 ). Apply our proposed

procedure based on the Cross measurements

�(train,l) = �
(train,l)
1 × �

(train,l)
2 × �

(train,l)
3

∪ ([1 : p1] × �
(train,l)
1

)∪ ([1 : p2] × �
(train,l)
2

)∪ ([1 : p3] × �
(train,l)
3

)
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Algorithm 2 Noisy Tensor Completion with Cross Measurements
1: Input: entries Yijk , (i, j, k) ∈ � from (2.3), λ1, λ2, λ3.
2: Construct arm, body and joint matricizations as (2.8) and (2.9),

Y�t ∈ R
pt×gt , Y�t×�t ∈ R

mt×gt ,

Yt,� ∈ R
mt×(

∏
s �=t ms), t = 1,2,3.

3: Calculate U
(B)
t and V

(A)
t via SVDs:

U
(B)
t ∈Omt as the left singular vectors of Yt,�;

V
(A)
t ∈Ogt as the right singular vectors of Y�t .

4: Rotate the arm and joint measurements as

At = Y�t · V (A) ∈ R
pt×gt , Jt = (U(B))� · Y�t×�t · V (A) ∈ R

mt×gt .

5: for t = 1, 2, 3 do
6: for s = min{gt ,mt } : −1 : 1 do
7: if Jt,[1:s,1:s] is not singular and ‖At,[:,1:s]J−1

t,[1:s,1:s]‖ ≤ λt then
8: r̂t = s; break from the loop;
9: end if

10: end for
11: If r̂t is still unassigned then r̂t = 0.
12: end for
13: Calculate

R̄t = At,[:,1:s]J−1
t,[1:s,1:s]

(
V

(A)

t,[1:r̂t ,:]
)� ∈ R

pt×mt , t = 1,2,3.

14: Compute the final estimator

X̂ = Y[�1,�2,�3] ×1 R̄1 ×2 R̄2 ×3 R̄3.

with each ct ∈ T , then denote the resulting estimation as X̂l(ct ) for l = 1, . . . ,N .
Next, the prediction error is evaluated on the observations outside the training set

R̂(ct ) =
L∑

l=1

∑
(i,j,k)∈�\�(train,l)

∣∣(X̂l(ct )
)
ijk − Yijk

∣∣2, ct ∈ T ,

where � is defined (2.3). Finally, we select c∗
t = arg minct∈T R̂(ct ), and apply the

proposed procedure again with tuning parameter λt = c∗
t

√
pt/mt .

3. Theoretical analysis. In this section, we investigate the theoretical perfor-
mance for the proposed procedure in the last section. Recall that our goal is to
recover X from Y� based on (2.3). Similarly, one can further define the arm, joint
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and body matricizations for X, Z, that is, X�t , X�t×�t , Xt,�, Z�t , Z�t×�t and
Zt,� for t = 1,2,3 in the same fashion as Y�t , Y�t×�t and Yt,� in (2.8), (2.9) and
(2.10). We first present the following theoretical guarantees for low-rank tensor
completion based on noisy observations via Algorithm 2.

THEOREM 2. Suppose X ∈ R
p1×p2×p3 , rank(X) = (r1, r2, r3). Assume we ob-

serve Y� based on Cross tensor measurement scheme (2.4), where X� satisfies
rank(X�t×�t ) = rt and

σrt (X�t×�t ) > 5‖Z�t×�t ‖, σrt (X�t ) > 5‖Z�t ‖,
σrt (Xt,�) > 5‖Zt,�‖.(3.1)

We further define

(3.2) ξt = ∥∥X†
�t×�t

Xt,�

∥∥, t = 1,2,3.

Applying Algorithm 2 with λ1, λ2, λ3 satisfying

(3.3) λt ≥ 2
∥∥Xt,�t X

†
�t×�t

∥∥, t = 1,2,3,

we have the following upper bound results for some uniform constant C:

‖X̂ − X‖HS ≤ Cλ1λ2λ3‖Z[�1,�2,�3]‖HS

+ Cλ1λ2λ3

( 3∑
t=1

ξt‖Z�t×�t ‖F + C

3∑
t=1

ξt

λt

‖Z�t ‖F

)
,

‖X̂ − X‖op ≤ Cλ1λ2λ3‖Z[�1,�2,�3]‖op

+ Cλ1λ2λ3

( 3∑
t=1

ξt‖Z�t×�t ‖ + C

3∑
t=1

ξt

λt

‖Z�t ‖
)
.

It is helpful to explain the meanings of the conditions used in Theorem 2. The
singular value gap condition (3.1) is assumed in order to guarantee that signal
dominates the noise in the observed blocks. λt and ξt are important factors in our
analysis which represent “arm-joint” and “joint-body” ratio, respectively. These
factors roughly indicate how much information is contained in the body and arm
measurements and how much impact the noisy terms have on the upper bound,
all of which implicitly indicate the difficulty of the problem. Based on λt , ξt , we
consider the following classes of low-rank tensors, the perturbation Z and indices
of observations:

F = F{λt },{ξt }

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(X,Z,�t ,�t) :
X ∈R

p1×p2×p3, rank(X) ≤ (r1, r2, r3);∥∥X�t X
†
�t×�t

∥∥≤ λt ,
∥∥X†

�t×�t
Xt,�

∥∥≤ ξt .

σrt (X�t×�t ) ≥ 5‖Z�t×�t ‖, σrt (X�t ) ≥ 5‖Z�t ‖,
σrt (Xt,�) ≥ 5‖Zt,�‖;

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.4)

and provide the following lower bound result over F{λt },{ξt }.
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THEOREM 3 (Lower bound). Suppose positive integers rt , pt satisfy 4 ≤ rt ≤
pt/2. The arm, body and joint measurement errors are bounded as

‖Z[�1,�2,�3]‖HS ≤ C(B),

‖Zt,�t ‖F ≤ C
(A)
t ,

‖Zt,�t×�t ‖F ≤ C
(J)
t .

(3.5)

If C
(J)
t ≤ min{C(A)

t ,C(B)}, ξt ≥ 3, λt > 1, then there exists uniform constant c > 0
such that

inf
X̂

sup
(X,Z,�t ,�t )∈F
Z satisfies (3.5)

‖X̂ − X‖HS

≥ cλ1λ2λ3C
(B) + cλ1λ2λ3

3∑
t=1

(
ξtC

(J )
t + ξt

λt

C
(A)
t

)
.

(3.6)

Similarly, suppose C(B), C
(A)
t , C

(J)
t are the upper bound for arm, body and joint

measurement errors in tensor and matrix operator norms, respectively, that is,

‖Z[�1,�2,�3]‖op ≤ C(B),

‖Zt,�t ‖ ≤ C
(A)
t ,

‖Zt,�t×�t ‖ ≤ C
(J)
t .

(3.7)

Suppose C
(J)
t ≤ min{C(A)

t ,C(B)}, ξt ≥ 3, λt > 1, then

inf
X̂

sup
(X,Z,�t ,�t )∈F
Z satisfies (3.7)

‖X̂ − X‖op

≥ cλ1λ2λ3C
(B) + cλ1λ2λ3

3∑
t=1

(
ξtC

(J )
t + ξt

λt

C
(A)
t

)
.

(3.8)

REMARK 2. Theorems 2 and 3 together yield the optimal rate of recovery in
F in both Hilbert–Schmidt and operator norms:

inf
X̂

sup
(X,Z,�t ,�t )∈F
Z satisfies (3.5)

‖X̂ − X‖HS � λ1λ2λ3

{
C(B) +

3∑
t=1

(
ξtC

(J )
t + ξt

λt

C
(A)
t

)}
,

inf
X̂

sup
(X,Z,�t ,�t )∈F
Z satisfies (3.7)

‖X̂ − X‖op � λ1λ2λ3

{
C(B) +

3∑
t=1

(
ξtC

(J )
t + ξt

λt

C
(A)
t

)}
.
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REMARK 3. There have been a number of existing lower bound results on the
estimation error in matrix/tensor estimation literatures. For example, Negahban
and Wainwright (2012) considered the setting that one observes uniformly ran-
domly selected entries with noise; Candès and Plan (2011) developed a sharp
oracle lower bound when the measurement matrices satisfies restrict isometry
property (RIP), Koltchinskii, Lounici and Tsybakov (2011), Rohde and Tsybakov
(2011) considered the setting that the measurement matrices/tensors are i.i.d. ran-
domly generated. Raskutti, Yuan and Chen (2017) considered multiresponse regu-
larized tensor regression, autoregressive regression and interaction model with ran-
dom Gaussian measurements. As the proposed Cross tensor measurement scheme
does not satisfy the assumptions of these existing settings, these previous results
cannot be directly applied.

As we can see from the theoretical analyses, the choice of λt is crucial toward
the recovery performance of Algorithm 2. Theorem 2 provides a guideline for such
a choice depending on the unknown parameter ‖X�t X

†
�t×�t

‖, which is hard to
obtain in practice. However, we can choose λt = 3

√
pt/mt in a variety of settings.

Specifically, in the analysis below, we show under random sampling scheme that
�1, �2, �3, �1, �2, �3 are uniformly randomly selected from [1 : p1], [1 : p2],
[1 : p3], �2 × �3, �3 × �1, �1 × �2, Algorithm 2 with λt = 3

√
pt/mt will

have guaranteed performance. The choice of λt = 3
√

pt/mt and the one by cross-
validation will be further examined in simulation studies later.

THEOREM 4. Suppose X is with Tucker decomposition X = S×1 U1 ×2 U2 ×3
U3, where S ∈ R

r1×r2×r3,U1 ∈ Op1,r1,U2 ∈ Op2,r2,U3 ∈ Op3,r3 and U1, U2, U3,
M1(S ×2 U2 ×3 U3), M2(S ×1 U1 ×3 U3), M3(S ×1 U1 ×2 U2) all satisfy the
matrix incoherence conditions:

pt

rt
max

1≤j≤pt

∥∥PUt e
(pt )
j

∥∥2
2 ≤ ρ,

∏
s �=t ps

rt
max

1≤j≤∏s �=t ps

∥∥PMt (S×(t+1)Ut+1×(t+2)Ut+2)
� · e(

∏
s �=t ps)

j

∥∥2
2 ≤ ρ,

(3.9)

where e
(p)
j is the j th canonical basis in R

p . Suppose we are given random Cross
tensor measurements that �t and �t are uniformly randomly chosen mt and gt

values from {1, . . . , pt } and
∏

s �=t �s , respectively. If for t = 1,2,3,

σmin
(
Mt (S)

)
≥ max

{
10

√
p1p2p3

mtgt

‖Z�t×�t ‖,10

√
p1p2p3

m1m2m3
‖Zt,�‖,

19

√
p1p2p3

ptgt

‖Z�t ‖
}
,

(3.10)
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Algorithm 2 with λt = 3
√

pt/mt yields

‖X̂ − X‖HS ≤ C

√
p1p2p3

m1m2m3
‖Z[�1,�2,�3]‖HS

+ C
√

p1p2p3

3∑
t=1

(‖Z�t×�t ‖F√
gtmt

+ ‖Z�t ‖F√
gtpt

)
,

‖X̂ − X‖op ≤ C

√
p1p2p3

m1m2m3
‖Z[�1,�2,�3]‖op

+ C
√

p1p2p3

3∑
t=1

(‖Z�t×�t ‖√
gtmt

+ ‖Z�t ‖√
gtpt

)
,

with probability at least 1 − 2
∑3

t=1 rt {exp(−mt/(16rtρ)) + exp(−gt/(64rtρ))}.

REMARK 4. The incoherence conditions (3.9) are widely used in matrix and
tensor completion literature [see, e.g., Candès and Tao (2010), Recht (2011), Yuan
and Zhang (2017)]. Their conditions basically characterize every entry of X as
containing a similar level of information for the whole tensor. Therefore, we should
have enough knowledge to recover the original tensor based on the observable
entries.

REMARK 5. For a better illustration of the proposed procedure, it is helpful
to briefly discuss the matrix counterpart of Cross tensor measurement scheme and
recovery algorithm here. Suppose X is a p1-by-p2 unknown low-rank matrix, a
row index subset �1 ⊆ [1 : p1] and a column index subset �2 ⊆ [1 : p2] are ran-
domly generated, and one observe the rows X[�1,:] and columns X[:,�2]. We aim
to recover the original low-rank matrix X from observations of X[�1,�2], X[�1,�

c
2]

and X[�c
1,�2]. This problem, which has been studied recently in Wagner and Zuk

(2015) and Cai, Cai and Zhang (2016) in the context of row and column matrix
completion and structured matrix completion, would be a matrix analogy to tensor
completion via Cross tensor measurements. In the noiseless setting, it was shown
that the low-rank matrix X can be recovered by the well-regarded Schur comple-
ment,

(3.11) X̂ = X where X̂ = X[:,�2]X
†
[�1,�2]X[�1,:].

In the noisy setting, the estimation scheme based on a sequential truncation and
MLE-based approach were proposed and analyzed in Wagner and Zuk (2015) and
Cai, Cai and Zhang (2016), respectively.

Although the Cross tensor measurement scheme shares similarities with the
above matrix completion setting, the proposed tensor recovery procedure shows
distinct aspects and is much more difficult to analyze in various ways. First,
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in matrix settings one fully observes an “L” shaped region including X[�1,�2],
X[�c

1,�2] and X[�1,�
c
2] [Cai, Cai and Zhang (2016), Wagner and Zuk (2015)]. How-

ever, the analog of the “L” shape in tensor settings, X[�c
1,�2,�3], X[�1,�

c
2,�3] and

X[�1,�2,�
c
3], include O(p1m2m3 + m1p2m3 + m1m2p3) entries in total, which is

far more than the level achieved by Cross. Such difference also makes it difficult
to directly apply the original analysis in matrix setting to Cross. Second, the Cross
tensor measurement scheme involves more complicated tensor operations than its
matrix counterpart. In particular, the tensor recovery formula (2.13) involves seven
terms with three inverses including body, arms and joints, making its analysis far
more demanding than that of (3.11) where only three submatrices and one inverse
are involved. Third, the analysis of the proposed tensor completion algorithm re-
lies on tensor terminology and algebra, which are much more complicated than
the matrix ones. For example, the 	2 and Frobenius norms of a matrix can be well
characterized by its singular values. However, there is no such correspondence for
tensors.

4. Simulation study. In this section, we investigate the numerical perfor-
mance of the proposed procedure in a variety of settings. We repeat each setting
1000 times and record the average relative loss in Hilbert–Schmidt norm, that is,
‖X̂ − X‖HS/‖X‖HS.

We first focus on the setting with i.i.d. Gaussian noise. To be specific, we ran-
domly generate X = S×1 E1 ×2 E2 ×E3, where S ∈ R

r1×r2×r3 , E1 ∈ R
p1×r1,E2 ∈

R
p2×r2,E3 ∈ R

p3×r3 are all with i.i.d. standard Gaussian entries. We can verify
that X becomes a rank-(r1, r2, r3) tensor with probably 1 whenever r1, r2, r3 sat-
isfy max2(r1, r2, r3) ≤ r1r2r3. Then we generate the Cross tensor measurement �

as in (2.3) with �t including uniformly randomly selected mt values from [1 : pt ]
and �t including uniformly randomly selected gt values from

∏
s �=t �s , and con-

taminate X� with i.i.d. Gaussian noise: Y� = X� + Z�, where Zijk
i.i.d.∼ (0, σ 2).

Under such configuration, we study the influence of different factors, including λt ,
σ , mt , gt , pt to the numerical performance.

Under the Gaussian noise setting, we first compare different choices of tuning
parameters λt . To be specific, set p1 = p2 = p3 ∈ {50,80}, m1 = m2 = m3 = g1 =
g2 = g3 ∈ {10,15}, r1 = r2 = r3 = 3 and let σ range from 1 to 0.01. We consider
both the fixed tuning parameters: λt ∈ [1.5

√
pt/mt ,3.5

√
pt/mt ], and the one se-

lected by 5-fold cross-validation. The average relative Hilbert–Schmidt norm loss
of X̂ from Algorithm 2 is reported in Figure 3. It can be seen that the average
relative loss decays when the noise level is decreasing. After comparing different
choices of λt , 3

√
pt/mt and cross-validation scheme works the best under differ-

ent σ , which matches our previous suggestions.
We also compare the effects of mt = |�t | and gt = |�t | in the numerical per-

formance of Algorithm 2. We set p1 = p2 = p3 = 50, r1 = r2 = r3 = 3, σ = 0.3,
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(a) Varying noise level σ and stop
criteria (pt = 50, mt = 10)

(b) Varying noise level σ and stop
criteria (pt = 80, mt = 15)

(c) Varying gt and mt : λt = 3
√

pt/mt (d) Varying gt and mt : λt selected by
CV

(e) Average relative loss when pt , mt ,
gt are varying

(f) Average time cost when pt , mt , gt

are varying

FIG. 3. Numerical performance under Gaussian noise settings.

let gt , mt vary from 6 to 30 and let λt be either fixed as 3
√

pt/mt or chosen by 5-
fold cross-validation. The average relative Hilbert–Schmidt norm loss are plotted
in Figure 3(c) and (d). It can be seen that as gt , mt grow, namely when more entries
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are observable, better recovery performance can be achieved. The performance of
λt = 3

√
pt/mt is still similar to the one by cross-validation.

To further study the impact of high dimensionality to the proposed proce-
dure, we consider the setting where the dimension of X further grows. Here,
r1 = r2 = r3 = 3, σ = 0.3, m1 = m2 = m3 = g1 = g2 = g3 ∈ {10,15,20,25}, p1,
p2, p3 grow from 100 to 500 and λt = 3

√
pt/mt . The average relative loss in

Hilbert–Schmidt norm and average running time are provided in Figure 3(e) and
(f), respectively. Particularly, the recovery of 500-by-500-by-500 tensors involves
125,000,000 variables, but the proposed procedure provides stable recovery within
10 seconds on average by the PC with 3.1 GHz CPU, which demonstrates the effi-
ciency of our proposed algorithm.

The next simulation setting is designed to compare the proposed Algorithm 2
with the Low-rank Tensor Completion (LRTC) proposed by Liu et al. (2013).
LRTC is a convexified tensor completion method based on matricization nuclear
norm minimization. To avoid nonconvergence runs of LRTC, we set the maxi-
mum number of iterations as 500 and all the other tuning parameters as the de-
fault values. Let p1 = p2 = p3 = 50, r1 = r2 = r3 = 3; we consider two settings:
(i) σ 2 = 0.3, mt , gt vary from 6 to 20; (ii) mt = gt = 10, σ 2 varies from 0.01 to 1.
We apply both LRTC (with the package downloaded from the authors’ website)
and our proposed procedure, then present the estimation error in relative Hilbert–
Schmidt norm and average running time in Figure 4. It is clear that our proposed
procedure achieves significantly smaller estimation error in much shorter running
time, which substantially outperforms LRTC.

Then we move on to the setting where observations take discrete random val-
ues. High-dimensional count data commonly appear in a wide range of appli-
cations, including fluorescence microscopy, network flow and microbiome [see,
e.g., Cao and Xie (2016), Cao, Zhang and Li (2017), Jiang, Raskutti and Wil-
lett (2015), Nowak and Kolaczyk (2000), etc.], where Poisson and multinomial
distributions are often used in modeling the counts. In this simulation study, we
generate S ∈ Rr1×r2×r3,Et ∈ R

pt×rt as absolute values of i.i.d. standard normal
random variables, and calculate

X = S ×1 E1 ×2 E2 ×3 E3∑p1
i=1
∑p2

j=1
∑p3

k=1(S ×1 E1 ×2 E2 ×3 E3)ijk

.

�t , �t are generated similarly as before, p1 = p2 = p3 = 50, r1 =
r2 = r3 = 3, m1 = m2 = m3 = g1 = g2 = g3 ∈ {10,15,20,25}, and Y =
(Yijk)1≤i≤p1,1≤j≤p2,1≤k≤p3 are Poisson or multinomial distributed:

Yijk ∼ Poisson(HXijk) or Yijk ∼ Multinomial(N;X).

Here, H is a known intensity parameter in Poisson observations and N is the total
count parameter in multinomial observations. As shown in Figure 5, the proposed
Algorithm 2 performs stably for these two types of noisy structures.
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(a) Average relative loss with varying
mt, gt ∈ [6 : 20]

(b) Average running time with varying
mt, gt ∈ [6 : 20]

(c) Average relative loss with varying
σ 2 ∈ [0.01,1]

(d) Average running time with varying
σ 2 ∈ [0.01,1]

FIG. 4. Average relative loss and running time for Cross and LRTC.

(a) Poisson model with varying mt , gt

and intensity H

(b) Multinomial model with varying
mt , gt , total count N

FIG. 5. Average relative loss in HS norm based on Poisson and multinomial observations. Here,
p1 = p2 = p3 = 50, r1 = r2 = r3 = 3.
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Although X is assumed to be exactly low rank in all theoretical studies, it
is not necessary in practice. In fact, our simulation study shows that Algo-
rithm 2 performs well when X is only approximately low rank. Specifically, we
fix p1 = p2 = p3 = 50, generate W ∈ R

p1×p2×p3 from i.i.d. standard normal,
set U1 ∈ Op1,U2 ∈ Op2,U3 ∈ Op3 as uniform random orthogonal matrices, and
Et = diag(1,1,1−α, . . . , (pt − 2)−α). X is then constructed as

X = W ×1 (E1U1) ×2 (E2U2) ×3 (E3U3).

Here, α measures the decaying rate of singular values of each matricization of X
and X becomes exactly rank-(3, 3, 3) when α = ∞. We consider different decay
rates α, noise levels σ and observation set sizes mt and gt . The corresponding
average relative Hilbert–Schmidt norm loss is reported in Figure 6. It can be seen
that although X is not exactly low rank, as long as the singular values of each
matricization of X decay sufficiently fast, a desirable completion of X can still be
achieved, which again demonstrates the robustness of the proposed procedure.

5. Real data illustration. In this section, we apply the proposed Cross tensor
measurements scheme to a real dataset on attention hyperactivity disorder (ADHD)
available from ADHD-200 Sample Initiative (http://fcon_1000.projects.nitrc.org/
indi/adhd200/). ADHD is a common disease that affects at least 5–7% of school-
age children and may accompany patients throughout their life with direct costs of
at least $36 billion per year in the United States. Despite being the most common
mental disorder in children and adolescents, the cause of ADHD is largely unclear.
To investigate the disease, the ADHD-200 study covered 285 subjects diagnosed
with ADHD and 491 control subjects. After data cleaning, the dataset contains 776
tensors of dimension 121-by-145-by-121: Yi , i = 1, . . . ,776. The storage space
for these data through naive format is 121 × 145 × 121 × 776 × 4B ≈ 6.137 GB,

(a) Fixed mt = gt = 10, varying
singular value decaying rate α and

noise level σ

(b) Fixed σ = 0.3, varying singular
value decaying rate α and mt , gt

FIG. 6. Average relative loss for approximate low-rank tensors.

http://fcon_1000.projects.nitrc.org/indi/adhd200/
http://fcon_1000.projects.nitrc.org/indi/adhd200/
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FIG. 7. Singular value decompositions for each matricization of Y.

which makes it difficult and costly for sampling, storage and computation. There-
fore, we hope to reduce the sampling size for ADHD brain imaging data via the
proposed Cross tensor measurement scheme.

Figure 7 shows the singular values of each matricization of a randomly se-
lected Yi . We can see that Yi is approximately Tucker low rank. Similar to
previous simulation settings, we uniformly randomly select �t ⊆ [1 : pt ], �t ⊆∏

s �=t �s such that |�t | = mt, |�t | = gt . Particularly, we choose mt = round(ρ ·
pt), gt = round(m1m2m3/pt ), where ρ varies from 0.1 to 0.5 and round(·) is the
function that rounds its input to the nearest integer. After observing partial entries
of each tensor, we apply Algorithm 2 with λt = 3

√
pt/mt to obtain X̂. Different

from some of the previous studies [e.g., Zhou, Li and Zhu (2013)], our algorithm
is adaptive and tuning-free so that we do not need to subjectively specify the rank
of the target tensors beforehand.

Suppose rank(X̂) = (r̂1, r̂2, r̂3), Û1 ∈ Op1,r1, Û2 ∈ Op2,r2, Û3 ∈ Op3,r3 are the
left singular vectors of M1(X̂), M2(X̂), M3(X̂), respectively. We are interested
in investigating the performance of X̂, but the absence of the true tank of the under-
lying tensor X makes it difficult to directly compare X̂ and X. Instead, we compare
X̂ with X̃, where X̃ is the rank-(r̂1, r̂2, r̂3) tensor obtained through the high-order
singular value decomposition (HOSVD) [see, e.g., Kolda and Bader (2009)] based
on all observations in Y:

(5.1) X̃ = Y ×1 PŨ1
×2 PŨ2

×3 PŨ3
.

Here, Ũ1 ∈ Op1,r1, Ũ2 ∈ Op2,r2, Ũ3 ∈ Op3,r3 are the first r1, r2 and r3 left singu-
lar vectors of M1(Y), M2(Y) and M3(Y), respectively. Particularly, we compare
‖X̂ − Y‖HS and ‖X̃ − Y‖HS, that is, the rank-(r1, r2, r3) approximation based on
limited number of Cross tensor measurements and the approximation based on
all measurements. We also compare Û1, Û2, Û3 and Ũ1, Ũ2, Ũ3 by calculating

1√
r̂t

‖Û�
t Ũt‖F . The study is performed on 10 randomly selected images and re-

peated 100 times for each of them. We can immediately see from the result in
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TABLE 1
Comparison between X̂ and X̃ for ADHD brain imaging data

Sampling Ratio

mt [See (2.6)] ‖X̂−Y‖HS
‖X̃−Y‖HS

1√
r̂1

‖Û�
1 Ũ1‖F

1√
r̂2

‖Û�
2 Ũ2‖F

1√
r̂3

‖Û�
3 Ũ3‖F

round(.1pt ) 0.0035 1.5086 0.8291 0.8212 0.8318
round(.2pt ) 0.0267 1.2063 0.9352 0.9110 0.9155
round(.3pt ) 0.0832 1.0918 0.9650 0.9571 0.9634
round(.4pt ) 0.1766 1.0506 0.9769 0.9745 0.9828
round(.5pt ) 0.3066 1.0312 0.9832 0.9840 0.9905

Table 1 that on average, ‖X̂ − Y‖HS, that is, rank-(r1, r2, r3) approximation er-
ror with limited numbers of Cross tensor measurements, can get very close to
‖X̃ − Y‖HS, that is, rank-(r1, r2, r3) approximation error with the whole tensor Y.
Besides, 1√

r̂t
‖Û�

t Ũt‖F is close to 1, which means the singular vectors calculated

from limited numbers of Cross tensor measurements are not too far from the ones
calculated from the whole tensor.

Therefore, by the proposed Cross Tensor Measurement Scheme and a small
fraction of observable entries, we can approximate the leading principle compo-
nent of the original tensor just as if we have observed all voxels. This illustrates
the power of the proposed algorithm.

6. Discussions: Extensions to fourth- and higher-order tensors. In this pa-
per, we propose a novel tensor measurement scheme called Cross and the corre-
sponding low-rank tensor completion algorithm. The theoretical analyses are pro-
vided for the proposed procedure to guarantee the optimality in both the sample
size requirement and the completion error. The proposed procedure is efficient and
easy to implement even for large-scale dataset.

Throughout the paper, we focus our presentations and analyses on order-3
tensors. Moreover, the proposed methods can be easily extended for fourth- or
higher-order tensors. Suppose we aim to complete an unknown, order-d and rank-
(r1, . . . , rd) tensor: X ∈ R

p1×···×pd . Similarly, we introduce the order-d Cross Ten-
sor Measurement Scheme as

�t ⊆ [1 : pt ], where |�t | = mt, t = 1, . . . , d,

�t =∏
s �=t

�s, where |�t | = gt , t = 1, . . . , d,

� =
(

d∏
t=1

�t

)
d⋃

t=1

([1 : pt ] × �t

)
.
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By observing Y� = X� + Z�, we can construct the body, arm and joint matriciza-
tions as

Yt,� = Mt (Y[�1,...,�d ]), Y�t = Mt (Y[1:pt ]×�t ),

Y�t×�t = Mt (Y�t×�t ).

Similarly as Theorem 1, we can prove that X can be recovered by

X̂ = Y[�1,...,�d ] ×1 R1 ×2 · · · ×d Rd where Rt = Y�t Y
†
�t×�t

, t = 1, . . . , d,

in the noiseless setting, provided that min{mt, gt} ≥ rt [so that |�| ≥ ∏d
t=1 rt +∑d

t=1 rt (pt − rt )] and some other mild assumptions holds. This result achieves the
optimal sampling requirement since the degrees of freedom for rank-(r1, . . . , rd)

tensors in R
p1×···×pd is exactly

∏d
t=1 rt + ∑d

t=1 rt (pt − rt ) (see Proposition 1
and Remark 1). Additionally, the procedure for order-d tensor completion with
noisy Cross measurements essentially follow from the proposed procedure in Al-
gorithm 2, as long as we replace “t = 1,2,3” by “t = 1, . . . , d”. An interesting
problem for further exploration is on how to select the tuning parameter λt for the
general order-d tensor completion.

The main results on Cross tensor measurements can be further extended from
the entrywise observations to the more general projection settings. Suppose Pt ∈
Opt ,mt and Qt ∈ Omt+1mt+2,gt are orthogonal matrices for t = 1,2,3. We observe
the following body, arm and joint projections of X:

X(B) = X ×1 P �
1 ×2 P �

2 ×3 P �
3 ∈R

m1×m2×m3,

X
(A)
t = M1

(
X ×2 P �

2 ×3 P �
3
) · Q1 ∈ R

pt×gt , t = 1,2,3,

X
(J )
t = P �

1 ·M1
(
X ×2 P �

2 ×3 P �
3
) · Q1 ∈ R

mt×gt , t = 1,2,3.

(6.1)

The regular Cross tensor measurements discussed in Section 2.2 can be seen as a
special case of (6.1), where

(Pt )ij = 1{i=�t(j)}, 1 ≤ i ≤ pt ,1 ≤ j ≤ mt ;
(Qt)ij = 1{i=�t (j)}, 1 ≤ i ≤ mt+1mt+2,1 ≤ j ≤ gt .

When X(B), X
(A)
t , X

(J)
t are observed without noise, by the similar argument of

Theorem 1, one can show that

X = X(B) ×1 R1 × R2 ×3 R3, Rt = X
(A)
t

(
X

(J)
t

)†
, t = 1,2,3.

In the noisy setting, one can similarly apply the proposed Algorithm 2 to recover X.
Suppose the additive observation noises are

Z(B) = Y(B) − X(B) ∈ R
m1×m2×m3,

Z
(A)
t = Y

(A)
t − X

(A)
t ∈ R

pt×gt , t = 1,2,3,

Z
(J )
t = Y

(J )
t − X

(J)
t ∈ R

mt×gt , t = 1,2,3.
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If X̂ is the output from Algorithm 2, by similar procedure of Theorem 2, one can
show that

‖X̂ − X‖HS ≤ Cλ1λ2λ3
∥∥Z(B)

∥∥
HS

+ Cλ1λ2λ3

( 3∑
t=1

ξt

∥∥Z(J)
t

∥∥
F + C

3∑
t=1

ξt

λt

∥∥Z(A)
t

∥∥
F

)
,

(6.2)

where λt ≥ 2‖X(A)(X
(J )
t )†‖, ξt = ‖(X(J )

t )†Mt (X(B))‖. This extension yields a
possible application of Cross to general tensor estimation problems. Suppose one
aims to recover low-rank tensor X from limited number of (not necessarily entry-
wise) measurements. If one can obtain reasonable estimations for the following
low-dimensional projections of X,

X(B) = X ×1 P1 × P2 × P3 ∈R
m1×m2×m3 and

X
(A)
t =Mt

(
X ×t+1 P �

t+1 ×t+2 P �
t+2
)
Qt ∈ R

pt×gt ,

the proposed Algorithm 2 yields an efficient estimation for X with guaranteed
performance (6.2). It would be an interesting future topic to apply Cross tensor
measurement scheme to develop efficient algorithm for other low-rank tensor esti-
mation problems, such as tensor completion with uniform random measurements,
tensor regression and tensor denoising.
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SUPPLEMENTARY MATERIAL

Supplement to “Cross: Efficient low-rank tensor completion” (DOI: 10.
1214/18-AOS1694SUPP; .pdf). In the supplement, we provide proofs for the main
results and technical lemmas. For better presentation for the long proof of Theorem
2, we also provide a table of used notation.
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