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It is common for genomic data analysis to use p-values from a large
number of permutation tests. The multiplicity of tests may require very tiny
p-values in order to reject any null hypotheses and the common practice of
using randomly sampled permutations then becomes very expensive. We pro-
pose an inexpensive approximation to p-values for two sample linear test
statistics, derived from Stolarsky’s invariance principle. The method creates
a geometrically derived reference set of approximate p-values for each hy-
pothesis. The average of that set is used as a point estimate p̂ and our gener-
alization of the invariance principle allows us to compute the variance of the
p-values in that set. We find that in cases where the point estimate is small,
the variance is a modest multiple of the square of that point estimate, yielding
a relative error property similar to that of saddlepoint approximations. On a
Parkinson’s disease data set, the new approximation is faster and more accu-
rate than the saddlepoint approximation. We also obtain a simple probabilistic
explanation of Stolarsky’s invariance principle.

1. Introduction. Permutation methods are commonly used to obtain p-values
in genomic applications, especially those involving gene sets. In even modestly
large data sets, the exact permutation p-value becomes too expensive to com-
pute. Then Monte Carlo sampling of random permutations becomes a standard
approach. Genomic applications often test thousands of hypotheses and then mul-
tiplicity adjustment requires that some small p-values be obtained if any null hy-
potheses are to be rejected. When p-values below ε are required to reject H0, then
Knijnenburg et al. (2009) recommend doing at least 10/ε random permutations.
As a result, even Monte Carlo sampling for permutation tests can be prohibitively
expensive, and hence it pays to search for fast approximations to the permutation
p-value.

In this paper, we develop rapidly computable approximations to some permuta-
tion p-values. The p-values we consider are for a difference in group means. The
approximations are based on ideas from spherical geometry and discrepancy, re-
lated to the Stolarsky invariance principle [Stolarsky (1973)]. As described below,
the resulting approximations prove to be very accurate for the tiny p-values where
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permutation methods are most difficult to use. The new approximations come with
a numerical estimate of their own accuracy. Although they are limited to the two
sample setting, that setting is very important in many applications.

We begin with some background on the genomic motivation of our work. Then
we transition to spherical geometry. This section then gives an outline of the paper
and a pointer to some software.

Genomic context. The specific problem that motivated us is testing for sets
of genes associated with Parkinson’s disease [Larson and Owen (2015)]. More
details about this work are given in the first author’s dissertation [He (2016)]. In
these data sets, there are m0 subjects without Parkinson’s disease and m1 subjects
with it. One can test whether Parkinson’s disease is associated with an individual
gene by doing a t-test comparing gene expression levels in tissue samples from the
two groups of subjects. Biological interest is often summarized more by gene sets
rather than individual genes. Gene sets have two advantages: small but consistent
associations of many genes with the test condition can raise power, and the gene
sets themselves often connect better to biological understanding than do individual
genes.

For gene set testing, we work with a null hypothesis where a variable of interest
(here a binary disease status) is statistically independent of the expression level
of all the genes in the gene set. We will call the variable of interest a phenotype,
though it could be any binary variable such as treatment versus control in an exper-
iment. The most studied alternative hypotheses are those where the phenotype is
associated with a location shift in some or all of the genes in a gene set. Many test
statistics, some quite elaborate, have been proposed for this problem. Ackermann
and Strimmer (2009) have an extensive comparison of 261 different gene set tests
for this two sample setting. To cope with correlations among all of the genes within
a gene set, testing is done through permutations of the phenotype values with re-
spect to the gene expression levels. They investigated numerous ways that location
shifts could manifest and judged test statistics by the resulting power of permuta-
tion tests. In practice, one does not know the precise form that the alternative will
take. Fortunately, Ackermann and Strimmer (2009) identified two families of test
statistics that performed well across their range of mean-shift scenarios.

To describe the best test statistics, let tg be the ordinary t-statistic for associ-
ation of gene g’s expression level with a binary phenotype. It is a difference of
within-group means normalized by a standard error. Now let G be a set of genes.
Ackermann and Strimmer (2009) found that linear and quadratic test statistics,
LG = ∑

g∈G tg and QG = ∑
g∈G t2

g , yielded the most powerful permutation tests,
along with some simple approximations to those two statistics. These test statis-
tics were more effective than some substantially more complicated proposals. Tian
et al. (2005) use the test statistic LG/|G| where G is the cardinality of G, and the
JG score of Jiang and Gentleman (2005) is similar. The statistic LG, and approx-
imations to it, did best when expression differences between the two conditions
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tended to have the same sign for each g ∈ G. When many oppositely signed treat-
ment effects occurred, then QG and approximations to it did best.

In a permutation analysis, like Ackermann and Strimmer (2009) used, we con-
sider all N = ( n

m1

)
different ways to select a subset π containing m1 of the

n = m0 +m1 subjects. Let Lπ
G be the linear test statistic recomputed as if those m1

subjects had been the affected group. Then one-sided and two-sided permutation
p-values for LG are

p = 1

N

∑
π

1Lπ
G≥LG

and p = 1

N

∑
π

1|Lπ
G|≥|LG|,

respectively. Here, 1E takes the value 1 if the event E occurs and zero otherwise.
We also use 1(E) in places where we find it more readable than 1E . Under the
null hypothesis of independence, permutation tests derived from these p-values
are exact by symmetry [Lehmann and Romano (2005), Chapter 15.2]. Note that
the smallest possible value for p is 1/N which we call the granularity limit.

When N is too large for a permutation test to be computationally feasible,
a standard practice is to estimate p via randomly sampled permutations of the
treatment label, as proposed by Barnard (1963). We randomize the binary treat-
ment label M − 1 times, letting π(�) be the affected group in randomization � for
� = 1, . . . ,M − 1. We let π(0) be the original allocation. Then the average

p̂ = 1

M

M−1∑
�=0

1|Lπ(�)
G |≥|LG|

is used as an estimate of p (for the two-sided linear case). In this Monte Carlo
computation, the true permutation p-value p is the unknown parameter and p̂ is
the sample estimate of p. Note that p̂ ≥ 1/M because we have included the origi-
nal allocation in the numerator. Failure to include the original allocation π(0) can
lead to p̂ = 0 which is very undesirable. Note that the Monte Carlo granularity
limit 1/M can be much larger than the permutation limit 1/N . When p is quite
small, an enormous number M of simulations may be required to get an accu-
rate estimate of it. For instance, in genome wide association studies (GWAS), the
customary threshold for significance is ε = 5 × 10−8, making permutation meth-
ods prohibitively expensive, or even infeasible. For a recent discussion of p-value
thresholds in GWAS, see Fadista et al. (2016).

In this paper, we work with an approximation to LG from Ackermann and
Strimmer (2009). Let Xi = 1 if subject i is in condition 1 with Xi = 0 for con-
dition 0, and let Ygi be the expression level of gene g for subject i. These variables
have sample averages X̄ and Ȳg , respectively. Ackermann and Strimmer (2009)
found that ∑

g∈G

1

n

n∑
i=1

Xi − X̄

sX

Ygi − Ȳg

sg
(1.1)
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was in the same winning set of test statistics as LG, where sX and sg are standard
deviations of Xi and Ygi , respectively.

To understand why the statistic in (1.1) performs similarly to LG, let ρ̂g

be the sample correlation between Xi and Ygi . Then (1.1) is
∑

g∈G ρ̂g times
a constant (n − 1)/n that does not affect the permutation p-value. Now tg =√

n − 2ρ̂g/
√

1 − ρ̂2
g and a Taylor approximation gives tg

.= √
n − 2(ρ̂g + ρ̂3

g/2).

When many small correlations ρ̂g contribute to the signal, then summing ρ̂g as
in (1.1) gives a test statistic that is almost equivalent to summing tg because each
ρ̂3

g is then very small.
Let Yi = YGi ≡ ∑

g∈G Ygi/sg , Ȳ = (1/n)
∑n

i=1 Yi and let 1n be a column vector
of n ones. Then we may rewrite (1.1) as

n∑
i=1

Xi − X̄

‖X − 1nX̄‖
Yi − Ȳ

‖Y − 1nȲ‖(1.2)

multiplied by a constant that only depends on n. Equation (1.2) describes a test
statistic that is a plain Euclidean inner product of two unit vectors x0,y0 ∈ R

n.
Here, x0 has ith component (Xi − X̄)/‖X − 1nX̄‖ and y0 is similar.

There are N = ( n
m1

)
distinct vectors found by permuting the entries in x0. We

label them x0,x1, . . . ,xN−1 with x0 being the original one. Letting ρ̂ = xT
0y0 we

find that one and two-sided p-values for a linear statistic are

1

N

N−1∑
k=0

1xT
ky0≥ρ̂ and

1

N

N−1∑
k=0

1|xT
ky0|≥|ρ̂|,(1.3)

respectively. We prefer inferences based on two-sided tests, but it is simpler to
study one-sided tests first and then translate the results to two-sided ones.

Spherical geometry. We are now ready to make a geometric interpretation.
Let Sd = {z ∈ R

d+1 | zTz = 1} be the d-dimensional unit sphere. Our data x0, y0
are in a subset of Sn−1 orthogonal to 1n. That subset is isomorphic to S

n−2 and
so we work mostly with d = n − 2. In our motivating setting, the vector x0 has
m1 identical positive values and m0 identical negative values. The geometry here
applies for an arbitrary unit vector x0, but we only develop practically usable tests
for binary x0.

For y ∈ S
d and t ∈ [−1,1], the spherical cap of center y and height t is

C(y; t) = {z ∈ S
d | 〈y,z〉 ≥ t}, where 〈·, ·〉 is the usual Euclidean inner product.

By symmetry, z ∈ C(y; t) if and only if y ∈ C(z; t). The one-sided linear p-value
is the fraction of xk for 0 ≤ k < N that belong to C(y0; ρ̂). Viewing x0, . . . ,xN−1
as approximately uniformly distributed over Sd by symmetry it is then natural to
estimate p by

p̂1 = p̂1(ρ̂) where p̂1(t) ≡ vol(C(y0; t))
vol(Sd)

.(1.4)
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We use spherical geometry to investigate the accuracy of the uniformity-based
estimate p̂1 from (1.4) and also to motivate sharper estimates.

Stolarsky’s invariance principle gives a remarkable description of the accuracy
of p̂1. Points x0,x1, . . . ,xN−1 ∈ S

d have squared L2 spherical cap discrepancy

L2
2 = L2(x0, . . . ,xN−1)

2 =
∫ 1

−1

∫
Sd

∣∣p̂1(t) − p(z, t)
∣∣2 dσd(z)dt,

where p(z, t) = (1/N)
∑N−1

k=0 1xk∈C(z,t) and σd is the uniform (Haar) measure on
S

d . Stolarsky (1973) shows that

dωd

ωd+1
× L2

2 =
∫
Sd

∫
Sd

‖x − y‖dσd(x)dσd(y) − 1

N2

N−1∑
k,�=0

‖xk − x�‖,(1.5)

where ωd is the (surface) volume of S
d . Equation (1.5) shows that the mean

squared error of p̂1(t) as an estimate of the permutation p-value p(z, t) is de-
termined by the mean absolute Euclidean distances among the N points. In our
applications, the N points will be the distinct permuted values of x0, but (1.5)
holds for N arbitrary points xk ∈ S

d .
The left-hand side of (1.5) is, up to normalization, a mean squared discrepancy

over spherical caps. The mean of (p̂1 − p)2 is taken over caps of all heights from
−1 to 1 corresponding to p-values of all sizes between 0 and 1. It is not then a very
good accuracy measure when p̂1(ρ̂) turns out to be very small, such as 10−6. It
would be more useful to get such a mean squared error taken over caps of exactly
the size p̂1(ρ̂), and no others.

Brauchart and Dick (2013) consider quasi-Monte Carlo (QMC) sampling in the
sphere. They generalize Stolarsky’s discrepancy formula to include a weighting
function on the height t . By specializing their formula, we get an expression for the
mean of (p̂1 − p)2 over spherical caps of any fixed size. Discrepancy theory plays
a prominent role in QMC [Niederreiter (1992)], which is about approximating an
integral by a sample average. The present setting is a reversal of QMC: the discrete
average p over permutations is the exact value we seek, and the integral over a
continuum is the approximation p̂. A second difference is that the QMC literature
focuses on choosing N points to minimize a criterion such as (1.5), whereas here
the N points are determined by the problem.

As we will show below, the estimate p̂1 is the average of p over all spherical
caps C(y; ρ̂) under a uniform distribution on their centers, that is, y ∼ U(Sd).
Those caps have the same volume as C(y0; ρ̂). In addition to specializing to caps
C(y; t) with t = ρ̂ we make a further refinement to caps whose centers y more
closely resemble y0. We find that refining to y with yTx0 = yT

0x0 is especially
useful. Such y values have exactly the same linear test statistic that the observed
data y0 had.

These restrictions on spherical caps impose the constraint y ∈ Y for some Y ⊂
S

d . Then we can be sure that p(y0, ρ̂) ≤ supy∈Y p(y, ρ̂). If we could compute
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this supremum, then we would have a conservative permutation p-value and be
sure of controlling type I errors. We are generally unable to compute this quantity
but we can find both E(p(y, ρ̂)) and Var(p(y, ρ̂)) under a reference distribution
y ∼ U(Y). Intuitively, taking Y ever closer to the ideal Y = {y0}, should lead to a
more accurate reference mean. The variance gives us a numerical measure of how
accurate that reference mean is. The practical constraint on our choice of Y is that
we must be able to compute these reference moments.

The first reference set is simply Y1 = S
d . Our refinement of this set is Y2 =

{y ∈ S
d | yTx0 = yT

0x0}. We obtain a computable expression for p̂2 = E(p(y, ρ̂))

and another one for E((p̂2 −p(y, ρ̂))2), both under y ∼ U(Y2), by further extend-
ing Brauchart and Dick’s generalization of Stolarsky’s invariance. In principle, we
could refine Y2 further in the direction of {y0} by imposing additional linear con-
straints on y. For this paper, we impose just one. Our proofs and algorithms work
with the more general constraint yTxc = yT

0xc for any c ∈ {0,1, . . . ,N − 1} that
we like.

Our calculations show that
√

Var(p̂2 − p(y, ρ̂)), for y ∼ U(Y2), does not
greatly exceed p̂2 when p̂2 is small and it even vanishes in the limit as p̂2 ↓ 1/N .
The function p(y) is then nearly constant over y ∈ Y2 in this L2 sense, which
turns out to make p̂2 a much better estimate of p than p̂1 is. We cannot rule out
that the true p(y0) could be quite different from p̂2 for a data generating process
that differed in an adversarial way from the reference distribution, as discussed at
the end of this article.

Although our results are mean square discrepancies via invariance, we can also
obtain them via probabilistic arguments. As a consequence, we have a probabilis-
tic derivation of Stolarsky’s formula. Bilyk, Dai and Matzke (2018) have indepen-
dently found this connection.

Outline. The rest of the paper is organized as follows. Section 2 presents some
results from spherical geometry and defines our reference distributions. In Sec-
tion 3, we use Stolarsky’s invariance principle as generalized by Brauchart and
Dick (2013) to obtain the mean squared error between the true p-value and its
continuous approximation p̂1, averaging over all spherical caps of volume p̂1.
This section also has a probabilistic derivation of that mean squared error. In Sec-
tion 4, we derive the refined estimate p̂2 and some generalizations. By construc-
tion p̂2 ≥ 1/N , respecting the true granularity of permutation testing. In Section 5,
we modify the proof in Brauchart and Dick (2013), to further generalize their in-
variance results to include the mean squared error of p̂2. Section 6 extends our
estimates to two-sided testing. Section 7 illustrates our p-value approximations
numerically. We see that the root mean squared error in the estimate p̂2 is of the
same order of magnitude as p̂2 itself. That is, p̂2 has a relative error property like
saddlepoint estimates do. The estimate p̂1 is notably less accurate than p̂2. Sec-
tion 8 makes a numerical comparison to saddlepoint methods in simulated data.
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The saddlepoint estimates come out more accurate than p̂2 but are downwardly
biased in those simulated examples. Section 9 compares the accuracy of our ap-
proximations to each other and to the saddlepoint approximation for 6180 gene sets
in some Parkinson’s disease data sets. In the data examples, the new approxima-
tions come out closer to some gold standard estimates (based on large Monte Carlo
samples) than the saddlepoint estimates do, which once again are biased low. From
Table 6.3 of He (2016), the saddlepoint computations take roughly 30 times longer
than p̂2 does. Section 10 draws some conclusions and discusses the challenges in
getting a computationally feasible p-value that accounts for both sampling uncer-
tainty of the data and the uncertainty in p̂ as an estimate of p. At several places,
we refer the reader to the Supplementary Material [He et al. (2019)] for additional
material, including our lengthier proofs.

Software. The proposed approximations are implemented in the R package
pipeGS on CRAN. Given a binary input label and a gene expression measure-
ment matrix, it computes our p-value approximations for two sample problems.
It includes the statistics, p̂1 and p̂2 mentioned above as well as a saddlepoint ap-
proximation which may be of independent interest.

2. Background and notation. Here, we develop approximations to the one-
sided p-value in (1.3). That is simpler than carrying the two-sided case through all
of our derivations. We translate from one-sided to two-sided cases in Section 6.

The raw data contain points (Xi, Yi) for i = 1, . . . , n, where Yi may be a com-
posite quantity derived from all Ygi for g belonging to a gene set G, such as
Yi = YGi given just before (1.2). We center and scale vectors (X1,X2, . . . ,Xn)

and (Y1, Y2, . . . , Yn) yielding x0,y0 ∈ S
d for d = n − 1. Both points belong to

{z ∈ S
n−1 | zT1n = 0}. We can use an orthogonal matrix to rotate the points of this

set onto S
n−2 × {0}. As a result, we may simply work with x0,y0 ∈ S

d where
d = n − 2.

The sample correlation of these variables is ρ̂ = xT
0y0 = 〈x0,y0〉. We use

〈x0,y0〉 when we find that geometrical thinking is appropriate and to conform
with Brauchart and Dick (2013). We use xT

0y0 to emphasize computational or al-
gebraic connotations.

The geometry we use leads to practical algorithms when Xi takes on just two
values, such as 0 and 1. When there are m0 observations with Xi = 0 and m1

with Xi = 1 then x0 contains m0 components equal to −√
m1/(nm0) and m1

components equal to +√
m0/(nm1). In our theorem statements, we describe such

a point x0 as a “centered and scaled binary vector.”
Computational costs are often sensitive to the smaller sample size, m ≡

min(m0,m1). For this two-sample case, there are only N = (m0+m1
m0

)
distinct per-

mutations of x0. We have called these x0,x1, . . . ,xN−1 and the true p-value
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is p = (1/N)
∑N−1

k=0 1(xT
ky0 ≥ ρ̂) = (1/N)

∑N−1
k=0 1(xk ∈ C(y0; ρ̂)). In the two-

sample case, we can define a useful interpoint swap distance

r = r(xk,x�) =
n∑

i=1

1
(
(xk)i > 0 and (x�)i < 0

)
,

where (xk)i is the ith component of xk . In the permutation taking xk onto x�, there
are r positive entries in xk that have been swapped with negative ones to create x�.
In that case, we easily find that

u(r) ≡ 〈xk,x�〉 = 1 − r

(
1

m0
+ 1

m1

)
.(2.1)

We need some geometric properties of the unit sphere and spherical caps. The
surface volume of Sd is ωd = 2π(d+1)/2/�((d + 1)/2). Recall that σd is the vol-
ume element in S

d normalized so that σd(Sd) = 1. Henceforth “volume” will al-
ways refer to this normalized volume. The spherical cap C(y; t) = {z ∈ S

d | zTy ≥
t} has volume

σd

(
C(y; t)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2
I1−t2

(
d

2
,

1

2

)
, 0 ≤ t ≤ 1,

1 − 1

2
I1−t2

(
d

2
,

1

2

)
, −1 ≤ t < 0,

where It (a, b) is the incomplete beta function

It (a, b) = 1

B(a, b)

∫ t

0
xa−1(1 − x)b−1 dx

with B(a, b) = ∫ 1
0 xa−1(1 − x)b−1 dx.

We frequently need to use a tangent-normal decomposition [Mardia and Jupp
(2000), Chapter 9.1]. The tangent-normal decomposition of y with respect to x is

y = tx +
√

1 − t2y∗,

where t = yTx ∈ [−1,1] and y∗ ∈ {z ∈ S
d | zTx = 0} which is isomorphic to S

d−1.
The coordinates t and y∗ are unique. We refer to y∗ as the residual in this decom-
position. From equation (A.1) in Brauchart and Dick (2013),

dσd(y) = ωd−1

ωd

(
1 − t2)d/2−1 dt dσd−1

(
y∗)

.(2.2)

The intersection of two spherical caps of common height t is

C2(x,y; t) ≡ C(x; t) ∩ C(y; t).
We will need the volume of this intersection. Lee and Kim (2014) give a general
solution for spherical cap intersections without requiring equal heights. They enu-
merate 25 cases, but our case does not correspond to any single case of theirs and
so we obtain the formula we need directly, below. We suspect it must be known
already, but we were unable to find it in the literature.
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LEMMA 1. Let x,y ∈ S
d and −1 ≤ t ≤ 1 and put u = xTy. Let V2(u; t, d) =

σd(C2(x,y; t)). If u = 1, then V2(u; t, d) = σd(C(x; t)). If −1 < u < 1, then

V2(u; t, d) = ωd−1

ωd

∫ 1

t

(
1 − s2) d

2 −1
σd−1

(
C

(
y∗;ρ(s)

))
ds,(2.3)

where ρ(s) = (t − su)/
√

(1 − s2)(1 − u2). Finally, for u = −1,

V2(u; t, d) =
⎧⎪⎨
⎪⎩

0, t ≥ 0,

ωd−1

ωd

∫ |t |
−|t |

(
1 − s2) d

2 −1 ds, else.
(2.4)

PROOF. See Section 11.1 of the Supplementary Material [He et al. (2019)].
�

When we give probabilistic arguments and interpretations we do so for a ran-
dom center y of a spherical cap. That random center is taken from two reference
distributions given below. Reference distribution 1 is illustrated in Figure 1. Ref-
erence distribution 2 is illustrated in Figure 2 of Section 4 where we first use it.

REFERENCE DISTRIBUTION 1. The vector y ∼ U(Y1) where Y1 = S
d . Ex-

pectation under this distribution is denoted by E1(·).

REFERENCE DISTRIBUTION 2. The vector y ∼ U(Y2) where

Y2 =Y2(c) = {
z ∈ S

d | zTxc = ρ̃
}
,

for some c ∈ {0,1, . . . ,N − 1} and ρ̃ = xT
cy0. Then y = ρ̃xc +

√
1 − ρ̃2y∗ for y∗

uniformly distributed on a subset of Sd isomorphic to S
d−1. Expectation under this

distribution is denoted by E2,c(·) and E2(·) means E2,0(·).

We also use Varj (·) for a variance under reference distribution j . Reference dis-
tribution 1 holds for y0 if the Yi are IID Gaussian random variables (with positive
variance). Then p̂1 is the same as we would get from a t-test. Reference distribu-
tion 2 is actually a family of reference distributions indexed by c. The choice of
primary interest to us has c = 0 corresponding to the observed treatment allocation.
We write p̃c = E2,c(C(y; ρ̂)) and p̂2 = p̃0. This reference distribution represents
a significant narrowing of Reference distribution 1. We find good numerical per-
formance for p̂2 below.
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3. Approximation via spherical cap volume. Here, we study the approxi-
mate p-value p̂1(ρ̂) = σd(C(y; ρ̂)). First, we find the mean squared error of this
approximation over all spherical caps of the given volume via invariance. Next, we
give a probabilistic interpretation which includes the conditional unbiasedness re-
sult in Proposition 2 below. Then we give two computational simplifications, first
taking advantage of the permutation structure of our points, and then second for
permutations of a centered and scaled binary vector.

Brauchart and Dick (2013) gave a simple proof of Stolarsky’s invariance prin-
ciple using reproducing kernel Hilbert spaces. They also generalized it as follows.

THEOREM 1. Let x0, . . . ,xN−1 be any points in S
d . Let v : [−1,1] → (0,∞)

be any function with an antiderivative. Then∫ 1

−1
v(t)

∫
Sd

∣∣∣∣∣σd

(
C(z; t)) − 1

N

N−1∑
k=0

1C(z;t)(xk)

∣∣∣∣∣
2

dσd(z)dt

= 1

N2

N−1∑
k,l=0

Kv(xk,x�) −
∫
Sd

∫
Sd

Kv(x,y)dσd(x)dσd(y),

(3.1)

FIG. 1. Reference distribution 1. Here, y ∼ U(Sd) and y0 is the observed value of y. The small
open circles represent permuted vectors xk . The circle around y0 goes through x0 and represents
a spherical cap of height ρ̂ = yT

0x0. A second spherical cap of equal volume is centered at y1. We
study moments of the permutation p-value p(y, ρ̂) for random y and fixed ρ̂.
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where Kv(x,y) is a reproducing kernel function defined by

Kv(x,y) =
∫ 1

−1
v(t)

∫
Sd

1C(z;t)(x)1C(z;t)(y)dσd(z)dt.(3.2)

PROOF. See Theorem 5.1 in Brauchart and Dick (2013). �

If we set v(t) = 1 and K(x,y) = 1 − Cd‖x − y‖, then we recover the origi-
nal Stolarsky formula (1.5). Note that the statement of Theorem 5.1 in Brauchart
and Dick (2013) has a sign error in their counterpart to (3.1). The corrected state-
ment (3.1) can be verified by comparing equations (5.3) and (5.4) of Brauchart and
Dick (2013).

We would like a version of (3.1) for just one value of t such as t = ρ̂ = xT
0y0.

For ρ̂ ∈ [−1,1) and ε = (ε1, ε2) ∈ (0,1)2, let

vε(t) = ε2 + 1

ε1
1(ρ̂ ≤ t ≤ ρ̂ + ε1).(3.3)

Each vε satisfies the conditions of Theorem 1 making (3.1) an identity in ε. We let
ε2 → 0 and then ε1 → 0 on both sides of (3.1) for v = vε yielding Theorem 2.

THEOREM 2. Let x0,x1, . . . ,xN−1 ∈ S
d and t ∈ [−1,1]. Then∫

Sd

∣∣p(y, t) − p̂1(t)
∣∣2 dσd(y)

= 1

N2

N−1∑
k=0

N−1∑
�=0

σd

(
C2(xk,x�; t)) − p̂1(t)

2.

(3.4)

PROOF. See He et al. (2019), Section 11.2, which uses the limit argument
described above. �

We now give a proposition that holds for all distributions of y ∈ S
d including

our Reference distributions 1 and 2.

PROPOSITION 1. For a random point y from any distribution on S
d ,

E
(
p(y, t)

) = 1

N

N−1∑
k=0

Pr
(
y ∈ C(xk; t))(3.5)

and

E
(
p(y, t)2) = 1

N2

N−1∑
k,�=0

Pr
(
y ∈ C2(xk,x�; t)).(3.6)

PROOF. These follow directly from p = (1/N)
∑N

k=0 1(y ∈ C(xk; t)). �
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PROPOSITION 2. For any x0, . . . ,xN−1 ∈ S
d and t ∈ [−1,1],

E1
(
p(y, t)

) = p̂1(t) and E1
(
p(y, t)2) = 1

N2

N−1∑
k=0

N−1∑
�=0

σd

(
C2(xk,x�; t)).

PROOF. We apply Proposition 1. Under Reference distribution 1, each sum-
mand in (3.5) equals p̂1(t). Similarly, the k, � summand in (3.6) evaluates to
σd(C2(xk,x�; t)). �

Combining Proposition 2 with Theorem 2 we find that if y ∼ U(Sd), then
p(y, ρ̂) is a random variable with mean p̂1(ρ̂) and variance given by (3.4) with
t = ρ̂. The right-hand side of (3.4) sums O(N2) terms. The symmetry in a permu-
tation set allows us to use∫

Sd

∣∣p(y, t) − p̂1(t)
∣∣2 dσd(y) = 1

N

N−1∑
k=0

σd

(
C2(x0,xk; t)) − p̂1(t)

2

instead. This expression costs O(N), the same as the full permutation analysis that
we seek to avoid.

The cost becomes feasible when x0 is a centered and scaled binary vector.
Then for fixed t , σd(C2(xk,x�; t)) just depends on the swap distance r be-
tween xk and x�. Let rk,� be the swap distance between xk and x� and let
Nr = ∑N−1

k=0
∑N−1

�=0 1(rk,� = r) count the number of point pairs at swap distance r .
Then ∫

Sd

∣∣p(y, t) − p̂1(t)
∣∣2 dσd(y) = 1

N2

m∑
r=0

NrV2
(
u(r); t, d) − p̂1(t)

2(3.7)

for V2(u(r); t, d) given in Lemma 1.

THEOREM 3. Let x0 ∈ S
d be a centered and scaled binary vector with m0 ≥ 1

negative components and m1 ≥ 1 positive components. Let x0,x1, . . . ,xN−1 be
the N = (m0+m1

m0

)
distinct permutations of x0. If y ∼ U(Sd), then for t ∈ [−1,1],

and with u(r) defined in (2.1),

Var1
(
p(y, t)

) = 1

N

m∑
r=0

(
m0

r

)(
m1

r

)
V2

(
u(r); t, d) − p̂1(t)

2,(3.8)

for V2(u(r); t, d) given in Lemma 1.

PROOF. There are
(m0

r

)(m1
r

)
permuted points xk at swap distance r from x� for

each � = 0,1, . . . ,N − 1. Therefore, Nr = N
(m0

r

)(m1
r

)
, establishing (3.8). �

We will see in Section 7 that
√

Var1(p(y, t))/E1(p(y, t)) becomes extremely
large as t → 1 and E1(p(y, t)) → 0. Therefore, extremely small spherical cap
volumes are compatible with a wide range of permutation p-values.
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4. A finer approximation to the p-value. In the previous section, we studied
the distribution of permutation p-values p(y, t) with spherical cap centers y ∼
U(Sd) and heights t = ρ̂. In this section, we use Reference distribution 2 to obtain
a finer approximation to p(y0, ρ̂) by studying the distribution of the p-values for
centers y ∼ U(Y2(c)) for c ∈ {0,1, . . . ,N −1}. For an index c ∈ {0,1, . . . ,N −1},
conditioning as above leads to

p̃c = E2,c

(
p(y, ρ̂)

) = E1
(
p(y, ρ̂) | yTxc = yT

0xc

)
,(4.1)

and our primary interest is in p̂2 = p̃0. For an illustration of Reference distribu-
tion 2, see Figure 2.

From Proposition 1, we can get our estimate p̃c and its mean squared error by
finding single and double inclusion probabilities for y. To compute p̃c, we need
to sum N values Pr(y ∈ C(xk; t) | yTxc = ρ̃) and for p̃c to be useful we must
compute it in o(N) time. The computations are feasible in the binary case.

FIG. 2. Reference distribution 2 with c = 0. The original response vector is y0 with yT
0x0 = ρ̂ and

x0 marked xc. We consider alternative y uniformly distributed on the surface of C(x0; ρ̂) (dashed
circle) with examples y1 and y2. Around each such yj , there is a spherical cap of height ρ̂ that
just barely includes xc = x0. The small open circles are permutations xk of x0. The proportion of
xk ∈ C(y, ρ̂) is p(y, ρ̂). We study the mean and variance of p(y, ρ̂) for fixed ρ̂ and y ∼ U(Y2) for
Y2 = {y ∈ S

d | yTx0 = ρ̂}.
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Let uj = xT
jxc for j = 1,2, and let u3 = xT

1x2. Let the tangent-normal decom-
position of y ∈ Y2(c) with respect to xc be

y = ρ̃xc +
√

1 − ρ̃2y∗, ρ̃ = yT
0xc.(4.2)

Then the single and double point inclusion probabilities under Reference distribu-
tion 2 are

P1(u1, ρ̃, ρ̂) =
∫
Sd−1

1
(〈y,x1〉 ≥ ρ̂

)
dσd−1

(
y∗)

(4.3)

and

P2(u1, u2, u3, ρ̃, ρ̂)

=
∫
Sd−1

1
(〈y,x1〉 ≥ ρ̂

)
1
(〈y,x2〉 ≥ ρ̂

)
dσd−1

(
y∗)

,
(4.4)

where ρ̂ = 〈x0,y0〉. The dependence of P1 and P2 on ρ̃ comes through y as given
in equation (4.2).

LEMMA 2. Let x1 have tangent-normal decomposition x1 = u1xc +√
1 − u2

1x
∗
1 with respect to xc. Then the single point inclusion probability from

(4.3) is

P1(u1, ρ̃, ρ̂) =
{

1(ρ̃u1 ≥ ρ̂), u1 = ±1 or ρ̃ = ±1,

σd−1
(
C

(
x∗

1, ρ
∗))

, u1 ∈ (−1,1), ρ̃ ∈ (−1,1),
(4.5)

where ρ∗ = (ρ̂ − ρ̃u1)/
√

(1 − ρ̃2)(1 − u2
1).

PROOF. Using the decomposition (4.2) of y with respect to xc,

〈y,x1〉 =
⎧⎨
⎩ρ̃u1, u1 = ±1 or ρ̃ = ±1,

ρ̃u1 +
√

1 − ρ̃2
√

1 − u2
1

〈
y∗,x∗

1
〉
, u1 ∈ (−1,1), ρ̃ ∈ (−1,1)

and the result easily follows. �

THEOREM 4. Let x0 ∈ S
d be a centered and scaled binary vector with m0 ≥ 1

negative components and m1 ≥ 1 positive components. Let ρ̂ = yT
0x0 ∈ [−1,1],

and ρ̃ = yT
0xc ∈ [−1,1] for c ∈ {0,1, . . . ,N − 1}. Then

p̃c = E2,c

(
p(y, ρ̂)

) = 1

N

m∑
r=0

(
m0

r

)(
m1

r

)
P1

(
u(r), ρ̃, ρ̂

)
,(4.6)

where u(r) is given in equation (2.1), and P1(u(r), ρ̃, ρ̂) is given in equation (4.5).
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PROOF. There are
(m0

r

)(m1
r

)
permutations of x0 at swap distance r from xc.

�

From (4.6), we see that p̃c can be computed in O(m) work. The mean squared
error for p̃c is more complicated and more expensive. We need the double point
inclusion probabilities and we need to count the number of pairs xk , x� forming a
given set of swap distances among xk , x� and xc.

LEMMA 3. For j = 1,2, let rj be the swap distance of xj from xc and let
r3 be the swap distance between x1 and x2. Let u1, u2, u3 be the corresponding
inner products given by (2.1). If there are equalities among x1, x2 and xc, then the
double point inclusion probability from (4.4) is

P2(u1, u2, u3, ρ̃, ρ̂) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1(ρ̃ ≥ ρ̂), x1 = x2 = xc,

1(ρ̃ ≥ ρ̂)P1(u2, ρ̃, ρ̂), x1 = xc �= x2,

1(ρ̃ ≥ ρ̂)P1(u1, ρ̃, ρ̂), x2 = xc �= x1,

P1(u2, ρ̃, ρ̂), x1 = x2 �= xc.

If x1, x2 and xc are three distinct points with min(u1, u2) = −1, then

P2(u1, u2, u3, ρ̃, ρ̂) =
{

1(−ρ̃ ≥ ρ̂)P1(u2, ρ̃, ρ̂), u1 = −1,

1(−ρ̃ ≥ ρ̂)P1(u1, ρ̃, ρ̂), u2 = −1.

Otherwise, −1 < u1, u2 < 1, and then

P2(u1, u2, u3, ρ̃, ρ̂)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1(ρ̃u1 ≥ ρ̂)1(ρ̃u2 ≥ ρ̂), ρ̃ = ±1,∫ 1

−1

ωd−2

ωd−1

(
1 − t2) d−1

2 −11(t ≥ ρ1)1
(
tu∗

3 ≥ ρ2
)

dt, ρ̃ �= ±1, u∗
3 = ±1,∫ 1

−1

ωd−2

ωd−1

(
1 − t2) d−1

2 −11(t ≥ ρ1)

× σd−2

(
C

(
x∗∗

2 ,
ρ2 − tu∗

3√
1 − t2

√
1 − u∗2

3

))
dt, ρ̃ �= ±1,

∣∣u∗
3
∣∣ < 1,

where

u∗
3 = u3 − u1u2√

1 − u2
1

√
1 − u2

2

and

ρj = ρ̂ − ρ̃uj√
1 − ρ̃2

√
1 − u2

j

, j = 1,2
(4.7)

and x∗∗
2 is the residual from the tangent-normal decomposition of x∗

2 with respect
to x∗

1.
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xc = ( m1︷ ︸︸ ︷+,+,+,+,+, . . . ,+,+,+,+,

m0︷ ︸︸ ︷−,−,−,−, . . . ,−,−,−,−,−)
,

x1 = ( m1︷ ︸︸ ︷+,+,+, . . . ,+,−,−,−, . . . ,−︸ ︷︷ ︸
r1

,

m0︷ ︸︸ ︷+,+,+, . . . ,+,+,+︸ ︷︷ ︸
r1

,−, . . . ,−)
,

x2 = ( m1︷ ︸︸ ︷+, . . . ,+,−,−, . . . ,−︸ ︷︷ ︸
δ1︸ ︷︷ ︸

r2

,+, . . . ,+,

m0︷ ︸︸ ︷−, . . . ,−,+,+, . . .︸ ︷︷ ︸
δ2

,+
︸ ︷︷ ︸

r2

,−, . . . ,−)
.

FIG. 3. Illustration of r1, r2, δ1 and δ2. The points xc , x1 and x2 each have m0 negative and m1
positive components. For j = 1,2, the swap distance between xj and xc is rj . There are δ1 positive
components of xc where both x1 and x2 are negative, and δ2 negative components of xc where both
xj are positive.

PROOF. See He et al. (2019), Section 11.3. �

Next, we consider the swap configuration among x1, x2 and xc. Let xj be
at swap distance rj from xc, for j = 1,2. We let δ1 be the number of positive
components of xc that are negative in both x1 and x2. Similarly, δ2 is the number
of negative components of xc that are positive in both x1 and x2; see Figure 3. The
swap distance between x1 and x2 is then r3 = r1 + r2 − δ1 − δ2.

Let r = (r1, r2), δ = (δ1, δ2) and r = min(r1, r2). We will study values of r1, r2,
r3, δ1, δ2 ranging over the following sets:

r1, r2 ∈ R = {1, . . . ,m},
δ1 ∈ D1(r) = {

max(0, r1 + r2 − m0), . . . , r
}
,

δ2 ∈ D2(r) = {
max(0, r1 + r2 − m1), . . . , r

}
and

r3 ∈ R3(r) = {
max(1, r1 + r2 − 2r), . . . ,

min(r1 + r2,m,m0 + m1 − r1 − r2)
}
.

Whenever the lower bound for one of these sets exceeds the upper bound, we take
the set to be empty, and a sum over it to be zero. Note that while r1 = 0 is possi-
ble, it corresponds to x1 = xc and we will handle that case specially, excluding it
from R.

The number of pairs (x�,xk) with a fixed r and δ is

c(r, δ) =
(
m0

δ1

)(
m1

δ2

)(
m0 − δ1

r1 − δ1

)(
m1 − δ2

r1 − δ2

)(
m0 − r1

r2 − δ1

)(
m1 − r1

r2 − δ2

)
.(4.8)
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Then the number of configurations given r1, r2 and r3 is

c(r1, r2, r3) = ∑
δ1∈D1

∑
δ2∈D2

c(r, δ)1(r3 = r1 + r2 − δ1 − δ2).(4.9)

The functions c are not to be confused with the index c of a permutation of x0.
We can now get an expression for the expected mean squared error under Ref-

erence distribution 2 which combined with Theorem 4 for the mean provides an
expression for the mean squared error of p̃c.

THEOREM 5. Let x0 ∈ S
d be a centered and scaled binary vector with m0 ≥ 1

negative components and m1 ≥ 1 positive components. Let ρ̂ = yT
0x0 ∈ [−1,1],

and ρ̃ = yT
0xc ∈ [−1,1] for c ∈ {0,1, . . . ,N − 1}. Then

(4.10)

E2,c

(
p(y, ρ̂)2) = 1

N2

[
1(ρ̃ ≥ ρ̂) +

m∑
r=1

(
m0

r

)(
m1

r

)
P1

(
u(r), ρ̃, ρ̂

)

+ 2
m∑

r=1

(
m0

r

)(
m1

r

)
P2

(
1, u(r), u(r), ρ̃, ρ̂

)

+ ∑
r1∈R

∑
r2∈R

∑
r3∈R3(r)

c(r1, r2, r3)P2(u1, u2, u3, ρ̃, ρ̂)

]
,

where P1(·) is the single inclusion probability from Lemma 2, P2(·) is the double
inclusion probability from Lemma 3 and c(r1, r2, r3) is the configuration count in
equation (4.9).

PROOF. See He et al. (2019), Section 11.4. �

The function P2 in equation (4.10) is computed by the expressions in Lemma 3.
The lengthiest of these involve univariate integrals. We compute those integrals
via the integrate function in R [R Core Team (2015)]. In our experience, the
cost of computing E2(p(y, ρ̂)2) under Reference distribution 2 is dominated by
the cost of the O(m3) integrals required to get the P2(·) values in (4.10). The cost
also includes an O(m4) component because each c(r1, r2, r3) is a sum of O(m)

terms, but it did not dominate the computation at the sample sizes we looked at
(up to several hundred); see He et al. (2019), Section 13, for more details.

5. Generalized Stolarsky invariance. Here, we obtain the results for Refer-
ence distribution 2 in a different way, by extending the work by Brauchart and
Dick (2013). They introduced a weight on the height t of the spherical cap in the
average. We now apply a weight function to the inner product 〈z,x′〉 between the
center z of the spherical cap and a special point x′.
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THEOREM 6. Let x0, . . . ,xN−1 be arbitrary points in S
d and v(·) and h(·)

be positive functions in L2([−1,1]). Then for any x′ ∈ S
d , the following equation

holds: ∫ 1

−1
v(t)

∫
Sd

h
(〈
z,x′〉)∣∣∣∣∣σd

(
C(z; t)) − 1

N

N−1∑
k=0

1C(z;t)(xk)

∣∣∣∣∣
2

dσd(z)dt

= 1

N2

N−1∑
k,�=0

Kv,h,x′(xk,x�) +
∫
Sd

∫
Sd

Kv,h,x′(x,y)dσd(x)dσd(y)

− 2

N

N−1∑
k=0

∫
Sd

Kv,h,x′(x,xk)dσd(x),

(5.1)

where Kv,h,x′ : Sd × S
d →R is a reproducing kernel defined by

(5.2) Kv,h,x′(x,y) =
∫ 1

−1
v(t)

∫
Sd

h
(〈
z,x′〉)1C(z;t)(x)1C(z;t)(y)dσd(z)dt.

PROOF. See He et al. (2019), Section 11.5. �

REMARK. This theorem holds for any x0, . . . ,xN−1 ∈ S
d and for any x′ ∈

S
d . The result is computationally and statistically most attractive when x′ ∈

{x0,x1, . . . ,xN−1} and those N points are permuted versions of a centered and
scaled binary vector x0.

We now show that the second moment in Theorem 5 holds as a special limiting
case of Theorem 6. In addition to vε from Section 3 we introduce η = (η1, η2) ∈
(0,1)2 and

hη(s) = η2 + 1

η1(
ωd−1
ωd

(1 − s2)d/2−1)
1(ρ̃ ≤ s ≤ ρ̃ + η1).(5.3)

Using these results, we can now establish the following theorem, which provides
the second moment of p(y, ρ̂) under Reference distribution 2.

THEOREM 7. Let x0 ∈ S
d be a centered and scaled binary vector with m0 ≥ 1

negative components and m1 ≥ 1 positive components. Let x0,x1, . . . ,xN−1 be
the N = (m0+m1

m0

)
distinct permutations of x0. Let xc be one of the xk and define

p̃c by (4.1). Then

E2,c

(
p(y, ρ̂)2) = 1

N2

N−1∑
k,�=0

∫
Sd−1

1
(〈y,xk〉 ≥ ρ̂

)
1
(〈y,x�〉 ≥ ρ̂

)
dσd−1

(
y∗)

,

where y = ρ̃xc +
√

1 − ρ̃2y∗ and E2,c denotes expectation under Reference dis-
tribution 2(c).
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PROOF. The proof uses Theorem 6 with a sequence of h defined in (5.3) and
v defined in (3.3); see He et al. (2019), Section 11.6. �

This result shows that we can use the invariance principle to derive the second
moment of p(y, ρ̂) under Reference distribution 2. The mean square in Theorem 7
matches the second moment equation (3.6) in Proposition 1.

6. Two-sided p-values. In statistical applications, it is more usual to report
two-sided p-values. A conservative approach is to use 2 min(p,1 − p) where p is
a one-sided p-value. A sharper choice is the two-sided p-value from (1.3) which
we write here as

p(2) = 1

N

N−1∑
k=0

1
(∣∣xT

ky0
∣∣ ≥ |ρ̂|),

for ρ̂ = xT
0y0. For this section only, we use a superscript (2) to distinguish two-

sided p-values from their one-sided counterparts. We describe how to get two-
sided versions p̂

(2)
1 and p̂

(2)
2 of our one-sided estimates as well as their respective

reference variances. If ρ̂ = 0, then trivially p(2) = 1. From here on, we assume that
ρ̂ �= 0.

We begin with p̂1. The two-sided version of p̂1(ρ̂) is p̂
(2)
1 = 2σd(C(y; |ρ̂|)).

Also E1(p
(2)) = p̂

(2)
1 . We now consider the mean square for the two-sided esti-

mate under Reference distribution 1. For x1,x2 ∈ S
d with u = xT

1x2, the two-sided
double inclusion probability under Reference distribution 1 is

Ṽ2(u; t, d) =
∫
Sd

1
(∣∣〈z,x1〉| ≥ |t ∣∣)1(∣∣〈z,x2〉

∣∣ ≥ |t |) dσd(z).

For t �= 0, we write 1(|〈z,xj 〉| ≥ |t |) = 1(〈z,xj 〉 ≥ |t |) + 1(〈z, (−xj )〉 ≥ |t |) for
j = 1,2 and expanding the product, we get

Ṽ2(u; t, d) = 2V2
(
u; |t |, d) + 2V2

(−u; |t |, d)
.

By replacing V2(u; t, d) with Ṽ2(u; t, d) and p̂1(t) with 2σd(C(y; |t |)) in equa-
tion (3.8) of Theorem 3, we get a formula for Var1(p̂

(2)
1 ).

Next, we obtain corresponding formulas under Reference distribution 2. For
some fixed c ∈ {0,1, . . . ,N − 1}, let uj = xT

jxc for j = 1,2, and let u3 = xT
1x2.

Let the decomposition of y with respect to xc be y = ρ̃xc +
√

1 − ρ̃2y∗. The two-
sided inclusion probabilities are

P̃1(u1, ρ̃, ρ̂) =
∫
Sd−1

1
(∣∣〈y,x1〉

∣∣ ≥ |ρ̂|) dσd−1
(
y∗)

and

P̃2(u1, u2, u3, ρ̃, ρ̂) =
∫
Sd−1

1
(∣∣〈y,x1〉

∣∣ ≥ |ρ̂|)1(∣∣〈y,x2〉
∣∣ ≥ |ρ̂|) dσd−1

(
y∗)

,
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where y∗ enters the integrands through y. After writing 1(|〈y,xj 〉| ≥ |ρ̂|) =
1(〈y,xj 〉 ≥ |ρ̂|) + 1(〈y,−xj 〉 ≥ |ρ̂|), we find that

P̃1(u1, ρ̃, ρ̂) = P1
(
u1, ρ̃, |ρ̂|) + P1

(−u1, ρ̃, |ρ̂|)
and

P̃2(u1, u2, u3, ρ̃, ρ̂) = P2
(
u1, u2, u3, ρ̃, |ρ̂|) + P2

(−u1, u2,−u3, ρ̃, |ρ̂|)
+ P2

(
u1,−u2,−u3, ρ̃, |ρ̂|) + P2

(−u1,−u2, u3, ρ̃, |ρ̂|).
In the expression for P̃2, notice that u3 changes to −u3 if and only if exactly
one of u1, u2 changes sign. This is because u3 = xT

1x2. Changing P1(u1, ρ̃, ρ̂)

and P2(u1, u2, u3, ρ̃, ρ̂) to P̃1(u1, ρ̃, ρ̂) and P̃2(u1, u2, u3, ρ̃, ρ̂), respectively, in
Theorems 4 and 5, yields expressions for E2,c(p̃

(2)
c ) and Var2,c(p̃

(2)
c ).

7. Numerical results. We consider two-sided p-values in this section. The
main finding is that the root mean squared error (RMSE) of p̂2 under Reference
distribution 2 is usually just a small multiple of p̂2 itself.

First, we evaluate the accuracy of p̂1, the simple spherical cap volume approx-
imate p-value. We considered m0 = m1 in a range of values from 5 to 200. The
values p̂1 ranged from just below 1 to 2 × 10−30. We judge the accuracy of this
estimate by RMSE1(p̂1) = (E1(p̂1(ρ) − p(y, ρ))2)1/2. As ρ → 1, p̂1 → 0 and
Figure 4(a) shows RMSE1 decreasing toward 0 in this limit. The RMSE also de-
creases with increasing sample size, as we would expect from the central limit
theorem.

As seen in Figures 4(a) and 4(b), the RMSE is not monotone in p̂1. Right at
p̂1 = 1 we know that RMSE = 0 and around 0.1 there is a dip. The practically
interesting values of p̂1 are much smaller than 0.1, and the RMSE is monotone for
them.

A problem with p̂1 is that it can approach 0 even though p ≥ 1/N must hold.
The Reference distribution 1 RMSE does not reflect this problem. By studying
E2((p̂1(ρ) − p(y, ρ))2)1/2, we get a different result. In Figure 4(c), the RMSE of
p̂1 under Reference distribution 2 reaches a plateau as p̂1 goes to 0.

The estimator p̂2 = p̃0 performs better than p̂1 because it makes more use of
the data, and it is never below 1/N . As seen in Figure 4(d), the RMSE of p̂2
very closely matches p̂2 itself as p̂2 decreases to zero. That is, the relative error
|p̂2 −p|/p̂2 is well behaved for small p-values. In rare event estimation, that prop-
erty is known as strong efficiency [Blanchet and Glynn (2008)] and can be very
hard to achieve. Here, as p̂2 decreases to the granularity limit 1/N , its RMSE actu-
ally decreases to 0. Eventually, the distance from y0 to x0 is below the minimum
interpoint distance among the xk and then, for a one-sided test, p̂2 = p = 1/N .
The estimators p̂1 and p̂2, do not differ much for larger p-values as seen in Fig-
ure 5(a). But in the limit as ρ → 1 we see that p̂1 → 0, while p̂2 approaches the
granularity limit 1/N instead.
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FIG. 4. RMSEs for p̂1 and p̂2 under Reference distributions 1 and 2. The x-axis shows the estimate
p̂1 or p̂2 as ρ varies from 1 to 0. Here, m0 = m1.

Figure 5(b) compares the RMSE of the two estimators under Reference distribu-
tion 2. As expected, p̂2 is more accurate. It also shows that the biggest differences
occur only when p̂1 goes below 1/N .

To examine the behavior of p̂2 more closely, we plot its coefficient of variation
in Figure 6. We see that the relative uncertainty in p̂2 is not extremely large. Even
when the estimated p-values are as small as 10−30 the coefficient of variation is
below 5.
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FIG. 5. Comparison of p̂1 and p̂2. Panel (a) plots log10(p̂2) against log10(p̂1) for varying ρ with
a 45-degree reference line. Panel (b) plots RMSE2(p̂2)/RMSE2(p̂1) versus log10(p̂1) for varying ρ.

Our derivations for p̂2 extend to p̃c for any c ∈ {0,1, . . . ,N − 1}. The estima-
tor p̂2 = p̃0 never goes below 1/N because x0 ∈ C(y0, ρ̂). The same will hold
for any c with 〈xc,y0〉 ≥ 〈x0,y0〉. Among these, we took a particular interest in
c = c∗ ≡ arg maxk〈xk,y0〉, the closest of all permutations of x0 to y0. This choice
also minimizes σd(Y2(c)) and serves to illustrate the generality of our theory. For
the two-sided case c∗ = arg maxk |〈xk,y0〉|. We defined p̂3 = p̃c∗ = E(p(y, ρ̂))

for y ∼ U(Y2(c∗)). Figure 2.7 in He (2016) compares p̂3 to p̂2 for the same simu-
lated cases reported here. There p̂3 tends to be larger (more conservative) than p̂2,
though it does sometimes come out smaller. Figure 2.8 of He (2016) compares the
RMSE of p̂3 to p̂2. The upward bias of p̂3 gave it a much larger RMSE.

Our simulations here all have m0 = m1. Section 12 of He et al. (2019) shows
some simulations with m0 �= m1. The results are quite similar to the ones in this
section. The Parkinson’s data in Section 8 have m0 �= m1.

8. Comparison to saddlepoint approximation. The small relative error
property of p̂2 is similar to the relative error property in saddlepoint approxi-
mations, and so we compare our methods to saddlepoints approximations. Reid
(1988) surveys saddlepoint approximations and Robinson (1982) develops them
for permutation tests of linear statistics. When the true p-value is p, the saddle-
point approximation p̂s satisfies p̂s = p(1 + O(1/n)). Because we do not know
the implied constant in O(1/n) or the n at which it takes effect, the saddlepoint ap-
proximation does not provide a computable upper bound for the true permutation
p-value p.
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FIG. 6. Coefficient of variation RMSE2(p̂2)/p̂2 versus log10(p̂2) for varying ρ.

Figure 7 compares our estimates to each other and to the saddlepoint approxi-
mation, equation (1) from Robinson (1982). It includes the estimator p̂3 mentioned
at the end of Section 7. The simulated data have the Exp(1) distribution under the
control condition and are 2 + Exp(1) under the affected condition. The sample
sizes were m0 = m1 = 10 making it feasible to compute the exact permutation p-
value. We ran 500 independent simulations, comparing two-sided p-values. Chap-
ter 2 of He (2016) considers simulations from some additional distributions. Those
had t(5), N (0,1) and U(0,1) for the control data while the affected condition data
are shifted versions of these distributions.

In these simulations, the naive spherical cap estimator p̂1, with no good relative
error properties, is consistently least accurate and is often much smaller than the
true p. The saddlepoint estimate is very accurate but tends to come out slightly
smaller than the true p. The estimators p̂2 and p̂3 are less likely to be below p

than the saddlepoint estimate, and by construction, they are never below the gran-
ularity limit. Qualitatively similar results happened for the other distributions; see
He (2016), Chapter 2. The accuracy of all of these p-value estimates tends to be
better for lighter tailed Yi .

We can also construct Z scores, Z2 = (p − p̂2)/RMSE2 and a similar Z3. If
these take large values, then it means that p̂ is too small and, moreover, that our
computed RMSE does not diagnose it. The largest Z scores we observed are in
Table 1. The largest Z values arose for exponential data with p

.= 0.89 and p̂2
.=

0.78 .= p̂3. Such large p-values are not very important and so maximal Z scores
are also shown among estimated p-values below 0.1.
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FIG. 7. Simulation results p̂/p as described in the text, for Y0,i
i.i.d.∼ Exp(1) and Y1,i

i.i.d.∼
Exp(1) + 2.

The Z values are not very extreme. This suggests that it might be feasible to get
a conservative p-value estimate by adding some multiple of RMSE2 to p̂2. Further
work would be required to identify an appropriate multiple.

9. Data comparisons. Three data sets on Parkinson’s disease were used by
Larson and Owen (2015) and investigated in Chapter 6 of He (2016). They come
from Scherzer et al. (2007), Moran et al. (2006) and Zhang et al. (2005). Table 2

TABLE 1
Maximal Z scores observed for p̂2 and p̂3 in 500 independent replications

Dist’n Y0,i maxZ2 max{Z2 | p̂2 < 0.1} maxZ3 max{Z3 | p̂3 < 0.1}
t(5) 26.7 1.91 31.5 3.87
Exp(1) 7.55 7.55 7.76 7.76
U(0,1) 3.49 2.45 5.87 2.61
N (0,1) 3.07 2.78 3.07 2.78
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TABLE 2
Sample sizes for three microarray studies

First author m1 m0 N = (m1+m0
m1

)

Zhang 11 18 3.5 × 107

Moran 29 14 7.9 × 1010

Scherzer 50 22 1.8 × 1018

shows their sample sizes. Section 14 of He et al. (2019) describes how to obtain
this data.

For this comparison, there were 6180 gene sets from v5.1 of mSigDB’s gene set
collections. Curated gene sets and gene ontology gene sets were used. The gene
sets ranged in size from 5 to 2131 genes with an average size of 93.08 genes.
Slightly different versions of the gene sets were used in Larson and Owen (2015).

Estimates of two-sided p-values for linear test statistics were obtained using
106 random permutations, so M = 106 + 1. When the estimate was below 10−4,
then we increased M to 107 + 1. We will use the resulting Monte Carlo estimates
as the gold standard to evaluate less expensive approximate p-values. The Zhang
data set had the smallest sample size and had no gene sets with gold standard p-
value below 0.01 and so we do not compare estimated p-value estimates for this
data set. Table 3 shows some timing data.

Table 4 gives the correlation over gene sets between log10(p̂) and log10(pg) for
each of our estimates p̂, where pg is our gold standard value. From Table 4, we
see that p̂1, p̂2 and p̂3 have nearly the same correlations with the gold standard;
indeed they correlate highly with each other. They correlate with the gold standard
estimate much more closely than the saddlepoint estimator does. The estimate p̂3
is frequently most correlated with the gold standard. These correlations capture
the ability of a method to correctly rank the gene sets by significance. Figures in
Chapter 6 of He (2016) give scatterplots that show the accuracy of each p̂ for
pg . These show the saddlepoint estimator is biased slightly low and p̂3 is biased
slightly high.

TABLE 3
Average, over 6180 gene sets of the running time in seconds for saddlepoint p-values and p̂j ,

j = 1,2,3. Total time ranges from under 1/4 minute to just over 14 minutes

Data Set Saddle p̂1 p̂2 p̂3

Zhang 0.0631 0.0024 0.0031 0.0032
Moran 0.0894 0.0029 0.0037 0.0038
Scherzer 0.1394 0.0034 0.0045 0.0047
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TABLE 4
Pearson and Kendall correlations over gene sets, between four approximations log10(p̂) and

log10(pg), where pg is an expensive gold standard estimate. Here, “small” refers to only the 3594
gene sets with pg < 0.05 for Moran (504 for Scherzer), while “tiny” refers to 253 gene sets with

pg < 10−4 (Moran) or 16 gene sets with pg < 10−3 (Scherzer)

Data source Corr. # sets p̂1 p̂2 p̂3 p̂saddle

Moran small Pearson 3594 0.9997 0.9997 0.9997 0.9934
Moran small Kendall 3594 0.9857 0.9857 0.9866 0.9397
Moran tiny Pearson 253 0.9684 0.9688 0.9787 0.7930
Moran tiny Kendall 253 0.8820 0.8820 0.9033 0.6863

Scherzer small Pearson 504 0.9997 0.9997 0.9997 0.9836
Scherzer small Kendall 504 0.9871 0.9871 0.9871 0.8965
Scherzer tiny Pearson 16 0.9950 0.9950 0.9956 0.8794
Scherzer tiny Kendall 16 0.9500 0.9500 0.9500 0.7833

10. Discussion. We have constructed approximations to the permutation
p-value using probability and spherical geometry. Many other approximation
methods have been proposed for permutation tests. For instance, Zhou (2009)
fit approximations by moments in the Pearson family. Larson and Owen (2015) fit
Gaussian and beta approximations to linear statistics and gamma approximations
to quadratic statistics for gene set testing problems. Knijnenburg et al. (2009) fit
generalized extreme value distributions to the tails of sampled permutation values.

Our proposed estimator p̂2 has a small relative error, as measured by RMSE in
the limit as ρ̂ → 1. The well-known saddlepoint estimator also has a small relative
error of O(1/n) extending to very small p-values. We found it performed well on
our simulated data but not as well on the Parkinson’s disease gene sets.

None of these approximations come with an all inclusive p-value that accounts
for both numerical uncertainty of the estimation and sampling uncertainty behind
the original data. Monte Carlo sampling of permutations has such a p-value, but it
is computationally infeasible to attain very small p-values that way, and so a gap
remains.

We have employed reference distributions in an effort to address this gap. We
select a set Y containing y0 and find the first two moments of p(y, ρ̂) for y ∼
U(Y). If the data y0 were actually sampled from our reference distribution, then
we could get an all inclusive conservative p-value via the Chebychev inequality.
To illustrate the Chebychev inequality, let μ = E(p(y, ρ̂)) and σ 2 = Var(p(y, ρ̂))

for the observed value ρ̂ = xT
0y0 and for random y ∼ U(Y) for some reference

set Y. Then Pr(p ≥ μ + λσ) ≤ 1/(1 + λ2) for any λ > 0. Under this model, p∗ =
μ + λσ + 1/(1 + λ2) is a conservative p-value. Minimizing p∗ over λ reduces
to solving 2λ = σ(1 + λ2)2. For small p, we anticipate λ � 1, and hence λ′ =
(2/σ)1/3 will be almost as good as the optimal λ we could find numerically. That
choice leads to p∗ ≤ μ + (21/3 + 2−2/3)σ 2/3.



STOLARSKY INVARIANCE FOR PERMUTATIONS 609

For a numerical illustration, consider μ = 10−30 and σ = 3 × 10−30, roughly
describing the small p-value estimates from the case m0 = m1 = 70. Then p∗ ≤
4 × 10−20 is much larger than μ and yet still very small, likely small enough
to be significant after multiplicity adjustments. This numerical illustration uses a
Chebychev inequality at λ′ .= 8.7 × 109 standard deviations. We suspect that this
is conservative but do not have rigorous information to support that suspicion.

A rigorous upper bound for p could be attained using L∞ spherical cap dis-
crepancies instead of the L2 version, but computing such discrepancies is a major
challenge. Narcowich et al. (2010) give upper bounds for the L∞ spherical cap dis-
crepancy, in terms of averages of a great many harmonic functions at the points xi .
For our application, we need bounds for spherical caps of a fixed volume (un-
der Reference distribution 1) and of fixed volume and constrained location (under
Reference distribution 2) and those go beyond what is in Narcowich et al. (2010).

Our permutation points fall into a lattice subset of Rd intersected with the unit
sphere S

d . Our problem of counting the number of such points in a subset is one
that is addressed under the term “Geometry of numbers.” According to a personal
communication from Neil Sloane, the standard approach to such problems is via
the volume ratio, which in our setting is p̂1. The new estimator p̂2 does much
better than p̂1 on our simulated data and slightly better on the real data.

Of the methods we investigated, the saddlepoint approximation did best on the
simulated data, while the geometric methods p̂j for j = 1,2,3 were more accurate
than the saddlepoint method on the Parkinson’s data, especially so on the smallest
p-values. The best relative error |p̂ − p|/p for tiny p is attained by saddlepoints
(from asymptotic theory) and p̂2 from the computations illustrated in Figure 4(d).
Figure 2.8 of He (2016) shows that p̂3 is slightly worse than p̂2. Both are much
better than p̂1. Based on both accuracy and the existence of a numerical accuracy
estimate, we prefer p̂2 for fast approximations to LG. He (2016) includes some
approximations for the quadratic statistic QG.
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SUPPLEMENTARY MATERIAL

Supplement to “Permutation p-value approximation via generalized Sto-
larsky invariance” (DOI: 10.1214/18-AOS1702SUPP; .pdf). The supplement
presents additional material, including lengthier proofs.
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