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The block bootstrap approximates sampling distributions from depen-
dent data by resampling data blocks. A fundamental problem is establish-
ing its consistency for the distribution of a sample mean, as a prototypical
statistic. We use a structural relationship with subsampling to characterize the
bootstrap in a new and general manner. While subsampling and block boot-
strap differ, the block bootstrap distribution of a sample mean equals that of a
k-fold self-convolution of a subsampling distribution. Motivated by this, we
provide simple necessary and sufficient conditions for a convolved subsam-
pling estimator to produce a normal limit that matches the target of bootstrap
estimation. These conditions may be linked to consistency properties of an
original subsampling distribution, which are often obtainable under minimal
assumptions. Through several examples, the results are shown to validate the
block bootstrap for means under significantly weakened assumptions in many
existing (and some new) dependence settings, which also addresses a standing
conjecture of Politis, Romano and Wolf [Subsampling (1999) Springer]. Be-
yond sample means, convolved subsampling may not match the block boot-
strap, but instead provides an alternative resampling estimator that may be of
interest. Under minimal dependence conditions, results also broadly establish
convolved subsampling for general statistics having normal limits.

1. Introduction. Subsampling and block bootstrap are two common nonpara-
metric tools for statistical inference under dependence; see Politis, Romano and
Wolf [29] and Lahiri [19], respectively, for monographs on these. Both aim to ap-
proximate distributions of statistics with correlated data, and both are data resam-
pling methods that use blocks of neighboring observations to capture dependence.
The subsampling approach of Politis and Romano [28] treats data blocks as small
scale renditions of the original data, which provides replication of a statistic for
estimating a sampling distribution. The block bootstrap differs philosophically by
using data blocks as building material to recreate the original data. Essentially, data
blocks are randomly selected and pasted together to reproduce a full-scale set of
bootstrap data, as proposed by Künsch [17] and Liu and Singh [25] for extending
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Efron’s [11] bootstrap to time series. As noted in Politis, Romano and Wolf [29]
(cf. Section 3.9), subsampling is often valid under weak assumptions about the
dependent process, basically requiring that a nondegenerate (possibly nonnormal)
limit exist for the sampling distribution being approximated. In contrast, the block
bootstrap applies to mean-like statistics with normal limits and typically requires
comparatively much stronger assumptions for its validity. Case-by-case treatments
are commonly needed to validate the bootstrap across differing dependence condi-
tions. However, while perhaps not widely recognized, subsampling can in fact be
used to verify the block bootstrap in some cases, which is a theme of this work.

We investigate estimators defined by the k-fold self-convolution of a subsam-
pling distribution, and establish a new and general theory for their consistency
to normal limits. There are two basic motivations for considering such convolved
subsampling. The first is that, in the fundamental case of sample means, the block
bootstrap estimator is a k-fold self-convolution of a subsampling distribution (cen-
tered and normalized), where the level k of convolution corresponds to the number
of resampled blocks. This observation was originally noted by Politis, Romano and
Wolf [29], who suggested this aspect as a potential technique for showing the va-
lidity of the bootstrap. Specifically, they conjectured that convolved subsampling
might provide a route for establishing the block bootstrap under minimal condi-
tions for nonstationary, strongly mixing processes, in analogy to bootstrap results
existing for stationary, mixing series due to Radulović [30, 31]. For the bootstrap
under dependence, the findings for the sample mean in [30, 31] have stood out as an
exception, verifying the method under the same weak assumptions as subsampling
(i.e., conditions essentially needed for a normal limit to exist). By investigating the
convolved subsampling approach here, we can answer the above conjecture affir-
matively. Moreover, we show convolved subsampling leads to a simple and uni-
fied procedure for establishing the block bootstrap for sample means under further
types of processes and much weaker conditions than previously considered, such
as linear time processes, long-memory sequences, (nonstationary) almost periodic
time series and spatial fields. Hence, convolved subsampling estimation allows for
bootstrap consistency under dependence to be generally extended under the same
weak assumptions used by subsampling, containing the conclusions of Radulović
[30, 31] for stationary time series as a special case.

While connections to the bootstrap are useful, our study of convolved subsam-
pling estimation is intended to be broad, applying also to general statistics with
normal limits and with arbitrary levels of convolution. Consistency results often
do not require particular assumptions about the underlying dependent process, but
are rather formulated in terms of mild convergence properties of the original sub-
sampling distribution and its variance. Furthermore, we show that a consistent sub-
sampling variance is not only sufficient, but essentially necessary, for the consis-
tency of convolved subsampling (and the block bootstrap in some cases). Due to
its importance, we also provide tools for verifying the consistency of subsampling
variance estimators.
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For general statistics beyond the sample mean, the convolved subsampling dis-
tribution may differ from the block bootstrap, which relates to a second motivation
for our development. That is, a general theory for convolved subsampling may be
of interest in its own right, as the approach can be computationally less demanding
than the block bootstrap while also potentially enhancing ordinary subsampling for
approximating sampling distributions with normal limits. In fact, there has been re-
cent interest in establishing generalized types of subsampling estimation for com-
plicated statistics under various dependence structures, where numerical studies
suggest such methods can exhibit better finite sample performance than standard
subsampling when the target distribution is normal; for example, see Lenart [22]
and Sharipov, Tewes and Wendler [32] for spectral estimates and U-statistics, re-
spectively, with time series. While not formally recognized as such, however, these
proposed methods are exactly convolved subsampling estimators. By exploiting
this realization, our results can facilitate future work and allow such previous find-
ings with generalized subsampling to be demonstrated in an alternative, simpler
manner with weaker assumptions; see Section 5 for illustrations of the examples
mentioned above.

Section 2 describes convolved subsampling estimation and its connection to
block bootstrap. General distributional results for convolved subsampling are given
in Section 3, while Section 4 presents some applications with differing dependence
structures. Section 4.1 provides a broad result for convolved subsampling estima-
tion with statistics from mixing time series. Under weak conditions, Sections 4.2–
4.5 apply convolved subsampling for demonstrating the block bootstrap for sample
means with nonstationary time series (Section 4.2 and the conjecture of Politis, Ro-
mano and Wolf [29]), linear time processes (Section 4.3), long-range dependence
(Section 4.4) and spatial data (Section 4.5). Section 5 describes relationships to
other recent work with generalized subsampling, and Section 6 provides a short
treatment of independent data. A numerical study of subsampling, block boot-
strap and convolved subsamplng appears in Section 7, while Section 8 contains
concluding remarks. The proofs of main results are given in the Supplementary
Material [15].

Finally, to be clear, we stress that a central advantage of classical subsampling
is its validity for nonnormal limits (cf. Section 4.4), which convolved subsampling
does not share. The convolution of a subsampling distribution essentially induces a
sum of independently resampled terms so that, like the block bootstrap, reproduc-
ing a nonnormal limit is impossible. However, for approximating normal targets,
convolved subsampling does inherit the applicability of subsampling under weak
conditions with general statistics.

2. Description of convolved subsampling estimators.

2.1. Problem background and original subsampling estimation. Consider data
X1, . . . ,Xn from a real-valued process equipped with a probability structure P .
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For concreteness, we may view such observations as arising from a time series
process {Xt }, though spatial and other data schemes may be treated as well. Based
on X1, . . . ,Xn, consider the problem of approximating the distribution of

Tn ≡ τn

(
tn(X1, . . . ,Xn) − t (P )

)
,

involving an estimator tn ≡ tn(X1, . . . ,Xn) of a parameter t (P ) and a sequence
of positive scaling factors τn yielding a distributional limit for Tn. For example, if
tn(X1, . . . ,Xn) ≡ X̄n = ∑n

i=1 Xi/n is the sample mean, then t (P ) may correspond
to a common process mean μ and Tn may be defined with usual scaling τn = √

n

under weak time dependence. Denote the sampling distribution function of Tn as
Fn(x) = P(Tn ≤ x), x ∈R.

We next define the subsampling estimator of Fn; see [28]. For a positive integer
b ≡ bn < n, let {(Xi, . . . ,Xi+b−1) : i = 1, . . . ,Nn} denote the set of Nn ≡ n−b+1
overlapping data blocks, or subsamples, of length b. To keep blocks relatively
small, the block size is often assumed to satisfy b−1 + b/n + τb/τn → 0 as n →
∞. For each subsample, we compute the statistic as tn,b,i = tb(Xi, . . . ,Xi−b+1)

and define a “scale b” version of Tn ≡ τn(tn(X1, . . . ,Xn) − t (P )) as τb[tn,b,i −
tn] for i = 1, . . . ,Nn. Letting I (·) denote the indicator function, the subsampling
estimator of Fn is given by

(2.1) Sn,SUB(x) = 1

Nn

Nn∑
i=1

I
(
τb[tn,b,i − tn] ≤ x

)
, x ∈ R,

or the empirical distribution of subsample analogs {τb[tn,b,i − tn]}Nn

i=1 (cf. [29]).
Suppose that Sn,SUB is consistent for the distribution of Tn, which has an asymp-

totically normal N(0, σ 2) limit for some σ > 0, that is, as n → ∞,

Tn
d→ N

(
0, σ 2)

,(2.2)

sup
x∈R

∣∣Sn,SUB(x) − �(x/σ)
∣∣ p→ 0,(2.3)

where �(·) is the standard normal distribution function. We wish to consider esti-
mators of the distribution Fn of Tn formed by self-convolutions of the subsampling
estimator Sn,SUB. This provides a general class of block resampling estimators in
its own right, but also has explicit connections to block bootstrap estimators in the
important case that the statistic of interest tn(X1, . . . ,Xn) = X̄n is a sample mean,
as described next.

2.2. Convolved subsampling and connections to block bootstrap. Let kn be
a sequence of positive integers and define a triangular array {Y ∗

n,1, . . . , Y
∗
n,kn

}n≥1,

where, for each n, {Y ∗
n,j }kn

j=1 are i.i.d. variables following the subsampling distri-
bution Sn,SUB, as determined by (2.1) from data X1, . . . ,Xn. For n ≥ 1, define a
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centered and scaled sum

(2.4) Z∗
n ≡ 1√

kn

kn∑
j=1

(
Y ∗

n,j − mn,SUB
)
,

where mn,SUB ≡ ∫
x dSn,SUB(x) = N−1

n

∑Nn

i=1 τb[tn,b,i − tn] is the mean of the sub-
sampling distribution Sn,SUB, and let

Cn,kn(x) ≡ P∗
(
Z∗

n ≤ x
)
, x ∈R,

denote the induced resampling distribution P∗ of Z∗
n . Then Cn,kn represents the

kn-fold self-convolution of the subsampling distribution Sn,SUB, with appropriate
centering/scaling adjustments. That is,

Cn,kn(x) = Sn,SUB ∗ Sn,SUB ∗ · · · ∗ Sn,SUB︸ ︷︷ ︸
kn times

(x
√

kn + knmn,SUB), x ∈ R.

We consider Cn,kn as an estimator of the distribution Fn of Tn and formulate gen-
eral conditions under which such convolved subsampling is consistent.

As suggested earlier, such results have direct implications for block boot-
strap estimation as well, because the convolved subsampling estimator Cn,kn

exactly matches a block bootstrap estimator in the basic sample mean case
tn(X1, . . . ,Xn) = X̄n. To illustrate, consider approximating the distribution of
Tn = √

n(X̄n − μ) where t (P ) ≡ μ = EX̄n and τn = √
n. In this setting, the block

bootstrap uses an analog

(2.5) T ∗
n = √

n1
(
X̄∗

n1
− E∗X̄∗

n1

)
based on the average X̄∗

n1
≡ n−1

1
∑n1

i=1 X∗
i from a block bootstrap sample X∗

1, . . . ,

X∗
n1

of size n1 ≡ knb, which is defined by drawing kn blocks of length b, indepen-
dently and with replacement, from the subsample collection {(Xi, . . . ,Xi+b−1) :
i = 1, . . . ,Nn} and pasting these together (where above E∗X̄∗

n1
= N−1

n

∑Nn

i=1 b−1 ×∑i+b−1
j=i Xj denotes the bootstrap expectation of X̄∗

n1
); see Chapter 2, Lahiri [19].

Most typically, the number of resampled blocks is taken as kn = 
n/b� → ∞ so
that the bootstrap sample recreates the approximate length 
n/b�b ≈ n of the orig-
inal sample. The bootstrap distribution of T ∗

n here is then equivalent to the con-
volved subsampling distribution Cn,kn . This is because T ∗

n has the same resampling
distribution as Z∗

n in (2.4) as a sum of kn i.i.d. block averages (Y ∗
n,i −mn,SUB)/

√
kn,

with each Y ∗
n,i drawn from Sn,SUB in (2.1) where tn = X̄n and τb[tn,b,i − tn] =√

b[b−1 ∑i+b−1
j=i Xj − X̄n], 1 ≤ i ≤ Nn, for the sample mean case. Consequently,

if convolved subsampling estimators Cn,kn are shown to be valid under weak con-
ditions, such results entail that block bootstrap estimation is as well. In the fol-
lowing, we make comprehensive use of the fact that Cn,kn is always and exactly a
block bootstrap estimator whenever the underlying statistic tn(X1, . . . ,Xn) = X̄n

is a sample mean; this holds true across all the various dependent data structures
considered here, including cases where the usual block bootstrap from (2.5) re-
quires modification for sample means (cf. long-range dependence in Section 4.3).



CONVOLVED SUBSAMPLING 473

3. Fundamental results for convolved subsampling. From (2.1) and the
subsampling mean mn,SUB ≡ ∫

x dSn,SUB(x) = N−1
n

∑Nn

j=1 τb[tn,b,i − tn], we have
the variance of the original subsampling distribution Sn,SUB as

σ̂ 2
n,SUB ≡

∫
(x − mn,SUB)2 dSn,SUB(x) = 1

Nn

Nn∑
j=1

(
τb[tn,b,i − tn] − mn,SUB

)2
,

which estimates the asymptotic variance σ 2 of Tn as in (2.2) (cf. [29]). Note that
σ̂ 2

n,SUB is also the variance of the convolved subsampling distribution Cn,kn [i.e.,
the variance of the i.i.d. sum from (2.4)]. Correspondingly, σ̂ 2

n,SUB is then a block
bootstrap variance estimator when applied to sample means.

Sections 3.1–3.3 provide basic distributional results for convolved subsampling
estimators, describing when and how these have normal limits. These findings
do not involve particular assumptions about the process {Xt }, but are instead ex-
pressed through properties of the original subsampling distribution Sn,SUB and,
specifically, convergence of the subsampling variance σ̂ 2

n,SUB. Such subsampling
properties can often be verified under weak assumptions about a process, allowing
the limit behavior of convolved estimators Cn,kn , and the block bootstrap, to be es-
tablished under minimal conditions. Results in Section 3.1 address the important
case where the original subsampling distribution Sn,SUB has a normal limit (2.3),

as is often natural when the statistic Tn
d→ N(0, σ 2) is asymptotically normal.

These findings are expected to be the most practical for establishing convolved
subsampling Cn,kn estimation with normal targets (2.2). Dropping the condition
that Sn,SUB converges to a normal law but assuming convolved estimators Cn,kn

are based on increasing convolution kn → ∞ of Sn,SUB, Section 3.2 character-
izes the convergence of Cn,kn to normal limits through the subsampling variance
σ̂ 2

n,SUB. In many problems involving the block bootstrap for sample means (cf. Sec-
tion 4), where Tn has a normal limit (2.2), these results provide both necessary and
sufficient conditions for the validity of the block bootstrap as well as convolved

subsampling generally. Finally, because convergence σ̂ 2
n,SUB

p→ σ 2 of the subsam-
pling variance emerges as central to the behavior of convolved estimators Cn,kn ,
Section 3.3 develops basic results for establishing this feature.

3.1. Convolution of subsampling distributions with normal limits. Theorem 1
provides a sufficient condition for the general validity of the convolved estimator
Cn,kn via fundamental subsampling quantities, Sn,SUB and σ̂ 2

n,SUB.

THEOREM 1. Suppose (2.3) holds [i.e., supx∈R |Sn,SUB(x) − �(x/σ)| p→ 0]

and σ̂ 2
n,SUB

p→ σ 2 > 0 as n → ∞. Then

sup
x∈R

∣∣Cn,kn(x) − �(x/σ)
∣∣ p→ 0 as n → ∞

for any positive integer sequence kn.
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Furthermore, when (2.2) holds additionally [i.e., Tn
d→ N(0, σ 2)], then Cn,kn is

consistent for the distribution Fn of Tn,

sup
x∈R

∣∣Cn,kn(x) − Fn(x)
∣∣ p→ 0 as n → ∞.

To reiterate, the integer sequence kn, n ≥ 1, need not even be convergent in
Theorem 1. The consistency of the subsampling variance estimator σ̂ 2

n,SUB auto-
matically guarantees that, for any amount kn of convolution of Sn,SUB, the con-
volved subsampling estimator Cn,kn will have a normal limit if the subsampling
distribution Sn,SUB does. In other words, if (2.2)–(2.3) hold so that Sn,SUB is

consistent, then Cn,kn will be as well provided σ̂ 2
n,SUB

p→ σ 2. When the statistic
tn(X1, . . . ,Xn) = X̄n is a sample mean, then Cn,kn again denotes a block boot-
strap estimator based on kn resampled blocks, which is thereby consistent under
Theorem 1 for any sequence kn, including the common choice kn = 
n/b� → ∞.

Proposition 1 next characterizes the convolved subsampling estimator Cn,kn un-
der bounded levels kn of convolution. In this case, a normal limit for the subsam-
pling estimator Sn,SUB entails the same for the convolved estimator Cn,kn , provided
the mean mn,SUB ≡ ∫

x dSn,SUB(x) of the subsampling distribution converges to
zero. But, if the subsampling mean mn,SUB converges in this fashion, a normal
limit for Cn,kn with bounded {kn} is equivalent to a normal limit for the original
subsampling distribution Sn,SUB.

PROPOSITION 1. Suppose supn kn < ∞:

(i) If (2.3) holds [i.e., supx∈R |Sn,SUB(x) − �(x/σ)| p→ 0], then

sup
x∈R

∣∣Cn,kn(x) − �(x/σ)
∣∣ p→ 0 as n → ∞

if and only if mn,SUB ≡ ∫
x dSn,SUB(x)

p→ 0.

(ii) If mn,SUB
p→ 0 as n → ∞, then (2.3) holds if and only if

sup
x∈R

∣∣Cn,kn(x) − �(x/σ)
∣∣ p→ 0 as n → ∞.

When the original subsampling estimator Sn,SUB is consistent for a distribution
with a normal limit [i.e., (2.2)–(2.3)], both Theorem 1 and Proposition 1 show that
the convolved subsampling estimator Cn,kn is consistent under an additional sub-
sampling moment condition. With bounded levels kn of convolution, the additional

condition under Proposition 1 is that the subsampling mean converge mn,SUB
p→ 0.

But, for general and potentially unbounded kn, the additional condition from Theo-

rem 1 for consistency of Cn,kn is a convergent subsampling variance σ̂ 2
n,SUB

p→ σ 2.
With diverging amounts kn → ∞ of convolution, which is often encountered in
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practice and in connection to the block bootstrap, it turns out that convergence

σ̂ 2
n,SUB

p→ σ 2 is also necessary for consistency of the convolved estimator Cn,kn ,
as treated in the next section.

3.2. Unbounded convolution of subsampling distributions. We next consider
the behavior of convolved subsampling estimators with unbounded convolution
kn → ∞ as n → ∞, which arises, for example, with the block bootstrap Cn,kn for
sample means with kn = 
n/b� resampled blocks. Results here do not explicitly
require convergence of the original subsampling estimator Sn,SUB to a normal limit

(2.3). While a reasonable condition in problems where the target quantity Tn
d→

N(0, σ )2 is asymptotically normal, limits for Sn,SUB are not directly necessary for
convolved estimators Cn,kn to yield normal limits from increasing convolution kn

of Sn,SUB. However, convergence of the subsampling variance σ̂ 2
n,SUB is crucial, as

shown next.

THEOREM 2. Suppose kn → ∞ and
∫
|x|≥√

knε x2 dSn,SUB(x)
p→ 0 for each

ε > 0 as n → ∞:

(i) Then

sup
x∈R

∣∣Cn,kn(x) − �(x/σ)
∣∣ p→ 0

if and only if σ̂ 2
n,SUB

p→ σ 2 > 0 as n → ∞.

(ii) When σ̂ 2
n,SUB

p→ σ 2 > 0 as n → ∞, then Cn,kn is a consistent estimator of

the distribution Fn of Tn if and only if Tn
d→ N(0, σ 2) [i.e., a normal limit (2.2)

for Tn holds or supx∈R |Fn(x) − �(x/σ)| → 0].

For an unbounded sequence kn → ∞ of convolution (e.g., block bootstrap with
kn = 
n/b� concatenated blocks), Theorem 2 imposes no direct assumption on
the convergence of the original subsampling distribution, but rather that Sn,SUB
fulfills a mild truncated second moment property. From this, the convergence of
the convolved subsampling estimator Cn,kn to a normal limit is completely deter-
mined by the subsampling variance σ̂ 2

n,SUB under Theorem 2. Furthermore, when
σ̂ 2

n,SUB converges, the convolved estimator Cn,kn will be valid for estimating the
distribution Fn of a target quantity Tn having a normal limit [Theorem 2(ii)]. In
cases where Tn fails to have a normal limit, the convolved estimator Cn,kn does not
apply.

The following corollary of Theorem 2 shows that a convolved estimator Cn,kn

will quite generally have a normal limit, provided that the subsampling vari-

ance converges σ̂ 2
n,SUB

p→ σ 2 > 0 and that some other basic feature exists for
the subsampling distribution Sn,SUB or for composite statistics {τb[tn,b,i − tn] ≡
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τb[tb(Xi, . . . ,Xi−b+1) − tn(X1, . . . ,Xn)]}Nn≡n−b+1
i=1 defining Sn,SUB in (2.1). Es-

sentially, Corollary 1 entails that the truncated second moment assumption in The-

orem 2 is mild in conjunction with σ̂ 2
n,SUB

p→ σ 2.

COROLLARY 1. Suppose one of the following conditions (C.1)–(C.4) holds:

(C.1) for some distribution J0 with variance σ 2 > 0, Sn,SUB(x)
p→ J0(x) as

n → ∞ for any continuity point x ∈ R of J0;
(C.2) for some ε0 > 0, N−1

n

∑Nn

i=1[τb(tn,b,i − tn)]2+ε0 = Op(1);
(C.3) the subsample-based sequence {T 2

b,i ≡ τ 2
b [tn,b,i − t (P )]2 : i = 1, . . . ,

Nn}n≥1 is uniformly integrable and Tn ≡ τn(tn − t (P )) = Op(τn/τb);
(C.4) {Xt } is stationary, {T 2

n : n ≥ 1} is uniformly integrable, and τb/τn =
O(1).

Then, as n → ∞,

sup
x∈R

∣∣Cn,kn(x) − �(x/σ)
∣∣ p→ 0

for any sequence kn with limn→∞ kn = ∞ if and only if σ̂ 2
n,SUB

p→ σ 2 > 0.

REMARK 1. For reference, note τb/τn → 0 often holds with subsample scal-
ing as n → ∞ so that conditions τb/τn = O(1) and Tn = Op(τn/τb) are mild.

Hence, if kn → ∞ and σ̂ 2
n,SUB

p→ σ 2, then the convolved estimator Cn,kn will
converge to a normal limit if the subsampling distribution Sn,SUB is convergent
(C.1) or has an appropriate stochastically bounded moment (C.2), or if the sub-
sampling statistics related to computing Sn,SUB have uniformly integrable second
moments (C.3)–(C.4). Condition (C.4) is a special case of (C.3) under stationarity,
and corresponds to an underlying assumption of Radulović [30, 31] for examining
the block bootstrap estimator Cn,kn of a sample mean with stationary, mixing pro-
cesses; see also Remark 2 to follow. When restricted to Condition (C.1), the “⇐”
part of Corollary 1 corresponds to an initial convolved subsampling result due
to Politis, Romano and Wolf [29] (Proposition 4.4.1) for unbounded convolution
kn → ∞, which was developed for establishing the block bootstrap estimator Cn,kn

for the sample mean of nonstationary data, as reconsidered here in Section 4.2.
Note that, for inference with Tn having a normal N(0, σ 2) limit (2.2), Condition
C.1 in Corollary 1 is perhaps most natural and approachable by verifying con-
vergence Sn,SUB to a normal (2.3). In which case, the implication of Corollary 1
(involving kn → ∞) for guaranteeing that convolved subsampling and block boot-

strap estimators replicate normal limits when σ̂ 2
n,SUB

p→ σ 2 also becomes a special
case of Theorem 1 (involving any kn).



CONVOLVED SUBSAMPLING 477

REMARK 2. For block bootstrap estimation of the sample mean Tn =√
n(X̄n − EX1) with strongly mixing, stationary processes, Radulović [30, 31]

provides necessary and sufficient conditions for convergence of Cn,kn (with
kn = 
n/b� → ∞) to a normal limit, assuming {T 2

n : n ≥ 1} is uniformly inte-
grable. Under such assumptions, the main result there is that normal limits for both
Cn,kn and Tn are equivalent. In comparison, the necessary and sufficient conditions
for normality of the block bootstrap estimator Cn,kn for a mean in Theorem 2 are
perhaps more basic in that the conclusions of [30, 31], under the additional as-
sumptions made there, follow from Theorem 2 (cf. Corollary 1). In this sense,
Theorem 2 broadly reframes the findings in [30, 31], by not involving partic-
ular process assumptions (i.e., stationarity or mixing) and applying to convolved
subsampling estimators Cn,kn with general statistics and arbitrarily increasing con-
volution levels kn → ∞. Further connections to, and extensions of, the results of
Radulović [30, 31] are made in Section 4.1 for strongly mixing processes.

3.3. Consistency of subsampling variance estimators. Theorems 1–2 demon-
strate that the subsampling variance σ̂ 2

n,SUB plays a key role in the convergence
of the convolved subsampling estimator Cn,kn generally, and of the block boot-
strap for the sample mean in particular. However, convergence of the subsampling
distribution Sn,SUB itself is often much easier to directly establish under weak
assumptions about the process {Xt }; see Politis, Romano and Wolf [29] and Sec-
tion 4 to follow. This raises a further question considered next: if one knows that
subsampling estimator Sn,SUB is consistent (2.3) for a normal limit, then when
will the subsampling variance σ̂ 2

n,SUB be convergent as well, thereby guaranteeing
(from Theorem 1) that the convolved estimator Cn,kn is also consistent? As shown
in Theorem 3, a general characterization is possible as well as simple sufficient
conditions based on moment properties of subsample statistics (e.g., T 2

b ).
For n ≥ 1, recall Tn ≡ τn(tn(X1, . . . ,Xn) − t (P )) and additionally define

Tn,i ≡ τn(tn(Xi, . . . ,Xi+n−1) − t (P )) for i ≥ 1 from the statistic applied to
(Xi, . . . ,Xi+n−1). Based on Nn ≡ n − b + 1 subsample observations of length
1 ≤ b ≡ bn < n, define a distribution function

(3.1) Dn,b(x) ≡ 1

Nn

Nn∑
i=1

P(Tb,i ≤ x), x ∈ R,

as an average of subsample-based probabilities.

THEOREM 3. Suppose (2.3) and Tn = op(τn/τb) as n → ∞:

(i) Then σ̂ 2
n,SUB

p→ σ 2 > 0 as n → ∞ if and only if, for each ε > 0,

(3.2) lim
m→∞ sup

n≥m
P

(
1

Nn

Nn∑
i=1

T 2
b,iI

(|Tb,i | > m
)
> ε

)
= 0.
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(ii) Additionally, (3.2) holds whenever {Y 2
b : b ≥ 1} is uniformly integrable,

where Yb denotes a random variable with distribution Dn,b, n ≥ 1, from (3.1)
[i.e., P(Yb ≤ x) = Dn,b(x), x ∈ R]. If (2.3) and Tn = op(τn/τb) hold, uniform

integrability of {Y 2
b : b ≥ 1} is equivalent to

∫
x2 dDn,b(x) = N−1

n

∑Nn

i=1 ET 2
b,i →

σ 2 as n → ∞.
(iii) (3.2) also holds whenever {Xt } is stationary and {T 2

b : b ≥ 1} is uniformly
integrable.

REMARK 3. As Tn is typically tight, the assumption Tn = op(τn/τb) is often
satisfied by a standard condition on block length: b → ∞ with b/n + τb/τn → 0.
Block conditions are not, in fact, used or required in statements of Theorems 1–3
above. However, block assumptions are usually needed to show the original sub-
sampling estimator Sn,SUB is convergent as in (2.3), and examples of Section 4
shall impose block length conditions for this purpose.

Theorem 3 connects convergence (2.3) of subsampling distributions Sn,SUB to
the convergence of subsampling variances σ̂ 2

n,SUB in a way involving no further
conditions on the process or statistic beyond mild types of uniform integrability.
For example, with nonstationary processes {Xt }, Theorem 3(ii) converts the prob-

lem of probabilistic convergence σ̂ 2
n,SUB

p→ σ 2 into a more approachable one of

subsample-moment convergence N−1
n

∑Nn

i=1 ET 2
b,i → σ 2. To frame another impli-

cation of Theorem 3, note that many inference problems with time series involve
a stationary process {Xt } and a statistic Tn with a normal limit (2.2) such that
{T 2

n : n ≥ 1}, and consequently {T 2
b : b ≥ 1}, is uniformly integrable; see Remark 2.

In such problems, it suffices to simply establish the consistency of the subsampling
estimator Sn,SUB (2.3) and then the consistency of subsampling variance σ̂ 2

n,SUB
follows with no further effort [by Theorem 3(iii)] along with the consistency of
the convolved subsampling estimator Cn,kn (by Theorem 1). Again, with sample
means, Cn,kn is a block bootstrap distribution and σ̂ 2

n,SUB is a block bootstrap vari-
ance estimator, so both will be consistent in this setting by showing that Sn,SUB
is consistent. This strategy has two advantages with the block bootstrap: showing
the consistency of Sn,SUB is often an easier prospect than considering either Cn,kn

or σ̂ 2
n,SUB directly, and the consistency of Sn,SUB (and thereby the bootstrap) can

typically be established under weak process assumptions.
To illustrate, Section 4 applies the basic results here for establishing the con-

volved subsampling estimator Cn,kn , as well as the block bootstrap for sample
means, under different dependence structures.

4. Applications of convolved subsampling estimation. Section 4.1 first de-
velops consistency results for convolved subsampling estimators with strongly
mixing processes and general statistics. The remaining subsections then consider
convolved subsampling for the particular case of the sample mean with the goal of
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generalizing and extending results for the block bootstrap across various types of
dependent data, such as nonstationary mixing time processes (Section 4.2), linear
time series (Section 4.3), long-range dependent processes (Section 4.4) and spatial
data (Section 4.5).

Define the strong mixing coefficient of {Xt } as α(k) = supi∈Z{|P(A ∩ B) −
P(A)P (B)| : A ∈ F i−∞,B ∈ F∞

k+i}, k ≥ 1, where F i−∞ and F∞
k+i respectively

denote σ -algebras generated by {Xt : t ≤ i} and {Xt : t ≥ k + i} (cf. [1], Chap-
ter 16.2). Recall {Xt } is strongly mixing or α-mixing if limk→∞ α(k) = 0.

4.1. Convolved subsampling for general statistics under mixing. For mix-
ing stationary time series, Radulović [30] proved consistency of block boot-
strap estimation for Tn = τn(tn(X1, . . . ,Xn) − t (P )) based on the sample mean
tn(X1, . . . ,Xn) = X̄n with t (P ) = EX1 and τn = √

n. The assumptions made were
quite weak, requiring only:

(a1) a stationary, α-mixing process fulfilling (2.2) [i.e., Tn
d→ N(0, σ 2)] and

block lengths b−1 + b/n → 0 as n → ∞;
(a2) uniformly integrable {T 2

n : n ≥ 1}.
From results in Section 3 and the equivalence between the block bootstrap and
the convolved subsampling estimator Cn,kn for the sample mean, a different per-
spective is possible for the bootstrap findings in Radulović [30]. Under only as-
sumption (a1) above, the subsampling estimator Sn,SUB is consistent [i.e., (2.3)
holds] for the asymptotically normal distribution of Tn = √

n(X̄n −EX1) (cf. The-
orem 3.2.1, [29]), implying, by Theorem 1 here, that the block bootstrap estimator

Cn,kn would be consistent if the subsampling variance converges σ̂ 2
n,SUB

p→ σ 2.
But, if Sn,SUB is consistent for a normal limit by (a1), assumption (a2) then

guarantees that σ̂ 2
n,SUB

p→ σ 2 holds by Theorem 3. Furthermore, under (a2) and
with kn = 
n/b� → ∞ resampled blocks as in Radulović [30, 31], convergence

σ̂ 2
n,SUB

p→ σ 2 becomes even necessary here by Theorem 2. Hence, α-mixing serves
to show that the original subsampling estimator Sn,SUB is consistent; after which,

uniform integrability and stationary assure both σ̂ 2
n,SUB

p→ σ 2 and consistency of
the block bootstrap estimator Cn,kn by Theorems 2–3.

Under analogously weak assumptions as those of Radulović [30], Theorem 4
next provides the general consistency of convolved subsampling estimation for
general statistics arising from mixing, and possibly nonstationary, time processes.
When applied to a sample mean tn(X1, . . . ,Xn) = X̄n, so that Cn,kn is a block
bootstrap estimator, this result extends those of Radulović [30] in two ways: by
allowing potential nonstationarity series and by permitting arbitrary levels kn of
convolution/block resampling (rather than the single choice kn = 
n/b�). When
the statistic tn(X1, . . . ,Xn) is not a sample mean, Cn,kn may not again match the
block bootstrap but can have interest as an alternative block resampling estimator
(cf. Section 5).
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THEOREM 4. Let {Xt } be a (possibly nonstationary) strongly mixing se-
quence. Suppose b−1 + b/n+ τb/τn → 0 as n → ∞; Tn = op(τn/τb); (3.2) holds;

and that Yb
d→ N(0, σ 2) as n → ∞, for some σ 2 > 0, where each random variable

Yb, b ≡ bn ≥ 1, has distribution function Dn,b from (3.1). Then, as n → ∞,

sup
x∈R

∣∣Sn,SUB(x) − �(x/σ)
∣∣ p→ 0 and σ̂ 2

n,SUB
p→ σ 2

and, for any positive integer sequence kn,

sup
x∈R

∣∣Cn,kn(x) − �(x/σ)
∣∣ p→ 0.

Furthermore, if (2.2) additionally holds [i.e., Tn
d→ N(0, σ 2)], then Sn,SUB and

Cn,kn (with any kn) are consistent for the distribution Fn of Tn:

sup
x∈R

∣∣Sn,SUB(x) − Fn(x)
∣∣ p→ 0 and sup

x∈R
∣∣Cn,kn(x) − Fn(x)

∣∣ p→ 0.

While providing a broad result on the validity of convolved subsampling estima-
tion for mixing processes, Theorem 4 also expands the general subsampling results
of Politis, Romano and Wolf [29] (Chapter 4.2), which focused on Sn,SUB for mix-
ing series, to further include consistency of the subsampling variance σ̂ 2

n,SUB. That
is, when dropping (3.2), the remaining Theorem 4 assumptions are minimal and
match those of Theorem 3.2.1–4.2.1 of Politis, Romano and Wolf [29] for the con-
sistency of Sn,SUB to a normal limit; including (3.2) in Theorem 4 is then necessary

for σ̂ 2
n,SUB

p→ σ 2 by Theorem 3 and assures convergence of Cn,kn by Theorem 1.
If the process {Xt } is actually stationary, we immediately obtain the following

result.

COROLLARY 2. Let {Xt } be a stationary, strongly mixing sequence. Suppose
also b−1 +b/n+τb/τn → 0 as n → ∞; that (2.2) holds; and that (3.2) holds (e.g.,
uniform integrability of {T 2

n : n ≥ 1} suffices). Then, as n → ∞, the convergence
results of Theorem 4 hold.

Section 5 illustrates Theorem 4 for establishing convolved subsampling with
mixing time series and several general classes of statistics. These represent cases
where Cn,kn differs from the block bootstrap estimator.

However, Section 4.2 first provides some further refinements with mixing pro-
cesses in the sample mean case, where Cn,kn matches the block bootstrap.

4.2. Block bootstrap for mixing nonstationary time processes. Consider a
strongly mixing, potentially nonstationary sequence {Xt } having a common mean
parameter EXt = μ ∈ R, which is estimated by the sample mean X̄n. In this
setting and under conditions where Tn ≡ √

n(X̄n − μ) has a normal limit (2.2),
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Fitzenberger [12] established the consistency of the block bootstrap for estimating
the distribution of Tn. The result, however, required the existence of a (4 + δ)-
moment (i.e., supt E|Xt |4+δ < ∞ for some δ > 0) along with stringent mixing
conditions and restrictions on the block length b = o(n1/2). Politis, Romano and
Wolf [29] (Example 4.4.1) showed that the subsampling estimator Sn,SUB is con-
sistent under weaker conditions, including only a (2 + δ)-moment. For the block
bootstrap with kn = 
n/b� resampled blocks, Politis, Romano and Wolf [29] also
proved bootstrap consistency by applying convolved subsampling in this problem,
using a weaker block assumption b = o(n) than Fitzenberger [12] but otherwise
with same remaining strong assumptions about the process. However, [29] (Re-
mark 4.4.4) conjectured that the block bootstrap might be established under non-
stationarity using the same weak moment/mixing conditions as the subsampling
estimator Sn,SUB, just as in the case of stationary mixing processes (cf. [30]). We
confirm this by the following Theorem 5.

THEOREM 5. Let {Xt } be a sequence of (not necessarily stationary) strongly
mixing random variables with common mean μ. For some δ > 0, suppose that
supt E|Xt |2+δ < ∞ and

∑∞
k=1 α(k)δ/(2+δ) < ∞. Assume also that, for some σ 2 >

0,

lim
n→∞ sup

i≥1

∣∣∣∣∣Var

(
n−1/2

i+n−1∑
t=i

Xt

)
− σ 2

∣∣∣∣∣ = 0.

Then, as n → ∞, Tn = √
n(X̄n − μ)

d→ N(0, σ 2) [i.e., (2.2) holds]. Additionally,
if b−1 + b/n → 0 as n → ∞, then

sup
x∈R

∣∣Sn,SUB(x) − �(x/σ)
∣∣ p→ 0 and σ̂ 2

n,SUB
p→ σ 2

and, for any positive integer sequence kn,

sup
x∈R

∣∣Cn,kn(x) − �(x/σ)
∣∣ p→ 0.

Hence, with any number kn of concatenated blocks, the block bootstrap estima-
tor Cn,kn is valid for the distribution of the sample mean under mild assumptions
for mixing, and possibly nonstationary processes. Note that the assumptions of
Theorem 5 resemble those essentially needed for a central limit theorem (CLT)
itself (cf. Theorem 16.3.5, [1]). In particular, the assumptions also match those
commonly used in the stationary case for establishing the block bootstrap; see Sec-
tion 3.2 of Lahiri [19]. With the same moment condition as Politis, Romano and
Wolf [29] (Theorem 4.4.1), Theorem 5 additionally shows that the original sub-
sampling estimator Sn,SUB is consistent under nonstationarity with even weaker
mixing assumptions than considered previously

∑∞
k=1(k + 1)2α(k)δ/(8+δ) < ∞.

The central message of Theorem 5, however, is that the convolved subsampling
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approach allows the block bootstrap estimator Cn,kn for the sample mean to be
established under weak conditions similarly to Sn,SUB.

Next, consider the block bootstrap in another important example of nonstation-
arity, involving certain periodically correlated time series. Here, the mean function
μ(t) ≡ EXt is not constant, as in Theorem 5, but rather an almost periodic func-
tion. A real-valued function f is almost periodic if, for every ε > 0, there is an
n(ε) ∈ N such that in every interval In(ε) of length n(ε) or greater, there is an
integer p ∈ In(ε) such that

sup
t∈Z

∣∣f (t + p) − f (t)
∣∣ < ε;

see [7]. For such functions, the limit M(f ) ≡ limn→∞ n−1 ∑s+n−1
i=s f (i) exists and

does not depend on s. Moreover, if the set � = {λ ∈ [0,2π) : M(gλ) �= 0} is finite
for gλ(t) ≡ f (t)e−ıλt , t ∈ Z (ı = √−1), then∣∣∣∣∣1

n

s+n−1∑
i=s

(
f (i) − M(f )

)∣∣∣∣∣ ≤ C

n
(4.1)

holds for some C > 0 not depending on n or s by Cambanis et al. [6]. Hence, M(f )

represents the mean value of an almost periodic function f . A time series is called
almost periodically correlated (APC) if its mean and autocovariance functions are
almost periodic, that is, for every fixed τ ∈ Z,

μ(t) = EXt and ρτ (t) = EXtXt+τ

are almost periodic as functions of t ; see [14]. For an ACP series {Xt }, a pa-
rameter of interest is then t (P ) ≡ M(μ) = limn→∞ n−1 ∑s+n−1

i=s μ(i) as a sum-
mary of the process mean structure, which is estimated by X̄n. Synowiecki [34]
showed that the block bootstrap consistently estimates the sampling distribution
of Tn = n1/2(X̄n − M(μ)) under appropriate conditions. By applying the con-
volved subsampling technique, we may extend the bootstrap results of Synowiecki
[34] (Corollary 3.2) by substantially weakening the assumptions made there about
(4 + δ)-moments and

∑∞
k=1 kα(k)δ/(4+δ) < ∞.

COROLLARY 3. Let {Xt } be an APC sequence of strongly mixing random
variables such that supt E|Xt |2+δ < ∞ and

∑∞
k=1 α(k)δ/(δ+2) < ∞ for some

δ > 0, and suppose the set � = {λ ∈ [0,2π) : M(gλ) �= 0} is finite for gλ(t) ≡
μ(t)e−ıλt , t ∈ Z, with μ(t) = EXt . Then all conclusions of Theorem 5 hold for
Tn = n1/2(X̄n − M(μ)) as n → ∞.

4.3. Block bootstrap for linear time processes. Based on a sample X1, . . . ,Xn,
next consider inference about the mean EXt = μ ∈ R of a stationary time process
{Xt } prescribed as

(4.2) Xt = μ + ∑
j∈Z

aj εt−j , t ∈ Z,
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in terms of i.i.d. variables {εt } with mean zero and finite variance Eε2
t ∈ (0,∞) and

a real-valued sequence {aj } of constants where
∑

j∈Z a2
j < ∞. The linear series

{Xt } need not be mixing and, depending on constants {aj }, can potentially exhibit
either weak or strong forms of time dependence. Using the sample mean X̄n to
estimate the process mean μ, suppose that

(4.3) lim
n→∞nα Var(X̄n) = σ 2

for some σ 2 > 0 and exponent α ∈ (0,1] depending on the process {Xt }. When
α = 1, the sample mean’s variance decays at a rate O(n−1) with the sample size,
as typical for weakly, or short-range, dependent processes. However, when α ∈
(0,1), the sample mean has a variance with comparatively slower decay O(n−α),
which may be associated with processes exhibiting strong or long-range forms
of dependence. Long-range dependent processes are commonly characterized by
slowly decaying covariances involving a long-memory exponent α ∈ (0,1), which
results in less precision (4.3) for a sample mean compared to the weak dependence
case [3]. Classes of strongly dependent processes that satisfy (4.2)–(4.3) include
fractional Gaussian models [26] and fractional autoregressive integrated moving
averages [13].

Based on (4.3), define Tn ≡ nα/2(X̄n − μ) in terms of scaling τn ≡ nα/2. In
this setting, the convolved subsampling Cn,kn once again corresponds to the block
bootstrap estimator based on kn resampled blocks, but there is a wrinkle to note.
Recalling from (2.5) that the bootstrap sample mean X̄∗

n1 is created from a boot-
strap sample of length n1 = knb, the bootstrap rendition of Tn here is given by

(4.4) T ∗
n ≡ b(1−α)/2(n1)

α/2(
X̄∗

n1
− E∗X̄∗

n1

)
rather than the analog T ∗

n = (n1)
α/2(X̄∗

n1
− E∗X̄∗

n1
) of (2.5). While intuitive, the

latter is incorrect under long memory and produces a degenerate bootstrap [18].
Instead, the bootstrap from (4.4) requires an adjustment b(1−α)/2, which disap-
pears under weak dependence α = 1 whereby bootstrap versions of Tn then match
in (2.5) and (4.4). Interestingly, convolved subsampling estimator Cn,kn automat-
ically corresponds to the correct bootstrap rendition T ∗

n in (4.4) under both weak
α = 1 and strong α ∈ (0,1) dependence.

Considering the sample mean from stationary linear processes (4.2) ranging
over short- or long-range dependence, Kim and Nordman [16] showed the consis-
tency of the block bootstrap distribution Cn,kn (when kn = 
n/b�) and bootstrap
variance σ̂ 2

n,SUB. Via convolved subsampling, we may generalize their results. For
linear processes {Xt } satisfying (4.2)–(4.3), the sample mean Tn ≡ nα/2(X̄n − μ)

has a normal limit (2.2) (cf. [8]) and the subsampling estimator Sn,SUB is also con-
sistent [i.e., (2.3) holds] under mild assumptions (cf. [27]). Hence, by primitively
assuming (2.2)–(2.3) to hold, Corollary 4 next extends the block bootstrap to gen-
eral stationary processes with sample means satisfying a variance condition (4.3),
which includes results of Kim and Nordman [16] for linear processes as a special
case.
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COROLLARY 4. Let {Xt } be a stationary process with mean μ ∈ R satisfying
(4.3) for some α ∈ (0,1], and suppose that (2.2)–(2.3) hold for Tn ≡ nα/2(X̄n −μ).
Then, as n → ∞,

σ̂ 2
n,SUB

p→ σ 2 and sup
x∈R

∣∣Cn,kn(x) − �(x/σ)
∣∣ p→ 0

for any positive integer sequence kn.

Corollary 4 is an application of Theorems 1 and 3 for stationary processes which
may not be strongly mixing. Our exposition has assumed the exponent α ∈ (0,1]
to be known. Upon replacing α with an estimator α̂ ≡ α̂(X1, . . . ,Xn) where |α̂ −
α| logn

p→ 0, the conclusions of Corollary 4 still hold; see Remark 3 of [16] for
further details.

4.4. Block bootstrap under long-range dependence. This section briefly men-
tions the block bootstrap with additional types of long-memory sequences. Beyond
linear processes, the sample mean of a long-range dependent sequence may con-
verge to a nonnormal limit, such as the case for certain subordinated Gaussian pro-
cesses considered by Taqqu [35] and Dobrushin and Major [10] [e.g., Xt = G(Zt)

as a function G of a long-range dependent Gaussian series {Zt }]. For such time se-
ries, Lahiri [18] proved that the block bootstrap sample mean always has a normal
limit, so that the block bootstrap fails if the original sample mean is asymptotically
nonnormal. This result is in concordance with our Theorem 2(ii).

Zhang et al. [36] considered subsampling for a wider class of long-memory
series that includes both subordinated Gaussian processes as well types of linear
processes (4.2). Namely, sequences Xt = K(Zt), t ∈ Z, formed by a measurable
transformation K of a long-range dependent linear process

Zt = εt +
∞∑

j=1

j−βL(j)εt−j , t ∈ Z,

defined with i.i.d. mean zero, finite variance innovations {εt }, an index parame-
ter 1/2 < β < 1 and slowly varying function L(·). They distinguish two cases,
depending on β and the so-called power rank p ≥ 1 of K . In the first case [i.e.,
p(2β − 1) > 1], the transformation K diminishes long-range dependence, and the
sample mean converges to a normal limit. In the second case [i.e., p(2β − 1) < 1],
the transformed process Xt = K(Zt) remains strongly dependent and the sample
mean has a normal limit only when p = 1.

Assuming a constant function L(·) = C in the above formulation, the variance
of a sample mean satisfies (4.3) [i.e., limn→∞ nα Var(X̄n) = σ 2 > 0] with a long-
memory exponent α ≡ min{1,p(2β − 1)} ∈ (0,1] that changes between cases of
weak α = 1 or strong α = p(2β − 1) ∈ (0,1) dependence (cf. Lemma 1, [36]). For
the sample mean, Zhang et al. [36] established consistency of several subsampling
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estimators as well as convergence of σ̂ 2
n,SUB. Thus, by slightly recasting results of

[36] and applying our Corollary 4, we may show the validity of the block boot-
strap Cn,kn for estimating the distribution of Tn ≡ nα/2(X̄n − μ), μ = EXt , for
transformed linear processes exhibiting either short- or long-range dependence.
To the best of our knowledge, the bootstrap has not yet been investigated for such
processes.

COROLLARY 5. For Xt = K(Zt), t ∈ Z, as above, suppose (4.3) holds for α =
min{1,p(2β − 1)} ∈ (0,1] along with conditions of Theorem 1 in [36] [involving
a block b ∝ na for some a ∈ (0,1)] with either p(2β − 1) > 1, or p = 1 and
(2β − 1) < 1. Then, for Tn = nα/2(X̄n − μ) as n → ∞, both (2.2)–(2.3) hold and

σ̂ 2
n,SUB

p→ σ 2 and sup
x∈R

∣∣Cn,kn(x) − �(x/σ)
∣∣ p→ 0

for any positive integer sequence kn.

As with subordinated Gaussian processes [18], consistency of the block boot-
strap or convolved estimator Cn,kn for the sample mean only follows in cases where
a CLT holds. For subordinated Gaussian processes and statistics other than the
sample mean, Betken and Wendler [4] proved the general consistency of the sub-
sampling estimator, and Bai and Taqqu [2] established weak conditions for the
subsample size. When the original statistic has a normal limit, consistency of con-
volved subsampling will follow by our Theorem 2 by showing convergence of
σ̂ 2

n,SUB (which, as [2] and [4] consider stationary processes, can hold by Theo-
rem 3 and uniform integrability).

4.5. Spatial data. While convolved subsampling results have been presented
for processes {Xt } indexed by time t to ease the exposition, Theorems 1–3 also ap-
ply to more general processes, including spatial random fields. In the Supplemen-
tary Material [15], we illustrate this with spatial data on a grid, for which various
authors have considered block bootstrap and subsampling; see Lahiri [19] (Chap-
ter 12) and Politis, Romano and Wolf [29] (Chapter 5) and references therein.
Under appropriate assumptions for the stationary random field, the spatial sample
mean has a normal limit and we establish convolved subsampling under mixing
conditions from Lahiri [20] (Section 4.2) which are almost optimal, or minimal,
for a spatial CLT. The result given also demonstrates the spatial block bootstrap for
the sample mean under weaker mixing/moment conditions than considered previ-
ously (cf. Theorem 12.1, [19]).

5. Convolved subsampling in other contexts. We briefly outline relation-
ships between convolved subsampling and some recent literature about block re-
sampling for statistics outside of the sample mean cases in Sections 4.2–4.5. As
alternatives to bootstrap, such works have considered generalized approaches to
resampling that are convolved subsampling. When viewed as such, these previous
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developments may be unified and simplified by general results here for mixing
time series (or processes) (cf. Section 4.1), as illustrated in Section 5.1 for U-
statistics and Section 5.2 for spectral estimators. Section 5.3 mentions extensions
to further statistics, such as L-estimators.

For the classes of statistics next considered, our results with convolved subsam-
pling cannot be used to directly justify the block bootstrap. However, our findings
may still contribute to this end, as explained in Section 8.

5.1. U-statistics. U-statistics are a class of nonlinear functionals for prescrib-
ing statistics, such as the sample variance. Suppose that X1, . . . ,Xn arise from a
stationary process and, based on a symmetric kernel h : R2 → R, define a (bivari-
ate) U-statistic as

tn ≡ tn(X1, . . . ,Xn) = 2

n(n − 1)

∑
1≤i<j≤n

h(Xi,Xj ),

which estimates a target parameter t (P ) ≡ ∫
h(x, y) dG(x)dG(y), where G de-

notes the marginal distribution of Xt . Consider the problem of estimating the
distribution of Tn ≡ √

n(tn − t (P )), with scaling τn = √
n, under weak time de-

pendence. The subsampling distribution Sn,SUB is defined by computing the U-
statistic tn,b,i = [b(b − 1)]−12

∑
i≤j1<j2≤i+b−1 h(Xj1,Xj2) on each length b sub-

sample {(Xi, . . . ,Xi+b−1)}Nn≡n−b+1
i=1 in (2.1). In contrast, block bootstrap ver-

sions of U-statistics have a formulation similar to (2.5); see Dehling and Wendler
[9], Sharipov and Wendler [33] and Leucht [23]. That is, a bootstrap sample
X∗

1, . . . ,X∗
n1

, n1 = knb, is generated by resampling kn blocks of length b (typically
kn = 
n/b�) and then the U-statistic t∗n1

≡ tn1(X
∗
1, . . . ,X∗

n1
) is calculated from the

complete bootstrap sample to create a bootstrap rendition T ∗
n = √

n1(t
∗
n1

− E∗t∗n1
)

of Tn. In this setting, the bootstrap distribution T ∗
n would not generally correspond

to that of a kn-fold convolution Cn,kn of the subsampling distribution Sn,SUB, as
occurred in the sample mean case (Section 2.2).

However, Sharipov, Tewes and Wendler [32] recently considered an alternative
block resampling estimator for U-statistics, which matches the convolved sub-
sampling estimator Cn,kn here based on the subsampling estimator Sn,SUB for
Tn described above. Note that, for stationary mixing data, Dehling and Wendler

[9] (Theorem 1.8–Lemma 3.6) provide a CLT for the relevant U-statistic: Tn
d→

N(0, σ 2) and ET 2
n → σ 2 as n → ∞ where σ 2 ≡ 4

∑∞
k=−∞ Cov(h1(X0), h1(Xk))

for h1(x) = ∫
h(x, y) dG(y). Under mixing conditions and with kn = 
n/b� →

∞, Sharipov, Tewes and Wendler [32] established that Cn,kn captures this limiting
normal distribution of Tn and also showed the consistency of the variance σ̂ 2

n,SUB
of Cn,kn . The argument there involved decomposing the bootstrap U-statistic T ∗

n

into a linear part, coinciding with a sample mean from the usual block bootstrap,
and degenerate part shown to be negligible. However, the general convolution re-
sult in Theorem 4 for mixing processes provides an alternative, and much simpler,
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approach. From Tn
d→ N(0, σ 2) and ET 2

n → σ 2, all of the conditions of Theo-
rem 4 automatically hold, proving that Cn,kn is consistent for the distribution of

Tn for any convolution level kn and also that σ̂ 2
n,SUB

p→ σ 2. This approach also
weakens the block assumptions used by [32] [i.e., b = O(nε) for some ε ∈ (0,1)]
to b−1 + b/n → 0 under Theorem 4.

5.2. Spectral estimators for nonstationary time series. As described in Sec-
tion 4.2, almost periodically correlated (APC) time series {Xt } are an important
example of nonstationary sequences. Beyond the mean function, inference about
the correlation structure is also of interest. Based on a sample X1, . . . ,Xn, a sym-
metric kernel w(·) and a bandwidth choice Ln, Lenart [21, 22] considered kernel
estimators

tn(X1, . . . ,Xn) ≡ 1

2πn

n∑
t=1

n∑
s=1

1

Ln

w

(
t − s

Ln

)
XtXse

−ıυt eıωs

for an extended spectral density t (P ) ≡ t (P )(υ,ω), (υ,ω) ∈ (0,2π ]2, used to
represent the almost periodic covariance function cτ (t) ≡ Cov(Xt ,Xt+τ ), t ∈ Z,
for a given τ ∈ Z; see [21, 22] for details.

For Tn ≡ τn(tn − t (P )) with scaling τn = √
n/Ln, Lenart [21] (Theorems 3.1–

3.2) proved a CLT Tn
d→ N(0, σ 2) and moment convergence ET 2

n → σ 2 with mix-
ing APC series, which was extended in Lenart [22] to multivariate data. Due to the
complicated form of σ 2, a subsampling estimator Sn,SUB for the distribution of Tn

may computed as in (2.1) with analog statistics tn,b,i and scaling τb = √
b/Lb de-

fined from subsamples {(Xi, . . . ,Xi+b−1)}Nn≡n−b+1
i=1 . Lenart [21] proved the con-

sistency of the estimator Sn,SUB, while Lenart [22] proposed a generalized resam-
pling method which essentially corresponds to a convolved subsampling estimator
Cn,kn induced from Sn,SUB. In particular, Lenart [22] established the consistency
of Cn,kn through bootstrap arguments requiring much stronger mixing and moment

assumptions than needed for the convergence Tn
d→ N(0, σ 2) and ET 2

n → σ 2.
However, the general convolved subsampling result in Theorem 4 may alterna-
tively be used here with mixing nonstationary ACP series.

To apply Theorem 4 with blocks where b−1 + b/n + τb/τn → 0 as n → ∞,

one requires that Yb
d→ N(0, σ 2) and that (3.2) holds, where Yb, b ≡ bn ≥ 1, de-

notes a sequence of variables with distribution Dn,b(·) from (3.1). But, the same

conditions needed for Tn
d→ N(0, σ 2) and ET 2

n → σ 2 also yield Yb
d→ N(0, σ 2)

and EY 2
b → σ 2 (cf. Theorems 3.1–3.2 and 4.1, [21]). Furthermore, mixing and

Yb
d→ N(0, σ 2), along with Tn = Op(1) and τn/τb → ∞, guarantee that (2.3)

holds [i.e., supx∈R |Sn,SUB(x) − �(x/σ)| p→ 0] and that consequently (3.2) fol-
lows from Theorem 3(ii) by EY 2

b → σ 2. That is, the same minimal conditions for
a CLT with APC series suffice for the consistency of convolved subsampling Cn,kn

by the general result of Theorem 4.
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5.3. L-estimators and other statistics beyond the sample mean. Other classes
of statistics with normal limits, where resampling may be helpful, include M-
estimators, L-statistics and generalizations such as GL-statistics. Just as for the
U-statistics and spectral estimators in the previous sections, convolved subsam-
pling may be applied as a resampling method which is neither classical subsam-
pling nor the block bootstrap for general statistics. As an advantage in such cases,
convolved subsampling is often verifiable under mild assumptions (cf. Sections 3,
4.1), which we mention for L-estimators. If X1, . . . ,Xn denotes a stationary stretch
with marginal quantile function G−1, an L-estimator tn = ∫ 1

0 Ĝ−1
n (u)J (u)du of

a parameter t (P ) = ∫ 1
0 G−1(u)J (u)du represents a linear combinations of or-

der statistics, defined by the quantiles of the empirical distribution Ĝn(x) =
n−1 ∑n

t=1 I (Xt ≤ x), x ∈ R, and a weighting function J : [0,1] → R. Under the
mild mixing/moment conditions used for sample means in Theorem 5, the same
conclusions for subsampling and convolved subsampling also hold with general L-
estimators Tn = √

n(tn − t (P )), provided that J is bounded and continuous almost
everywhere; see the Supplementary Material [15] for more formal details regard-
ing L-estimators. Section 7 provides some numerical justification of the convolved
procedure for the trimmed mean as an L-statistic.

6. Independent data versions. For completeness, we briefly mention a vari-
ation of convolved subsampling for independent data. Recall that Section 4.1 con-
sidered block-based convolved subsampling with general statistics computed from
strongly mixing time processes {Xt }. Hence, results of Section 4.1 apply to inde-
pendent data, as do block bootstrap results of Section 4.2 for sample means under
mixing conditions. However, with independent X1, . . . ,Xn, one may consider a
different formulation of subsamples rather than data blocks of b consecutive obser-
vations. Namely, let bn ≡ b denote a set size and define subsamples Yb,1, . . . , Yb,Nn

as the Nn ≡ (n
b

)
unordered subsets of size b from {X1, . . . ,Xn}. The “independent

data” subsampling estimator SID
n,SUB is defined as Sn,SUB in (2.1) with subsample

statistics tn,b,i ≡ tb(Yb,i), i = 1, . . . ,Nn, where statistics tb(·) are symmetric in
their arguments here; see Politis, Romano and Wolf [29] (Chapter 2) for a general
treatment of this subsampling estimator with i.i.d. data.

The next theorem verifies that, for independent data, the general results for
convolved subsampling with previous block-based subsamples (Section 4.1) also
hold when the convolution is based on the independent data subsampling estimator
SID

n,SUB using all subsets of size b.

THEOREM 6. Let {Xt } be a sequence of independent (possibly non-i.i.d.) ran-
dom variables. Given SID

n,SUB, let (σ̂ ID
n,SUB)2 and CID

n,kn
denote the corresponding

subsampling variance estimator and convolved subsampling estimator. Then The-
orem 4 holds under the notational convention that Sn,SUB ≡ SID

n,SUB, σ̂ 2
n,SUB ≡
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(σ̂ ID
n,SUB)2, and Cn,kn ≡ CID

n,kn
and that subsample quantities in (3.1)–(3.2) are de-

fined as Tb,i = τb[tb(Yb,i) − t (P )], i = 1, . . . ,Nn ≡ (n
b

)
.

Additionally, if the variables {Xt } are i.i.d., then Corollary 2 likewise holds.

We may also draw some connections between convolved subsampling and the
bootstrap for sample means with independent data. Suppose independent variables
X1, . . . ,Xn have common mean μ (e.g., as in Tukey’s symmetric contamination
model where observations may have different variances), from which we define
Tn ≡ √

n(X̄n − μ). The convolved estimator CID
n,kn

here has close parallels to the
classic independent bootstrap of Efron [11]. Namely, CID

n,kn
is the resampling distri-

bution of T ∗
n ≡ √

n1(X̄
∗
n1

− X̄n) for a sample mean X̄∗
n1

of size n1 = knb formed by
averaging kn independent subsamples of size b, with each size b subsample drawn
uniformly and without replacement from {Xi}ni=1; if the subsamples of size b are
instead drawn with replacement from {Xi}ni=1, then T ∗

n alternatively produces the

independent bootstrap distribution, say C
ID,boot
n,knb , with a resample size n1 = knb.

Consequently, the independent data version of convolved subsampling CID
n,kn

does
not exactly match the independent bootstrap. However, the following result for in-
dependent data shows that the subsampling estimator SID

n,SUB and its convolution
CID

n,kn
are valid in a broad non-i.i.d. context for sample means, and the differences

between CID
n,kn

and C
ID,boot
n,knb are asymptotically negligible.

THEOREM 7. Let X1,X2, . . . , denote a sequence of independent (possibly
non-i.i.d.) variables, with finite variances and common mean EXt = μ ∈ R. Define
Xi,μ ≡ Xi − μ, i ≥ 1. As n → ∞, suppose b−1 + b/n → 0 and that

1

n

n∑
i=1

EX2
i,μI

[|Xi,μ| > ε
√

b
] → 0

and

max
1≤i1<i2<···<ib≤n

∣∣∣∣∣1

b

b∑
j=1

EX2
ij ,μ − σ 2

∣∣∣∣∣ → 0

for each ε > 0 and some σ 2 > 0. Then, as n → ∞, Tn = √
n(X̄n −μ)

d→ N(0, σ 2)

along with supx∈R|SID
n,SUB(x) − �(x/σ)| p→ 0 and (σ̂ ID

n,SUB)2 p→ σ 2. Furthermore,
for any positive integer sequence kn,

sup
x∈R

∣∣CID
n,kn

(x) − �(x/σ)
∣∣ p→ 0 and d2

[
CID

n,kn
,C

ID,boot
n,knb

] p→ 0,

where d2(·, ·) denotes Mallow’s metric between distributions CID
n,kn

and C
ID,boot
n,knb .
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REMARK 4. Above d2(·, ·) metricizes weak convergence [5], where, for dis-
tributions F and G on R, [d2(F,G)]2 ≡ inf{E|X − Y |2 : X ∼ F,Y ∼ G} with the
infimum over all pairs (X,Y ) with marginal distributions F and G.

A Lindeberg condition, defined by replacing b with n in the second moment

assumptions of Theorem 7, suffices for Tn = √
n(X̄n − μ)

d→ N(0, σ 2). Hence,
Theorem 7 validates subsampling, convolved subsampling and the bootstrap for
the sample mean under a slightly stronger condition than required for the CLT
with independent data. This finding also involves a weaker moment condition than
a classical bootstrap result of Liu [24] for sample means of non-i.i.d. data (i.e.,
supi≥1 E|Xi |2+δ < ∞ with δ > 0). Also, for general statistics with i.i.d. data, Poli-
tis, Romano and Wolf [29] (Corollary 2.3.1) use the subsampling estimator SID

n,SUB
to prove the consistency of a version of the bootstrap with a resample size of b < n,
provided that b−1 + b2/n → 0. When specialized to sample means, their intended
bootstrap becomes C

ID,boot
n,knb with convolution kn = 1 and Theorem 7 generalizes

their result under a weaker requirement b/n → 0 and for non-i.i.d. data.

7. Numerical results. Particularly in the important case of the sample mean,
where convolved subsampling equals the classical block bootstrap, many authors
have shown, via numerical as well as theoretical evidence, that the bootstrap is
generally advantageous over standard subsampling when both are valid (cf. [19],
Chapter 6; [29], Chapter 10). Intuitively, the i.i.d. randomization of the bootstrap
often better aligns its distribution with a normal target. Hence, when considering
the sample mean, our aim here is of theoretical nature and we provide a new ap-
proach for proving bootstrap consistency.

For statistics of interest beyond the sample mean, the situation is different. In
this scenario, convolved subsampling estimation gives a completely new resam-
pling procedure, where results from Section 3 can be used to establish the method’s
consistency in general contexts. As described in Section 5, the method has been
applied to spectral densities [21] and U-statistics [32], where some numerical find-
ings have indicated improvements over subsampling with U-statistics. Outside of
this, not much is presently known about the method’s properties relative to sub-
sampling or block bootstrap. However, for approximating normal limits, convolved
subsampling might generally be anticipated to perform better than subsampling, as
convolution may move estimators closer to normality (cf. Remark 5 to follow).

For comparison, we include a small simulation study involving the trimmed
mean statistic (cf. Section 5.3), computed from a time series X1, . . . ,Xn as

X̄n,τ1,τ2 = 1


nτ2� − 
nτ1�

nτ2�∑

i=
nτ1�+1

X(i),

using order statistics X(1), . . . ,X(n) and trimming proportions 0 ≤ τ1 < τ2 ≤ 1.
When τ1 = 0 and τ2 = 1, the trimmed mean equals the sample mean and, conse-
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quently, convolved subsampling becomes equivalent to the block bootstrap. How-
ever, when observations are discarded by τ1 �= 0 or τ2 �= 1, the two resampling
procedures are different. For the trimmed mean parameter, 90% confidence inter-
vals are given by X̄n,τ1,τ2 ± q0.9/

√
n, with q0.9 denoting an appropriate quantile

found by either subsampling, convolved subsampling with different levels of con-
volution, or the moving blocks bootstrap. For data generation, we use an AR(1)-
process with standard normal marginals.

Table 1 displays the coverage probabilities from intervals by the aforementioned
resampling methods, based on an AR(1) parameter 0.3 and various sample sizes n;

TABLE 1
Coverage percentages of 90% intervals for the trimmed mean based on subsampling (Sn,SUB),

convolved subsampling (Cn,kn
) and block bootstrap (Cboot

n,
n/b�) for various block sizes b,
convolution levels kn and sample sizes n; coverages are based on 1000 simulations from an

AR(1)-process (coefficient 0.3) with distributions for Cn,kn
or Cboot

n,
n/b� approximated from 999

resamples. Note Cn,
n/b� and Cboot
n,
n/b� match for τ1 = 1, τ2 = 0

n 50 100 200 500 1000

b 7 3 10 4 14 5 22 7 31 9

Percentages of trimming τ1 = 1 − τ2 = 0
Sn,SUB 79.1 84.5 84.2 86.3 85.0 86.9 89.3 88.9 87.3 89.1
Cn,3 80.1 84.8 85.3 86.5 84.2 87.2 89.4 88.5 87.3 88.8
Cn,
n/(2b)� 80.3 85.0 86.1 86.7 85.3 87.5 89.4 89.1 87.7 89.3
Cn,
n/b� 82.0 85.5 86.4 87.4 85.5 87.8 89.4 89.2 87.6 89.9
Cboot

n,
n/b� 82.0 85.5 86.4 87.4 85.5 87.8 89.4 89.2 87.6 89.9

Percentages of trimming τ1 = 1 − τ2 = 0.05
Sn,SUB 82.4 86.3 83.9 87.6 84.3 88.4 88.0 87.1 87.3 87.3
Cn,3 82.3 85.9 84.4 88.4 83.7 89.1 88.0 86.7 87.4 87.8
Cn,
n/(2b)� 82.5 86.2 84.7 87.9 84.2 89.2 88.0 87.7 87.4 88.0
Cn,
n/b� 84.2 87.4 85.1 88.7 84.3 89.8 88.3 88.1 87.6 87.7
Cboot

n,
n/b� 87.2 81.3 84.9 85.7 86.0 85.7 89.4 89.6 88.4 88.9

Percentages of trimming τ1 = 1 − τ2 = 0.10
Sn,SUB 80.5 85.3 83.8 85.2 84.9 86.4 87.2 86.7 88.5 89.1
Cn,3 80.5 86.4 83.8 85.4 84.6 86.9 87.1 87.1 88.7 88.9
Cn,
n/(2b)� 80.7 86.5 84.5 85.6 84.9 87.7 86.8 87.0 88.3 89.2
Cn,
n/b� 82.2 87.3 85.4 85.9 86.1 88.0 88.0 87.9 88.2 89.4
Cboot

n,
n/b� 82.4 82.1 85.3 84.8 84.7 86.7 88.8 86.4 89.5 87.8

Percentages of trimming τ1 = 1 − τ2 = 0.25
Sn,SUB 80.3 84.3 85.0 85.9 84.1 84.1 86.2 85.2 85.8 88.0
Cn,3 80.7 85.1 85.7 86.2 84.5 84.2 86.5 85.0 86.1 87.0
Cn,
n/(2b)� 81.7 86.0 85.8 86.6 85.4 85.1 86.3 85.3 86.3 87.7
Cn,
n/b� 82.8 86.3 86.8 87.8 85.9 85.9 87.0 85.9 86.5 88.9
Cboot

n,
n/b� 82.6 81.8 84.8 86.7 87.1 87.6 88.6 86.7 88.9 89.9
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TABLE 2
Lengths of 90% intervals for the trimmed mean corresponding to the coverage probabilities

reported in Table 1

n 50 100 200 500 1000

b 7 3 10 4 14 5 22 7 31 9

Percentages of trimming τ1 = 1 − τ2 = 0
Sn,SUB 0.570 0.606 0.423 0.435 0.309 0.315 0.202 0.202 0.144 0.144
Cn,3 0.598 0.635 0.438 0.452 0.314 0.322 0.205 0.206 0.145 0.146
Cn,
n/(2b)� 0.580 0.623 0.430 0.445 0.310 0.318 0.203 0.204 0.145 0.145
Cn,
n/b� 0.578 0.615 0.425 0.440 0.306 0.315 0.202 0.202 0.144 0.144
Cboot

n,
n/b� 0.578 0.615 0.425 0.440 0.306 0.315 0.202 0.202 0.144 0.144

Percentages of trimming τ1 = 1 − τ2 = 0.05
Sn,SUB 0.567 0.605 0.430 0.436 0.310 0.315 0.202 0.202 0.144 0.145
Cn,3 0.595 0.633 0.444 0.450 0.316 0.321 0.204 0.205 0.146 0.146
Cn,
n/(2b)� 0.576 0.623 0.437 0.444 0.312 0.317 0.203 0.203 0.145 0.145
Cn,
n/b� 0.575 0.614 0.432 0.439 0.310 0.315 0.201 0.203 0.144 0.145
Cboot

n,
n/b� 0.594 0.580 0.446 0.425 0.317 0.309 0.205 0.200 0.146 0.144

Percentages of trimming τ1 = 1 − τ2 = 0.10
Sn,SUB 0.571 0.605 0.423 0.432 0.313 0.314 0.202 0.202 0.147 0.144
Cn,3 0.597 0.636 0.437 0.450 0.320 0.321 0.205 0.204 0.148 0.146
Cn,
n/(2b)� 0.577 0.624 0.428 0.443 0.315 0.318 0.203 0.203 0.147 0.145
Cn,
n/b� 0.578 0.615 0.425 0.437 0.312 0.314 0.202 0.202 0.147 0.144
Cboot

n,
n/b� 0.603 0.586 0.442 0.430 0.322 0.311 0.206 0.202 0.149 0.145

Percentages of trimming τ1 = 1 − τ2 = 0.25
Sn,SUB 0.571 0.607 0.432 0.437 0.323 0.315 0.209 0.203 0.151 0.148
Cn,3 0.602 0.647 0.453 0.460 0.333 0.329 0.214 0.210 0.153 0.152
Cn,
n/(2b)� 0.578 0.627 0.440 0.448 0.326 0.322 0.211 0.206 0.151 0.150
Cn,
n/b� 0.578 0.614 0.434 0.439 0.323 0.316 0.209 0.203 0.150 0.148
Cboot

n,
n/b� 0.623 0.614 0.459 0.451 0.335 0.326 0.214 0.211 0.153 0.151

qualitatively similar results with other AR parameters appear in the Supplementary
Material [15]. Additionally, corresponding interval lengths are reported in Table 2.
As those differ only marginally over the five resampling methods, we will focus
on the probabilities. In general, all methods tend to yield coverage probabilities
below the nominal level of 90%. Moreover, convolution of subsampling improves
performance over regular subsampling in almost all cases, with increasing levels
of convolution tending to produce better coverage accuracy. For illustration, the
subsampling distributional approximation for the trimmed mean statistic is shown
in Figure 1 along with counterparts improved by convolution. In terms of compar-
isons between the block bootstrap and convolved subsampling, the methods again
differ when τ1 �= 0 or τ2 �= 1, as indicated in Table 1. Based on our simulation,
neither method seems to be clearly advantageous. Depending on the choice of
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FIG. 1. Histogram of the centered/scaled trimmed mean, with τ1 = 1 − τ2 = 0.10 (top) or
τ1 = 1 − τ2 = 0.25 (bottom), based on 10,000 simulations from an AR(1) process, and density esti-
mates by convolved subsampling with convolution levels of kn = 1 (i.e., subsampling) (left), kn = 3
(center) and kn = 14 (right) from one data realization.

trimming parameters, block length b, and level of convolution kn, either bootstrap
or convolved subsampling may emerge as the better of the two.

REMARK 5. For approximating normal limits, convolved subsampling may
reduce skewness in distributional estimates from basic subsampling. For illustra-
tion, considering the sample mean, the distribution of Tn = √

n(X̄n − μ) often has
approximate skewness γ /

√
n for some constant γ . In this case, the correspond-

ing subsampling estimator Sn,SUB is known to have a larger approximate skewness
γ /

√
b, while a more fully convolved estimator (bootstrap) Cn,kn with kn ≈ n/b has

skewness approximately γ /
√

n. A better matching skewness may improve higher-
order accuracy; see [29] (Section 10.2).

8. Concluding remarks and extensions. For approximating sampling dis-
tributions with normal limits, we have developed a theory for the k-fold self-
convolution of subsampling estimators. Results validate the method for general
statistics and dependent data structures, based on mild consistency properties of
the basic subsampling estimator and its subsampling variance. The latter estimator
is crucial under diverging levels of convolution, as occurs with block bootstrap.
For time series, convolved subsampling matches the block bootstrap for sample
means. With more general statistics, convolved subsampling often differs from the
bootstrap and, instead, provides a hybrid-type of resampling that has received re-
cent consideration (cf. Section 5) and may improve upon standard subsampling
for normal targets. Further study is required of higher-order accuracy. However, as
convolved subsampling can often be verified under mild process assumptions, this
offers an alternative approach for establishing the block bootstrap under weaker
conditions than previously considered for sample means in particular.
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We make two final points about applying convolved subsampling to validate
the block bootstrap with more general statistics, which is difficult to characterize.
First, from the standard linearization technique based on functional representations
and differentials, a target statistic may often be decomposed into main/linear and
remainder parts (cf. [17]; Chapter 4.3, [19]). Commonly, the linear term is a sample
mean (e.g., of influence functions), while the remainder is negligible. Convolved
subsampling can be directly used to establish the block bootstrap for this main term
under weak conditions. Our framework, though, does not immediately address the
remainder.

However, second, such remainders are often smaller-order than a norm of the
centered empirical distribution, in both the original data and bootstrap worlds,
where the bootstrap version is, say,

√
n‖Ĝ∗

n − E∗Ĝ∗
n‖. By virtue of the empir-

ical distribution as an average, the bootstrap estimator
√

n(Ĝ∗
n(x) − E∗Ĝ∗

n(x)),
x ∈ R, must consequently match convolved subsampling. This connection could
potentially foster bootstrap studies with empirical processes and dependent data,
particularly as subsampling estimators are consistent for empirical processes under
weak assumptions ([29], Chapter 7.4). Further investigation is required, though,
because the technical obstacle to weak convergence differs substantially from the
usual sample mean case: namely, tightness of the bootstrap/convolved subsam-
pling process

√
n(Ĝ∗

n(·)−E∗Ĝ∗
n(·)) must be determined on a suitable metric space

(cf. [19], Chapter 4.4.1). Still, convolved subsampling may provide a general tool
for advancing future developments with resampling dependent data.
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SUPPLEMENTARY MATERIAL

Supplement to “Convolved subsampling estimation with applications to
block bootstrap” (DOI: 10.1214/18-AOS1695SUPP; .pdf). This supplement pro-
vides proofs for the distributional results about convolved subsampling and further
numerical/theoretical support for the simulation study.
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