
The Annals of Statistics
2019, Vol. 47, No. 1, 415–438
https://doi.org/10.1214/18-AOS1692
© Institute of Mathematical Statistics, 2019
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A Stiefel manifold of the compact type is often encountered in many
fields of engineering including, signal and image processing, machine learn-
ing, numerical optimization and others. The Stiefel manifold is a Riemannian
homogeneous space but not a symmetric space. In previous work, researchers
have defined probability distributions on symmetric spaces and performed
statistical analysis of data residing in these spaces. In this paper, we present
original work involving definition of Gaussian distributions on a homoge-
neous space and show that the maximum-likelihood estimate of the location
parameter of a Gaussian distribution on the homogeneous space yields the
Fréchet mean (FM) of the samples drawn from this distribution. Further, we
present an algorithm to sample from the Gaussian distribution on the Stiefel
manifold and recursively compute the FM of these samples. We also prove
the weak consistency of this recursive FM estimator. Several synthetic and
real data experiments are then presented, demonstrating the superior compu-
tational performance of this estimator over the gradient descent based nonre-
cursive counter part as well as the stochastic gradient descent based method
prevalent in literature.

1. Introduction. Manifold-valued data have gained much importance in re-
cent times due to their expressiveness and ready availability of machines with
powerful CPUs and large storage. For example, these data arise as rank-2 ten-
sors (manifold of symmetric positive definite matrices) [Moakher (2006), Pennec,
Fillard and Ayache (2006)], linear subspaces (the Grassmann manifold) [Goodall
and Mardia (1999), Hauberg, Feragen and Black (2014), Patrangenaru and Mardia
(2003), Turaga, Veeraraghavan and Chellappa (2008)], column orthogonal ma-
trices (the Stiefel manifold) [Chikuse (1991), Hendriks and Landsman (1998),
Turaga, Veeraraghavan and Chellappa (2008)], directional data and probabil-
ity densities (the hypersphere) [Hartley et al. (2013), Mardia and Jupp (2000),
Srivastava, Jermyn and Joshi (2007), Tuch et al. (2003) and others]. A useful
method of analyzing manifold valued data is to compute statistics on the underly-
ing manifold. The most popular statistic is a summary of the data, that is, the Rie-
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mannian barycenter [Fréchet mean (FM)] [Afsari (2011), Fréchet (1948), Karcher
(1977)], Fréchet median [Arnaudon, Barbaresco and Yang (2013), Charfi et al.
(2013), etc.]. However, in order to compute statistics of manifold-valued data, the
first step involves defining a distribution on the manifold. Recently, authors in
Said et al. (2016) have defined a Gaussian distribution on Riemannian symmetric
spaces (or symmetric spaces). Some typical examples of symmetric spaces include
the Grassmannian, the hypersphere, etc. Several other researchers [Cheng and Ve-
muri (2013), Said et al. (2017)] have defined a Gaussian distribution on the space
of symmetric positive definite matrices. They called the distribution a “generalized
Gaussian distribution” [Cheng and Vemuri (2013)] and “Riemannian Gaussian dis-
tribution” [Said et al. (2017)], respectively.

In this work, we define a Gaussian distribution on a homogeneous space (a
more general class than symmetric spaces). A key difficulty in defining the Gaus-
sian distribution on a non-Euclidean space is to show that the normalizing factor
in the expression for the distribution is a constant. In this work, we show that the
normalizing factor in our definition of the Gaussian distribution on a homogeneous
space is indeed a constant. Note that a symmetric space is a homogeneous space
but not all homogeneous spaces are symmetric, and thus, our definition of Gaus-
sian distribution is on a more generalized topological space than the symmetric
space. Given a well-defined Gaussian distribution, the next step is to estimate the
parameters of the distribution. In this work, we prove that the maximum likelihood
estimate (MLE) of the mean of the Gaussian distribution is the Fréchet mean (FM)
of the samples drawn from the distribution.

Data with values in the space of column orthogonal matrices have become popu-
lar in many applications of Computer Vision and Medical Image analysis [Cetingul
and Vidal (2009), Chakraborty, Banerjee and Vemuri (2017), Lui (2012), Pham
and Venkatesh (2008), Turaga, Veeraraghavan and Chellappa (2008)]. The space
of column orthogonal matrices is a topological space, and moreover, one can equip
this space with a Riemannian metric which in turn makes this space a Riemannian
manifold, known as the Stiefel manifold. The Stiefel manifold is a homogeneous
space and here we extend the definition of the Gaussian distribution to the Stiefel
manifold. In this work, we restrict ourselves to the Stiefel manifold of the com-
pact type, which is quite commonly encountered in most applications mentioned
earlier.

We now motivate the need for a recursive FM estimator. In this age of mas-
sive and continuous streaming data, samples are often acquired incrementally.
Hence, from an applications perspective, the desired algorithm should be recur-
sive/inductive in order to maximize computational efficiency and account for avail-
ability of data, requirements that are seldom addressed in more theoretically ori-
ented fields. We propose an inductive FM computation algorithm and prove the
weak consistency of our proposed estimator. FM computation on Riemannian
manifolds has been an active area of research for the past few decades. Several
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researchers have addressed this problem and we refer the reader to Afsari (2011),
Ando, Li and Mathias (2004), Arnaudon, Barbaresco and Yang (2013), Bhatia
(1997), Bhattacharya and Bhattacharya (2008), Chakraborty and Vemuri (2015),
Fletcher and Joshi (2007), Groisser (2004), Ho et al. (2013), Moakher (2005),
Pennec (2006), Rao (1987), Salehian et al. (2015), Sturm (2003).

1.1. Key contributions. In summary, the key contributions of this paper are:
(i) A novel generalization of Gaussian distributions to compact homogeneous
spaces. (ii) A proof that the MLE of the location parameter of this distribution
is “the” FM. (iii) A sampling technique for drawing samples from this generalized
Gaussian distribution defined on a compact Stiefel manifold (which is a homo-
geneous space), and an inductive/recursive FM estimator from the drawn samples
along with a proof of its weak consistency. Several examples of FM estimates com-
puted from real and synthetic data are shown to illustrate the power of the proposed
methods.

Though researchers have defined Gaussian distributions on other manifolds in
the past [see Cheng and Vemuri (2013), Said et al. (2016)], their generalization of
the Gaussian distribution is restricted to symmetric spaces of noncompact types.
In this work, we define a Gaussian distribution on a compact homogeneous space,
which is a more general topological space than the symmetric space. A few others
in literature have generalized the Gaussian distribution to all Riemannian mani-
folds, for instance, in Zhang and Fletcher (2013), authors defined the Gaussian
distribution on a Riemannian manifold without a proof to show that the normaliz-
ing factor is a constant. In Grenander (2008), author proposed a generalized Gaus-
sian distribution as a solution to the heat equation. In Fletcher (2013), though the
author commented on the constancy of the normalizing factor for Riemannian ho-
mogeneous spaces, he did not however prove the finiteness of the normalization
factor. It should be noted that the finiteness of the normalization factor is crucial for
the proposed distribution to be a valid distribution. In Pennec (2006), the author
defined the normal law on Riemannian manifolds using the concept of entropy
maximization for distributions with known mean and covariance. Under certain
assumptions, the author shows that this definition amounts to using the Rieman-
nian exponential map on a truncated Gaussian distribution defined in the tangent
space at the known intrinsic mean. This approach of deriving the normal distribu-
tion yields a normalizing factor that is dependent on the location parameter of the
distribution, and hence is not a constant with respect to the FM.

We then move our focus to the Stiefel manifold (which is a homogeneous space)
and propose a simple algorithm to draw samples from the Gaussian distribution on
the Stiefel manifold. In order to achieve this, we develop a simple but nontrivial
way to extend the sampling algorithm in Said et al. (2016) to get samples on the
Stiefel manifold. Once we have the samples from a Gaussian distribution on the
Stiefel, we propose a novel estimator of the sample FM and prove the weak con-
sistency of this estimator. The proposed FM estimator is inductive in nature and is
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motivated by the inductive FM algorithm on the Euclidean space. But, unlike Eu-
clidean space, due to the presence of nonzero curvature, it is necessary to prove the
consistency of our proposed estimator, which is presented subsequently. Further,
we experimentally validate the superior performance of our proposed FM estima-
tor over the gradient descent based techniques. Moreover, we also show that the
MLE of the location parameter of the Gaussian distribution on the Stiefel mani-
fold asymptotically achieves the Cramér–Rao lower bound [Cramér (1946), Rao
(1992)], hence in turn, the MLE of the location parameter is efficient. This implies
that our proposed consistent FM estimator, asymptotically, has a variance lower
bounded by that of the MLE.

The rest of the paper is organized as follows. In Section 2, we present the neces-
sary mathematical background. In Section 3, we define a Gaussian distribution on a
homogeneous space. More specifically, define a generalized Gaussian distribution
on the Stiefel manifold and prove that the normalizing factor is indeed a constant
with respect to the location parameter of the distribution. Then we propose a sam-
pling algorithm to draw samples from this generalized Gaussian distribution in
Section 3.1 and in Section 3.2, show that the MLE of the location parameter of
this Gaussian distribution is the FM of the samples drawn from the distribution. In
Section 4, we propose an inductive FM estimator and prove its weak consistency.
Finally, we present a set of synthetic and real data experiments in Section 5 and
draw conclusions in Section 6.

2. Mathematical background: Homogeneous spaces and the Riemannian
symmetric space. In this section, we present a brief note on the differential ge-
ometry background required in the rest of the paper. For a detailed exposition on
these concepts, we refer the reader to a comprehensive and excellent treatise on
this topic by Helgason [Helgason (1978)]. Several propositions and lemmas that
are needed to prove the results in the rest of the paper are stated and proved here.
Some of these might have been presented in the vast differential geometry liter-
ature but are unknown to us, and hence the proofs presented in this background
section are original.

Let (M, gM) be a Riemannian manifold with a Riemannian metric gM, that
is, (∀x ∈ M) gM

x : TxM × TxM → R is a bi-linear symmetric positive definite
map, where TxM is the tangent space of M at x ∈ M. Let d : M × M → R
be the metric (distance) induced by the Riemannian metric gM. Let I (M) be the
set of all isometries of M, that is, given g ∈ I (M), d(g.x, g.y) = d(x, y), for all
x, y ∈ M. It is clear that I (M) forms a group [henceforth, we will denote I (M)

by (G, ·)], and thus, for a given g ∈ G and x ∈ M, g.x �→ y, for some y ∈ M
is a group action. Consider o ∈ M, and let H = Stab(o) = {h ∈ G|h.o = o}, that
is, H is the Stabilizer of o ∈ M. We say that G acts transitively on M, iff, given
x, y ∈M, there exists a g ∈ M such that y = g.x.
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DEFINITION 2.1. Let G = I (M) act transitively on M and H = Stab(o),
o ∈ M (called the “origin” of M) be a subgroup of G. Then M is a homogeneous
space and can be identified with the quotient space G/H under the diffeomorphic
mapping gH �→ g.o, g ∈ G [Helgason (1978)].

In fact, if M is a homogeneous space, then G is a Lie group. A Stiefel manifold,
St(p,n) (definition of the Stiefel manifold is given in next section) is a homoge-
neous space and can be identified with O(n)/O(n − p), where O(n) is the group
of orthogonal matrices. Now, we will list some of the important properties of ho-
mogeneous spaces that will be used throughout the rest of the paper.

Properties of homogeneous spaces: Let (M, gM) be a homogeneous space.
Let ωM be the corresponding volume form and F : M → R be any integrable
function. Let g ∈ G, s.t. y = g.x, x, y ∈M. Then the following facts are true:

1. gM(dy, dy) = gM(dx, dx).
2. d(x, z) = d(y, g.z), for all z ∈ M.
3.

∫
M F(y)ωM(x) = ∫

M F(x)ωM(x).

DEFINITION 2.2. A Riemannian symmetric space is a Riemannian manifold
M with the following property: (∀x ∈ M)(∃sx ∈ G) such that sx.x = x and
dsx |x = −I . sx is called symmetry at x [Helgason (1978)].

PROPOSITION 2.1 [Helgason (1978)]. A symmetric space M is a homoge-
neous space with a symmetry, so, at o ∈ M. For the other point x ∈ M, by transi-
tivity of G, there exists g ∈ G such that x = g.o and sx = g · so · g−1.

PROPOSITION 2.2 [Helgason (1978)]. Any symmetric space is geodesically
complete.

Some examples of symmetric spaces include, Sn (the hypersphere), Hn (the hy-
perbolic space) and Gr(p,n) (the Grassmannian). It is evident from the definition
that symmetric space is a homogeneous space but the converse is not true. For
example, the Stiefel manifold is not a symmetric space.

PROPOSITION 2.3 [Helgason (1978)]. The mapping σ : g �→ so · g · so is an
involutive automorphism of G and the stabilizer of o, that is, H , is contained in
the group of fixed points of σ .

Clearly, σ(e) = e, as σ is an automorphism, e ∈ G is the identity element. Re-
call, G is a Lie group, hence, differentiating σ at e, we get an involutive auto-
morphism of the Lie algebra g of G (also denoted by σ ). Henceforth, we will
use σ to denote the automorphism of g. Since σ is involutive, that is, σ 2 = I , σ

has two eigenvalues, ±1 and let h (Lie algebra of H ) and p be the corresponding
eigenspaces, then g = h+ p (direct sum).
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PROPOSITION 2.4 [Helgason (1978)]. [h,h] ⊆ h, [h,p] ⊆ p and [p,p] ⊆ h.

Hence, h is a Lie subalgebra of g. Henceforth, we will assume g to be semisim-
ple. We can define a symmetric, bilinear form, B on g as follows: B(u, v) =
trace(ad(u) ◦ ad(v)), where ad(u) is the adjoint endomorphism of g defined by
ad(u)(v) = [u, v]. B is called the Killing form on g.

DEFINITION 2.3. The decomposition of g as g = h + p is called the Cartan
decomposition of g associated with the involution σ . Furthermore, B is negative
definite on h, positive definite on p and h and p are an orthogonal complement of
each other with respect to B on g.

Recall, a symmetric space, M, can be identified with G/H . Note that, o, the
“origin” of M can be written as o = eH , e ∈ G is the identity element. Since, p
can be identified with ToM, the Riemannian metric gM on M corresponds to the
Killing form B on p [Helgason (1978)], which is a H -invariant form. Without loss
of generality, we will assume that g is over R and g be semisimple (equivalently,
the Killing form on g is nondegenerate). The symmetric space G/H is said to
be compact (noncompact) iff the sectional curvature is strictly positive (negative),
equivalently iff g is compact (noncompact).

Duality: Given a semisimple Lie algebra g with the Cartan decomposition
g= h+ p, construct another Lie algebra g̃ from g as follows: g̃ = h+ J (p), where
J is a complex structure of p (real Lie algebra). From the definition of complex
structure, J : p → p, is an automorphism on p s.t., J 2 = −I . J satisfies the follow-
ing equality: J ([T ,W ]) = [J (T ),W ] = [T ,J (W)], for all T ,W ∈ p. We will call
g̃ the dual Lie algebra of g. It is easy to see that if g corresponds to a symmetric
space of noncompact type, g̃ is a symmetric space of compact type and vice versa.
This duality property is very useful and is a key ingredient of this paper.

Now, we will briefly describe the geometry of two Riemannian manifolds,
namely the Stiefel manifold and the Grassmannian. We need the geometry of the
Stiefel manifold throughout the rest of the paper. Furthermore, observe that the
Stiefel and the Grassmannian form a fiber bundle. In order to draw samples from
a distribution on the Stiefel, we will use the samples drawn from a distribution on
the Grassmannian by exploiting the fiber bundle structure. Hence, we will require
the geometry of the Grassmannian as well, which we will briefly present below.

Differential geometry of the Stiefel manifold: The set of all full column rank
(n × p) dimensional real matrices form a Stiefel manifold, St(p,n), where n ≥ p.
A compact Stiefel manifold is the set of all column orthonormal real matrices.
When p < n, St(p,n) can be identified with SO(n)/SO(n − p), where SO(m) is
m × m special orthogonal group. Note that, when we consider the quotient space,
SO(n)/SO(n − p), we assume that SO(n − p) 
 F(SO(n − p)) is a subgroup of
SO(n), where F : SO(n−p) → SO(n) defined by X �→ [ Ip 0

0 X

]
is an isomorphism

from SO(n − p) to F(SO(n − p)).
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PROPOSITION 2.5. SO(n − p) is a closed Lie-subgroup of SO(n). More-
over, the quotient space SO(n)/SO(n − p) together with the projection map,
� : SO(n) → SO(n)/SO(n − p) is a principal bundle with SO(n − p) as the
fiber.

PROOF. SO(n − p) is a compact Lie-subgroup of SO(n), hence SO(n − p) is
a closed subgroup. The fiber bundle structure of (SO(n),SO(n)/SO(n − p),�)

follows directly from the closedness of SO(n − p). As SO(n) is a principal homo-
geneous space [because SO(n) 
 St(n − 1, n) and SO(n) acts on it freely], hence
the principal bundle structure. �

With a slight abuse of notation, henceforth, we denote the compact Stiefel mani-
fold by St(p,n). Hence, St(p,n) = {X ∈ Rn×p|XT X = Ip}, where Ip is the p ×p

identity matrix. The compact Stiefel manifold has dimension pn − p(p+1)
2 . At any

X ∈ St(p,n), the tangent space TX St(p,n) is defined as follows: TX St(p,n) =
{U ∈ Rn×p|XT U +UT X = 0}. Now, given U,V ∈ TX St(p,n), the canonical Rie-
mannian metric on St(p,n) is defined as follows:

〈U,V 〉X = trace
(
UT V

)
.(2.1)

With this metric, the compact Stiefel manifold has nonnegative sectional curvature
[Ziller (2007)].

Given X ∈ St(p,n), we can define the Riemannian retraction and lifting map
within an open neighborhood of X. We will use an efficient Cayley-type retrac-
tion and lifting maps, respectively, on St(p,n) as defined in Fraikin, Hüper and
Dooren (2007), Kaneko, Fiori and Tanaka (2013). It should be mentioned that
though the domain of retraction is a subset of the domain of inverse-Exponential
map, on St(p,n) retraction/ lifting is a useful alternative since there are no closed-
form expressions for both the Exponential and the inverse-Exponential maps on
the Stiefel manifold. Recently, a fast iterative algorithm to compute Riemannian
inverse-Exponential map has been proposed in Zimmermann (2017), which can be
used instead of retraction/lifting maps to compute FM in our algorithm.

In the neighborhood of [Ip 0] (n × p matrix with upper-right p × p block
is identity and rest are zeros), given X ∈ St(p,n), we define the lifting map
Exp−1

X : St(p,n) → TX St(p,n) by Exp−1
X (Y ) = [

C −BT

B 0

]
where, C is a p × p

skew-symmetric matrix and B is a (n − p) × p matrix defined as follows: C =
2(XT

u + YT
u )−1 sk(Y T

u Xu + XT
l Yl)(Xu + Yu)

−1 and B = (Yl − Xl)(Xu + Yu)
−1

where, X = [Xu,Xl]T , and Y = [Yu,Yl]T with Xu,Yu ∈ Rp×p , and Xl,Yl ∈
R(n−p)×p, provided that Xu + Yu is nonsingular. sk(M) is defined as 1

2(MT − M)

and, Y ∈ St(p,n).
Furthermore, in the neighborhood of [Ip 0], the retraction map defined above is

a diffeomorphism (since it is a chart map) from St(p,n) to so(n).
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PROPOSITION 2.6. The projection map � : SO(n) → SO(n)/SO(n − p) is a
covering map on the neighborhood of SO(n − p) in SO(n)/SO(n − p).

PROOF. First, note that under the identification of St(p,n) with SO(n)/

SO(n − p), the neighborhood of [Ip 0] in St(p,n) can be identified with the
neighborhood of SO(n − p) in SO(n)/SO(n − p). Now, the retraction map de-
fined above is a (local) diffeomorphism from St(p,n) to so(n). Also, the Cayley
map is a diffeomorphism from so(n) to the neighborhood of In in SO(n). Thus, the
map � : SO(n) → SO(n)/SO(n − p) is a diffeomorphism to the neighborhood of
SO(n−p) in SO(n)/SO(n−p) (using the fact that the composition of two diffeo-
morphisms is a diffeomorphism). Now, since SO(n) is compact and � is surjec-
tive, � is a covering map on the neighborhood of SO(n−p) in SO(n)/SO(n−p)

using the following lemma. �

LEMMA 2.1. Under the hypothesis in Proposition 2.6, � : SO(n) → SO(n)/

SO(n − p) is a covering map in the neighborhood from the neighborhood of In in
SO(n) to the neighborhood of SO(n − p) of SO(n)/SO(n − p).

PROOF. In Proposition 2.6, we have shown that � is local diffeomorphism
in the neighborhood specified in the hypothesis. Let V be a neighborhood around
SO(n − p) in SO(n)/SO(n − p) and U be a neighborhood around In in SO(n)

on which � is a diffeomorphism. Let Y ∈ V , as SO(n)/SO(n − p) is a T2 space,
hence, {Y } is closed, thus �−1(Y ) is closed and since SO(n) is compact, hence
�−1(Y ) is compact. For each X ∈ �−1(Y ), let UX be a open neighborhood around
X where � restricts to a diffeomorphism (and hence homeomorphism). Then {UX :
X ∈ �−1(Y )} is an open cover of �−1(Y ), thus as a finite subcover {UX}X∈I ,
where I is finite. We chose {UX} to be disjoint as SO(n) is a T2 space. Let W =⋂

X∈I �(UX), which is an open neighborhood of Y . Then {�−1(W)∩UX}X∈I is a
disjoint collection of open neighborhoods each of which maps homeomorphically
to V . Hence, � is a covering map in the local neighborhood. �

Given W ∈ so(n), the Cayley map is a conformal mapping, Gr : so(n) →
SO(n) defined by Gr(W) = (In + W)(In − W)−1. Using the Cayley mapping,
we can define the Riemannian retraction map ExpX : TX St(p,n) → St(p,n) by
ExpX(W) = Gr(W)X. Hence, given X,Y ∈ St(p,n) within a regular geodesic ball
(the geodesic ball does not include the cut locus) of appropriate radius (henceforth,
we will assume the geodesic ball to be regular), we can define the unique geodesic
from X to Y , denoted by �Y

X(t) as

(2.2) �Y
X(t) = ExpX

(
t Exp−1

X (Y )
)
.

Also, we can define the distance between X and Y as

d(X,Y ) =
√〈

Exp−1
X (Y ),Exp−1

X (Y )
〉
.(2.3)
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Differential geometry of the Grassmannian Gr(p,n): The Grassmann mani-
fold (or the Grassmannian) is defined as the set of all p-dimensional linear sub-
spaces in Rn and is denoted by Gr(p,n), where p ∈ Z+, n ∈ Z+, n ≥ p. Grass-
mannian is a symmetric space and can be identified with the quotient space
SO(n)/S(O(p) × O(n − p)), where S(O(p) × O(n − p)) is the set of all n × n

matrices whose top left p × p and bottom right n − p × n − p submatrices are
orthogonal and all other entries are 0, and overall the determinant is 1. A point
X ∈ Gr(p,n) can be specified by a basis, X. We say that X = Col(X) if X is a
basis of X , where Col(·) is the column span operator. It is easy to see that the gen-
eral linear group GL(p) acts isometrically, freely and properly on St(p,n). More-
over, Gr(p,n) can be identified with the quotient space St(p,n)/GL(p). Hence,
the projection map � : St(p,n) → Gr(p,n) is a Riemannian submersion, where
�(X)� Col(X). Moreover, the triplet (St(p,n),�,Gr(p,n)) is a fiber bundle.

At every point X ∈ St(p,n), we can define the vertical space, VX ⊂ TX St(p,n)

to be Ker(�∗X). Further, given gSt, we define the horizontal space, HX to be
the gSt-orthogonal complement of VX . Now, from the theory of principal bundles,
for every vector field Ũ on Gr(p,n), we define the horizontal lift of Ũ to be the
unique vector field U on St(p,n) for which UX ∈ HX and �∗XUX = Ũ�(X), for
all X ∈ St(p,n). As, � is a Riemannian submersion, the isomorphism �∗X|HX

:
HX → T�(X) Gr(p,n) is an isometry from (HX,gSt

X) to (T�(X) Gr(p,n), gGr
�(X)).

So, gGr
�(X) is defined as

gGr
�(X)(Ũ�(X), Ṽ�(X)) = gSt

X(UX,VX) = trace
((

XT X
)−1

UT
XVX

)
,(2.4)

where, Ũ , Ṽ ∈ T�(X) Gr(p,n) and �∗XUX = Ũ�(X), �∗XVX = Ṽ�(X), UX ∈ HX

and VX ∈ HX .

3. Gaussian distribution on homogeneous spaces. In this section, we define
the Gaussian distribution, N (x̄, σ ) on a compact homogeneous space, M, x̄ ∈M
(location parameter), σ > 0 (scale parameter), and then propose a sampling algo-
rithm to draw samples from the Gaussian distribution on St(p,n). Furthermore,
we will show that the maximum likelihood estimator (MLE) of x̄ is the Fréchet
mean (FM) [Fréchet (1948)] of the samples.

We define the probability density function, f (·; x̄, σ ) with respect to ωM (the
volume form) of the Gaussian distribution N (x̄, σ ) on M as

f (x; x̄, σ ) = 1

C(σ)
exp

(−d2(x, x̄)

2σ 2

)
.(3.1)

The above distribution is a valid probability density function, provided that the
normalization factor, C(σ) is finite and furthermore, is a constant, that is, does not
depend on x̄ which we will prove next.

PROPOSITION 3.1. Let us define Z(x̄, σ ) �
∫
M f̃ (x; x̄, σ )ωM(x), where f̃

is the kernel of f . Z(x̄, σ ) is finite for all compact manifolds.
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PROOF. Observe that the kernel f̃ (x; x̄, σ ) ≤ 1 for all x. Hence, Z(x̄, σ ) ≤∫
M ωM(x) ≤ ∞ as the volume of any compact manifold is finite. �

PROPOSITION 3.2. With Z(x̄, σ ) as defined as above, C(σ) = Z(x̄, σ ) =
Z(o,σ ), where o ∈ M is the origin.

PROOF. As the group action on M is transitive, there exists g ∈ G s.t., x̄ =
g.o.,

Z(x̄, σ ) =
∫
M

f̃ (x; x̄, σ )ωM(x)

=
∫
M

f̃
(
g−1.x;g−1.x̄, σ

)
ωM(x) (using Fact 2 in Section 2)

=
∫
M

f̃ (x;o,σ )ωM(x) (using Fact 2 in Section 2)

= Z(o,σ ).

Hence, C(σ) = Z(o,σ ), that is, does not depend on x̄. �

Now that we have a valid definition of a Gaussian distribution, N (x̄, σ ) on
a compact Homogeneous space, we propose a sampling algorithm for draw-
ing samples from N (X̄, σ ) on St(p,n) (which is a homogeneous space), X̄ ∈
St(p,n), σ > 0.

3.1. Sampling algorithm. In order to draw samples from N (X̄, σ ) on St(p,n),
it is sufficient to draw samples from N (O,σ) where O ∈ St(p,n) is the origin.
Then, using group operation, we can draw samples from N (X̄, σ ) for any X̄ ∈
St(p,n). We will assume, O = [Ip 0] (n × p matrix with the upper right p × p

block being the identity and the rest being zeros). We will first draw samples from
N (O, σ ) on Gr(p,n), where O = �(O) and use this sample to get a sample on
St(p,n) using N (O,σ). Note that Gr(p,n) is a symmetric space, and hence a
homogeneous space, and thus we have a valid Gaussian density on Gr(p,n) using
equation (3.1).

PROPOSITION 3.3. Let X ∼ N (O, σ ) where O = �(O), XT X = I . Then
ExpO(W) ∼ N (O,σ), with W = U�V T , where U�V T = X(OT X)−1 − O and
� = arctan�.

PROOF. It is sufficient to show that d(O,ExpO(W)) = d(O,X ).
Recall that (St(p,n),�,Gr(p,n)) forms a fiber bundle. Moreover, the iso-
morphism, �∗X|HX

: HX → T�(X) Gr(p,n), is an isometry from (HX,gSt
X) to
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(T�(X) Gr(p,n), gGr
�(X)), for all X ∈ St(p,n). From Absil, Mahony and Sepulchre

(2004), we know that �∗O(W) = Exp−1
O (X ). So,

d2(O,X ) = gGr
O

(
Exp−1

O (X ),Exp−1
O (X )

)
= gSt

O(W,W)[
as �∗O is an isomorphism and using equation (2.4)

]
= d2(

O,ExpO(W)
) [

using equation (2.3)
]
. �

Using Proposition 3.3, we can generate a sample from N (O,σ) on St(p,n),
using a sample from N (O, σ ) on Gr(p,n). We will now propose an algorithm to
draw samples from N (O, σ ) on Gr(p,n). Recall that Gr(p,n) can be identified
as SO(n)/S(O(p) × O(n − p)) which is a semisimple symmetric space of com-
pact type (let it be denoted by g = h + p). Also, recall from Section 2 that every
compact semisimple symmetric space has a dual semisimple symmetric space of
noncompact type (denoted by g̃ = h + J (p). Here, g = so(n), h = [

Ū 0
0 V̄

]
, where

Ū ∈ so(p), V̄ ∈ so(n−p), p= [ 0 W̄

−W̄T 0

]
, W̄ ∈ Rp×(n−p). Then g̃= so(p,n−p),

and the corresponding Lie group, denoted by G̃ = SO(p,n − p) [with a slight
abuse of notation we use SO(p,n − p) to denote the identity component]. Here,
SO(p,n − p) is the special pseudo-orthogonal group, that is,

SO(p,n − p) �
{
g̃ | g̃I(p,n−p)g̃

T = I(p,n−p),det(g̃) = 1
}
,

I(p,n−p) � diag(1, . . . ,1︸ ︷︷ ︸
p times

,−1, . . . − 1︸ ︷︷ ︸
(n−p) times

).

Thus, the dual noncompact type symmetric space of SO(n)/S(O(p) × O(n − p))

[identified with Gr(p,n)] is SO(p,n−p)/S(O(p)×O(n−p)). Recently, in Said
et al. (2016), an algorithm to draw samples from a Gaussian distribution on sym-
metric spaces of noncompact type was presented. We will use the following propo-
sition to get a sample from a Gaussian distribution on the dual compact symmetric
space.

PROPOSITION 3.4. Let X ′ ∼ N (O′, σ ). Let X ′ = exp(Ad(Ū)V̄ ).O′, where
Ad is the adjoint representation, Ū ∈ h, V̄ ∈ J (p). Then X ∼ N (O, σ ), where
X = exp(Ū) · exp(Ṽ ).O and V̄ = J (Ṽ ).

PROOF. Observe that O′ = H = O. So, it suffices to show that d(X ′,O) =
d(X ,O).

d2(
X ′,O

) = B(V̄ , V̄ ) (the metric corresponds to Killing form B on p)

= B
(
J (Ṽ ), J (Ṽ )

)
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= B(Ṽ , Ṽ ) (Killing form is invariant under automorphisms)

= d2(X ,O). �

Note that, the mapping H × p → G given by (h, exp(Ṽ )) �→ h · exp(Ṽ ) is a
diffeomorphism and is used to construct X from (Ū , exp(Ṽ )). The mapping X ′ =
exp(Ad(Ū)V̄ ).O′ is called the polar coordinate transform. Now, using Proposi-
tions 3.3 and 3.4, starting with a sample drawn from a Gaussian distribution on
SO(p,n − p)/S(O(p) × O(n − p)), we get a sample from Gaussian distribu-
tion on St(p,n). We would like to point out that we do not have to compute the
normalizing constant explicitly in order to draw samples, because in order to get
samples on SO(p,n − p)/S(O(p) × O(n − p)), we can draw samples using the
Algorithm 1 in Said et al. (2016), which draws samples from the kernel of the
density.

3.2. Maximum likelihood estimation (MLE) of X̄. Let, X1,X2, . . .XN be i.i.d.
samples drawn from N (X̄, σ ) with bounded support (described subsequently) on
St(p,n), for some X̄ ∈ St(p,n), σ > 0. Then, by Proposition 3.6, the MLE of X̄ is
the Fréchet mean (FM) [Fréchet (1948)] of {Xi}Ni=1. Fréchet mean (FM) [Fréchet
(1948)] of {Xi}Ni=1 ⊂ St(p,n) is defined as follows:

M = arg min
X∈St(p,n)

N∑
i=1

d2(Xi,X).(3.2)

We define an (open) “geodesic ball” of radius r > 0 to be B(X, r) = {Xi |d(X,

Xi) < r} s.t., there exists a length minimizing geodesic between X to any Xi ∈
B(X, r). A “geodesic ball” is said to be “regular” iff r < π/2(

√
κ), where κ is the

maximum sectional curvature. The existence and uniqueness of the Fréchet mean
(FM) is ensured iff the support of the distribution N (X̄, σ ) is within a regular
geodesic ball [Afsari (2011), Kendall (1990)].

PROPOSITION 3.5. Let X ∈ St(p,n), U,V ∈ HX , then 0 ≤ κ(U,V ) ≤ 2.

PROOF. Let, X = �(X). Then there exists a unique Ũ , Ṽ ∈ TX Gr(p,n) s.t.
Ũ = �∗XU , Ṽ = �∗XV . 0 ≤ κ(Ũ, Ṽ ) ≤ 2 [Wong (1968)]. Now, using O’Neil’s
formula [Cheeger and Ebin (1975)], we know that

κ(Ũ , Ṽ ) = κ(U,V ) + 3

4

∥∥vertX
([U,V ])∥∥2

,

where vertX is the orthogonal projection operator on VX . Clearly, as the sec-
ond term in the above summation is nonnegative and κ(U,V ) is nonnegative [as
St(p,n) is of compact type], the result follows. �
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Observe that the support of N (X̄, σ ) as defined in Proposition 3.3 is a subset of
H� ⋃

X ExpX(HX) ⊂ St(p,n), H is an arbitrary union of open sets, and hence is
open. Thus, we can give H a manifold structure and using Proposition 3.5, we can
say that if the support of N (X̄, σ ) is within a geodesic ball B(X̄,π/2(

√
2)), FM

exists and is unique. For the rest of the paper, we assume this condition to ensure
the existence and uniqueness of FM.

PROPOSITION 3.6. Let X1,X2, . . . ,XN be i.i.d. samples drawn from
N (X̄, σ ) on St(p,n) [support of N (X̄, σ ) is within a geodesic ball B(X̄,

π/2(
√

2))], σ > 0. Then the MLE of X̄ is the FM of {Xi}.
PROOF. The likelihood of X̄ given the i.i.d. samples {Xi} is given by

L
(
X̄, σ ; {Xi}Ni=1

) = 1

C(σ)

N∏
i=1

exp
(−d2(Xi, X̄)

2σ 2

)
,(3.3)

where C(σ) is defined as in equation (3.1). Now, maximizing log-likelihood func-
tion with respect to X̄ is equivalent to minimizing

∑N
i=1 d2(Xi, X̄) with respect

to X̄. This gives the MLE of X̄ to be the FM of {Xi}Ni=1 as can be verified using
equation (3.2). �

4. Inductive Fréchet mean on the Stiefel manifold. In this section, we
present an inductive formulation for computing the Fréchet mean (FM) [Fréchet
(1948), Karcher (1977)] on the Stiefel manifold. We also prove the weak consis-
tency of our FM estimator on the Stiefel manifold.

Algorithm for inductive Fréchet mean estimator
Let X1, X2, . . . be i.i.d. samples drawn from N (X̄, σ ) [whose support is within

a geodesic ball B(X̄,π/2(
√

2))] on St(p,n). Then we define the inductive FM
estimator (StiFME) Mk by the recursion in equations (4.1) and (4.2).

M1 = X1,(4.1)

Mk+1 = �
Xk+1
Mk

(ωk+1),(4.2)

where �Y
X : [0,1] → St(p,n) is the geodesic from X to Y defined as �Y

X(t) :=
ExpX(t Exp−1

X (Y )) and ωk+1 = 1
k+1 . Equation (4.2) simply means that the

(k + 1)th estimator lies on the geodesic between the kth estimate and the (k + 1)th
sample point. This simple inductive estimator can be shown to converge to the
Fréchet expectation, that is, X̄, as stated in Theorem 4.1.

THEOREM 4.1. Let, X1,X2 . . .XN be i.i.d. samples drawn from a Gaussian
distribution N (X̄, σ ) on St(p,n) (with a support inside a regular geodesic ball
of radius < π/2

√
2). Then the inductive FM estimator (StiFME) of these samples,

that is, MN converges to X̄ as N → ∞.
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PROOF. We will start by first stating the following propositions.

PROPOSITION 4.1. Using Proposition 2.5, we know that � : SO(n) →
SO(n)/SO(n − p) is a principal bundle, and moreover, using Proposition 2.6,
we know that this map is a covering map in the neighborhood of SO(n − p) in
SO(n)/SO(n − p). Let gSO be the Riemannian metric on SO(n) and gq be the
metric on the quotient space SO(n)/SO(n − p). Then gSO = �∗gq .

PROPOSITION 4.2. Let, Xi = giH , where H := SO(n − p) and gi ∈ G :=
SO(n). Let M is an defined in equation (3.2), then M = gMH , where gM =
arg ming∈SO(n)

∑N
i=1 d2(gi, g).

PROOF. Let M = ḡH , for some ḡ ∈ G. Then observe that

d2(Xi,M) = d2(giH, ḡH)

= d2(
ḡ−1giH,H

)
using property 2 of homogeneous space

= d2(
ḡ−1gi, e

)
using Proposition 4.1

= d2(gi, ḡ) as SO(n) a Lie group.

Thus the claim holds. �

By Proposition 4.2, we can see that in order to prove Theorem 4.1, it is sufficient
to show weak consistency on SO(n). We will state and prove the weak consistency
on SO(n) in the next theorem. �

THEOREM 4.2. Using the hypothesis in Theorem 4.1, let g1, g2, . . . , gN be
the corresponding i.i.d. samples drawn from the (induced) Gaussian distribution
N (ḡ, σ ) on SO(n) where X̄ = ḡH [H := SO(n − p)] [it is easy to show using
Proposition 4.2 that this (induced) distribution on SO(n) is indeed a Gaussian
distribution on SO(n)]. Then the inductive FM estimator (StiFME) of these sam-
ples, that is, gN converges to ḡ as N → ∞.

PROOF. Since SO(n) is a special case of the (compact) Stiefel manifold, that
is, when p = n − 1 [as SO(n) can be identified with St(n − 1, n)], we will use X

instead of g for notational simplicity. Let X ∈ SO(n). Any point in SO(n) can be
written as a product of n(n− 1)/2 planar rotation matrices by the following claim.

PROPOSITION 4.3. Any arbitrary element of SO(n) can be written as the com-
position of planar rotations in the planes generated by the n standard orthogonal
basis vectors of Rn.
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PROOF. The proof is straightforward. Moreover, each element of SO(n) is a
product of n(n − 1)/2 planar rotations. �

By virtue of Proposition 4.3, we can express X as a product of n(n − 1)/2
planar rotation matrices. Each planar rotation matrix can be mapped onto Sn−1,
hence ∃ diffeomorphism F : SO(n) → Sn−1 × · · · × Sn−1︸ ︷︷ ︸

n(n−1)/2 times

. Let us denote this prod-

uct space of hyperspheres by O(n − 1, n(n−1)
2 ). Then F is a diffeomorphism from

SO(p) to O(n − 1, n(n−1)
2 ). Let gO be a Riemannian metric on O(n − 1, n(n−1)

2 ).

Let ∇O be the Levi–Civita connection on TO(n − 1, n(n−1)
2 ). Since F is a diffeo-

morphism, every vector field U on SO(n) pushes forward to a well-defined vector
field F∗U on O(n − 1, n(n−1)

2 ). Define a map

∇SO : 
(
TSO(n)

) × 

(
TSO(n)

) → 

(
TSO(n)

)
,

(U,V ) �→ ∇SO
U V,

where 
(TSO(n)) gives the section of TSO(n).

PROPOSITION 4.4. ∇SO is the Levi–Civita connection on SO(n) equipped
with the pull-back Riemannian metric F ∗gO.

PROPOSITION 4.5. Given the hypothesis and the notation as above, if γ is a
geodesic on SO(n), F ◦ γ is a geodesic on O(n − 1, n(n−1)

2 ).

PROOF. Let, γ̂ = F ◦ γ be a curve in O(n − 1, n(n−1)
2 ). Then

0 = F∗0 = F∗
(∇SO

γ ′ γ ′) = F∗
(
F−1∗

(∇O
F∗γ ′F∗γ ′))

= ∇O
γ̂ ′ γ̂ ′.

Hence, γ̂ is a geodesic on O(n − 1, n(n−1)
2 ). �

Now, analogous to equation (4.1), we can define the FM estimator on SO(n)

where the geodesic, �
Xk+1
Mk

(ωk+1) = ExpMk
(ωk+1 Exp−1

Mk
(Xk+1)). Note that on

SO(n), ExpMk
(ωk+1 Exp−1

Mk
(Xk+1)) = Mk exp(ωk+1 log(M−1

k Xk+1)).

PROPOSITION 4.6. F∗ Exp−1
Mk

(Xk+1) = Exp−1
F(Mk)

(F (Xk+1)).

PROOF. Let γ : [0,1] → SO(n) be a geodesic from Mk to Xk+1. Then
Exp−1

Mk
(Xk+1) = d

dt
(γ (t))|t=0. Using Proposition 4.5, F ◦ γ is a geodesic from
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F(Mk) to F(Xk+1):

LogF(Mk)
F (Xk+1) = d

dt

(
F ◦ γ (t)

)∣∣∣∣
t=0

= F∗
d

dt

(
γ (t)

)∣∣∣∣
t=0

= F∗ Exp−1
Mk

(Xk+1). �

Let Ū = Exp−1
F(Mk)

(F (Xk+1)) and Û = Exp−1
Mk

(Xk+1). Using Proposition 4.6,
we get

gSO(Û , Û ) = F ∗gO(Û , Û)

= gO(F∗Û ,F∗Û )

= gO(Ū , Ū).

Thus, in order to show weak consistency of our proposed estimator on {gi} ⊂
SO(n), it is sufficient to show the weak consistency of our estimator on {F(gi)} ⊂
O(n − 1, n(n−1)

2 ). A proof of the weak consistency of our proposed FM estimator
on the hypersphere has been shown in Salehian et al. (2015) (which can be trivially
extended to the product of hyperspheres). This proof of weak consistency on the
hypersphere in turn proves the weak consistency on SO(n). �

Since we have now shown that our proposed FM estimator on St(p,n) is
(weakly) consistent, we claim that Var(MN) ≥ Var(M̂N) as N → ∞, where M̂N is
the MLE of X̄ when {Xi}Ni=1 are i.i.d. samples from N (X̄, σ ) on St(p,n). The fol-
lowing proposition computes the Fisher information of X̄ when samples are drawn
from N (X̄, σ ) on St(p,n).

PROPOSITION 4.7. Let X be a random variable which follows N (X̄, σ ) on
St(p,n). Then I (X̄) = 1/σ 2.

PROOF. The likelihood of X̄ is given by

L(X̄;σ,X = X) = 1

C(σ)
exp

(−d2(X, X̄)

2σ 2

)
.(4.3)

Then I (X̄) = EX[〈 ∂l

∂X̄
, ∂l

∂X̄
〉
X̄
], where l(X̄;σ,X) is the log likelihood. Now,

l(X̄;σ,X) = Exp−1
X̄

X

σ 2 , hence EX[〈 ∂l

∂X̄
, ∂l

∂X̄
〉] = EX[〈Exp−1

X̄
X,Exp−1

X̄
X〉

X̄
] =

EX[d2(X, X̄)]. Now, observe that Var(X) = EX[d2(X, X̄)] [here, definition of
variance of a manifold valued random variable is as in Pennec (2006)], where from
the definition of the Gaussian distribution, Var(X) = σ 2. Hence, I (X̄) = 1/σ 2. �
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As Var(M̂N) = σ 2 (as we have shown that M̂N is the FM of the samples in
Proposition 3.6) when the number of samples tends to infinity, and σ 2 = 1/I (X̄)

by Proposition 4.7, we conclude that MLE achieves the Cramér–Rao lower bound
asymptotically (this observation is in line with the normal random vector). As we
have shown, consistency of our estimator, hence Var(MN) is lower bounded by
Var(M̂N) as N → ∞. In other words, asymptotically Var(MN) ≥ Var(M̂N) = σ 2.

5. Experimental results. In this section, we present experiments demonstrat-
ing the performance of StiFME in comparison to the batch mode counterpart with
“warm start”(which uses the gradient descent on the sum of squared geodesic dis-
tances cost function, henceforth termed StFME) on synthetic and real datasets. By
“warm start” we mean that when a new data point is acquired as input, we ini-
tialize the FM to its computed value prior to the arrival/acquisition of the new data
point. All the experimental results reported here were performed on a desktop with
a 3.33 GHz Intel-i7 CPU with 24 GB RAM.

5.1. Comparative performance of StiFME on synthetic data. We generated
1000 i.i.d. samples drawn from a Normal distribution on St(p,n) with variance
0.25 and expectation Ĩ , where

Ĩij =
{

1 1 ≤ i = j ≤ p,

0 o.w.

We input these i.i.d. samples to both StiFME and StFME. To compare the per-
formance, we compute the error, which is the distance [on St(p,n)] between the
computed FM and the known true FM Ĩ . We also report the computation time for
both these cases. We performed this experiment 5000 times and report the average
error and the average computation time. The comparison plot for the average error
is shown in Figure 1(a); here, n = 50, p = 10. In order to achieve faster conver-
gence of StFME, we used the “warm start” technique, that is, FM of k samples is
used to initialize the FM computation for k + 1 samples. From this plot, it is evi-
dent that the average accuracy error of StiFME is almost same as that of StFME.

The computation time comparison between StiFME and StFME is shown in
Figure 1(a). From this figure, we can see that StiFME outperforms StFME. As the
number of samples increases, the computational efficiency of StiFME over StFME
becomes significantly large. We can also see that the time requirement for StiFME
is almost constant with respect to the the number of samples, which makes StiFME
computationally very efficient and attractive for a large number of data samples.

Another interesting question to ask is: how much computation time is needed
in order to estimate the FM with a given error tolerance? We answer this question
through the plot in Figure 1(c) and present a comparison of the time required for
StiFME and StFME, respectively, to reach the specified error tolerance. From Fig-
ure 1(c), it is evident that the time required to reach the specified error tolerance
by StiFME is far less than that required by StFME.
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FIG. 1. Comparison between StFME and StiFME.

5.2. Clustering action data from videos. In this subsection, we applied our
FM estimator to cluster the KTH video action data [Schuldt, Laptev and Caputo
(2004)]. This data contains 6 actions performed by 25 human subjects in 4 scenar-
ios (denoted by “d1,” “d2,” “d3” and “d4”). From each video, we extracted a se-
quence of frames. Then, from each frame we computed the Histogram of Oriented
Gradients (HOG) [Dalal and Triggs (2005)] features. We then used an autoregres-
sive moving average (ARMA) model [Doretto (2003)] to model each activity. The
equations for the ARMA model are given below:

f (t) = Cz(t) + w(t),

z(t + 1) = Az(t) + v(t),

where w and v are zero-mean Gaussian noise, f is the feature vector, z is the
hidden state, A is the transition matrix and C is the measurement matrix. In Doretto
(2003), authors proposed a closed-form solution for A and C by stacking feature
vectors over time and performing a singular value decomposition on the feature
matrix. More specifically, let T be the number of frames and let F be the matrix
formed by stacking the feature vectors from each frame. Let U�V T be SVD of F ,
then A and C can be approximated as C = U , A = �V T D1V (V T D2V )−1�−1,
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TABLE 1
Comparison results on the KTH action recognition database

Method Scenario Precision (%) Time (s)

StFME d1 78.21 204.59
StiFME d1 77.33 2.32

StFME d2 73.33 253.15
StiFME d2 70.67 2.48

StFME d3 79.67 267.40
StiFME d3 77.91 2.59

StFME d4 83.83 216.27
StiFME d4 90.73 2.82

where D1 and D2 are zero matrices with identity in the bottom-left and top-left
submatrix, respectively. Clearly, C lies on a Stiefel manifold, but in general A

does not have any special structure. Hence, we identify each activity with a product
space of U , � and V . Note that both U and V lie on the Steifel manifold (possibly
of different dimensions) and � lies in the Euclidean space.

Here, we perform clustering of the actions by doing clustering on the product
manifold of St(p,n) × St(n,n) × Rn. The accuracy is reported in Table 1. From
this table, we can see StiFME depicts a significant gain in computation time over
StFME and is comparable in accuracy.

We would like to point out that in the real data experiment, one can easily fit
a half-normal distribution on {d(Xi, X̄)} by viewing the relation of our defini-
tion of Gaussian distribution with the kernel of the half-normal distribution on
{d(Xi, X̄)} with location parameter 0 and scale parameter σ 2. So, the goodness-
of-fit can be evaluated using the Chi-squared test where the null hypothesis H0 is
that {d(Xi, X̄)} are drawn from a half-normal distribution.

In this experiment, we estimated the goodness-of-fit in fitting a Gaussian to
the set of samples, {Ui} (samples collected from a given action), using the afore-
mentioned procedure. We found that the Chi-squared test does not reject the null
hypothesis with a 5% significance level, implying that {Ui} are indeed drawn from
a Gaussian distribution on St(p,n). We also tried to fit a Gaussian to the entire
data, that is, over all actions, and found that the entire data are not drawn from
a Gaussian distribution. This is not surprising, as the entire dataset probably fol-
low a mixture of Gaussians as each individual action/ cluster follows a Gaussian
distribution.

5.3. Experiments on vector-cardiogram dataset. This data set [Downs, Lieb-
man and Mackay (1971)] summarizes vector-cardiograms of 98 healthy children
aged between 2–19. Each child has two vector-cardiograms, using the Frank
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FIG. 2. Averaging on Vector-cardiogram data. Data with FM shown in black (Left), reconstructed
data (Right).

and McFee system, respectively. The two vector-cardiograms are represented as
two mutually orthogonal orientations in R3; hence, each vector-cardiogram can
be mapped to a point on St(2,3). We perform statistical analysis via principal
geodesic analysis (PGA) [Fletcher et al. (2004)] of the data depicted in Figure 2
(at the top). One of the key steps in PGA is to find the FM, which is depicted in
the plot (in black). Further, we reconstructed the data from the first two principal
directions (which accounts for >90% of the data variance) and the reconstructed
results are shown in the rightmost plot. The reconstruction error is on the average
0.05 per subject, which implies that the reconstruction is quite accurate.

5.4. Comparison with stochastic gradient descent based FM estimator. In this
subsection, we present a comparison between StiFME and the stochastic gradient
descent based FM estimator in Bonnabel (2013).

There are two key differences between the algorithm in Bonnabel (2013) and
StiFME. As in any stochastic gradient scheme, the next point, that is, zt in
wt+1 = expwt

(−γtH(zt ,wt )) [equation (2) in Bonnabel (2013)] is chosen ran-
domly from the given sample set. Hence, the stochastic formulation needs several
passes over the sample set and reports the expected value over the passes as the es-
timated FM. In contrast, StiFME is a deterministic algorithm, and hence does not
need multiple passes over the data. Moreover, our selection of this weight is pri-
marily in spirit the same as the weights in a recursive arithmetic mean computation
in Euclidean space. In contrast, Bonnabel (2013) does not specify any scheme to
choose the proper step size γt [equation (2) of Bonnabel (2013)]. Note that, like in
any gradient descent, the algorithm in Bonnabel (2013) is very much dependent on
a proper step size selection. Step size selection in gradient descent and its relatives
is a hard problem and the most widely used method (Armijo rule) is computation-
ally expensive. We now provide two experimental comparisons with the algorithm
in Bonnabel (2013). Consider a data set of 100 samples drawn from a log-Normal
distribution, with a small variance of 0.05 on St(10,50). The distance between
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(FM and StiFME] and [FM and computed FM using the algorithm in Bonnabel
(2013)] (assessed in one pass over the data) are 0.00025 and 0.009, respectively.
However, Bonnabel (2013) requires 19 passes over the data to achieve the tolerance
of 0.00025 obtained by StiFME. For a larger data variance of 0.29 on St(10,50),
the distance between FM, StiFME and FM computed from Bonnabel (2013) are
0.00039 and 0.03 (in one pass over the data), respectively, which is a significant
difference. Furthermore, the method in Bonnabel (2013) needs 58 passes over the
data to achieve the tolerance achieved by StiFME. This clearly indicates better
computational efficiency of StiFME over the FM estimator in Bonnabel (2013).

5.5. Time complexity comparison. The complexity of StFME is O(ιN), N is
the number of samples in the data and ι is the number of iterations required for
convergence. The number of iterations however depends on the step size used; too
small a step size causes very slow convergence and too large a step size overshoots
the FM. In contrast, the complexity of StiFME is O(N) because it outputs the esti-
mated FM in a single pass through the data. On the other hand, the SGD algorithm
proposed in Bonnabel (2013) takes O(bι̂), where b is the batch size and ι̂ is the
number of iterations to convergence. So, in comparison, StiFME is much faster
than the other two competing algorithms.

6. Conclusions. In this paper, we defined a Gaussian distribution on a com-
pact Riemannian homogenous space and proved that the MLE of the location pa-
rameter of this Gaussian distribution yields the FM of the samples drawn from
the distribution. Further, we presented a sampling algorithm to draw samples from
this Gaussian distribution on the Stiefel manifold (which is a homogeneous space)
and a novel recursive estimator, StiFME, for computing the FM of these sam-
ples. A proof of weak consistency of StiFME was also presented. Further, we also
showed that the MLE of the location parameter of the Gaussian distribution on
St(p,n) asymptotically achieves the Cramér–Rao lower bound, and hence is ef-
ficient. The salient feature of StiFME is that it does not require any optimization
unlike the traditional methods that seek to optimize the Fréchet functional via gra-
dient descent. This leads to significant savings in computation time and makes it at-
tractive for online applications of FM computation for manifold-valued data, such
as clustering, etc. We presented several experiments demonstrating the superior
performance of StiFME over gradient-descent based competing FM-estimators on
synthetic and real data sets.
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