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LOCALLY ADAPTIVE CONFIDENCE BANDS1

BY TIM PATSCHKOWSKI AND ANGELIKA ROHDE

Ruhr-Universität Bochum and Albert-Ludwigs-Universität Freiburg

We develop honest and locally adaptive confidence bands for probabil-
ity densities. They provide substantially improved confidence statements in
case of inhomogeneous smoothness, and are easily implemented and visual-
ized. The article contributes conceptual work on locally adaptive inference as
a straightforward modification of the global setting imposes severe obstacles
for statistical purposes. Among others, we introduce a statistical notion of
local Hölder regularity and prove a correspondingly strong version of local
adaptivity. We substantially relax the straightforward localization of the self-
similarity condition in order not to rule out prototypical densities. The set of
densities permanently excluded from the consideration is shown to be patho-
logical in a mathematically rigorous sense. On a technical level, the crucial
component for the verification of honesty is the identification of an asymp-
totically least favorable stationary case by means of Slepian’s comparison
inequality.

1. Introduction. Let X1, . . . ,Xn be independent real-valued random vari-
ables which are identically distributed according to some unknown probability
measure Pp with Lebesgue density p. Assume that p belongs to a nonparamet-
ric function class P . For any interval [a, b] and any significance level α ∈ (0,1),
a confidence band for p, described by a family of random intervals Cn,α(t),
t ∈ [a, b], is said to be (asymptotically) honest with respect to P if the coverage
inequality

lim inf
n→∞ inf

p∈P P
⊗n
p

(
p(t) ∈ Cn,α(t) for all t ∈ [a, b]) ≥ 1 − α(1.1)

is satisfied. Adaptive confidence sets maintain specific coverage probabilities over
a large union of models while shrinking at the fastest possible nonparametric rate
simultaneously over all submodels. If P is some class of densities within a union
of Hölder balls H(β,L) with fixed radius L > 0, the confidence band is called
globally adaptive over

⋃
β∈[β∗,β∗](P ∩H(β,L)) within a range [β∗, β∗] ⊂ (0,∞)

[cf. Cai and Low (2004)], if for every β ∈ [β∗, β∗] and for every ε > 0 there exists
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some constant c > 0, such that

lim sup
n→∞

sup
p∈P:

p∈H(β,L)

P
⊗n
p

(
sup

t∈(a,b)

∣∣Cn,α(t)
∣∣ ≥ c · rn(β)

)
< ε.(1.2)

Here, |Cn,α(t)| denotes the length of Cn,α(t), and rn(β) the minimax-optimal
speed of convergence

inf
T̂n estimator

sup
p∈H(β,L)∩P

E
⊗n
p

[
sup
t∈R

∣∣T̂n(t) − p(t)
∣∣]

for estimation under supremum norm loss over H(β,L) ∩P , possibly inflated by
additional logarithmic factors. Note that a logarithmic payment for adaptation is
neither avoidable for pointwise confidence intervals nor for pointwise estimation;
see Lepskiı̆ (1990). Under the so-called self-similarity condition on P , Giné and
Nickl (2010) succeeded to construct confidence bands satisfying both (1.1) and
(1.2). Here, the minimax-optimal speed of convergence over H(β,L) ∩ P coin-
cides with the classical rate (

logn

n

) β
2β+1

.

They are of the form

[
p̂n(t) −

√
p̂n(t) · �̂n(α), p̂n(t) +

√
p̂n(t) · �̂n(α)

]
, t ∈ [a, b],(1.3)

with an estimator p̂n of the density p, and a data-driven width parameter �̂n(α) de-
pending on the significance level α. Although the confidence band’s width depends
on t via

√
p̂n(t), the stochastic order of the width is independent of t as the den-

sities under consideration are assumed to be uniformly bounded away from zero
and infinity. However, even one small wiggly part of the density inhibits stronger
performance of the procedure in smooth segments. Ideally, a confidence band is
automatically thinner in regions where the unknown density is smooth and wider
in less smooth parts. Although a plethora of articles dealing with the central prob-
lem of local adaptation in the estimation framework has been published over the
last decades, the substantially harder problem of locally adaptive confidence bands
has not been addressed in the literature. We call a confidence band locally adaptive
if for every ε > 0 there exists some constant c > 0, such that the confidence band
satisfies the stronger performance guarantee

sup
U⊂[a,b]

U open interval

lim sup
n→∞

sup
p∈P

p|Uδ
∈HUδ

(β,L)

P
⊗n
p

(
sup
t∈U

∣∣Cn,α(t)
∣∣ ≥ c · rn(β)

)
< ε,(1.4)

for any δ > 0, ideally for any β in the range of adaptation. Here, Uδ denotes the
open δ-enlargement of U , p|Uδ the restriction of p on Uδ and HUδ(β,L) the Hölder
ball with radius L of functions from Uδ to R which are Hölder continuous to the
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exponent β . The new contribution of this article is the construction and theoreti-
cal investigation of such locally adaptive confidence bands, that is, honest confi-
dence bands with locally adaptive rather than globally adaptive width, which in-
corporate potentially inhomogeneous regularity of the target function. Typically,
rn(β

′)/rn(β) decays to zero whenever β ′ > β , implying that (1.4) guarantees
significantly tighter confidence bands in case of inhomogeneous smoothness as
compared to (1.2). In this case, any confidence band with (possibly) random but
t-independent width cannot satisfy (1.4), whenever P contains functions with in-
homogeneous smoothness.

Our new confidence band appealingly relies on a discretized evaluation of a
modified Lepski-type kernel density estimator, including an additional supremum
in the empirical bias term in the bandwidth selection criterion. A suitable dis-
cretization of the interval [a, b] and a locally constant approximation of both the
density estimator and the (random) bandwidth allow to piece the segmentwise
confidence statements together to obtain a continuum of confidence statements
over [a, b]. Due to the discretization, the band is computable and feasible from
a practical point of view without losing optimality between the mesh points. The
t-dependence of |Cn,α(t)|, t ∈ [a, b], reflected in the t-dependence of the density
estimator’s bandwidth, makes the asymptotic calibration of the confidence band to
the level α highly nontrivial. Whereas the analysis of the related globally adap-
tive procedure of Giné and Nickl (2010) reduces to the limiting distribution of the
supremum of a stationary Gaussian process, our locally adaptive approach leads
to a highly nonstationary situation. A crucial component is therefore the identifi-
cation of a stationary process as a least favorable case by means of Slepian’s com-
parison inequality, subsequent to a Gaussian reduction using recent techniques of
Chernozhukov, Chetverikov and Kato (2014b).

In view of a series of negative results starting with Low (1997), the class of
densities has to be restricted for the purpose of honest and adaptive inference.
Giné and Nickl (2010) succeeded to construct honest and globally adaptive confi-
dence bands under the so-called self-similarity condition; see Picard and Tribouley
(2000). A corresponding condition does not exist for the purpose of local adapta-
tion, and a straightforward localization of the global self-similarity condition im-
poses severe obstacles for statistical purposes as it rules out prototypical densities.
Consequently, we develop a suitable condition under which honest and locally
adaptive confidence bands provably exist while representative densities remain in-
cluded. The set of permanently excluded densities is shown to be pathological in a
mathematically rigorous sense.

The main contributions of this article are the following:

(i) We first develop honest confidence bands which are locally adaptive in the
sense of (1.4). Additionally, an even stronger notion of local adaptivity is intro-
duced and proved to be satisfied. These explicitly constructed confidence bands
provide substantially improved confidence statements in case of inhomogeneous
smoothness.
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(ii) Our confidence bands are computable and computationally feasible. The
performance is demonstrated in a simulation study.

(iii) The design of a suitably restricted class of densities tailored to local adap-
tation is a challenging task. On the one hand, the self-similarity condition, suited
for global adaptation, is too weak for the purpose of honesty and local adaptivity.
On the other hand, an adequate local condition is supposed not to rule out too many
densities. We design a new restricted class of densities P for which both honesty
and local adaptivity are achievable. We prove that the class is massive and, there-
fore, suitable for statistical purposes in two senses. First, the pointwise minimax
rate of convergence remains unchanged when passing from the class H(β,L) to
P ∩ H(β,L). Second, the set of permanently excluded densities is shown to be
pathological in a mathematically rigorous sense.

(iv) On a technical level, the calibration of the confidence band leads to the
distributional approximation by the supremum of a highly nonstationary Gaussian
process depending on the unknown density p. Therefore, the crucial ingredient is
the identification of a least favorable stationary case by means of Slepian’s com-
parison inequality, which does not depend on p anymore.

Our results are exemplarily formulated in the density estimation framework but can
be mimicked in other nonparametric models. To keep the representation concise,
we restrict the theory to locally adaptive kernel density estimators. The ideas can
be transferred to wavelet estimators to a large extent as has been done for globally
adaptive confidence bands in Giné and Nickl (2010).

The article is organized as follows. Basic notation are introduced in Section 2.
Section 3 presents the main contributions, that is a substantially relaxed local-
ized self-similarity condition in Section 3.1, the construction and in particular the
asymptotic calibration of the confidence band in Section 3.2 as well as its strong lo-
cal adaptivity properties in Section 3.3. Important supplementary results are post-
poned to Section 4, whereas Section 5 presents some of the proofs of the main
results. The Supplementary Material [Patschkowski and Rohde (2019)] contains
the remaining proofs, technical tools for the main proofs, as well as an extended
simulation study.

2. Preliminaries and notation. Let X1, . . . ,Xn, n ≥ 4, be independent ran-
dom variables identically distributed according to some unknown probability mea-
sure Pp on R with continuous Lebesgue density p. Subsequently, we consider
kernel density estimators

p̂n(·, h) = 1

n

n∑
i=1

Kh(Xi − ·)

with bandwidth h > 0 and rescaled kernel Kh(·) = h−1K(·/h). If not stated oth-
erwise, K is measurable and symmetric with support contained in [−1,1], inte-
grating to one, and of bounded variation. Furthermore, a kernel K is said to be of
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order l ∈ N if∫
xjK(x)dx = 0 for 1 ≤ j ≤ l and

∫
xł+1K(x)dx �= 0.

For some measure Q, we denote by ‖ · ‖Lp(Q) the Lp-norm with respect to Q. Is
Q the Lebesgue measure, we just write ‖ · ‖p . For any interval U ⊂ R and any
bounded function f : U →R, we denote by

‖f ‖U = sup
x∈U

∣∣f (x)
∣∣

the supremum norm of f over U . If U = R, we simply write ‖ · ‖sup for ‖ · ‖R. If
well defined,

(f1 ∗ f2)(·) =
∫

f1(u)f2(· − u)du

denotes the convolution of two functions f1, f2 :R →R. With

�β� = max
{
n ∈ N∪ {0} : n < β

}
,

the Hölder class HU(β) to the parameter β > 0 on the open interval U ⊂ R is
defined as the set of functions f : U → R admitting derivatives up to the order
�β� and having finite Hölder norm

‖f ‖β,U =
�β�∑
k=0

∥∥f (k)
∥∥
U + sup

x,y∈U
x �=y

|f (�β�)(x) − f (�β�)(y)|
|x − y|β−�β� < ∞.

The corresponding Hölder ball with radius L > 0 is denoted by

HU(β,L) = {
f ∈ HU(β) : ‖f ‖β,U ≤ L

}
.

With the definition of ‖ · ‖β,U , the Hölder balls are nested, that is, HU(β2,L) ⊂
HU(β1,L) for 0 < β1 ≤ β2 < ∞ and |U | < 1. Finally, HU(∞,L) = ⋂

β>0 HU(β,

L) and HU(∞) = ⋂
β>0 HU(β). Subsequently, for any real function f (β), the

expression f (∞) is to be read as limβ→∞ f (β), provided that this limit exists.
Additionally, the class of probability densities p, such that p|U is contained in the
Hölder class HU(β,L) is denoted by PU(β,L). The indication of U is omitted
when U =R.

3. Main results. In this section, we pursue the new approach of locally adap-
tive confidence bands and present the main contribution of this article.

For the new challenge of locally adaptive confidence bands, a condition of ad-
missibility necessarily has to be introduced. Although this condition is tailored to
the construction of the confidence band, this is the logical first step because the cal-
ibration of the band to the level α explicitly involves the class of admissible func-
tions. In Section 3.1, we define and motivate the class of admissible densities Pn

(containing densities with smaller and smaller Lipschitz constants for growing n).
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While not claiming the admissibility condition to be weakest possible, we prove in
view of statistical purposes that Pn is massive in two senses. First, the pointwise
minimax-rates do not change when passing from P(β,L) to P(β,L)∩Pn within
the aspired range of adaptation, and second, the set of permanently excluded den-
sities is shown to be pathological in a sense of Baire categories. Proving these
results, we have gained new insight into analytical properties of the Weierstraß
function, which are of independent interest while providing deeper understanding
of the admissibility condition. They are deferred to the Supplementary Material
[Patschkowski and Rohde (2019)].

In Section 3.2, we develop the new confidence band (Cn,α(t))t∈[a,b]. For sim-
plicity, [a, b] = [0,1] from now on. Here, we are facing two challenges. First,
the construction has to be computable and visualizable, and to perform well in
practice. As local adaptation is generically carried out separately at every point
t ∈ [0,1], a suitable procedure is far from being straightforward. Second, the con-
struction has to be calibrated to a prespecified significance level, uniformly over
the class of admissible densities. The calibration turns out to be complex because
the distributional approximation of the statistic involves the supremum over a
highly nonstationary Gaussian process even depending on the unknown density.
The innovative point for the calibration is the identification of a least favorable
stationary case, which does not depend on the unknown density anymore.

Finally, in Section 3.3, we analyze the performance of our confidence band. Be-
sides verifying property (1.4), we introduce an even stronger notion of local adap-
tivity, which is statistically even more informative. We prove that the confidence
band also possesses this strong local adaptivity property.

3.1. Admissible functions. If P equals the set of all densities contained in⋃
0<β≤β∗

H(β,L),

honest and globally adaptive confidence bands provably do not exist although
adaptive estimation is possible; see the pioneering contribution of Low (1997).
Numerous attempts have been made to tackle this adaptation problem in alterna-
tive formulations. Whereas Genovese and Wasserman (2008) relax the coverage
property and do not require the confidence band to cover the function itself but
a simpler surrogate function capturing the original function’s significant features,
most of the approaches are based on a restriction of the parameter space. Un-
der qualitative shape constraints, Hengartner and Stark (1995), Dümbgen (1998),
Dümbgen (2003) and Davies, Kovac and Meise (2009) achieve adaptive inference.
Within the models of nonparametric regression and Gaussian white noise, Picard
and Tribouley (2000) investigate on pointwise adaptive confidence intervals under
a self-similarity condition on the parameter space; see also Kueh (2012) for thresh-
olded needlet estimators. Under a similar condition, Giné and Nickl (2010) even
develop asymptotically honest confidence bands for probability densities whose



LOCALLY ADAPTIVE CONFIDENCE BANDS 355

width is adaptive to the global Hölder exponent. Bull (2012) works under a slightly
weakened version of the self-similarity condition. Kerkyacharian, Nickl and Picard
(2012) develop corresponding results in the context of needlet density estimators
on compact homogeneous manifolds. Under the same type of self-similarity con-
dition, adaptive confidence bands are developed under a considerably generalized
Smirnov–Bickel–Rosenblatt assumption based on Gaussian multiplier bootstrap;
see Chernozhukov, Chetverikov and Kato (2014a). Hoffmann and Nickl (2011)
introduce a nonparametric distinguishability condition, under which adaptive con-
fidence bands exist for finitely many models under consideration. Their condition
is shown to be necessary and sufficient.

Similar important conclusions concerning adaptivity in terms of confidence
statements are obtained under Hilbert space geometry with corresponding L2-loss;
see Juditsky and Lambert-Lacroix (2003), Baraud (2004), Genovese and Wasser-
man (2005), Cai and Low (2006), Robins and van der Vaart (2006), Bull and Nickl
(2013) and Nickl and Szabó (2016). Concerning Lp-loss, we also draw attention
to Carpentier (2013).

Our subsequently introduced notion of admissibility aligns to the (global) self-
similarity condition. Recall that f1 ∗ f2 denotes the convolution of two functions
f1 and f2, and Kh(·) = h−1K(·/h) is the rescaled kernel corresponding to the
bandwidth h > 0.

CONDITION 3.1 [Global self-similarity condition; Picard and Tribouley (2000),
Giné and Nickl (2010)]. Suppose p ∈H(β,L∗) for some β ∈ [β∗, β∗] with β∗ =
l + 1 and l the order of the kernel K , and assume that there exist a positive real
constant b1 and a positive integer j0 such that for every integer j ≥ j0,

b1

2jβ
≤ ‖K2−j ∗ p − p‖sup.

Giné and Nickl (2010) construct globally adaptive confidence bands over the
set ⋃

β∗≤β≤β∗

{
p ∈P(β,L) : p ≥ δ on [−ε,1 + ε],

c

2jβ
≤ ‖K2−j ∗ p − p‖sup for all j ≥ j0

}(3.1)

for some constant c > 0 and 0 < ε < 1. They work on the scale of Hölder–
Zygmund rather than Hölder classes. For this reason, they include the correspond-
ing bias upper bound condition which is not automatically satisfied for β = β∗ in
that case.

REMARK 1. As mentioned in Giné and Nickl (2010), if K(·) = 1
21{· ∈

[−1,1]} is the rectangular kernel, all twice differentiable densities p that are sup-
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ported in a fixed compact interval satisfy the lower bound constraint

‖K2−j ∗ p − p‖sup ≥ c · 2−2j + o
(
2−2j )(3.2)

with a constant c > 0. The reason is that due to the constraint of being a prob-
ability density, ‖p′′‖sup is bounded away from zero uniformly over this class, in
particular p′′ cannot vanish everywhere. That is, Condition 3.1 does not appear to
be restrictive.

From Condition 3.1, we can straightforwardly deduce a sufficient condition on
the class of densities under consideration for the new problem of honest and locally
adaptive confidence bands as follows.

CONDITION 3.2 (Local self-similarity condition). There exist a positive real
constant b1 and a positive integer j0 such that for any nondegenerate interval
(v,w) ⊂ [0,1], there exists some β ∈ [β∗, β∗] with β∗ = l + 1 and l the order
of the kernel K , such that

p|(v,w) ∈H(v,w)

(
β,L∗)(3.3)

and
b1

2jβ
≤ ‖K2−j ∗ p − p‖(v+2−j ,w−2−j )(3.4)

are satisfied for all j ≥ j0 ∨ log2(1/(w − v)).

However, a condition like (3.4) rules out examples which seem to be typical to
statisticians:

(i) In contrast to the observation in Remark 1, for any density p, ‖p′′‖U may
vanish for subintervals U within the support of p. As a consequence, the lower
bound condition (3.4) is violated on such subintervals U for every β ∈ (0, β∗].
[Recall that the kernel K is symmetric (see Section 2) and hence of order l ≥ 1.]

EXAMPLE 3.3. Assume that the kernel K is of order l ≥ 1, and recall β∗ =
l + 1. Then (3.4) excludes for instance the triangular density

p(t) = max
{
1 − |t − 1/2|,0

}
, t ∈ R,(3.5)

because the second derivative exists and vanishes when restricted to any open in-
terval U ⊂ [0,1/2) ∪ (1/2,1].

For the same reason, densities with a constant piece are excluded. In general, if
p restricted to U is a polynomial of order at most l, (3.4) is violated as the left-
hand side is not equal to zero. At the same time, the kernel density estimator is
bias-free in these regions, for which reason it cannot be necessary to exclude these
examples from consideration.
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(ii) For p ∈ P(β∗,L) and any fixed h > 0, the map

t �→ ‖K2−j ∗ p − p‖(t−h+2−j ,t+h−2−j )

is continuous for any natural number j with 2−j < h. At the same time, the map

t �→ sup
{
β ≤ β∗ : p|(t−h,t+h) ∈H(t−h,t+h)(β,L)

}
(3.6)

may be discontinuous, in which case the local self-similarity condition is violated.

EXAMPLE 3.3 (Continued). We consider again the triangular density in (3.5).
Then

sup
{
β ≤ β∗ : p|(t−h,t+h) ∈H(t−h,t+h)(β,1)

}

=

⎧⎪⎪⎨
⎪⎪⎩

1 if t ∈
(

1

2
− h,

1

2
+ h

)
,

β∗ if t ∈ [0,1] \
(

1

2
− h,

1

2
+ h

)
.

In view of the deficiencies described in (i) and (ii), it is insufficient just to re-
place the global self-similarity condition by the local self-similarity condition for
the purpose of locally adaptive confidence bands.

Instead, we introduce Condition 3.5. Before, to unify notation, we define the
β∗-capped Hölder norm.

DEFINITION 3.4 (β∗-capped Hölder norm). For β > 0, for some bounded
open interval U ⊂ R, and p : U → R with p ∈ HU(β), define the β∗-capped
Hölder norm

‖p‖β,β∗,U =
�β∧β∗�∑

k=0

∥∥p(k)
∥∥
U + sup

x,y∈U
x �=y

|p(�β∧β∗�)(x) − p(�β∧β∗�)(y)|
|x − y|β−�β∧β∗� ,

whenever the expression is finite.

Note that if β − �β ∧ β∗� > 1, then ‖p‖β,β∗,U can only be finite if p
(�β∗�)
|U is

constant, in which case

p
(β∗)
|U ≡ 0.

If for some open interval U ⊂ [0,1], the derivative p
(β∗)
|U exists and equals zero

restricted to U , then ‖p‖β,β∗,U is finite uniformly over all β > 0. If it exists and
is not identical to the zero function on U , then ‖p‖β,β∗,U is finite if and only if
β ≤ β∗ as a consequence of the mean value theorem. That is,

sup
{
β ∈ (0,∞] : p|U ∈ Hβ∗,U

(
β,L∗)} ∈ (

0, β∗]∪ {∞}.
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Correspondingly, define the β∗-capped Hölder ball and β∗-capped Hölder class by

Hβ∗,U (β,L) = {
p ∈ HU(β) : ‖p‖β,β∗,U ≤ L

}
(3.7)

and

Hβ∗,U (β) = {
p ∈ HU(β) : ‖p‖β,β∗,U < ∞}

,(3.8)

respectively. As verified in Lemma A.11 in the Supplementary Material [Patschkowski
and Rohde (2019)], ‖p‖β1,β

∗,U ≤ ‖p‖β2,β
∗,U for 0 < β1 ≤ β2 < ∞ and

|U | ≤ 1. Finally, denote Hβ∗,U (∞,L) = ⋂
β>0 Hβ∗,U (β,L) and Hβ∗,U (∞) =⋂

β>0 Hβ∗,U (β).
Recall the definition ‖f ‖U = supt∈U |f (t)| for any subset U ⊂ R and bounded

f : U →R.

ADMISSIBILITY CONDITION 3.5. For sample size n ∈ N, some 0 < ε < 1,
0 < β∗ < 1, and L∗ > 0, a density p is said to be admissible if p ∈ P(−ε,1+ε)(β∗,
L∗) and the following holds true: for any t ∈ [0,1] and for any h ∈ G∞ with

G∞ = {
2−j : j ∈ N, j ≥ jmin = ⌈

2 ∨ log2(2/ε)
⌉}

,(3.9)

there exists some β ∈ [β∗, β∗] ∪ {∞} such that the following conditions are satis-
fied for u = h or u = 2h:

p|(t−u,t+u) ∈ Hβ∗,(t−u,t+u)

(
β,L∗)(3.10)

and

‖Kg ∗ p − p‖(t−(u−g),t+(u−g)) ≥ gβ

logn
(3.11)

for all g ∈ G∞ with g ≤ u/8.
The set of admissible densities is denoted by Padm

n = Padm
n (K,β∗,L∗, ε).

The new problem of locally adaptive confidence bands requires a new type of
restriction for the class of densities under consideration. On the one hand, our
formulated local self-similarity Condition 3.2 is sufficient, but limits the statisti-
cal usability dramatically on the other hand. Contrarily, the weaker Condition 3.5
incorporates the following three crucial aspects.

(i) Passing from the Hölder norm to the β∗-capped Hölder norm enlarges the
set of densities under consideration. First of all, densities which restricted to [0,1]
are described by a polynomial of order at most l are now included. Here, the order
l is a natural limit because a kernel of order l is bias-free for polynomials up to the
order l, that is, for any 0 < h < 1/2,

E
⊗n
p p̂n(t, h) = p(t), t ∈ [h,1 − h].
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(ii) We relax the requirement of (3.3) and (3.4) to hold for every interval (v,w)

by requiring (3.10) and (3.11) to be satisfied for u = h or u = 2h. It turns out
to be essential for incorporating densities with abrupt changes in the smoothness
behavior.

(iii) The collection of admissible densities is increasing with the number of
observations, that is Padm

n ⊂ Padm
n+1, n ∈ N. The logarithmic denominator even

weakens the assumption for growing sample size, permitting smaller and smaller
Lipschitz constants. Note that a generic lower bound as (3.2) in Remark 1 is locally
not natural.

The benefit of (i)–(iii) is demonstrated in the following example.

EXAMPLE 3.3 (Continued). If K is the rectangular kernel and L∗ is suf-
ficiently large, the triangular density p(t) = max{1 − |t − 1/2|,0}, t ∈ R, is
(eventually—for sufficiently large n) admissible. It is globally not smoother than
Lipschitz, and the bias lower bound condition (3.11) is (eventually) satisfied
for β = 1 and pairs (t, h) with |t − 1/2| < (7/8)h. Although the bias lower
bound condition to the exponent β∗ = 2 is not satisfied for any (t, h) with
t ∈ [0,1]\(1/2−h,1/2+h), these tuples (t, h) fulfill (3.10) and (3.11) for β = ∞,
which is not excluded anymore by Condition 3.5. Finally, if the conditions (3.10)
and (3.11) are not simultaneously satisfied for some pair (t, h) with

7

8
h <

∣∣∣∣t − 1

2

∣∣∣∣ < h,

then they are fulfilled for the pair (t,2h) and β = 1, because |t − 1/2| < (7/8)2h.

We now denote by

Pn = Pn

(
K,β∗,L∗, ε,M

)=
{
p ∈ Padm

n

(
K,β∗,L∗, ε

) : inf
x∈[−ε,1+ε]p(x) ≥ M

}

the set of admissible densities being bounded below by M > 0 on [−ε,1 + ε]. We
restrict our considerations to combinations of parameters for which the class Pn

is nonempty.
The remaining results of this subsection are about the massiveness of the func-

tion classes Pn. They are stated for the particular case of the rectangular kernel.
Other kernels may be treated with the same idea; verification of (3.11) however
appears to require a case-by-case analysis for different kernels. The following
proposition demonstrates that the pointwise minimax rate of convergence remains
unchanged when passing from the class H(β,L∗) to Pn ∩H(β,L∗).

PROPOSITION 3.6 (Lower pointwise risk bound). For the rectangular kernel
KR there exists some constant M > 0, such that for any t ∈ [0,1], for any β ∈
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[β∗,1], for any 0 < ε < 1, and for any k ≥ k0(β∗) there exists some x > 0 and
some L(β) > 0 with

inf
Tn

sup
p∈Pk :

p|(−ε,1+ε)∈H(−ε,1+ε)(β,L)

P
⊗n
p

(
n

β
2β+1

∣∣Tn(t) − p(t)
∣∣ ≥ x

)
> 0

for all L ≥ L(β) and for all n ≥ n0, for the class Pk = Pk(KR,β∗,L∗, ε,M),
where the infimum is running over all estimators Tn based on X1, . . . ,Xn.

Note that the classical construction for the sequence of hypotheses in order to
prove minimax lower bounds consists of a smooth density distorted by small β-
smooth perturbations, properly scaled with the sample size n. However, not all of
its members satisfy both (3.10) and (3.11). Thus, the constructed hypotheses in
our proof are substantially more complex, for which reason we restrict attention to
β ≤ 1.

Although Condition 3.5 is getting weaker for growing sample size, some densi-
ties are permanently excluded from consideration. The following proposition states
that the exceptional set of permanently excluded densities is pathological.

PROPOSITION 3.7. For the rectangular kernel KR(·) = 1
21{· ∈ [−1,1]} and

n ∈ N, let

Radm
n

(
KR,β∗,L∗, ε

) = {
p ∈ H(−ε,1+ε)

(
β∗,L∗) : p satisfies (3.10) and (3.11)

}
and

R = ⋃
n∈N

Radm
n

(
KR,β∗,L∗, ε

)
.

Then, for any t ∈ [0,1], for any h ∈ G∞ and for any β ∈ [β∗,1), the set

H(t−h,t+h)

(
β,L∗) \ R|(t−h,t+h)

is nowhere dense in H(t−h,t+h)(β,L∗) with respect to ‖ · ‖β,(t−h,t+h).

The whole scale of parameters β ∈ [β∗,1] in Proposition 3.7 can be covered
by passing over from Hölder classes to Hölder–Zygmund classes in the definition
of Pn; see Remark A.5 in the Supplementary Material [Patschkowski and Ro-
hde (2019)]. The local adaptivity theory can be likewise developed on the scale of
Hölder–Zygmund rather than Hölder classes—here, we restrict attention to Hölder
classes because they are commonly considered in the theory of kernel density es-
timation.
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3.2. Construction of the confidence band. The new confidence band is based
on a kernel density estimator with variable bandwidth incorporating a localized but
not the fully pointwise Lepskiı̆ (1990) bandwidth selection procedure. A suitable
discretization and a locally constant approximation allow to piece the pointwise
constructions together in order to obtain a continuum of confidence statements.
The complex construction makes the asymptotic calibration of the confidence band
to the level α nontrivial. Whereas the analysis of the related globally adaptive
procedure of Giné and Nickl (2010) reduces to the limiting distribution of the
supremum of a stationary Gaussian process, our locally adaptive approach leads
to a highly nonstationary situation, which even depends on the unknown density.
An essential component is therefore the identification of a stationary process as a
least favorable case by means of Slepian’s comparison inequality, this stationary
approximation not involving the unknown density p anymore.

We now describe the procedure. First, the sample is split into two subsamples.
For simplicity, we divide the sample into two parts of equal size ñ = �n/2�, leaving
possibly out the last observation. Let

χ1 = {X1, . . . ,Xñ}, χ2 = {Xñ+1, . . . ,X2ñ}
be the distinct subsamples and denote by p̂

(1)
n (·, h) and p̂

(2)
n (·, h) the kernel density

estimators with bandwidth h based on χ1 and χ2, respectively. Eχ1
p and E

χ2
p denote

the expectations with respect to the product measures

P
χ1
p = joint distribution of X1, . . . ,Xñ,

P
χ2
p = joint distribution of Xñ+1, . . . ,X2ñ.

Next, the interval [0,1] is discretized into equally spaced grid points, which serve
as evaluation points for the locally adaptive estimator. We discretize by a mesh of
width

δn =
⌈

2jmin

(
log ñ

ñ

)−κ1

(log ñ)
2
β∗
⌉−1

with κ1 ≥ 1/(2β∗) and set

Hn = {kδn : k ∈ Z}.(3.12)

Fix now constants

c1 >
2

β∗ log 2
and κ2 > c1 log 2 + 7.(3.13)

With jmin specified in (3.9), consider the set of bandwidth exponents

Jn =
{
j ∈ N : jmin ≤ j ≤ jmax =

⌊
log2

(
ñ

(log ñ)κ2

)⌋}
,
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and the corresponding dyadic grid of bandwidths

Gn = {
2−j : j ∈ Jn

}
.(3.14)

The bound jmax is standard and particularly guarantees pointwise consistency of
the kernel density estimator with every bandwidth within Gn. The constraint on κ2
in (3.13) can be relaxed by an inflation of the confidence band’s width by logarith-
mic factors, as discussed in the simulation study in the Supplementary Material
[Patschkowski and Rohde (2019)]. To keep the formulation of the following re-
sults as concise as possible, we refrain from this issue at this point. We define the
set of admissible bandwidths for t ∈ [0,1] as

An(t) =
{
j ∈ Jn :

max
s∈(t− 7

8 ·2−j ,t+ 7
8 ·2−j )∩Hn

∣∣p̂(2)
n (s,m) − p̂(2)

n

(
s,m′)∣∣ ≤ c2

√
log ñ

ñ2−m

for all m,m′ ∈ Jn with m > m′ > j + 2
}
,

(3.15)

with constant c2 = c2(A, ν,β∗,L∗,K, ε) specified in the proof of Proposition 4.1.
Furthermore, let

ĵn(t) = minAn(t), t ∈ [0,1],(3.16)

and ĥn(t) = 2−ĵn(t). Note that a slight difference to the classical Lepski procedure
is the additional maximum in (3.15), which reflects the idea of adapting localized
but not completely pointwise for fixed sample size n. The bandwidth (3.16) is de-
termined for all mesh points kδn, k ∈ Tn = {1, . . . , δ−1

n } in [0,1], and set piecewise
constant in between. Accordingly, with

ĥloc
n,1(k) = 2−ĵn((k−1)δn)−un, ĥloc

n,2(k) = 2−ĵn(kδn)−un,

where un = c1 log log ñ is some sequence implementing the undersmoothing, the
estimators are defined as

ĥloc
n (t) = ĥloc

n,k = min
{
ĥloc

n,1(k), ĥloc
n,2(k)

}
and

p̂loc
n (t, h) = p̂(1)

n (kδn, h)
(3.17)

for t ∈ Ik = [(k − 1)δn, kδn), k ∈ Tn \ {δ−1
n }, I

δ−1
n

= [1 − δn,1]. The following
theorem lays the foundation for the construction of honest and locally adaptive
confidence bands.

THEOREM 3.8 (Least favorable case). For the estimators defined in (3.17) and
normalizing sequences

an = c3(−2 log δn)
1/2, bn = 3

c3

{
(−2 log δn)

1/2 − log(− log δn) + log 4π

2(−2 log δn)1/2

}
,
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with c3 = √
2/T V (K), it holds

lim inf
n→∞ inf

p∈Pn

P
⊗n
p

(
an

(
sup

t∈[0,1]

√
ñĥloc

n (t)
∣∣p̂loc

n

(
t, ĥloc

n (t)
)− p(t)

∣∣− bn

)
≤ x

)

≥ 2P
(√

L∗G ≤ x
)− 1

for some standard Gumbel distributed random variable G.

The proof of Theorem 3.8 is based on several completely nonasymptotic ap-
proximation techniques. The asymptotic Komlós–Major–Tusnády-approximation
technique, used in Giné and Nickl (2010), has been evaded using nonasymptotic
Gaussian approximation results recently developed in Chernozhukov, Chetverikov
and Kato (2014b). The essential component of the proof of Theorem 3.8 is the
application of Slepian’s comparison inequality to reduce considerations from a
nonstationary Gaussian process to the least favorable case of a maximum of δ−1

n

independent and identical standard normal random variables.
With q1−α/2 denoting the (1 − α/2)-quantile of the standard Gumbel distribu-

tion, we define the confidence band as the family of piecewise constant random
intervals Cloc

n,α = (Cloc
n,α(t))t∈[0,1] with

Cloc
n,α(t) =

[
p̂loc

n

(
t, ĥloc

n (t)
)− qn(α)√

ñĥloc
n (t)

, p̂loc
n

(
t, ĥloc

n (t)
)+ qn(α)√

ñĥloc
n (t)

]
(3.18)

and

qn(α) =
√

L∗ · q1−α/2

an

+ bn.(3.19)

For fixed α > 0, qn(α) = O(
√

logn) as n goes to infinity.

COROLLARY 3.9 (Honesty). The confidence band as defined in (3.18) satis-
fies

lim inf
n→∞ inf

p∈Pn

P
⊗n
p

(
p(t) ∈ Cloc

n,α(t) for every t ∈ [0,1]) ≥ 1 − α.

3.3. Local Hölder regularity and local adaptivity. We demonstrate that the
new confidence band is locally adaptive in the sense of (1.4). Recall that by Propo-
sition 3.6 the pointwise minimax-rate of convergence over Pn|Uδ

∩Hβ∗,Uδ (β,L∗)
remains n−β/(2β+1), and that |Cloc

n,α(t)| denotes the length of the interval Cloc
n,α(t).

THEOREM 3.10 (Local adaptivity). For every open interval U ⊂ [0,1], and
for any δ > 0,

lim sup
n→∞

sup
p∈Pn:

p|Uδ
∈HUδ

(β,L∗)

P
⊗n
p

(
sup
t∈U

∣∣Cloc
n,α(t)

∣∣ ≥ (
logn

n

) β
2β+1

(logn)γ
)

= 0

for every β ∈ [β∗, β∗] and γ = γ (c1), where Uδ is the open δ-enlargement of U .
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If p ∈ H(β,L) and p|U ∈ HU(β ′,L) for some β ′ > β and some open interval
U ⊂ [0,1], then the maximal width over U of our new confidence band is of the
stochastic order

OPp

((
logn

n

) β′
2β′+1

(logn)γ
)
,

whereas globally but not locally adaptive confidence bands guarantee a width of
stochastic order OPp

(n−β/(2β+1)) (up to logarithmic factors) only.
In the remaining part of this section, we develop an even stronger notion of local

adaptivity, which is of particular interest for the statistician. Here, the asymptotic
statement is not formulated for an arbitrary but fixed interval U only. Indeed, the
more observations are available, the more localized and smaller are regions the
statistician would like to learn about. Precisely, the goal would be to adapt even
to some pointwise or local Hölder regularity, two well-established notions from
analysis.

DEFINITION 3.11 [Pointwise Hölder exponent, Seuret and Véhel (2002)]. Let
p : R → R be a function, β > 0, β /∈ N, and t ∈ R. Then p ∈ Cβ(t) if and only if
there exists a real R > 0, a polynomial P with degree less than �β�, and a constant
c such that ∣∣p(x) − P(x − t)

∣∣ ≤ c|x − t |β
for all x ∈ (t − R, t + R). The pointwise Hölder exponent is denoted by

βp(t) = sup
{
β : p ∈ Cβ(t)

}
.

DEFINITION 3.12 [Local Hölder exponent, Seuret and Véhel (2002)]. Let p :
� →R be a function and � ⊂R an open set. One classically says that p ∈ C

β
l (�),

where 0 < β < 1, if there exists a constant c such that∣∣p(x) − p(y)
∣∣ ≤ c|x − y|β

for all x, y ∈ �. If m < β < m + 1 for some m ∈ N, then p ∈ C
β
l (�) means that

there exists a constant c such that∣∣∂mp(x) − ∂mp(y)
∣∣ ≤ c|x − y|β−m

for all x, y ∈ �. Set now

βp(�) = sup
{
β : p ∈ C

β
l (�)

}
.

Finally, the local Hölder exponent in t is defined as

β loc
p (t) = sup

{
βp(Oi) : i ∈ I

}
,

where (Oi)i∈I is a decreasing family of open sets with
⋂

i∈I Oi = {t}. [By
Lemma 2.1 in Seuret and Véhel (2002), this notion is well defined, that is, it does
not depend on the particular choice of the decreasing sequence of open sets.]



LOCALLY ADAPTIVE CONFIDENCE BANDS 365

The next proposition shows that attaining the minimax rates of convergence
corresponding to the pointwise or local Hölder exponent (possibly inflated by some
logarithmic factor) uniformly over Pn is an unachievable goal.

PROPOSITION 3.13. For the rectangular kernel KR , there exists some con-
stant M > 0, such that for any t ∈ [0,1], for any β ∈ [β∗,1], for any 0 < ε < 1,
and for any k ≥ k0(β∗), there exists some x > 0 and constants L = L(β) > 0 and
c4 = c4(β) > 0 with

inf
Tn

sup
p∈Sk(β)

P
⊗n
p

(
n

β
2β+1

∣∣Tn(t) − p(t)
∣∣ ≥ x

)
> 0 for all k ≥ k0(β∗)

for all n ≥ n0, with

Sk(β) = Sk(L,β,β∗,M,KR, ε)

= {
p ∈ Pk(KR,β∗,L, ε,M) : ∃r ≥ c4n

− 1
2β+1

such that p|(t−r,t+r) ∈H(t−r,t+r)(∞,L)
}∩H(−ε,1+ε)(β,L),

where the infimum is running over all estimators Tn based on X1, . . . ,Xn.

Therefore, we introduce an n-dependent statistical notion of local regularity for
any point t . Roughly speaking, we intend it to be the maximal β such that the
density attains this Hölder exponent within (t − hβ,n, t + hβ,n), where hβ,n is of
the optimal adaptive bandwidth order (logn/n)1/(2β+1). We realize this idea with
‖ · ‖β,β∗,U as introduced in Definition 3.4 and used in Condition 3.5.

DEFINITION 3.14 (n-dependent local Hölder exponent). With the classical
optimal bandwidth within the class H(β)

hβ,n = 2−jmin ·
(

log ñ

ñ

) 1
2β+1

,

define the class Hβ∗,n,t (β,L) as the set of functions p : (t − hβ,n, t + hβ,n) → R,
such that p admits derivatives up to the order �β∧β∗� and ‖p‖β,β∗,(t−hβ,n,t+hβ,n)≤
L, and Hβ∗,n,t (β) the class of functions p : (t − hβ,n, t + hβ,n) → R for which
the norm ‖p‖β,β∗,(t−hβ,n,t+hβ,n) is well defined and finite. The n-dependent local
Hölder exponent for the function p at point t is defined as

βn,p(t) = sup
{
β > 0 : p|(t−hβ,n,t+hβ,n) ∈Hβ∗,n,t

(
β,L∗)}.(3.20)

If the supremum is running over the empty set, we set βn,p(t) = 0.

Finally, the next theorem shows that the confidence band adapts to the n-
dependent local Hölder exponent.
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FIG. 1. Stochastic width orders.

THEOREM 3.15 (Strong local adaptivity). There exists some γ = γ (c1), such
that

lim sup
n→∞

sup
p∈Pn

P
⊗n
p

(
sup

t∈[0,1]
∣∣Cloc

n,α(t)
∣∣ · ( logn

n

)− βn,p(t)

2βn,p(t)+1 ≥ (logn)γ
)

= 0.

Note that the case βn,p(t) = ∞ is not excluded in the formulation of Theo-
rem 3.15. That is, if p|U can be represented as a polynomial of degree strictly less
than β∗, the confidence band attains even adaptively the parametric width n−1/2,
up to logarithmic factors. In particular, the band can be tighter than n−β∗/(2β∗+1).
In general, as long as δ ≤ ε and (t − hβ∗,n, t + hβ∗,n) ⊂ Uδ ,

βn,p(t) ≥ βp(Uδ) for all t ∈ U.

EXAMPLE 3.3 (Continued). Figure 1 and Figure 2 illustrate the strong lo-
cal adaptivity property of our confidence band for the particular example of the
triangular density in (3.5) for n = 100. As already discussed in Section 3.1, the
triangular density satisfies both the global self-similarity Condition 3.1 as well as
our Admissibility Condition 3.5. The quantity

n
− βn,p(t)

2βn,p(t)+1 , t ∈ [0,1],(3.21)

is (up to logarithmic factors) the stochastic order of the width

2qn(α)√
ñĥloc

n (t)

, t ∈ [0,1],

FIG. 2. Bands around the triangular density.
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achieved by our new locally adaptive confidence band, which is defined in (3.18)
and (3.19), whereas n−1/3 is (up to logarithmic factors) the stochastic order of
the width of the globally adaptive confidence band (1.3). Figure 1 contrasts our
stochastic width order (3.21) (solid line) with n−1/3 (dashed line). It shows the
substantial benefit of the locally adaptive confidence band outside of a shrink-
ing neighborhood around the maximal point. Our confidence band attains (up to
logarithmic factors) the width corresponding to the minimax-optimal rate under
Lipschitz smoothness around t = 1/2, and the parametric width n−1/2 (up to log-
arithmic factors) outside of the interval (1/2 − 2−jmin,1/2 + 2−jmin).

In Figure 2, we plot the bands

([
p(t) − n

− βn,p(t)

2βn,p(t)+1 ,p(t) + n
− βn,p(t)

2βn,p(t)+1
])

t∈[0,1] (solid lines)

and ([
p(t) − n− 1

3 ,p(t) + n− 1
3
])

t∈[0,1] (dashed lines).

These illustrations are underlined by an extensive simulation study in the Sup-
plementary Material [Patschkowski and Rohde (2019)]. Besides, an algorithm for
the computation of the new locally adaptive confidence band is provided.

4. Supplementary notation and results. The following auxiliary results are
crucial ingredients for the proofs of Theorem 3.8 and Theorem 3.15.

Recalling the quantity hβ,n in Definition 3.14, Proposition 4.1 shows that 2−ĵn(·)
lies in a band around

h̄n(·) = hβn,p(·),n(4.1)

uniformly over all admissible densities p ∈ Pn. Proposition 4.1 furthermore re-
flects the necessity to undersmooth, which has been already discovered by Bickel
and Rosenblatt (1973), leading to a bandwidth deflated by some logarithmic factor.
Set now

j̄n(·) =
⌊

log2

(
1

h̄n(·)
)⌋

+ 1,

such that the bandwidth 2−j̄n(·) is an approximation of h̄n(·) by the next smaller
bandwidth on the grid Gn with

1

2
h̄n(·) ≤ 2−j̄n(·) ≤ h̄n(·).

PROPOSITION 4.1. The bandwidth ĵn(·) defined in (3.16) satisfies

lim
n→∞ sup

p∈Pn

{
1 − P

χ2
p

(
ĵn(kδn) ∈ [

kn(kδn), j̄n(kδn) + 1
]

for all k ∈ Tn

)} = 0,

where kn(·) = j̄n(·) − mn, and mn = 1
2c1 log log ñ.
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LEMMA 4.2. Let s, t ∈ [0,1] be two points with s < t , and let z ∈ (s, t). If

|s − t | ≤ 1

8
hβ∗,n(4.2)

then

1

3
h̄n(z) ≤ min

{
h̄n(s), h̄n(t)

} ≤ 3h̄n(z).

LEMMA 4.3. Recall the definitions of Hn and Gn in (3.12) and (3.14), re-
spectively. There exist positive and finite constants c5 = c5(A, ν,K) and c6 =
c6(A, ν,L∗,K), and some η0 = η0(A, ν,L∗,K) > 0, such that

sup
p∈Pn

P
χi
p

(
sup
s∈Hn

max
h∈Gn

√
ñh

log ñ

∣∣p̂(i)
n (s, h) −E

χi
p p̂(i)

n (s, h)
∣∣ > η

)

≤ c5ñ
−c6η, i = 1,2

for sufficiently large n ≥ n0(A, ν,L∗,K) and for all η ≥ η0.

The next lemma extends the classical upper bound on the bias for the β∗-capped
Hölder ball Hβ∗,U (β,L) as defined in (3.7).

LEMMA 4.4. Let t ∈ R and g,h > 0. Any density p :R →R with

p|(t−(g+h),t+(g+h)) ∈ Hβ∗,(t−(g+h),t+(g+h))(β,L)

for some 0 < β ≤ ∞ and some L > 0 satisfies

sup
s∈(t−g,t+g)

∣∣(Kh ∗ p)(s) − p(s)
∣∣ ≤ b2h

β(4.3)

for some positive and finite constant b2 = b2(L,K).

LEMMA 4.5. For symmetric kernels K and β = 1, the bias bound (4.3) con-
tinues to hold if the Lipschitz balls are replaced by the corresponding Zygmund
balls.

5. Proofs. Due to space constraints, we restrict to the proofs of Proposi-
tion 3.7, Proposition 3.13 and Theorem 3.15. The remaining proofs of Section 3
as well as all proofs of Section 4 are deferred to the Supplementary Material
[Patschkowski and Rohde (2019)].

PROOF OF PROPOSITION 3.7. Define

R̃ = ⋃
n∈N

R̃n
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with

R̃n =
{
p ∈H(−ε,1+ε)(β∗) : ∀t ∈ [0,1]∀h ∈ G∞∃β ∈ [

β∗, β∗] with

p|(t−h,t+h) ∈ H(t−h,t+h)(β) and
∥∥(KR,g ∗ p) − p

∥∥
(t−(h−g),t+(h−g)) ≥ gβ

logn

for all g ∈ G∞ with g ≤ h/8
}

and KR,g(·) = g−1KR(·/g). Furthermore, let

En(β) =
{
p ∈ H(−ε,1+ε)(β) : ∥∥(KR,g ∗ p) − p

∥∥
(t−(h−g),t+(h−g)) ≥ 2

logn
gβ

for all t ∈ [0,1], for all h ∈ G∞, and for all g ∈ G∞ with g ≤ h/8
}
.

Note that Lemma A.4 shows that En(β) is nonempty as soon as

2

logn
≤ 1 − 4

π
.

Note additionally that En(β) ⊂ R̃n for any β ∈ [β∗, β∗], and⋃
n∈N

En(β) ⊂ R̃.

With

An(β) =
{
f̃ ∈ H(−1,2)(β) : ‖f̃ − f ‖β,(−ε,1+ε) <

‖KR‖−1
1

logn
for some f ∈ En(β)

}
,

we get for any f̃ ∈ An(β) and a corresponding f ∈ En(β) with

‖f̌ ‖β,(−ε,1+ε) < ‖KR‖−1
1

1

logn

and f̌ = f̃ − f , the lower bound∥∥(KR,g ∗ f̃ ) − f̃
∥∥
(t−(h−g),t+(h−g))

≥ ∥∥(KR,g ∗ f ) − f
∥∥
(t−(h−g),t+(h−g)) − ∥∥f̌ − (KR,g ∗ f̌ )

∥∥
(t−(h−g),t+(h−g))

= 2

logn
gβ − sup

s∈(t−(h−g),t+(h−g))

∣∣∣∣
∫

KR(x)
{
f̌ (s + gx) − f̌ (s)

}
dx

∣∣∣∣
≥ 2

logn
gβ
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− gβ ·
∫ ∣∣KR(x)

∣∣ sup
s∈(t−(h−g),t+(h−g))

sup
s′∈(s−g,s+g)

s′ �=s

|f̌ (s′) − f̌ (s)|
|s − s′|β dx

≥ 2

logn
gβ − gβ · ‖KR‖1 · ‖f̌ ‖β,(−ε,1+ε)

≥ 1

logn
gβ

for all g,h ∈ G∞ with g ≤ h/8 and for all t ∈ [0,1] and, therefore,

A = ⋃
n∈N

An(β) ⊂ R̃.

Clearly, An(β) is open in H(−ε,1+ε)(β). Hence, the same holds true for A. Next,
we verify that A is dense in H(−ε,1+ε)(β). Let p ∈ H(−ε,1+ε)(β) and let δ > 0. We
now show that there exists some function p̃δ ∈ A with ‖p − p̃δ‖β,(−ε,1+ε) ≤ δ. For
the construction of the function p̃δ , set the grid points

tj,1(k) = (4j + 1)2−k, tj,2(k) = (4j + 3)2−k

for j ∈ {−2k−2,−2k−2 + 1, . . . ,2k−1 − 1} and k ≥ 2. The function p̃δ shall be
defined as the limit of a recursively constructed sequence. The idea is to recursively
add appropriately rescaled sine waves at those locations where the bias condition
is violated. Let p1,δ = p, and denote

Jk =
{
j ∈ {−2k−2, . . . ,2k−1 − 1

} :

max
i=1,2

∣∣(KR,2−k ∗ pk−1,δ)
(
tj,i(k)

)− pk−1,δ

(
tj,i(k)

)∣∣ < 1

2
c9δ

(
1 − 2

π

)
2−kβ

}

for k ≥ 2, where

c9 = c9(β) =
(

3π

2
· 1

1 − 2β−1 + 7

1 − 2−β

)−1
.

For any k ≥ 2, set

pk,δ(x) = pk−1,δ(x) + c9δ
∑
j∈Jk

Sk,β,j (x)

with functions

Sk,β,j (x) = 2−kβ sin
(
2k−1πx

)
1
{∣∣(4j + 2)2−k − x

∣∣ ≤ 2−k+1}
exemplified in Figure 3. That is,

pk,δ(x) = p(x) + c9δ

k∑
l=2

∑
j∈Jl

Sl,β,j (x),
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FIG. 3. Functions Sk,β,0 for k = 2, . . . ,5 and β = 0.5.

and we define p̃δ as the limit

p̃δ(x) = p(x) + c9δ

∞∑
l=2

∑
j∈Jl

Sl,β,j (x)

= pk,δ(x) + c9δ

∞∑
l=k+1

∑
j∈Jl

Sl,β,j (x).

The function p̃δ is well defined as the series on the right-hand side converges: for
fixed l ∈ N, the indicator functions

1
{∣∣(4j + 2)2−k − x

∣∣ ≤ 2−k+1}, j ∈ {−2l−2,−2l−2 + 1, . . . ,2l−1 − 1
}

have disjoint supports, such that∥∥∥∥∑
j∈Jl

Sl,β,j

∥∥∥∥
(−ε,1+ε)

≤ 2−lβ .

Hence,
∞∑
l=2

∥∥∥∥∑
j∈Jl

Sl,β,j

∥∥∥∥
(−ε,1+ε)

≤
∞∑
l=0

2−lβ < ∞,

that is the series
∑∞

l=2
∑

j∈Jl
Sl,β,j is normally convergent. In particular, the limit

function is continuous.
It remains to verify that p̃δ ∈ ⋃

n∈N En(β) ⊂ A and also ‖p− p̃δ‖β,(−ε,1+ε) ≤ δ.
As concerns the inequality ‖p − p̃δ‖β,(−ε,1+ε) ≤ δ, it remains to show that∥∥∥∥∥

∞∑
l=2

∑
j∈Jl

Sl,β,j

∥∥∥∥∥
β,(−ε,1+ε)

≤ 1

c9
.
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For s, t ∈ (−ε,1 + ε) with |s − t | ≤ 1, we obtain∣∣∣∣∣
∞∑
l=2

∑
j∈Jl

Sl,β,j (s) −
∞∑
l=2

∑
j∈Jl

Sl,β,j (t)

∣∣∣∣∣
≤

∞∑
l=2

2−lβ

∣∣∣∣sin
(
2l−1πs

) ∑
j∈Jl

1
{∣∣(4j + 2)2−l − s

∣∣ ≤ 2−l+1}(5.1)

− sin
(
2l−1πt

) ∑
j∈Jl

1
{∣∣(4j + 2)2−l − t

∣∣ ≤ 2−l+1}∣∣∣∣.
Choose now k′ ∈N maximal, such that both

(4j + 2)2−k′ − 2−k′+1 ≤ s ≤ (4j + 2)2−k′ + 2−k′+1

and

(4j + 2)2−k′ − 2−k′+1 ≤ t ≤ (4j + 2)2−k′ + 2−k′+1

for some j ∈ {−2k′−2, . . . ,2k′−1 − 1}. For 2 ≤ l ≤ k′, we have∣∣∣∣sin
(
2l−1πs

) ∑
j∈Jl

1
{∣∣(4j + 2)2−l − s

∣∣ ≤ 2−l+1}

− sin
(
2l−1πt

) ∑
j∈Jl

1
{∣∣(4j + 2)2−l − t

∣∣ ≤ 2−l+1}∣∣∣∣
≤ ∣∣sin

(
2l−1πs

)− sin
(
2l−1πt

)∣∣
≤ min

{
2l−1π |s − t |,2

}

(5.2)

by the mean value theorem. For l ≥ k′ + 1,∣∣∣∣sin
(
2l−1πs

) ∑
j∈Jl

1
{∣∣(4j + 2)2−l − s

∣∣ ≤ 2−l+1}

− sin
(
2l−1πt

) ∑
j∈Jl

1
{∣∣(4j + 2)2−l − t

∣∣ ≤ 2−l+1}∣∣∣∣
≤ max

{∣∣sin
(
2l−1πs

)∣∣, ∣∣sin
(
2l−1πt

)∣∣}.
Furthermore, due to the choice of k′, there exists some z ∈ [s, t] with

sin
(
2l−1πz

) = 0

for all l ≥ k′ + 1. Thus, for any l ≥ k′ + 1, by the mean value theorem,∣∣sin
(
2l−1πs

)∣∣ = ∣∣sin
(
2l−1πs

)− sin
(
2l−1πz

)∣∣
≤ min

{
2l−1π |s − z|,1

}
≤ min

{
2l−1π |s − t |,1

}
.
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Analogously, we obtain∣∣sin
(
2l−1πt

)∣∣ ≤ min
{
2l−1π |s − t |,1

}
.

Consequently, together with inequality (5.1) and (5.2),∣∣∣∣∣
∞∑
l=2

∑
j∈Jl

Sl,β,j (s) −
∞∑
l=2

∑
j∈Jl

Sl,β,j (t)

∣∣∣∣∣ ≤
∞∑
l=2

2−lβ min
{
2l−1π |s − t |,2

}
.

Choose now k ∈ N∪ {0}, such that 2−(k+1) < |s − t | ≤ 2−k . If k ≤ 1,

∞∑
l=2

2−lβ min
{
2l−1π |s − t |,2

} ≤ 2
2−2β

1 − 2−β
≤ 2

1 − 2−β
|s − t |β.

If k ≥ 2, we decompose

∞∑
l=2

2−lβ min
{
2l−1π |s − t |,2

} ≤ π

2
|s − t |

k∑
l=0

2l(1−β) + 2
∞∑

l=k+1

2−lβ

= π

2
|s − t |2

k(1−β) − 2β−1

1 − 2β−1 + 2 · 2−(k+1)β

1 − 2−β

≤ |s − t |β ·
(

π

2
· 1

1 − 2β−1 + 2

1 − 2−β

)
.

Since furthermore ∥∥∥∥∥
∞∑
l=2

∑
j∈Jl

Sl,β,j

∥∥∥∥∥
sup

≤ 1

1 − 2−β
,

we have∥∥∥∥∥
∞∑
l=2

∑
j∈Jl

Sl,β,j

∥∥∥∥∥
β,(−ε,1+ε)

≤ 3
(

π

2
· 1

1 − 2β−1 + 2

1 − 2−β

)
+ 1

1 − 2−β
= 1

c9

and finally ‖p − p̃ε‖β,(−ε,1+ε) ≤ δ. In particular, p̃δ ∈ H(−ε,1+ε)(β).
We now show that the function p̃δ is contained in

⋃
n∈N En(β) ⊂ A. For any

bandwidths g,h ∈ G∞ with g ≤ h/8, it holds that h − g ≥ 4g. Thus, for any g =
2−k with k ≥ 2 and for any t ∈ (−ε,1 + ε), there exists some j = j (t, h, g) ∈
{−2k−2, . . . ,2k−1 − 1} such that both tj,1(k) and tj,2(k) are contained in (t − (h−
g), t + (h − g)), which implies

sup
s∈(t−(h−g),t+(h−g))

∣∣(KR,g ∗ p̃δ)(s) − p̃δ(s)
∣∣

≥ max
i=1,2

∣∣(KR,g ∗ p̃δ)
(
tj,i(k)

)− p̃δ

(
tj,i(k)

)∣∣.(5.3)
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By linearity of the convolution and the theorem of dominated convergence,

(KR,g ∗ p̃δ)
(
tj,i(k)

)− p̃δ

(
tj,i(k)

)
= (KR,g ∗ pk,δ)

(
tj,i(k)

)− pk,δ

(
tj,i(k)

)
(5.4)

+ c9δ

∞∑
l=k+1

∑
j∈Jl

(
(KR,g ∗ Sl,β,j )

(
tj,i(k)

)− Sl,β,j

(
tj,i(k)

))
.

We analyze the convolution KR,g ∗ Sl,β,j for l ≥ k + 1. Here,

sin
(
2l−1πtj,1(k)

) = sin
(
2l−k−1π(4j + 1)

) = 0

and

sin
(
2l−1πtj,2(k)

) = sin
(
2l−k−1π(4j + 3)

) = 0.

Hence, ∑
j∈Jl

Sl,β,j

(
tj,i(k)

) = 0, i = 1,2

for any l ≥ k + 1. Furthermore,

(KR,g ∗ Sl,β,j )
(
tj,i(k)

) = 1

2g

∫ g

−g
Sl,β,j

(
tj,i(k) − x

)
dx

= 1

2g

∫ tj,i (k)+g

tj,i (k)−g
Sl,β,j (x)dx, i = 1,2.

Due to the identities

(4j + 2)2−k − 2−k+1 = tj,1(k) − g,

(4j + 2)2−k + 2−k+1 = tj,2(k) + g,

we have either[
(4j + 2)2−l − 2−l+1, (4j + 2)2−l + 2−l+1] ⊂ [

tj,1(k) − g, tj,2(k) + g
]

or [
(4j + 2)2−l − 2−l+1, (4j + 2)2−l + 2−l+1]∩ [

tj,1(k) − g, tj,2(k) + g
] = ∅

for any l ≥ k + 1. Therefore, for i = 1,2,∑
j∈Jl

(KR,g ∗ Sl,β,j )
(
tj,i(k)

)

= ∑
j∈Jl

1

2g

∫ tj,i (k)+g

tj,i (k)−g
2−lβ sin

(
2l−1πx

)
1
{∣∣(4j + 2)2−l − x

∣∣ ≤ 2−l+1}dx

= 0
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such that equation (5.4) then simplifies to

(KR,g ∗ p̃δ)
(
tj,i(k)

)− p̃δ

(
tj,i(k)

)
= (KR,g ∗ pk,δ)

(
tj,i(k)

)− pk,δ

(
tj,i(k)

)
, i = 1,2.

Together with (5.3), we obtain

sup
s∈(t−(h−g),t+(h−g))

∣∣(KR,g ∗ p̃δ)(s) − p̃δ(s)
∣∣

≥ max
i=1,2

∣∣(KR,g ∗ pk,δ)
(
tj,i(k)

)− pk,δ

(
tj,i(k)

)∣∣
for some j ∈ {−2k−2,−2k−2 + 1, . . . ,2k−2 − 1}. If j /∈ Jk , then

max
i=1,2

∣∣(KR,g ∗ pk,δ)
(
tj,i(k)

)− pk,δ

(
tj,i(k)

)∣∣
= max

i=1,2

∣∣(KR,g ∗ pk−1,δ)
(
tj,i(k)

)− pk−1,δ

(
tj,i(k)

)∣∣
≥ 1

2
c9δ

(
1 − 2

π

)
gβ.

If j ∈ Jk , then

max
i=1,2

∣∣(KR,g ∗ pk,δ)
(
tj,i(k)

)− pk,δ

(
tj,i(k)

)∣∣
≥ c9δ max

i=1,2

∣∣(KR,g ∗ Sk,β,j )
(
tj,i(k)

)− Sk,β,j

(
tj,i(k)

)∣∣
− max

i=1,2

∣∣(KR,g ∗ pk−1,δ)
(
tj,i(k)

)− pk−1,δ

(
tj,i(k)

)∣∣
≥ c9δ max

i=1,2

∣∣(KR,g ∗ Sk,β,j )
(
tj,i(k)

)− Sk,β,j

(
tj,i(k)

)∣∣− 1

2
c9δ

(
1 − 2

π

)
gβ.

Similarly as above we obtain

(KR,g ∗ Sk,β,j )
(
tj,1(k)

)− Sk,β,j

(
tj,1(k)

)
= 1

2g

∫ tj,1(k)+g

tj,1(k)−g
2−kβ sin

(
2k−1πx

)
dx − 2−kβ

= 1

2g
2−kβ

∫ 2−k+1

0
sin

(
2k−1πx

)
dx − 2−kβ

= gβ

(
2

π
− 1

)

as well as

(KR,g ∗ Sk,β,j )
(
tj,2(k)

)− Sk,β,j

(
tj,2(k)

) = gβ

(
1 − 2

π

)
,
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such that

max
i=1,2

∣∣(KR,g ∗ pk,δ)
(
tj,i(k)

)− pk,δ

(
tj,i(k)

)∣∣ ≥ 1

2
c9δ

(
1 − 2

π

)
gβ.

Combining the two cases finally gives

sup
s∈(t−(h−g),t+(h−g))

∣∣(KR,g ∗ p̃δ)(s) − p̃δ(s)
∣∣ ≥ 1

2
c9δ

(
1 − 2

π

)
gβ.

In particular, p̃δ ∈ En(β) for sufficiently large n ≥ n0(β, δ), and thus p̃δ ∈ A.
Since A is open and dense in the class H(−ε,1+ε)(β) and A ⊂ R̃, the comple-

ment H(−ε,1+ε)(β) \ R̃ is nowhere dense in H(−ε,1+ε)(β). Thus, because of

H(−ε,1+ε)(β)|(t−h,t+h) =H(t−h,t+h)(β),

and the fact that for any x ∈ H(−ε,1+ε)(β) and any z′ ∈ H(t−h,t+h)(β) with∥∥x|(t−h,t+h) − z′∥∥
β,(t−h,t+h) < δ

there exists an extension z ∈ H(−ε,1+ε)(β) of z′ with

‖x − z‖β,(−ε,1+ε) < δ,

the set H(t−h,t+h)(β) \ R̃|(t−h,t+h) is nowhere dense in H(t−h,t+h)(β). �

PROOF OF PROPOSITION 3.13. The proof is based on a reduction of the supre-
mum over the class to a maximum over two distinct hypotheses.

Part 1. For β ∈ [β∗,1), the construction of the hypotheses is based on the
Weierstraß function as defined in (A.3) in the Supplementary Material. As in the
proof of Proposition 3.6 (see the Supplementary Material [Patschkowski and Ro-
hde (2019)]), consider the function p0 :R →R with

p0(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if |x − t | ≥ 10

3
,

1

4
+ 3

16
(x − t + 2) if − 10

3
< x − t < −2,

1

6
+ 1 − 2−β

12
Wβ(x − t) if |x − t | ≤ 2,

1

4
− 3

16
(x − t − 2) if 2 < x − t <

10

3
,

and the functions p1,n,p2,n :R →R with

p1,n(x) = p0(x) + q
t+ 9

4 ,n
(x;gβ,n) − qt,n(x;gβ,n), x ∈R,

p2,n(x) = p0(x) + q
t+ 9

4 ,n
(x; c18 · gβ,n) − qt,n(x; c18 · gβ,n), x ∈ R
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FIG. 4. Functions p1,n and p2,n for t = 0.5, β = 0.5 and n = 50.

for gβ,n = 1
4n−1/(2β+1) and c18 = c18(β) = (2LW(β))−1/β , where

qa,n(x;g) =
⎧⎪⎨
⎪⎩

0 if |x − a| > g,

1 − 2−β

12

(
Wβ(x − a) − Wβ(g)

)
if |x − a| ≤ g,

for a ∈ R and g > 0.
Figure 4 visualizes the densities p1,n and p2,n exemplarily for t = 0.5, β = 0.5

and n = 50. Following the lines of the proof of Proposition 3.6, both p1,n and p2,n

are contained in the class Pk(L,β∗,M,KR, ε) for sufficiently large k ≥ k0(β∗).
Moreover, both p1,n and p2,n are constant on (t − c18 · gβ,n, t + c18 · gβ,n), so that

p1,n|(t−c18·gβ,n,t+c18·gβ,n), p2,n|(t−c18·gβ,n,t+c18·gβ,n) ∈H(t−c18·gβ,n,t+c18·gβ,n)(∞,L)

for some constant L = L(β). Using Lemma A.4 and

∣∣p0(t) − p1,n(t)
∣∣ ≥ 1 − 2−β∗

12
g

β
β,n

(see the Supplementary Material [Patschkowski and Rohde (2019)]), the absolute
distance of the two hypotheses in t is at least∣∣p1,n(t) − p2,n(t)

∣∣ = ∣∣qt,n(t;gβ,n) − qt,n(t; c18 · gβ,n)
∣∣

= 1 − 2−β

12

∣∣Wβ(gβ,n) − Wβ(c18 · gβ,n)
∣∣

≥ 1 − 2−β∗

12

(∣∣Wβ(gβ,n) − Wβ(0)
∣∣− ∣∣Wβ(c18 · gβ,n) − Wβ(0)

∣∣)

≥ 1 − 2−β∗

12

(
g

β
β,n − LW(β)(c18 · gβ,n)

β)
≥ 2c19g

β
β,n,

where

c19 = c19(β∗) = 1 − 2−β∗

48
.
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Since furthermore ∫ (
p2,n(x) − p1,n(x)

)
dx = 0,

and log(1 + x) ≤ x for x > −1, the Kullback–Leibler divergence between the
associated product probability measures P⊗n

1,n and P
⊗n
2,n is bounded from above by

K
(
P

⊗n
2,n,P

⊗n
1,n

) ≤ n

∫
(p2,n(x) − p1,n(x))2

p1,n(x)
dx

≤ 12n

∫ (
p2,n(x) − p1,n(x)

)2 dx

= 24n

∫ (
q0,n(x;gβ,n) − q0,n(x, c18 · gβ,n)

)2 dx

= 24n

(
1 − 2−β

12

)2(
2
∫ gβ,n

c18·gβ,n

(
Wβ(x) − Wβ(gβ,n)

)2 dx

+
∫ c18·gβ,n

−c18·gβ,n

(
Wβ(c18 · gβ,n) − Wβ(gβ,n)

)2 dx

)

≤ 24nLW(β)2
(

1 − 2−β

12

)2(
2
∫ gβ,n

c18·gβ,n

(gβ,n − x)2β dx

+ 2(1 − c18)
2c18g

2β+1
β,n

)

= c20

with

c20 = c20(β)

= 48LW(β)24−(2β+1)

(
1 − 2−β

12

)2((1 − c18)
2β+1

2β + 1
+ (1 − c18)

2c18

)
,

where we used Lemma A.4 in the last inequality. Theorem 2.2 in Tsybakov (2009)
then yields

inf
Tn

sup
p∈Sk(β)

P
⊗n
p

(
n

β
2β+1

∣∣Tn(t) − p(t)
∣∣ ≥ c19

)

≥ max
{

1

4
exp(−c20),

1 − √
c20/2

2

}
> 0.

Part 2. For β = 1, consider the function p0 :R →R with

p0(x) =
⎧⎨
⎩

0 if |x − t | > 4,
1

4
− 1

16
|x − t | if |x − t | ≤ 4,
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and the functions p1,n,p2,n :R →R with

p1,n(x) = p0(x) + q
t+ 9

4 ,n
(x;g1,n) − qt,n(x;g1,n),

p2,n(x) = p0(x) + q
t+ 9

4 ,n
(x;g1,n/2) − qt,n(x;g1,n/2)

for g1,n = 1
4n−1/3, where

qa,n(x;g) =
⎧⎨
⎩

0 if |x − a| > g,
1

16

(
g − |x − a|) if |x − a| ≤ g,

for a ∈ R and g > 0. Following the lines of the proof of Proposition 3.6, both p1,n

and p2,n are contained in the class Pk for sufficiently large k ≥ k0(β∗). Moreover,
both p1,n and p2,n are constant on (t − g1,n/2, t + g1,n/2), so that

p1,n|(t−g1,n/2,t+g1,n/2), p2,n|(t−g1,n/2,t+g1,n/2) ∈ H(t−g1,n/2,t+g1,n/2)(∞,1/4).

The absolute distance of p1,n and p2,n in t is given by

∣∣p1,n(t) − p2,n(t)
∣∣ = 1

32
g1,n,

whereas the Kullback–Leibler divergence between the associated product proba-
bility measures P⊗n

1,n and P
⊗n
2,n is upper bounded by

K
(
P

⊗n
2,n,P

⊗n
1,n

) ≤ n

∫
(p2,n(x) − p1,n(x))2

p1,n(x)
dx

≤ 16n

∫ (
p2,n(x) − p1,n(x)

)2 dx

= 32n

∫ (
q0,n(x;g1,n) − q0,n(x, g1,n/2)

)2 dx

= 32n

(
2
∫ g1,n

g1,n/2

(
1

16
(g1,n − x)

)2
dx +

∫ g1,n/2

−g1,n/2

(
g1,n

32

)2
dx

)

= 2

3 · 322 + 1

32
.

Together with Theorem 2.2 in Tsybakov (2009) the result follows. �

PROOF OF THEOREM 3.15. Recall the notation of Section 3.2, in particular
the definitions of ĥloc

n (t) in (3.17), of qn(α) in (3.19), of βn,p(t) in (3.20), and
of h̄n(t) in (4.1). Furthermore, set γ̃ = γ̃ (c1) = 1

2(c1 log 2 − 1). To show that the
confidence band is adaptive, note that according to Proposition 4.1 and Lemma 4.2
for any δ > 0 there exists some n0(δ), such that

sup
p∈Pn

P
χ2
p

(
sup

t∈[0,1]
∣∣Cloc

n,α(t)
∣∣ · ( log ñ

ñ

) −βn,p(t)

2βn,p(t)+1 ≥ √
6 · 21− jmin

2 qn(α)(log ñ)γ̃
)
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= sup
p∈Pn

P
χ2
p

(
sup

t∈[0,1]
h̄n(t)

ĥloc
n (t)

· 2−un ≥ 6
)

= sup
p∈Pn

P
χ2
p

(
max
k∈Tn

sup
t∈Ik

h̄n(t)

min{2−ĵn((k−1)δn),2−ĵn(kδn)} ≥ 6
)

≤ sup
p∈Pn

P
χ2
p

(
max
k∈Tn

min{h̄n((k − 1)δn), h̄n(kδn)}
min{2−ĵn((k−1)δn),2−ĵn(kδn)} ≥ 2

)

≤ sup
p∈Pn

P
χ2
p

(
∃k ∈ Tn : min{2−j̄n((k−1)δn),2−j̄n(kδn)}

min{2−ĵn((k−1)δn),2−ĵn(kδn)} ≥ 1
)

= sup
p∈Pn

{
1 − P

χ2
p

(
∀k ∈ Tn : min{2−j̄n((k−1)δn),2−j̄n(kδn)}

min{2−ĵn((k−1)δn),2−ĵn(kδn)} < 1
)}

≤ sup
p∈Pn

{
1 − P

χ2
p

(
ĵn(kδn) < j̄n(kδn) for all k ∈ Tn

)}
≤ δ

for all n ≥ n0(δ). �

SUPPLEMENTARY MATERIAL

Supplement to “Locally adaptive confidence bands” (DOI: 10.1214/18-
AOS1690SUPP; .pdf). Supplement A is organized as follows. Section A.1 de-
velops connections between the Weierstraß function and the Admissibility Con-
dition 3.5. Further notation and auxiliary results from empirical process theory are
provided in Section A.2, whereas Section A.3 provides a simulation study together
with an algorithm for the calculation of the locally adaptive confidence band. Sec-
tion A.4 presents the remaining proofs of the results of Section 3. We proceed with
the proofs of the results of Section 4 in Section A.5. Auxiliary results are stated
and proved in Section A.6.
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