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University of Chicago

We propose semiparametrically efficient estimators for general in-
tegrated volatility functionals of multivariate semimartingale processes.
A plug-in method that uses nonparametric estimates of spot volatilities is
known to induce high-order biases that need to be corrected to obey a central
limit theorem. Such bias terms arise from boundary effects, the diffusive and
jump movements of stochastic volatility and the sampling error from the non-
parametric spot volatility estimation. We propose a novel jackknife method
for bias correction. The jackknife estimator is simply formed as a linear com-
bination of a few uncorrected estimators associated with different local win-
dow sizes used in the estimation of spot volatility. We show theoretically that
our estimator is asymptotically mixed Gaussian, semiparametrically efficient,
and more robust to the choice of local windows. To facilitate the practical use,
we introduce a simulation-based estimator of the asymptotic variance, so that
our inference is derivative-free, and hence is convenient to implement.

1. Introduction. This paper concerns the efficient estimation of integrated
volatility functionals of the form

∫ T
0 g(cs) ds, where c is the spot covariance matrix

process of a d-dimensional Itô semimartingale process X, g(·) is a smooth function
and T is the fixed time span. A basic example of such functionals is the integrated
variance-covariance matrix ([3, 4]). General integrated volatility functionals have
received much attention in the recent literature of high-frequency econometrics
and statistics; see, for example, [14, 18] and [25]. These functionals are broadly
useful for measuring risk-related quantities ([2, 17, 20]) for which the g(·) func-
tion transforms the spot covariance to quantities such as spot betas, correlations,
idiosyncratic variances and eigenvalues. More generally, integrated volatility func-
tionals can be used as “moment conditions” for estimating economic models [22].
In this case, g(·) involves general nonlinear functions implied by the underlying
economic theory (e.g., option pricing theory or market microstructure theory), as
well as weight functions (i.e., instruments) in the estimation procedure.
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A natural “plug-in” estimator of
∫ T

0 g(cs) ds can be formed by replacing the
latent spot covariance matrix process with its nonparametric estimate. When the
volatility path is sufficiently smooth, [18] shows the “plug-in” estimator is consis-
tent and asymptotically mixed Gaussian. However, the smoothness requirement of
[18] does not hold for typical stochastic volatility models (e.g., jump-diffusions).
In a recent work, [14] show that under more general volatility dynamics, the “raw”
plug-in estimator carries high-order asymptotic biases that are not negligible in
the second-order asymptotics. Jacod and Rosenbaum [14] also propose a bias-
correction procedure and show the bias-corrected estimator admits a (feasible) cen-
tral limit theorem. Moreover, this estimator attains the semiparametric efficiency
bound established by [9] and [25]. The theory of [14] is further extended by [21]
to allow for broader classes of test functions (i.e., g) via a spatial-localization tech-
nique.

Although the aforementioned bias-corrected estimator is known in explicit
form, implementing in empirical applications can be fairly cumbersome. The main
reason is that the correction term involves the second partial derivatives of the test
function g(·) with respect to all elements of the spot covariance matrix. Conse-
quently, to implement the bias correction, the empirical researcher typically needs
to prepare a large number of analytical formulas of second partial derivatives. Al-
though such calculations are feasible “in principle,” they are quite costly in empir-
ical research, especially when the researcher may experiment with various choices
of g(·) in search of a good specification. Such a cost may already be substantial
even for problems with moderate dimensions. For example, [20] study a volatility-
spanning problem with d = 10, in which the bias-correction term involves 990
distinct second partial derivatives for various highly nonlinear functions with 45
arguments (i.e., the number of distinct elements in the spot covariance matrix). In
general, the computational complexity grows at the rate of O(d4).

The task of bias correction can further be complicated when the function g(·)
itself is not known in an analytical form, but is calculated using rather nontrivial
numerical procedures. For example, [22] demonstrate integrated volatility func-
tionals can be used as integrated moment conditions for estimating option-pricing
models with high-frequency data. In such applications, g(·) involves an option-
pricing formula, which in turn needs to be numerically evaluated by solving ordi-
nary differential equations and Fourier transforms (see, e.g., [10]). The computa-
tional complexity of evaluating the second partial derivatives of g(·) is “two orders
of magnitude” higher than that of g(·) with lower numerical precision, which ren-
ders a reliable implementation of the bias correction very challenging.

Set against this background, we propose an easy-to-implement jackknife pro-
cedure for bias correction, which avoids the estimation of bias terms altogether.
Jackknife methods have been widely used in statistics (see, e.g., [11]). Here, we
consider two uncorrected estimators formed using two different sequences of local
windows in the estimation of spot volatility. Because these estimators have similar
bias terms but with different loadings, we can eliminate their biases by forming a
proper linear combination between them. We refer to the resulting estimator as the
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two-scale jackknife estimator. We show this estimator is asymptotically centered
mixed Gaussian. Importantly, its conditional asymptotic variance is the same as
that of the estimator in [14], and hence the jackknife estimator is also semipara-
metrically efficient.

To further facilitate inference in practice, we propose an easy-to-implement and
consistent estimator for the asymptotic variance via a simulation technique. Our
motivation is that existing estimators of the asymptotic variance involve the first
partial derivatives of g(·), and hence can potentially be cumbersome to implement
in practice for reasons mentioned above. In fact, our estimator is simply the sam-
ple variance of uncorrected estimators formed using simulated data. This estimator
does not require analytical or numerical evaluation of the derivatives of g(·), and
the simulation can easily be parallelized. In a recent paper, [23] proposed a gen-
eral approach for estimating asymptotic variances via the “observed asymptotic
variance” that is formed as the quadratic variation of “miniature” versions of the
original (full-sample) estimator. Our simulation-based estimator for the asymp-
totic variance is conceptually different from that of [23] because the former is
constructed by recomputing the original full-sample estimator for simulated data.
In particular, we do not need to divide the sample into blocks for estimating minia-
ture versions of the integrated volatility functional. That said, both estimators share
the advantage that the user does not have to know the form of the asymptotic vari-
ance, which is clearly convenient in practice. Hence, our method provides a useful
complement to that of [23] in empirical research.

We note that both the bias-corrected estimator of [14] and the two-scale jack-
knife estimator are designed to correct the nonlinearity bias that arises from the
(squared) statistical error in the nonparametric estimation of spot volatility, for
which the asymptotic justification relies on “undersmoothing.” That is, the local
window size for the spot volatility estimation is relatively “small,” so that other bi-
ases due to the boundary effect, volatility of volatility, and volatility jumps become
asymptotically negligible. By contrast, [15] consider a specific choice of the local
window sequence in which all sources of biases are balanced at the same order,
and propose explicit correction for each of them.

In the same vein, we show this “complete” bias correction can also be achieved
via a multiscale jackknife estimator formed as a linear combination of three (or
more) uncorrected estimators. The underlying idea is, again, to cancel the biases
using uncorrected estimators without estimating the biases explicitly. Theoreti-
cally, we show the multiscale jackknife estimator admits the same central limit
theorem while allowing for a broad range of growth behavior of the local win-
dows. We show the multiscale bias correction is sufficiently accurate (for obtaining
a central limit theorem) even if all types of aforementioned biases are explosive in
each of the uncorrected estimators. In particular, the asymptotic behavior of the
jackknife procedure is stable regardless of whether the nonparametric volatility
estimation features “undersmoothing” or “oversmoothing.” This stability provides
a theoretically guaranteed robustness for the multiscale jackknife method.
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Our analysis is limited to the setting in which the high-frequency data are ob-
served without noise. It is well known that financial data at the “ultra high” fre-
quency are contaminated by microstructure noise, which would lead to nontrivial
bias in the spot volatility estimates. In the multivariate setting, sampling asyn-
chronicity among the underlying processes leads to another type of bias in the
estimation of covariances. Therefore, following standard practice, our method is
mainly applicable to data that are sparsely sampled, for which the effect of noise
and/or asynchronicity is mild. A large and growing literature exists on the esti-
mation of integrated variance and covariance matrix for noisy irregularly sampled
data; see, for example, [1, 5–7, 12, 16, 27, 28] and [26]. The efficiency problem
in this context has been addressed by [24] using the equivalence-of-experiment
approach. Extending such results to the case of efficient estimation of general in-
tegrated volatility functionals is a rather nontrivial task that is beyond the scope of
the current paper.

This paper is organized as follows. Section 2 presents the setting. Section 3 con-
tains our main results. Section 4 reports simulation results. Section 5 concludes.
The Supplementary Material in [19] contains all proofs.

2. The setting.

2.1. The underlying processes. We consider a R
d -valued process (Xt)t≥0 de-

fined on a filtered probability space (�,F, (Ft )t≥0,P). We observe Xi�n for
i = 0, . . . , �T/�n� over a fixed time interval [0, T ], where �n → 0, as n → ∞
asymptotically. Below, for any variable Yt , we denote its j th component by Y

(j)
t ;

the same convention also applies to matrix- and tensor-valued variables. We denote
�n

i X ≡ Xi�n − X(i−1)�n , i ≥ 1.
Our basic assumption is that X is an Itô semimartingale (see, e.g., Section 2.1.4

in [13]) with the following form:

(2.1) Xt = x0 +
∫ t

0
bs ds +

∫ t

0
σs dWs +

∫ t

0

∫
R

δ(s, z)μ(ds, dz),

where W is a d ′-dimensional Brownian motion and μ is a Poisson random mea-
sure on R+ × E for some auxiliary Polish space E with compensator ν(dt, dz) =
dt ⊗ λ(dz) for some σ -finite measure λ(dz). The stochastic volatility process σt

takes values in R
d⊗d ′

. We denote the spot covariance matrix ct ≡ σtσ


t , which

takes value in the space Md of d-dimensional positive semidefinite matrices. We
suppose ct is also an Itô semimartingale with the form

ct = c0 +
∫ t

0
b̃s ds +

∫ t

0
σ̃s dWs

+
∫ t

0

∫
E

δ̃(s, z)1{‖δ̃(s,z)‖≤1}(μ − ν)(ds, dz)(2.2)

+
∫ t

0

∫
E

δ̃(s, z)1{‖δ̃(s,z)‖>1}μ(ds, dz),
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where we use a matrix notation by defining matrix-valued processes compo-
nent by component. In particular, the (j, k) component of

∫ t
0 σ̃s dWs is given

by
∑d ′

l=1
∫ t

0 σ̃
(jkl)
s dW

(l)
s . We now collect some regularity conditions for the

process X.

ASSUMPTION 1. The following conditions hold for some constant r ∈ [0,1).
There are a sequence (Jm)m≥1 of nonnegative bounded λ-integrable functions on
E and a sequence (τm)m≥1 of stopping times increasing to ∞, such that ‖δ(t, ·)‖r ∧
1 ≤ Jm(·) and ‖δ̃(t, ·)‖2 ∧ 1 ≤ Jm(·) on {t ≤ τm}. The processes bt , b̃t and σ̃t are
càdlàg adapted.

Assumption 1 is fairly standard for analyzing the asymptotic properties of esti-
mators formed using high-frequency data; see [13] for many examples. In particu-
lar, the constant r serves as a bound for the activity of jumps in X. The restriction
r < 1 is needed for deriving central limit theorems for jump-robust estimators of
volatility functionals.

The primary interest of the current paper is on the efficient estimation of inte-
grated volatility functionals of the form

(2.3) S(g) ≡
∫ T

0
g(cs) ds,

where g(·) : Md �→ R
k is a three-time continuously differentiable function. For

example, in a bivariate case, we take g(c) = c(12)/c(11), c(12)/
√

c(11)c(22), and
c(22) − (c(12))2/c(11) for estimating the integrated beta, correlation and idiosyn-
cratic variance, respectively. More complicated transformations arise in nonpara-
metric specification tests for the covariance process [20] and the estimation of
economic models [22]) in which the form of g(·) is determined by the scientific
model under investigation.

2.2. The uncorrected estimator and its high-order biases. We now proceed
to introducing the uncorrected estimator, which is the building block of the jack-
knife estimator we propose below. The uncorrected estimator of S(g) is formed by
replacing the latent covariance matrix process c with its nonparametric estimate.
To this end, we choose a sequence kn of local windows and associate it with the
following spot covariance matrix estimator: for Nn ≡ �T/�n� − kn + 1,

(2.4) ĉn
i (kn) ≡ 1

kn�n

kn−1∑
j=0

�n
i+jX�n

i+jX

1{‖�n

i+jX‖≤un}, 1 ≤ i ≤ Nn,

where un is a thresholding sequence for eliminating jumps in X that satisfies

un � �	
n for some 	 ∈ (0,1/2).
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Our notation ĉn
i (kn) emphasizes the dependence of this estimator on the local win-

dow sequence kn. The uncorrected estimator for S(g) is then constructed as its
sample analogue:

Sn(g;kn) ≡ �n

Nn∑
i=1

g
(
ĉn
i (kn)

)
.

The asymptotic behavior of this uncorrected estimator is fairly complicated and
depends crucially on the growth rate of kn. The optimal rate for estimating the spot
volatility is known to be attained with kn � �

−1/2
n . Hence, a (seemingly) natural

choice of kn is such that

kn ∼ θ�−1/2
n for some θ ∈ (0,∞).

Under this rate condition, [14] characterized the asymptotic behavior of the un-
corrected estimator. To build intuition for our later discussions, briefly recalling
this result is instructive. We consider the special case with d = d ′ = 1 for sim-

plicity. Below, we use
L-s−→ to denote stable convergence in law, which means the

convergence in law is joint with any bounded F -measurable random variables.
Theorem 3.1 in [14] shows

�−1/2
n

(
Sn(g;kn) − S(g)

) L-s−→ Z + B1(θ) + B2(θ),

where Z is an F -conditionally centered Gaussian variable with conditional vari-
ance �(g) given by

(2.5) �(g) ≡ 2
∫ T

0
∂g(cs)

2c2
s ds,

and B1(θ) and B2(θ) are bias terms given by

B1(θ) ≡ 1

θ

∫ T

0
∂2g(cs)c

2
s ds︸ ︷︷ ︸

nonlinearity bias

,

B2(θ) ≡ −θ

2

(
g(c0) + g(cT )

)
︸ ︷︷ ︸

edge effect

− θ

12

∫ T

0
∂2g(cs)σ̃

2
s ds︸ ︷︷ ︸

bias due to diffusive movements in c

+ θ
∑

0<s≤T

∫ 1

0

(
g(cs− + w�cs) − (1 − w)g(cs−) − wg(cs)

)
dw

︸ ︷︷ ︸
.

bias due to jumps in c

(2.6)
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We note that, except for the edge effect, the bias terms shown in (2.6) are present
only when the test function g(·) is nonlinear. This result shows an important qual-
itative departure of our analysis on general volatility functionals from the baseline
problem of estimating integrated variance-covariance matrices, as the latter corre-
sponds to g(·) being the (linear) identity function.

Explicitly de-biasing B2(θ) is clearly very difficult because it depends on the
volatility of volatility σ̃ and volatility jumps �c, which involve a layer of la-
tency in addition to the latent volatility process. A simple and elegant solution
proposed by [14] is to eliminate B2(θ) asymptotically via undersmoothing (i.e.,
kn�

1/2
n → 0). As a result, the nonlinearity bias term B1(θ) becomes explosive and

needs correction. Jacod and Rosenbaum [14] proposed correcting B1(θ) via its
sample analogue:

(2.7) B1,n(g) ≡ �
1/2
n

kn

Nn∑
i=1

∂2g
(
ĉn
i (kn)

)
ĉn
i (kn)

2,

and showed that

(2.8) �−1/2
n

(
Sn(g;kn) − S(g)

) − B1,n(g)
L-s−→ Z.

Furthermore, the asymptotic variance �(g) can be consistently estimated via a
plug-in estimator, which can be used for conducting feasible inference.

This bias-corrected estimator has generated much empirical interest in the re-
cent literature ([2, 17, 20, 22]). However, as mentioned in the Introduction, esti-
mating the bias-correction term and the asymptotic variance can be cumbersome
in many empirically interesting scenarios, because of the large number of deriva-
tives to be calculated. The implementation becomes even more complicated if one
also wants to estimate and correct for various bias terms in B2(θ) as considered in
[15]. We propose a simple-to-implement jackknife method to address these issues,
to which we now turn.

3. Main results.

3.1. Two-scale jackknife estimation. We first introduce the two-scale jack-
knife estimator. This estimator eliminates only the nonlinearity bias and hence
can be considered a counterpart of the estimator of [14]. The key idea underly-
ing our construction is to use uncorrected estimators with different local windows.
To this end, we consider two sequences of local windows (k1,n, k2,n) and weights
(ψ1,ψ2) such that

(3.1)
2∑

q=1

ψq = 1,

2∑
q=1

ψqk
−1
q,n = o

(
�1/2

n

)
.
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For example, with k1,n = kn and k2,n = 2kn, the above condition is satisfied with
ψ1 = −1 and ψ2 = 2. The two-scale jackknife estimator is then given by

TSn(g) = ψ1Sn(g;k1,n) + ψ2Sn(g;k2,n).

The idea underlying this construction is quite intuitive. Indeed, we observe from
(2.6) that the nonlinearity bias B1(θ) is proportional to 1/θ (hence 1/kn). The sec-
ond condition in (3.1) thus ensures the bias terms in the two uncorrected estimators
cancel each other out up to desired precision.

Theorem 1, below, describes the asymptotic property of the two-scale estimator
TSn(g). Like [14], we impose the following undersmoothing condition (i.e., ς <

1/2) on the local window sequences.

ASSUMPTION 2. For q = 1,2, kq,n � �
−ς
n for some ς ∈ ( r

2 ∨ 1
3 , 1

2).

We also need some smoothness condition for the function g(·) coupled with
some mild pathwise regularity for the spot volatility process. Below, for a compact
set K ⊂Md and ε > 0, we denote the “ε-enlargement” about K by

Kε ≡
{
M ∈ Md : inf

A∈K‖M − A‖ < ε
}
.

ASSUMPTION 3. There exist a sequence of stopping times (τm)m≥1 increasing
to infinity and a sequence of convex compact subsets Km ⊆Md , m ≥ 1, such that
ct ∈ Km for t ≤ τm and g is three-time continuously differentiable on Kε

m for some
ε > 0.

Assumption 3 requires the localized process ct∧τm to be compactly valued, and
g(·) is C3 on a slight enlargement of this compact support. Importantly, we do
not require g(·) to satisfy the polynomial growth condition as in [14], which is
often violated in economic and financial applications. This generality is achieved
by using a spatial localization argument as in [20, 21] and [22]. The intuition un-
derlying the spatial localization argument is as follows. We first observe that the
spot covariance estimates uniformly approximate the local averages of the true
spot covariances over the corresponding time intervals. Hence, with probability
approaching 1, these estimates fall in a compact set that is “slightly larger” than
the (convex) set in which the spot covariance process takes values. As a result, for
all our probabilistic calculations, we can restrict the test function g(·) locally on a
compact set, which avoids restrictions on the global growth rate of g(·).

THEOREM 1. Suppose Assumptions 1, 2 and 3 hold and 	 ∈ [1−ς
2−r

, 1
2). Then

�−1/2
n

(
TSn(g) − S(g)

) L-s−→MN
(
0,�(g)

)
,
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where MN denotes the mixed normal distribution and

�(g) ≡
d∑

j,k,l,m=1

∫ T

0
∂jkg(cs)∂lmg(cs)


(
c(j l)
s c(km)

s + c(jm)
s c(kl)

s

)
ds.

Theorem 1 shows the two-scale jackknife estimator TSn(g) is a �
−1/2
n -

consistent estimator of S(g). After normalization, TSn admits a central limit the-
orem with F -conditional asymptotic covariance matrix �(g), which attains the
efficiency bound established in [9] and [25].

To improve the finite-sample performance, [14] suggest removing the boundary
effect by adjusting the uncorrected estimator as

S′
n(g;kn) ≡ Sn(g;kn) + kn�n

2

(
g
(
ĉn

1(kn)
) + g

(
ĉn
Nn

(kn)
))

.

Likewise, we can adjust the jackknife estimator as

TS′
n(g) ≡ ψ1S

′
n(g;k1,n) + ψ2S

′
n(g;k2,n).

Because �
−1/2
n (S′

n(g;kn) − Sn(g;kn)) = Op(kn�
1/2
n ), which vanishes asymptoti-

cally in the current case with undersmoothing, these finite-sample adjustments do
not result in any change for Theorem 1.

3.2. Consistent estimation of �(g) via simulation. We need a consistent esti-
mator for �(g) so as to conduct feasible inference based on Theorem 1. A natural
choice is the “plug-in” estimator �n(g) given by

d∑
j,k,l,m=1

�n

Nn∑
i=1

∂jkg
(
ĉn
i

)
∂lmg

(
ĉn
i

)
(
ĉ
n,(j l)
i ĉ

n,(km)
i + ĉ

n,(jm)
i ĉ

n,(kl)
i

)
,

where ĉn
i = ĉn

i (kn) and kn satisfies kn → ∞ and kn�n → 0; see, for example,
Theorem 9.4.1 in [13].

As mentioned in the Introduction, this plug-in estimator can be cumbersome to
implement because it requires calculations of the partial derivatives of g. For this
reason, we propose a simulation-based estimator for the asymptotic covariance
matrix that avoids the calculation of ∂g altogether. Algorithm 1, below, describes
this estimator, which we denote by �∗

n(g).

ALGORITHM 1. The procedure comprises of four steps:

1. Estimate ĉn
i (kn) for some kn.

2. For each block b ∈ {1, . . . , �T/kn�n�}, simulate (�n
(b−1)kn+iX

∗)1≤i≤kn as
i.i.d. draws from N (0, ĉn

(b−1)kn+1�n).
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3. Compute S̄∗
n(g) as

kn�n

�T/kn�n�∑
b=1

g

(
1

kn�n

kn−1∑
j=0

(
�n

(b−1)kn+1+jX
∗)(

�n
(b−1)kn+1+jX

∗)
)
.

4. Repeat Steps 2 and 3 for a large number of times. Compute �∗
n(g) as the

sample covariance matrix of the simulated �
−1/2
n S̄∗

n(g).

Implementing Algorithm 1 is easy because it only requires recomputing the un-
corrected estimator using simulated returns. We note that to implement this algo-
rithm, one only needs to re-estimate the spot covariance matrix in each simulation
for �T/kn�n� nonoverlapping blocks (instead of for Nn overlapping windows).
Theorem 2, below, shows �∗

n(g) is a consistent estimator of �(g).

THEOREM 2. Suppose Assumptions 1 and 3 hold, 	 ∈ [1−ς
2−r

, 1
2), kn → ∞ and

kn�n → 0. Then �∗
n(g)

P−→ �(g).

3.3. Multiscale jackknife estimation and its robustness property. The two-
scale jackknife estimator and the bias-corrected estimator of [14], implicitly or
explicitly, correct the nonlinearity bias [i.e., the B1(θ) term in (2.6)]. However,
other sources of biases [i.e., the B2(θ) term in (2.6)], including those driven by
volatility-of-volatility and volatility jumps, are “eliminated” essentially by mak-
ing the undersmoothing assumption. Although this type of theoretical argument
is quite common in nonparametric statistics, these bias terms may still have a
nontrivial effect in finite samples. This effect should be relatively large during
sample periods with large fluctuations in volatility, such as crisis and macro news-
announcement times. Such periods are of important empirical interest in economic
applications because the sizable variation in volatility helps in identifying and test-
ing economic models.

Motivated by this concern, we consider next a “complete” bias correction that
eliminates all bias terms identified in (2.6). Along this line, [15] made an interest-
ing contribution by constructing an estimator for each bias term and then correct-
ing the biases explicitly. However, implementing the estimator of [15] is difficult
in practice because the (direct) estimation of volatility-of-volatility and volatility
jumps are notoriously difficult in finite samples. As a result, the undersmoothing
approach has been preferred in economic and financial applications; see, for ex-
ample, [2, 17, 20, 21] and [22].

We propose an easy-to-implement alternative by using a multiscale jackknife
estimator that is formed as a linear combination of three (or more) uncorrected
estimators associated with different local windows. To this end, we consider local
windows kq,n and weights ψq , 1 ≤ q ≤ Q, such that

(3.2)
Q∑

q=1

ψq = 1,

Q∑
q=1

ψqk
−1
q,n = o

(
�1/2

n

)
,

Q∑
q=1

ψqkq,n = o
(
�−1/2

n

)
.
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For example, when Q = 3, kj,n = ajkn, the weights are solved as⎛⎝ψ1
ψ2
ψ3

⎞⎠ =
⎛⎝ 1 1 1

a1 a2 a3
1/a1 1/a2 1/a3

⎞⎠−1 ⎛⎝1
0
0

⎞⎠ .

The multiscale jackknife estimator is then given by

MSn(g) ≡
Q∑

q=1

ψqSn(g;kq,n).

Compared with the weights in the two-scale jackknife [recall (3.1)], the weights
in the multiscale construction (3.2) satisfy an additional condition

∑Q
q=1 ψqkq,n =

o(�
−1/2
n ). This condition is used to ensure bias terms such as B2(θ) (which is

proportional to θ and kn) cancel each other out in the linear combination of uncor-
rected estimators.

Theorem 3, below, describes the asymptotic behavior of the multiscale jack-
knife estimator MSn(g), for which we need the following condition on the local
windows.

ASSUMPTION 4. For all 1 ≤ q ≤ Q, kq,n � �
−ς
n for some ς ∈ ( r

2 ∨ 1
3 , 2

3).

THEOREM 3. Suppose Assumptions 1, 3, 4 and 	 ∈ [1−ς
2−r

, 1
2). Then

�−1/2
n

(
MSn(g) − S(g)

) L-s−→ MN
(
0,�(g)

)
,

where �(g) is defined as in Theorem 1.

Theorem 3 shows the multiscale jackknife estimator has the same asymptotic
distribution as its two-scale counterpart shown in Theorem 1. Hence, the multiscale
estimator is also semiparametrically efficient and its asymptotic variance can be
estimated using the method described in Section 3.2.

Note that Theorem 3 holds under Assumption 4, which is much weaker than
Assumption 2 that is used in Theorem 1. The key difference is that Theorem 3
not only holds with undersmoothing (i.e., kn � �

−1/2
n ), but also holds with over-

smoothing (i.e., kn � �
−1/2
n ). In the latter case, the two-scale jackknife estimator

and the bias-corrected estimator of [14] do not admit a central limit theorem, be-
cause the biases due to the boundary effect, volatility-of-volatility and volatility
jumps are no longer asymptotically negligible (these bias terms are actually explo-
sive). But such biases are implicitly corrected via the multiscale jackknife, which
makes the resulting estimator MSn(g) much less sensitive to the growth rate of
local windows. This result thus provides a well-defined sense of robustness for the
multiscale jackknife estimator.
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We can further compare Theorem 3 with the result of [15]. Jacod and Rosen-
baum [15] also consider correcting all bias terms identified in (2.6) by explic-
itly estimating each of them. These authors proved a central limit theorem for
their estimator under a specific choice of the local window, namely, kn � �

−1/2
n .

With this choice, the bias terms are “balanced” and have the same order as the
term that drives the central limit theorem. Theorem 3, however, does not require
the local windows to grow at this particular rate, but allows them to exhibit a
broad range of asymptotic behavior. Importantly, it shows the multiscale jack-
knife bias correction is effective even if the biases are explosive. From a tech-
nical point of view, to establish such results, we need to use refined techniques
to analyze the biases and their correction, which have not been seen in prior
work.

3.4. Discussion on issues related to microstructure noise and sampling asyn-
chronicity. The estimators proposed above rely on regularly sampled data in a
noise-free setting. However, financial transaction data are often contaminated with
microstructure noise and are sampled irregularly in time. These complications will
result in biases in the spot covariance estimates and, subsequently, biases in the es-
timate of integrated volatility functionals. In order to mitigate these microstructural
effects, a standard practice is to apply the estimator to sparsely sampled data. By
doing so, one reduces the relative effect of microstructure noise and asynchronous
sampling by increasing the “signal level” contained in the efficient price incre-
ments. As a result, the spot covariance estimates based on sparsely sampled noisy
data are “closer” to those formed using the efficient price. In this subsection, we
discuss sufficient conditions that justify the use of the sparse sampling method for
making inference about integrated volatility functionals (although these conditions
can likely be further improved upon).

To fix ideas, let v̂n
i (kn) denote the spot covariance estimate formed using

sparsely sampled noisy data. As in previous sections, we use ĉn
i (kn) to denote the

spot covariance estimate constructed from the efficient price. For simplicity, we re-
fer to v̂n

i (kn) and ĉn
i (kn) as the noisy and the noise-free estimates, respectively. In

view of the above heuristics concerning sparse sampling, we assume that the noisy
estimate v̂n

i (kn) consistently approximates its noise-free counterpart uniformly:

sup
1≤i≤Nn

∥∥v̂n
i (kn) − ĉn

i (kn)
∥∥ = op(1).

This condition is relatively mild because it does not require any specific rate of
convergence. Like in the proof of our main theorems above, this uniform approx-
imation condition allows us to invoke the spatial localization argument so that we
can suppose without loss of generality that g(·) is compactly supported, and hence,
Lipschitz continuous.

In order to show that microstructural complications have negligible effect for
inference, we need the difference between v̂n

i (kn) and ĉn
i (kn) to be sufficiently
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small on average. More precisely, we consider the following high-level condition:
for some an → 0,

(3.3) �n

Nn∑
i=1

∥∥v̂n
i (kn) − ĉn

i (kn)
∥∥ = Op(an),

where an depicts the rate of convergence. The microstructural effect on the uncor-
rected estimator for the integrated volatility functional can then be bounded as∥∥∥∥∥�n

Nn∑
i=1

g
(
v̂n
i (kn)

) − �n

Nn∑
i=1

g
(
ĉn
i (kn)

)∥∥∥∥∥
≤ K�n

Nn∑
i=1

∥∥v̂n
i (kn) − ĉn

i (kn)
∥∥ = Op(an).

Since the jackknife estimators are formed as linear combinations of uncorrected
estimators, the microstructural effect is asymptotically negligible for deriving their
central limit theorems if

(3.4) an = o
(
�1/2

n

)
.

This condition can be further interpreted in terms of the extent to which the
observation noise in the price and/or the degree of asynchronicity should be
“small” for sparsely sampled data. We start with the case in which the price is
observed with noise: instead observing the efficient price Xi�n , we now observe
Yi�n = Xi�n + εn,i where the noise terms εn,i are mutually independent and in-
dependent of X. Suppose that the noise terms are “small” in the sense that their
standard deviation is uniformly bounded by some sequence ãn → 0. We then ob-
serve that

∥∥v̂n
i (kn) − ĉn

i (kn)
∥∥ ≤ 2

kn�n

∥∥∥∥∥
kn∑

j=1

�n
i+jX(εn,i+j − εn,i+j−1)



∥∥∥∥∥

+ 1

kn�n

kn∑
j=1

‖εn,i+j − εn,i+j−1‖2.

It is easy to see that the two terms on the majorant side of the above estimate are
of orders Op(ãn/

√
kn�n) and Op(ã2

n/�n), respectively, which yields

an = max
{
ãn/

√
kn�n, ã

2
n/�n

}
.

For the multiscale jackknife estimator, we can take kn � �
−1/2
n . As a result, a

sufficient condition for (3.4) is ãn = o(�
3/4
n ).

Turning to the case with asynchronous sampling, we measure the degree of
asynchronicity as the proportion of mismatch between the irregular sampling
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scheme and the regular sampling scheme, which we denote by b̃n. For example,
if the minimal distance (e.g., measured by Hausdorff distance) between the set of
(irregularly spaced) transaction times and the regular 5-minute sampling grid is
less than 1 second on average, then b̃n is bounded by 1/300. Measuring the degree
of asynchronicity as such, it is easy to see that an = O(b̃n). Hence, b̃n = o(�

1/2
n )

is a sufficient condition for the asymptotic negligibility of asynchronous sampling
in the context of the current paper.

4. Monte Carlo. In this section, we examine the finite-sample performance of
our estimators in Monte Carlo simulations. We also compare them with the bias-
corrected estimators of [14, 15] and [18]. To this end, we focus on the estimation
of integrated quarticity in a univariate setting [i.e., g(c) = c2] for which the bias-
correction terms of the “completely” bias-corrected estimator of [15] were given
in closed-form. Below, we suppress the dependence on g in our notation for sim-
plicity. Throughout, we fix T = 21 days and consider two sampling frequencies:
� = 1 or 5 minutes. We conduct 1000 Monte Carlo trials in total.

We simulate X and its volatility process σ according to

(4.1)

{
dXt = σt dWt + dJX

t ,

σt = exp(−1.6 + Ft), dFt = −5Ft dt + 2dW̃t + dJF
t ,

with E[dWt dW̃t ] = −0.75dt . We simulate JX
t as a compensated Poisson jump

process with jump-size distribution N (−0.01,0.022) and intensity λ = 36, and
simulate JF

t as a compensated tempered-stable process (or CGMY process in [8])
with the Lévy jump measure given by

(4.2) ν(x) = α

|x|1+β
e−γ−|x| · 1{x<0} + α

x1+β
e−γ+x · 1{x>0},

where γ+ = 3, γ− = 5, β = 0.8, and α = 4.5. The percentage of expected quadratic
variation of Ft due to its jumps is about 30%. In this setting, the volatility of
volatility in (2.2) is given by σ̃t = 4ct , and the bias terms B1(θ) and B2(θ) in (2.6)
can be calculated explicitly as

B1(θ) = 2

θ

∫ T

0
c2
s ds,

B2(θ) = −θ

2

(
c2

0 + c2
T

) − θ

6

∫ T

0
σ̃ 2

s ds − θ

6

∑
s≤T

(�cs)
2.

We consider several estimators for the integrated quarticity, including the two-
scale jackknife estimator TSn and its boundary-adjusted version TS′

n, the mul-
tiscale jackknife estimator MSn, the undersmoothing estimator JR(1)

n ≡ Sn −
�

1/2
n B1,n proposed by [14] and its boundary-adjusted version JR(2) ≡ S′

n −
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�
1/2
n B1,n, the estimator with complete bias correction proposed by [15]: that is,

JR(3)
n ≡ Sn − �

1/2
n (B1,n + B2,n), where

B2,n ≡ −kn�
1/2
n

2

(
ĉn

1(kn)
2 + ĉn

Nn
(kn)

2) + �
1/2
n

kn

Nn∑
i=1

ĉn
i (kn)

2

− �
1/2
n

4

Nn−kn∑
i=1

(
ĉn
i+kn

(kn) − ĉn
i (kn)

)2
.

In addition, we consider the kernel-based estimator of [18] given by

Kn ≡ �n

[T/�n]∑
i=hn+1

g
(
k̂n
i (hn)

)
,

where, writing Kh(·) ≡ K(·/h)/h for the kernel function K(z) = 6(1 + 3z +
2z2)1{−1≤z≤0} and bandwidth hn,

k̂n
i (hn) ≡

i∑
j=1

Khn�n

(
(j − i)�n

)(
�n

jX
)21{|�n

j X|≤un}.

Unlike the other estimators above, Kn does not involve bias-correction. As is typ-
ical in conventional nonparametric statistics, this estimator was designed for set-
tings where the volatility path is smooth, but this is not the case in our stochastic
volatility model. Nevertheless, we include this estimator in our comparison for
completeness.

The asymptotic variance for all estimators is � = 8
∫ T

0 c4
s ds, which we estimate

using Algorithm 1 with 1000 simulated samples.
In Table 1, we find the multiscale estimator MSn achieves the smallest relative

bias for each sampling frequency: its bias is moderately smaller than that of JR(3)
n

(which also corrects all sources of biases), and is substantially smaller than those
of the other estimators. This finding suggests both MSn and JR(3)

n are effective
for bias correction, with the former performing better than the latter. That said,
the multiscale estimator has a slightly larger relative root-mean-square error than
JR(3)

n , which reflects a bias-variance trade-off in finite samples. Generally speak-
ing, the jackknife estimators perform similarly to the bias-corrected estimators
of [14] and [15], and outperform the kernel-based estimator. Note the jackknife
method does not involve any explicit estimation of the biases, which would typi-
cally require substantial effort in practical implementation.

Figure 1 compares the histograms of these estimators studentized by the es-
timated asymptotic standard error. We observe that the estimators that rely on
“undersmoothing,” namely, TSn and JR(1)

n , are not well centered. This issue is
evidently mitigated after adjusting for the boundary effect, as shown by the his-
tograms of TS′

n and JR(2)
n , and further improvement is attained by MSn and JR(3)

n .



JACKKNIFE ESTIMATION OF VOLATILITY FUNCTIONALS 171

TABLE 1
In this table, we report the relative biases and relative root-mean-square-errors (in percentage unit)
for seven estimators. For the multiscale estimator, we choose (ψ1,ψ2,ψ3) = (−2.5,8,−4.5), and
correspondingly (k1,n, k2,n, k3,n) = (15,30,45) for data sampled every 5 minutes, or (40,80,120)

for data sampled every minute. For the two-scale estimator, we choose (ψ1,ψ2) = (−1,2) along
with the same (k1,n, k2,n) above. For JRn estimators, we choose kn = 30 for 5-minute data, and 80

for 1-minute data, respectively. For the kernel-based estimator, we choose hn = 3kn for both
5-minute and 1-minute data, which minimizes approximately the RMSE among various choices

ex post. We fix T = 1 month

�n = 5 minutes �n = 1 minute

BIAS (%) RMSE (%) BIAS (%) RMSE (%)

Jackknife estimators
TSn −4.76 11.05 −2.69 5.32
TS′

n −1.09 10.24 −0.69 4.42
MSn −0.35 11.03 −0.34 4.54

Estimators with explicit bias correction

JR(1)
n −3.47 10.54 −1.92 4.83

JR(2)
n −0.98 10.28 −0.58 4.40

JR(3)
n −0.69 10.52 −0.36 4.41

Kernel-based estimator
Kn 18.80 22.71 6.94 8.44

In particular, the histograms of studentized versions of MSn and JR(3)
n match the

standard normal density very well, suggesting the feasible central limit theorem
works well in finite samples for these estimators.

To evaluate the impact of microstructure noise on these estimators, we add an
i.i.d. Gaussian noise to each observed price in our sample. The standard deviation
of the noise is 10−4, which is realistically calibrated. The results are reported in
Table 2. Compared with the results in Table 1, the impact of the noise is some-
what noticeable at a 1-minute frequency but is less clear for a 5-minute frequency.
This finding is not surprising, given that subsampling is the standard and most
widely used procedure in practice to deal with the microstructure noise, and that
the signal-to-noise ratio increases as sampling becomes more sparse.

All estimators considered above involve a choice of local windows. In practice,
the window size should not be chosen “too small” so as to have enough aggregation
within each local window, and should not be taken “too big” so that the time-
variation of various underlying processes remain moderate. Data-driven choices
of local windows, when available, often depend on user-specified loss functions
and unknown latent quantities that are hard to estimate. Given this difficulty, it is
advisable to experiment with different local window sizes as a robustness check,
to which we now turn.
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FIG. 1. In this figure, we compare the histograms of the studentized statistics with the standard
normal density. The estimators are implemented as described in Table 1. The asymptotic variance
is estimated using Algorithm 1 with 1000 simulated samples, for which we set kn = 39 for 5-minute
data, and kn = 78 for 1-minute data.

In Table 3, we demonstrate the robustness of our multiscale estimator against
different choices of local windows (i.e., kq,n). Recall that in Table 1, we choose
k2,n = 30 and 80 for 5-minute and 1-minute data, respectively, while fixing kq,n =
aqk1,n for (a1, a2, a3) = (1,2,3). Here, we use the same values of the k2,n’s as
before, but choose wider ranges of (a1, a2, a3): (1,3,9) for 5-minute data and
(1,4,12) for 1-minute data. In the case with 1-minute sampling, for example, the
jackknife estimator now involves window sizes k1,n = 20 and k3,n = 240, which
clearly span a wide range in practical terms. This robustness check thus poses a
nontrivial challenge for the proposed estimators. For comparison, we also report
results for the JRn estimates corresponding to kn = k1,n and k3,n.

From Table 3, we see that the performance of the multiscale estimator is insen-
sitive to these alternative choices of kq,n, but the performance of the JRn estimators

deteriorates. In particular, the benchmark estimator JR(1)
n , which relies on “under-

smoothing,” shows large bias when the local window size is large. In contrast, even
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TABLE 2
In this table, we report the relative biases and relative root-mean-square errors (in percentage unit)

for seven estimators. The setting is identical to that of Table 1, except that we add
i.i.d. Gaussian noises to the observed log prices

�n = 5 minutes �n = 1 minute

BIAS (%) RMSE (%) BIAS (%) RMSE (%)

Jackknife estimators
TSn −3.06 10.54 6.02 9.15
TS′

n 0.65 10.42 8.18 11.06
MSn 1.41 11.37 8.53 11.32

Estimators with explicit bias correction

JR(1)
n −1.75 10.26 6.85 9.83

JR(2)
n 0.77 10.49 8.29 11.17

JR(3)
n 1.05 10.78 8.51 11.34

Kernel-based estimator
Kn 20.88 24.64 16.42 18.41

TABLE 3
In this table, we report the relative biases and relative root-mean-square errors (in percentage unit)
for six estimators. The setting is identical to that of Table 1, except that we choose different choices

of bandwidths. For the multiscale estimator, we choose (k1,n, k2,n, k3,n) = (10,30,90) for data
sampled every 5 minutes, or (20,80,240) for data sampled every minute. For JRn estimators,
we choose kn = 10 and 90 for 5-minute data, and 20 and 240 for 1-minute data, respectively

�n = 5 minutes �n = 1 minute

BIAS (%) RMSE (%) BIAS (%) RMSE (%)

Jackknife estimators
TSn −4.29 10.82 −2.29 5.05
TS′

n −1.00 10.19 −0.62 4.40
MSn −0.49 10.51 −0.37 4.46

Estimators with explicit bias correction
kn = 10 kn = 20

JR(1)
n −4.91 11.27 −1.68 4.69

JR(2)
n −4.02 11.09 −1.33 4.57

JR(3)
n −5.79 12.07 −1.78 4.77

kn = 90 kn = 240

JR(1)
n −8.86 13.49 −4.95 7.16

JR(2)
n −1.80 10.14 −1.17 4.52

JR(3)
n −0.53 10.39 −0.41 4.45
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though the multiscale estimator depends on the same choice of local windows, the
bias terms from its building blocks are effectively canceled out so that its perfor-
mance is more robust to the choice of window size.

Overall, the Monte Carlo evidence confirms the effectiveness for bias-correction
of the multiscale jackknife and the two-scale jackknife with a boundary adjust-
ment. In addition, we find the standard error generated by Algorithm 1 captures
the sampling variabilities of these bias-corrected estimators well. Taken together,
the proposed inference procedure shows good performance in finite samples and
should provide an easy-to-implement alternative to existing methods.

5. Conclusion. We propose jackknife estimators for efficiently estimating
general integrated volatility functionals. Such functionals are broadly useful as risk
measures or moment conditions in the estimation of scientific models. The pro-
posed jackknife estimator, along with a simulation-based estimator for its asymp-
totic variance, is easy to implement in practice. In particular, the cumbersome task
of calculating (a large number of) partial derivatives is completely avoided. We
show the jackknife estimator is semiparametrically efficient and exhibits a type of
robustness with respect to the choice of local windows, in that the latter can have
both undersmoothing and oversmoothing behaviors.
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SUPPLEMENTARY MATERIAL

Supplement to “Efficient estimation of integrated volatility functionals via
multiscale jackknife” (DOI: 10.1214/18-AOS1684SUPP; .pdf). This appendix
contains all mathematical proofs.
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