
The Annals of Statistics
2019, Vol. 47, No. 1, 67–92
https://doi.org/10.1214/17-AOS1678
© Institute of Mathematical Statistics, 2019

DISTRIBUTION THEORY FOR HIERARCHICAL PROCESSES

BY FEDERICO CAMERLENGHI∗,1, ANTONIO LIJOI†,1,2, PETER ORBANZ‡,3

AND IGOR PRÜNSTER†,2

University of Milano–Bicocca∗, Bocconi University† and Columbia University‡

Hierarchies of discrete probability measures are remarkably popular as
nonparametric priors in applications, arguably due to two key properties:
(i) they naturally represent multiple heterogeneous populations; (ii) they pro-
duce ties across populations, resulting in a shrinkage property often described
as “sharing of information.” In this paper, we establish a distribution theory
for hierarchical random measures that are generated via normalization, thus
encompassing both the hierarchical Dirichlet and hierarchical Pitman–Yor
processes. These results provide a probabilistic characterization of the in-
duced (partially exchangeable) partition structure, including the distribution
and the asymptotics of the number of partition sets, and a complete posterior
characterization. They are obtained by representing hierarchical processes in
terms of completely random measures, and by applying a novel technique for
deriving the associated distributions. Moreover, they also serve as building
blocks for new simulation algorithms, and we derive marginal and condi-
tional algorithms for Bayesian inference.

1. Introduction. The random partition structure induced by discrete nonpara-
metric priors plays a pivotal role in a number of inferential problems related to
clustering, density estimation and prediction. It appears in applications such as
species sampling, computational linguistics and topic modeling, genomics and
networks. The theory for the exchangeable case is now well understood and ex-
tensively studied; see, for example, [12, 19, 30, 31] for probabilistic investigations
and, for example, [6, 14–16] for statistical contributions. However, in most ap-
plications, data are intrinsically heterogeneous and consistent with a dependence
assumption more general than exchangeability. Starting from the seminal contri-
butions of MacEachern [26, 27], an extensive literature has been developed to ad-
dress inferential issues arising with nonexchangeable observations in a Bayesian
nonparametric setting; see [7, 34] for reviews. In document analysis, for example,
the overall population consists of all words in a collection of documents, but each
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document constitutes a subpopulation with its own distribution. Latent Dirichlet
Allocation (LDA) was developed in [1] as a simple and effective solution; its enor-
mous popularity is testament to the importance of the problem. The hierarchical
Dirichlet process [35] is a natural nonparametric extension. Further contributions
in this direction include [11, 29, 34, 37]. In these models, the induced partition
structure determines the inferential outcomes but, due to the analytical complexity,
its investigation and that of the associated prediction rules have been quite limited;
first contributions in this direction, under different dependence assumptions, can
be found in [23, 28, 38]. As far as posterior characterizations are concerned, no re-
sults are known beyond the hierarchical Dirichlet case [34]. Such characterizations
are of theoretical interest, but also a prerequisite for inference algorithms, which
simulate draws from (unobserved) random measures conditionally on data; see [4,
13, 24, 38] for examples, and [10] for a comprehensive list of references.

The present paper deals with a general class of hierarchical processes obtained
by normalizing random measures, which encompass hierarchical Dirichlet and
Pitman–Yor processes. We establish a distribution theory for this class of processes
and determine the two distributional quantities essential for Bayesian inference,
namely the induced partition structure and a posterior characterization. These al-
low to perform prediction, density estimation, clustering and the assessment of
distributional homogeneity across different samples. The focus on a general class
of priors rather than on special cases has a two-fold motivation. On the one hand, it
helps to clarify the underlying probabilistic structure of hierarchical models and its
statistical implications. On the other hand, the Dirichlet process has well-known
limitations in the plain exchangeable framework, and that is similarly true in the
nonexchangeable case. In the former, various extensions of the Dirichlet process
have been introduced to provide more flexibility; our results provide counterparts
in the latter more general framework.

1.1. Partial exchangeability. A random infinite sequence is exchangeable if its
distribution is invariant under the group of all finitary permutations (those which
permute an arbitrary but finite number of indices of the sequence). It is partially
exchangeable if invariance holds under a subgroup of such permutations; see [17]
for an extensive bibliography. In the problems considered in the following, partial
exchangeability arises naturally: if a population decomposes into (conditionally in-
dependent) multiple subpopulations that are each exchangeable in their own right,
the overall population is partially exchangeable.

More formally, suppose X is a complete and separable metric space en-
dowed with the Borel σ -field X . Consider d partially exchangeable sequences
{(Xi,j )j≥1 : i = 1, . . . , d} defined on some probability space (�,F ,P) and tak-
ing values in (X,X ). By de Finetti’s representation theorem, this is equivalent to
assuming

(1) P
[{

X(Ni) ∈ Ai : i = 1, . . . , d
}] =

∫
Pd
X

d∏
i=1

p
(Ni)
i (Ai)Qd(dp1, . . . ,dpd)
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for any integer Ni ≥ 1 and Ai ∈ X Ni , where X(Ni) = (Xi,1, . . . ,Xi,Ni
) and

p(q) = p × · · · × p is the q-fold product measure on X
q , for any q ≥ 1. More-

over, PX is the space of all probability measures on X, which we suppose is en-
dowed with the topology of weak convergence and denote as PX the correspond-
ing Borel σ -algebra. The mixing or de Finetti measure Qd is a probability measure
on (Pd

X
,Pd

X
) that plays the role of a prior distribution. Hence, (1) amounts to as-

suming that, given a vector of random probability measures (p̃1, . . . , p̃d) ∼ Qd ,
the d samples are independent and the observations X(Ni) of the ith sample are
independent and identically distributed from p̃i .

As in most of the current literature, here we focus on choices of Qd that se-
lect, with probability 1, vectors of discrete probability measures. This implies that
there will be ties, with positive probability, within each sample and typically also
across different samples. From a modeling perspective, this is a desirable feature
since it allows clustering both within and across samples or, in other terms, to
have models accounting for heterogeneity in a flexible way. The appearance of ties
then naturally leads to look at the induced partition structure. In the exchangeable
framework, the partition structure is uniquely characterized by the exchangeable
partition probability function (EPPF) (see [31]), which is a key tool for studying
clustering properties, deriving prediction rules and sampling schemes.

In the partially exchangeable context, one can define an analogous object, which
we term partially exchangeable partition probability function (pEPPF), and plays
exactly the same role of the EPPF in this more general setup. In order to provide
a probabilistic description of the pEPPF, let k be the number of distinct values
recorded among the N = N1 + · · · + Nd observations in {X(Ni) : i = 1, . . . , d}.
Each distinct value identifies a specific cluster of the partition. Accordingly, ni =
(ni,1, . . . , ni,k) denotes the vector of frequency counts and ni,j is the number of
elements of the ith sample that coincide with the j th distinct value. Clearly, ni,j ≥
0 for any i = 1, . . . , d and j = 1, . . . , k, and

∑d
i=1 ni,j ≥ 1 for any j = 1, . . . , k.

Note that ni,j = 0 means that the j th distinct value does not appear in the ith
sample. The j th distinct value is shared by any two samples i and κ if and only if
ni,jnκ,j ≥ 1. To sum up, the pEPPF is defined as

(2) �
(N)
k (n1, . . . ,nd) = E

∫
Xk

k∏
j=1

p̃
n1,j

1 (dxj ) · · · p̃nd,j

d (dxj )

with the obvious constraint
∑k

j=1 ni,j = Ni , for each i = 1, . . . , d .

1.2. Outline. The main goal of the paper is to establish a distribution theory
for prior distributions Qd displaying a hierarchical structure and selecting dis-
crete random probabilities. We focus on two key aspects. On the one hand, we
investigate the random partitions induced by an array of partially exchangeable
sequences as in (1), including the distribution of the number of partition sets and
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its asymptotics when the sample size increases. On the other hand, we provide a
posterior characterization for a vector of hierarchical random probability measures
(p̃1, . . . , p̃d), conditional on the data. The former allows one to address two rele-
vant issues in Bayesian nonparametric inference, namely inference on the cluster-
ing structure of the data and prediction. The latter is crucial for accurate uncertainty
quantification and for devising simulation algorithms that generate trajectories of
hierarchical random probability measure, from their posterior distribution.

In Section 2, we introduce some basic elements on completely random measures
and provide a description of hierarchical normalized random measures. A proba-
bilistic characterization of the induced partially exchangeable random partition
is detailed in Section 3 and this forms the basis for investigating the distribu-
tional properties of the number of distinct values in d partially exchangeable sam-
ples in Section 4. The main results for establishing a posterior representation of
(p̃1, . . . , p̃d) are then stated in Section 5. Finally, the computational algorithms
that can be obtained from our theoretical results are described in Section 6. Proofs
are deferred to the the Supplementary Material [2].

2. Hierarchical normalized random measures. In the present work, we rely
on random measures as the basic building blocks for the construction of dis-
crete nonparametric priors having a hierarchical structure. Let MX be the space
of boundedly finite measures on (X,X ), that is, m(A) < ∞ for any m ∈ MX and
for any bounded set A ∈ X , equipped with the corresponding Borel σ -algebra
MX; see [5] for details. We consider random elements μ̃ defined on some proba-
bility space (�,F ,P) and taking values in (MX,MX). Furthermore, μ̃ is assumed
to be almost surely discrete and without fixed points of discontinuity. Hence, they
can be represented as μ̃ = ∑

i≥1 JiδYi
. We shall henceforth focus on random prob-

abilities obtained as suitable transformations of μ̃. In particular, we will focus on
normalization. Indeed, if 0 < μ̃(X) < ∞ a.s., we define

(3) p̃ = μ̃

μ̃(X)
= ∑

i≥1

Ji

J̄
δYi

∼ NRM(P ),

where J̄ := ∑
i≥1 Ji = μ̃(X) and P = Ep̃ is a probability distribution on (X,X ).

In order to obtain a hierarchical structure, one then assumes that (Yi)i≥1 in (3)

is exchangeable with Yi | p̃0
i.i.d.∼ p̃0. Moreover, p̃0 = μ̃0/μ̃0(X) is obtained by

normalizing a random measure μ̃0 = ∑
i≥1 Ji,0δYi,0 , where (Yi,0)i≥1 is an i.i.d.

sequence taking values in X and whose common probability distribution P0 is
nonatomic. Therefore, we deal with d sequences {(Xi,j )j≥1 : i = 1, . . . , d} that
are partially exchangeable according to (1) and the mixing measure Qd is charac-
terized by

p̃i | p̃0
i.i.d.∼ NRM(p̃0), i = 1, . . . , d,

(4)
p̃0 ∼ NRM(P0).
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The almost sure discreteness of μ̃ is clearly inherited by the p̃i’s, and hence, as
desired, we have nonparametric priors Qd selecting discrete distributions and in-
ducing ties within and across the samples X(N1), . . . ,X(Nd).

The following subsections focus on two specifications of (μ̃, μ̃0), and hence of
(4), that will be thoroughly investigated in the paper.

2.1. Hierarchical NRMIs. A first natural choice is to set μ̃ as a completely
random measure (CRM), that is, a random element taking values in MX such that
for any collection of pairwise disjoint sets A1, . . . ,Ak in X , and for any k ≥ 1,
the random variables μ̃(A1), . . . , μ̃(Ak) are mutually independent; see [18]. An
appealing feature of CRMs is the availability of their Laplace functional. Indeed,
if it is further assumed that μ̃ does not have fixed points of discontinuity, for any
measurable function f : X→R

+ one has

(5) Ee− ∫
X

f (x)μ̃(dx) = e− ∫
R+×X

[1−e−sf (x)]ν(ds,dx),

where ν is the Lévy intensity uniquely characterizing the CRM μ̃; see [18, 20] for
an exhaustive account. Though the treatment can be developed for any CRM, for
the ease of illustration henceforth we consider the case where the jumps Ji ’s and
the locations Yi ’s are independent and specifically that

(6) ν(ds,dx) = ρ(s)dscP0(dx)

for some measurable function ρ : R+ → R
+, constant c > 0 and probability mea-

sure P0 on (X,X ). Noteworthy examples are the gamma process and the σ -
stable process, which correspond to CRMs having ρ(s) = s−1e−s and ρ(s) =
σs−1−σ /	(1 − σ), for some σ ∈ (0,1), respectively. If p̃ = μ̃/μ̃(X), we use the
notation

p̃ ∼ NRMI(ρ, c,P0),

which recalls the acronym of [33], where normalized random measures have first
been introduced and studied in the exchangeable framework. The corresponding
hierarchical model in (4) is thus termed hierarchical NRMI.

For hierarchical NRMIs, one can evaluate the correlation between p̃i(A) and
p̃j (A), for any i �= j and measurable subset A of X, in terms of the underlying
parameters (c, ρ, c0, ρ0). In order to ease the statement of the result, set ψ(u) =∫ ∞

0 [1−e−us]ρ(s)ds and ψ0(u) = ∫ ∞
0 [1−e−us]ρ0(s)ds as the Laplace exponents

corresponding to p̃ and p̃0, respectively.

THEOREM 1. Suppose that p̃i | p̃0
i.i.d.∼ NRMI(ρ, c, p̃0), for i = 1, . . . , d , and

p̃0 ∼ NRMI(ρ0, c0,P0). Then, for any A ∈ X and i �= j ,

corr
(
p̃i(A), p̃j (A)

)
(7)

=
{

1 + c0c

∫ ∞
0 ue−cψ(u)τ2(u)du

∫ ∞
0 ue−c0ψ0(u)τ 2

1,0(u)du∫ ∞
0 ue−c0ψ0(u)τ2,0(u)du

}−1
,

where τq(u) = ∫ ∞
0 sqe−usρ(s)ds and τq,0(u) = ∫ ∞

0 sqe−usρ0(s)ds.
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It is worth stressing two important facts. The correlation coefficient between
p̃i(A) and p̃j (A) is always positive. It does not depend on the specific set A.
Moreover, by specifying (c, ρ, c0, ρ0) the correlation coefficient (7) becomes read-
ily available as shown in the following examples.

EXAMPLE 1. If ρ(s) = ρ0(s) = s−1e−s , then p̃0 is a Dirichlet process and
the p̃i’s are, conditionally on p̃0, independent and identically distributed Dirichlet
processes. Hence, (p̃1, . . . , p̃d) is a vector of hierarchical Dirichlet processes as in
[35]. A straightforward application of Theorem 1 yields

corr
(
p̃i(A), p̃j (A)

) = c + 1

c + 1 + c0
.

Note that the correlation is increasing in c and decreasing in c0. As c0 ↑ ∞, the
distribution of p̃0 degenerates on P0 and the p̃i ’s are independent, which is con-
sistent with corr(p̃i(A), p̃j (A)) converging to 0. On the other hand, if c ↑ ∞, then
the distribution of each p̃i , conditional on p̃0, degenerates on p̃0 and it is thus not
surprising that the correlation coefficient between any pair of p̃i(A)’s converges to
1, for any A in X .

EXAMPLE 2. The hierarchical stable NRMI arises by setting ρ(s) = σs−1−σ /

	(1 − σ) and ρ0(s) = σ0s
−1−σ0/	(1 − σ0), for some σ and σ0 in (0,1). This im-

plies that p̃0 is a σ0-stable NRMI and, conditionally on p̃0, the p̃i ’s are indepen-
dent and identically distributed σ -stable NRMIs. We will say that (p̃1, . . . , p̃d) is
a vector of hierarchical stable NRMIs. A plain application of Theorem 1 leads to

corr
(
p̃i(A), p̃j (A)

) = 1 − σ0

1 − σσ0
,

which is increasing in σ and decreasing in σ0. Due to the properties of the sta-
ble CRM, unsurprisingly the correlation coefficient does not depend on the total
masses c0 and c.

2.2. Hierarchical Pitman–Yor processes. The second relevant construction
arises when μ̃ has a distribution obtained by a suitable transformation of the distri-
bution of a CRM. In particular, let Pσ be the probability distribution on (MX,MX)

of a σ -stable CRM, with σ ∈ (0,1). For θ > 0, define Pσ,θ on (MX,MX) as abso-
lutely continuous w.r.t. Pσ and such that its Radon–Nikodym derivative is

(8)
dPσ,θ

dPσ

(m) = σ	(θ)

	(θ/σ)
m−θ (X).

The resulting random measure μ̃σ,θ with distribution Pσ,θ is not completely ran-
dom. Nonetheless, via normalization

(9) p̃ = μ̃σ,θ

μ̃σ,θ (X)
∼ PY(σ, θ;P)
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one obtains a fundamental process, the Pitman–Yor process or two parameter
Poisson–Dirichlet process. A different equivalent construction, simpler but less
convenient for our purposes, starts from a specific NRMI(ρ, c,P0) and puts a
gamma prior on the parameter c; see [32] for details on both derivations.

The following results provides the correlation structure for the hierarchical
Pitman–Yor process and nicely describes the role of the parameters (σ, σ0, θ, θ0).

THEOREM 2. Suppose that p̃i | p̃0
i.i.d.∼ PY(σ, θ, p̃0), for i = 1, . . . , d , and

p̃0 ∼ PY(σ0, θ0,P0). Then, for any A ∈ X and i �= j ,

(10) corr
(
p̃i(A), p̃j (A)

) =
{

1 + 1 − σ

1 − σ0

θ0 + σ0

θ + 1

}−1
.

Unsurprisingly, also for hierarchical Pitman–Yor processes the correlation be-
tween p̃i(A) and p̃j (A), for any i �= j , is positive and does not depend on A ∈ X .
Moreover, from (10) the impact of (θ0, σ0, θ, σ ) on corr(p̃i(A), p̃j (A)) can be
easily deduced.

3. Random partitions induced by hierarchical NRMs. Consider an array
of d partially exchangeable sequences with de Finetti measure Qd given by hier-
archies of normalized measures as in (4). As already mentioned, the discreteness
of the p̃i ’s and p̃0 entails that P[X
,i = Xκ,j ] > 0 for any 
 and κ , that is, there
is a positive probability of ties both within each sample and across the different
samples X(Ni) = (Xi,1, . . . ,Xi,Ni

). A random partition of the samples is thus in-
duced, whereby any two elements X
,i and Xκ,j are in the same partition group
(or cluster) if and only if they take on the same value. Its probability distribution is
identified by the pEPPF �

(N)
k in (2). Here, we determine a closed form expression

for hierarchical NRMIs and the hierarchical Pitman–Yor process.
We first focus on hierarchical NRMIs. In order to gain some intuition on the

structure of �
(N)
k , it is worth recalling the so-called Chinese restaurant franchise

metaphor described in [35] for the hierarchical Dirichlet process. According to
this scheme, a franchise of d restaurants shares the same menu, which includes
an infinite number of dishes and is generated by the top level base measure P0.
Each restaurant has infinitely many tables. The first customer sitting at each table
of restaurant i chooses the dish and this dish is shared by all other customers who
afterwards join the same table. In contrast to the well-known Chinese restaurant
process, the same dish can be served at different tables within the same restaurant
and across different restaurants. According to this scheme, Xi,j represents the dish
served in the ith restaurant to the j th customer for j = 1, . . . ,Ni and i = 1, . . . , d .
Furthermore, the frequency ni,j in (2) is the number of customers in restaurant i

eating the j th dish and we further let 
i,j ∈ {1, . . . , ni,j } be the number of tables in
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restaurant i at which the j th dish is served, if ni,j ≥ 1. When ni,j = 0, it is obvious
that 
i,j = 0 as well. Hence,


̄•j =
d∑

i=1


i,j , 
̄i• =
k∑

j=1


i,j ,

denote, respectively, the number of tables serving dish j (across restaurants) and
the number of tables in restaurant i (regardless of the served dishes). Moreover,
if we further label the tables, with qi,j,t we can identify the number of customers

in restaurant i eating dish j at table t so that
∑
i,j

t=1 qi,j,t = ni,j . This additional
notation suggests we are going to consider a combinatorial structure arising from
the composition of random partitions acting at different levels of the hierarchy:
one yields a partition where the N = N1 + · · · + Nd customers are allocated to
|�| = ∑d

i=1
∑k

j=1 
i,j ≥ k tables and these tables are then clustered into k groups,
with each group being identified by a different distinct dish.

Before providing the pEPPF, we introduce the notation that identifies the com-
posing random partitions. If p̃0 ∼ NRMI(ρ0, c0,P0) and P0 is a diffuse proba-
bility measure on X, for any k ∈ {1, . . . , n} and any vector of positive integers
(r1, . . . , rk) such that

∑k
i=1 ri = n, we set

(11) �
(n)
k,0(r1, . . . , rk) = ck

0

	(n)

∫ ∞
0

un−1e−c0ψ0(u)
k∏

j=1

τrj ,0(u)du.

Note that according to [16], Proposition 3, �
(n)
k,0 is the EPPF induced by an ex-

changeable sequence drawn from a NRMI with parameter (c0, ρ0).

THEOREM 3. Suppose the sequences {(Xi,j )j≥1 : i = 1, . . . , d} are partially
exchangeable according to (1), with Qd characterized by

p̃i | p̃0
i.i.d.∼ NRMI(ρ, c, p̃0) (i = 1, . . . , d), p̃0 ∼ NRMI(ρ0, c0,P0).

Then

�
(N)
k (n1, . . . ,nd)

= ∑
�

∑
q

�
(|�|)
k,0 (
•1, . . . , 
•k)

×
d∏

i=1

k∏
j=1

1


i,j !
(

ni,j

qi,j,1, . . . , qi,j,
i,j

)
�

(Ni)


̄i•,i
(qi,1, . . . ,qi,k),

(12)

where, if ni,j ≥ 1, qi,j = (qi,j,1, . . . , qi,j,
i,j
) is a vector of positive integers such

that |qi,j | = ni,j , for any i = 1, . . . , d and j = 1, . . . , k, and

(13) �
(Ni)


̄i•,i
(qi,1, . . . ,qi,k) = c
̄i•

	(Ni)

∫ ∞
0

uNi−1e−cψ(u)
k∏

j=1


i,j∏
t=1

τqi,j,t
(u)du.
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Note that, if ni,j = 0, then qi,j = (0, . . . ,0) and

�
(Ni)


̄i•,i
(qi,1, . . . ,qi,k) = �

(Ni)


̄i•,i
(qi,1, . . . ,qi,j−1,qi,j+1, . . .qi,k).

The backbone of (12) is

(14) �
(|�|)
k,0 (
•1, . . . , 
•k)

d∏
i=1

�
(Ni)


̄i•,i
(q i,1, . . . ,qi,k)

which displays the random partitions’ composition acting at the two levels of the
hierarchy: the single samples (or restaurants) and the whole collection of samples
(or the franchise). The former is captured by

∏d
i=1 �

(Ni)


̄i•,i
while the latter is identi-

fied by �
(|�|)
k,0 . The resulting expression of �

(N)
k then follows from plain marginal-

ization.
We now illustrate the result by considering again the hierarchical Dirichlet pro-

cess and the hierarchical stable NRMI.

EXAMPLE 3. Let (p̃1, . . . , p̃d) be a vector of hierarchical Dirichlet processes
as in Example 1. Let (a)n = 	(a+n)/	(a) be the ascending factorial and |s(n, k)|
the signless Stirling number of the first kind. It is then straightforward to show that

�
(N)
k (n1, . . . ,nd)

= ck
0∏d

i=1(c)Ni

∑
�

c|�|

(c0)|�|

k∏
j=1

(
̄•j − 1)!
d∏

i=1

∣∣s(ni,j , 
i,j )
∣∣

= ck
0

(
d∏

i=1

∏k
j=1(c)ni,j

(c)Ni

)∑
�

1

(c0)|�|

k∏
j=1

(
̄•j − 1)!
d∏

i=1

P[Kni,j
= 
i,j ],

where Kni,j
is a random variable denoting the number of distinct observations,

out of ni,j drawn from an exchangeable sequence whose de Finetti measure is a
Dirichlet process with concentration parameter c. Alternatively, one can rely on
properties of |s(n, k)| and deduce the following integral representation:

�
(N)
k (n1, . . . ,nd)

= ck
0c

ξ∏d
i=1(c)Ni

∫
�k

Dk(dp; ξ1, . . . , ξk, c0)

d∏
i=1

∏
{j :ni,j≥1}

(cpj + 1)ni,j−1,

where ξj = ∑d
i=1 1{1,2,...}(ni,j ) is the number of restaurants sharing the j th dish,

ξ = ∑k
j=1 ξj and Dk(·;a1, . . . , ak+1) is the multivariate Dirichlet distribution on

the k-dimensional simplex �k , with parameters (a1, . . . , ak+1).
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EXAMPLE 4. Let (p̃1, . . . , p̃d) be a vector of hierarchical stable NRMIs de-
fined as in Example 2 and C (n, k;σ) be the generalized factorial coefficients de-
fined by

(σ t)n =
n∑

k=1

C (n, k;σ)(t)k.

As for the pEPPF, Theorem 3 and some algebra lead to

�
(N)
k (n1, . . . ,nd)

= σk−1
0 	(k)∏d
i=1 	(Ni)

∑
�

σ |�|−d ∏d
i=1 	(
̄i•)

	(|�|)
k∏

j=1

(1 − σ0)
̄•j−1

×
d∏

i=1

k∏
j=1

C (ni,j , 
i,j ;σ)

σ 
i,j

= σk−1
0 σ ξ−d

d∏
i=1

(∏
{j :ni,j≥1} 	(ni,j )

	(Ni)

)∑
�

∏k
j=1(1 − σ0)
̄•j−1

	(|�|)

×
d∏

i=1

(
	(
̄i•)∏

{j :ni,j≥1} 	(
i,j )

) d∏
i=1

k∏
j=1

P[Kni,j
= 
i,j ]

with Kni,j
denoting the number of distinct observations generated by ni,j obser-

vations from an exchangeable sequence whose de Finetti measure is a normalized
σ -stable process.

The combinatorial structure yielding the pEPPF in (12) is not specific to hier-
archical NRMIs. Indeed, it can be established also for the Pitman–Yor process,
which arises as the normalization of a measure that is not completely random.

THEOREM 4. Let {(Xi,j )j≥1 : i = 1, . . . , d} be partially exchangeable as in
(1), with Qd characterized by

p̃i | p̃0
i.i.d.∼ PY(σ, θ; p̃0) (i = 1, . . . , d), p̃0 ∼ PY(σ0, θ0;P0).

Then

�
(N)
k (n1, . . . ,nd) = ∑

�

∏k−1
r=1(θ0 + rσ0)

(θ0 + 1)|�|−1

k∏
j=1

(1 − σ0)
̄•j−1

(15)

×
d∏

i=1

∏
̄i•−1
r=1 (θ + rσ )

(θ + 1)Ni−1

k∏
j=1

C (ni,j , 
i,j ;σ)

σ 
i,j
.
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This result is related to the findings in [11], whose construction leads to a tree
structure used as a language model. In models of this type, termed sequence mem-
oizer, the observations take values in the space �∗ of finite sequences of elements
from a countable (typically finite) set symbols �. Each random probability mea-
sure involved in the hierarchies of the model is supported by � and it is then
apparent that the base measure at the root of the hierarchy is atomic. Our treatment
is different, in the sense that the state space coincides with any separable and com-
plete metric space X and the probability distribution at the root of the hierarchy is
diffuse. The latter is crucial for obtaining the expressions of the pEPPF displayed
in this paper.

4. Distribution of the number of clusters KN . Having determined the
pEPPF of hierarchical NRMIs and hierarchical Pitman–Yor processes, a natural
issue to address is the determination of the probability distribution of the number
KN of distinct values out of N = N1 + · · · + Nd partially exchangeable observa-
tions. This can be achieved by relying on the composition of random partitions in
the pEPPF representations in Theorems 3 and 4 and highlighted in (14). For the
derivation of the result, it is useful to introduce a collection of sequences of la-

tent random variables {(Ti,j )j≥1 : i = 1, . . . , d}. They are such that Ti,j |q̃i
i.i.d.∼ q̃i ,

with q̃i
i.i.d.∼ NRMI(c, ρ,G) for hierarchical NRMIs and q̃i

i.i.d.∼ PY(σ, θ,G) for hi-
erarchical Pitman–Yor processes, while G is some diffuse probability measure. In
terms of the Chinese restaurant franchise metaphor, Ti,j is the label of the table
where the j th customer of the ith restaurant is seated. In view of this, the proba-
bility distribution of KN arises by considering:

(i) independent random variables K ′
i,Ni

that equal, for each i = 1, . . . , d , the

number of distinct values in T (Ni) = (Ti,1, . . . , Ti,Ni
);

(ii) K0,t , which represents the number of distinct values out of t exchangeable
random elements generated from p̃0.

According to the Chinese restaurant metaphor, K ′
i,Ni

is the number of tables where
the Ni customers of restaurant i are seated, while K0,t is the number of distinct
dishes allocated to the t tables where the N customers of the whole franchise are
seated.

THEOREM 5. Suppose KN is the number of distinct values in the d partially
exchangeable samples {X(Ni) : i = 1, . . . , d} governed by a vector of hierarchical

NRMIs, that is, p̃i |p̃0
i.i.d.∼ NRMI(c, ρ, p̃0) and p̃0 ∼ NRMI(c0, ρ0,P0), with P0

being nonatomic. Then, for any k = 1, . . . ,N one has

(16) P[KN = k] =
N∑

t=k

P[K0,t = k]P
[

d∑
i=1

K ′
i,Ni

= t

]
.
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The probability distributions of K0,t and of K ′
i,Ni

are readily derived from their
EPPFs and coincide with

P[K0,t = k]

= 1

k!
∑

(r1,...,rk)∈�k,t

(
t

r1 · · · rk

)
�

(t)
k,0(r1, . . . , rk)

(17)

for any k ∈ {1, . . . , t}, where �j,n = {(r1, . . . , rj ) : ri ≥ 1,
∑j

i=1 ri = n}, and

P
[
K ′

i,Ni
= ζ

]

= 1

ζ !
∑

(r1,...,rζ )∈�ζ,Ni

(
Ni

r1 · · · rζ

)
�

(Ni)
ζ,i (r1, . . . , rζ )

(18)

for any ζ ∈ {1, . . . ,Ni}.
A similar result holds for the hierarchical Pitman–Yor process.

THEOREM 6. Suppose KN is the number of distinct values in the d partially
exchangeable samples {X(Ni) : i = 1, . . . , d} governed by a vector of hierarchical

Pitman–Yor processes, that is, p̃i | p̃0
i.i.d.∼ PY(σ, θ; p̃0) and p̃0 ∼ PY(σ0, θ0;P0).

Then

P[KN = k]

=
N∑

t=k

∏k−1
r=1(θ0 + rσ0)

(θ0 + 1)t−1

C (t, k;σ0)

σ k
0

× ∑
{(ζ1,...,ζd )∈�d,t }

d∏
i=1

∏ζi−1
r=1 (θ + rσ )

(θ + 1)Ni−1

C (Ni, ζi;σ)

σ ζi
.

(19)

REMARK 1. In the proofs of Theorems 5–6, based on the expressions of
the pEPPFs, we give an alternative equivalent representation of KN : if ξ(N) =
K ′

1,N1
+· · ·+K ′

d,Nd
, from (16) and (19) one deduces for both hierarchical NRMIs

and Pitman–Yor processes

KN
d= K0,ξ(N).

The equality between KN and K0,ξ(N) can be strengthened, and actually holds
almost surely. This fact is useful for the determination of the asymptotic behavior
of KN .

Before establishing the asymptotic behavior of KN , as N → ∞, intro-
duce two positive sequences (λ0(n))n≥1 and (λ(n))n≥1 such that limn λ0(n) =
limn λ(n) = ∞ and assume λ0 satisfies the following condition:
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(H1) for any pair of positive sequences (b1(n))n≥1 and (b2(n))n≥1 such that
limn b1(n) = limn b2(n) = ∞ and limn(b1(n)/b2(n)) = 1

lim
n→∞

λ0(b1(n))

λ0(b2(n))
= 1.

We would like to stress that assumption (H1) is satisfied when λ0 is a regularly
varying function.

In the sequel, we agree that Yn � λ(n), for n → ∞, means that limn Yn/λ(n)

almost surely exists and equals a finite and positive random variable, then one can
state the following.

THEOREM 7. Suppose KN is the number of distinct values in the d par-
tially exchangeable samples {X(Ni) : i = 1, . . . , d} governed by a vector of
hierarchical NRMIs such that K0,N � λ0(n) and K ′

i,N � λ(N) as N → ∞,
where (λ0(n))n≥1 satisfies (H1). Moreover, let N1 = · · · = Nd = N∗ = N/d .
Then

KN � λ0
(
ηλ(N/d)

)
as N → ∞,

for some positive and finite random variable η.
In particular, if (p̃1, . . . , p̃d) is a vector of hierarchical Dirichlet processes,

then

KN � log logN as N → ∞.

Note that the rate of increase of KN for the hierarchical Dirichlet process has
been also displayed in [34] based on a more informal argument. The corresponding
result for hierarchical Pitman–Yor process is as follows.

THEOREM 8. Suppose KN is the number of distinct values in the d par-
tially exchangeable samples {X(Ni) : i = 1, . . . , d} governed by a vector of hier-
archical Pitman–Yor processes. Furthermore, let N1 = · · · = Nd = N∗ = N/d .
Then

KN � Nσσ0 as N → ∞.

REMARK 2. These results can be extended to the case where only a subset of
the Ni’s diverge and the others stay finite. Indeed, if for some m ≤ d one has Nj1 =
· · · = Njm = N∗, where N∗ → ∞, and Ni < L < ∞ for any other i /∈ {j1, . . . , jm},
then it is possible to conclude that

KN � λ0
(
ηλ(N/m)

)
as N∗ → ∞, which entails N → ∞. This leaves the rates of increase for KN

displayed in Theorems 7–8 unchanged.
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REMARK 3. With some care, the results can be generalized to cover the
case of the Ni’s diverging at different rates. Indeed, considering the asymp-
totics as max1≤i≤d Ni → ∞, KN increases at rates similar to those displayed
Theorems 7–8.

5. Posterior characterizations. In order to complete the description of dis-
tributional properties of hierarchical processes, it is essential to determine a poste-
rior characterization. To the best of our knowledge, no posterior characterization is
available for dependent processes in a partially exchangeable framework, whether
constructed in terms of hierarchies or by different means. Hence, our following
results are the very first. Despite the theoretical interest, note that while for pre-
diction the partition probability functions of Theorems 3–4 suffice, inference on
nonlinear functionals of (p̃1, . . . , p̃d) requires the posterior distribution of the vec-
tor of hierarchical random probabilities.

5.1. Hierarchical NRMI posterior. In the following, let X∗
1, . . . ,X∗

k denote the
distinct observations featured by the whole collection of samples X = {X(Ni) : i =
1, . . . , d} and assume U0 is a positive random variable whose density function,
conditional on X and on the latent tables’ labels T = {T (Ni) : i = 1, . . . , d} intro-
duced in Section 4, equals

(20) f0(u|X,T ) ∝ u|�|−1e−c0ψ0(u)
k∏

j=1

τ
̄•j ,0(u).

The posterior characterization is then composed of two blocks, the first concerning
the root of the hierarchy in terms of μ̃0 and the second concerning the vector of
random probabilities.

THEOREM 9. Suppose the data X are partially exchangeable and are mod-
eled as in (4). Then

(21) μ̃0|(X,T ,U0)
d= η∗

0 +
k∑

j=1

Ij δX∗
j
,

where the two summands on the right-hand side of the distributional identity are
independent and:

(i) η∗
0 is a CRM with intensity

ν0(ds,dx) = e−U0sρ0(s)dsc0P0(dx).

(ii) the Ij ’s are independent and nonnegative jumps with density

fj (s|X,T ) ∝ s
̄•j e−sU0ρ0(s).
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It is worth noting that the posterior of μ̃0 depends on sample information across
the populations rather than population–specific, most notably the number of dif-
ferent dishes served across restaurants. This clearly serves the purpose of directing
the dependence across populations. Theorem 9 allows us then to establish the pos-
terior distribution of a vector (μ̃1, . . . , μ̃d) of hierarchical CRMs, conditional a
vector U = (U1, . . . ,Ud) whose components are conditionally independent, given
(X,T ), and with respective densities

(22) fi(u|X,T ) ∝ uNi−1e−cψ(u)
k∏

j=1


i,j∏
t=1

τqi,j,t
(u), i = 1, . . . , d.

The fundamental posterior characterization, where population-specific character-
istics come into play, can then be stated as follows.

THEOREM 10. Suppose the data X are partially exchangeable and are mod-
eled as in (4). Then

(μ̃1, . . . , μ̃d)|(X,T ,U , μ̃0)

d= (
μ̃∗

1, . . . , μ̃
∗
d

)
(23)

+
(

k∑
j=1


1,j∑
t=1

J1,j,t δX∗
j
, . . . ,

k∑
j=1


d,j∑
t=1

Jd,j,t δX∗
j

)
,

where the two summands on the right-hand side are independent,
∑
i,j

t=1 Ji,j,t ≡ 0
if ni,j = 0 and:

(i) (μ̃∗
1, . . . , μ̃

∗
d) is a vector of hierarchical CRMs and, conditional on μ̃∗

0 =
η∗

0 + ∑k
j=1 Ij δX∗

j
in (21), each μ̃∗

i has intensity

νi(ds,dx) = e−Uisρ(s)dscp̃∗
0(dx),

with p̃∗
0 = μ̃∗

0/μ̃
∗
0(X);

(ii) the jumps Ji,j,t are independent and nonnegative random variables whose
density equals

fi,j,t (s) ∝ e−Uissqi,j,t ρ(s),

when ni,j ≥ 1, whereas Ji,j,t = 0, almost surely, if ni,j = 0.

The expressions involved in the posterior characterization of Theorem 10 are
somehow reminiscent of the ones provided in [16] for the exchangeable case. This
is due to the fact that, once accounted for the dependence structure inherited from
the hierarchical construction, one has exchangeability within each population.

We now illustrate the general results by means of two examples, related to the
hierarchical Dirichlet process and the hierarchical stable NRMI.
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EXAMPLE 5. Assume that ρ(s) = ρ0(s) = e−s/s, so we are considering a
vector of hierarchical Dirichlet processes. Recall that ψ(u) = ψ0(u) = log(1 + u)

and τq(u) = τq,0(u) = 	(q)/(1 + u)q . In this case,

f0(u) = 	(|�| + c0)

	(|�|)	(c0)

u|�|−1

(1 + u)c0+|�| 1(0,∞)(u)

implying that U0/(1 +U0) ∼ Beta(|�|, c0). In the posterior representation of μ̃0 as
stated in Theorem 9, one has

(a) η∗
0 is a gamma CRM with intensity e−(1+U0)ss−1 dsc0P0(dx),

(b) Ij
ind∼ Ga(
̄•j ,1 + U0), meaning that its density function is

(1 + U0)

̄•j

	(
̄•j )
x
̄•j−1e−(1+U0)x1(0,∞)(x).

Now, since the normalized distributions of (a) and (b) do not depend on the scale
U0, it follows that

p̃∗
0 = p̃0|(X,T ) ∼ D

(
c0P0 +

k∑
j=1


̄•j δX∗
j

)
,

with D indicating a Dirichlet process. As far as the vector of random probabilities
(p̃1, . . . , p̃d) is concerned, by Theorem 10 one has that, conditional on p̃∗

0 and
on (X,T ,U), the CRMs μ̃1, . . . , μ̃d are independent, and the distribution of each
μ̃i equals the probability distribution of the random measure μ̃∗

i + ∑k
j=1 Hi,j δX∗

i,j

where

(a′) μ̃∗
i is a gamma CRM having intensity e−(1+Ui)ss−1 dscp̃∗

0(dx),

(b′) Hi,j = ∑
i,j

t=1 Ji,j,t , where Ji,j,t
ind∼ Ga(qi,j,t ,Ui + 1), for t = 1, . . . , 
i,j ,

thus implying that Hi,j ∼ Ga(ni,j ,Ui + 1) if ni,j ≥ 1 and Hi,j = 0 almost surely
if ni,j = 0, by virtue of Theorem 10(ii).

Moreover, note that Ui/(1 + Ui)
ind∼ Beta(c,Ni). Hence, by the same arguments as

before, one has

p̃i |(X,T , p̃∗
0
) ∼ D

(
cp̃∗

0 +
k∑

j=1

ni,j δX∗
i,j

)

for i = 1, . . . , d . Note that the dependence on the table configuration T is induced
solely by p̃∗

0 , arguably a quite restrictive feature.

EXAMPLE 6. For a hierarchical stable NRMI, one has ρ(s) = σs−1−σ ds/

	(1 −σ), for some σ ∈ (0,1), ψ(u) = uσ and τq(u) = σ(1 −σ)q−1u
σ−q . Similar

expressions hold true for ρ0, τq,0 and ψ0, with σ0 ∈ (0,1) replacing σ . It is easily
seen that U0 is such that U

σ0
0 ∼ Ga(k, c0) and note that the distribution of U0

depends on the observations only through k. Moreover,
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(a) η∗
0 is a CRM with intensity

σ0

	(1 − σ0)

e−U0s

sσ0+1 dsc0P0(dx),

which is known as generalized gamma CRM (see, e.g., [22]).

(b) Ij
ind∼ Ga(
̄•j − σ0,U0).

Hence, p̃∗
0 = (η∗

0 + ∑k
j=1 Ij δX∗

j
)/(η∗

0(X) + ∑k
j=1 Ij ). Conditional on p̃∗

0 , and on
(X,T ,U), the CRMs μ̃1, . . . , μ̃d are independent and each μ̃i equals, in distribu-
tion, μ̃∗

i + ∑ki

j=1 Hi,j δX∗
i,j

, where

(a′) μ̃∗
i is a generalized gamma CRM whose intensity is

σ

	(1 − σ)

e−Uis

sσ+1 dscp̃∗
0(dx);

(b′) Hi,j := ∑
i,j

t=1 Ji,j,t , where Ji,j,t
ind∼ Ga(qi,j,t − σ,Ui), for t = 1, . . . , 
i,j ,

thus implying that Hi,j
ind∼ Ga(ni,j − 
i,j σ,Ui) if ni,j ≥ 1, while Hi,j = 0 almost

surely if ni,j = 0.

Finally, Ui is such that Uσ
i ∼ Ga(k, c). This implies that the posterior distribution

of (p̃1, . . . , p̃d), conditional on the data and a suitable latent structure, is a vector
of normalized generalized gamma CRMs with fixed points of discontinuity at the
data points.

5.2. Hierarchical PY posterior. Even if not obtained through the normaliza-
tion of a CRM, the techniques used in Theorems 9–10 apply, with suitable mod-
ifications, to the determination of a posterior characterization of the Pitman–Yor
process. Hence, assume that data X are partially exchangeable as in (1) and the
prior Qd is characterized by

p̃i | p̃0
i.i.d.∼ PY(σ, θ; p̃0) (i = 1, . . . , d),

p̃0 ∼ PY(σ0, θ0;P0),

where p̃0 = μ̃0/μ̃0(X) and p̃i = μ̃i/μ̃i(X), for i = 1, . . . , d and, recall that in
view of (8), here the random measures μ̃0 and μ̃i are not completely random. The
first step is again the posterior characterization of the root of the hierarchy in terms
of μ̃0.

THEOREM 11. Let V0 be such that V
σ0
0 ∼ Ga(k + θ0/σ0,1). Then μ̃0|(X,

T ,V0) equals, in distribution, the random measure η∗
0 + ∑k

j=1 Ij δX∗
j
, where η∗

0 is
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a generalized gamma CRM whose intensity is

σ0

	(1 − σ0)

e−V0s

s1+σ0
dsP0(dx),

the jumps {Ij : j = 1, . . . , k} and η∗
0 are independent and Ij

ind∼ Ga(
̄•j − σ0,V0),
for j = 1, . . . , k.

Given this result, one can establish the following posterior characterization of
the vector of random measures (μ̃1, . . . , μ̃d) whose normalization yields a vector
of hierarchical PY processes.

THEOREM 12. Let Vi be such that V σ
i

ind∼ Ga(
̄i• + θ/σ,1), for i = 1, . . . , d .
Then (μ̃1, . . . , μ̃d)|(X,T ,V , p̃∗

0) equals, in distribution, the random measure

(
μ̃∗

1, . . . , μ̃
∗
d

) +
(

k∑
j=1

H1,j δX∗
j
, . . . ,

k∑
j=1

Hd,j δX∗
j

)
,

where the two summands in the above expression are independent, p̃∗
0 = (η∗

0 +∑k
j=1 Ij δX∗

j
)/(η∗

0(X) + ∑k
j=1 Ij ) and:

(i) μ̃∗
1, . . . , μ̃

∗
d are independent and each μ̃∗

i is a generalized gamma CRM
with intensity

σ

	(1 − σ)

e−Vis

s1+σ
dsp̃∗

0(dx),

(ii) Hi,j
ind∼ Ga(ni,j − 
i,j σ,Vi) if ni,j ≥ 1 and Hi,j = 0, almost surely, if

ni,j = 0.

From Theorems 11–12, the posterior distributions of p̃0 and of the p̃i ’s, condi-
tional on p̃0, immediately follow. However, given the special features of the PY
process, one can further simplify such a representation and discard the dependence
on the latent random elements V0 and V = (V1, . . . , Vd) leading to a simple poste-
rior representation, which completes the picture of the posterior behavior of hierar-
chical PY process. In stating the result, we set ki = card{j : ni,j ≥ 1} and agree that
the Dirichlet distribution with parameters (ni,1 − 
i,1σ, . . . , ni,k − 
i,kσ, θ + 
̄i•σ)

is on the ki -dimensional simplex, after removing the parameters having ni,j = 0.

THEOREM 13. The posterior distribution of p̃0, conditional on (X,T ), equals
the distribution of the random probability measure

(24)
k∑

j=1

WjδX∗
j
+ Wk+1p̃0,k,
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where (W1, . . . ,Wk) is a k-variate Dirichlet random vector with parameters
(
̄•1 − σ0, . . . , 
̄•k − σ0, θ0 + kσ0), Wk+1 = 1 − ∑k

i=1 Wi and p̃0,k ∼ PY(σ0, θ0 +
kσ0;P0). Moreover, conditional on (p̃0,X,T ), the posterior distribution of each
p̃∗

i = (μ̃∗
i + ∑k

j=1 Hi,j δX∗
j
)/(μ̃∗

i (X) + ∑k
j=1 Hi,j ) equals the distribution of the

random measure

(25)
k∑

j=1

Wi,j δX∗
j
+ Wi,k+1p̃i,k,

where (Wi,1, . . . ,Wi,k) is a k-variate Dirichlet random vector with parameters

(ni,1 − 
i,1σ, . . . , ni,k − 
i,kσ, θ + 
̄i•σ), Wi,k+1 = 1 − ∑k
j=1 Wi,j and p̃i,k | p̃0

ind∼
PY(σ, θ + 
̄i•σ ; p̃0).

As previously mentioned, in (25) one has P[Wi,j = 0] = 1 whenever ni,j = 0
and the distribution of (Wi,1, . . . ,Wi,k) degenerates on a lower-dimensional sim-
plex. Both representations (24) and (25) are reminiscent of the one given in the
exchangeable case by [30]. The common thread is the so-called quasi-conjugacy
property characteristic of the PY process; see [25].

6. Algorithms. The theoretical findings in Sections 3 and 5 are essential
for deriving, respectively, marginal and conditional sampling schemes. Note that,
based on the pEPPFs provided in Theorems 3–4, one can derive the predictive dis-
tributions associated to hierarchical normalized random measures. However, the
analytical complexity inherent to the hierarchical construction does not allow to
deduce closed form expressions. Therefore, the best route for a concrete imple-
mentation is represented by the derivation of suitable sampling schemes. In Sec-
tion 6.1, we state the marginal sampler arising from the pEPPF in the context of
prediction problems, when p̃1, . . . , p̃d model directly the data and one is interested
in specific features of additional samples (Xi,Ni+1, . . . ,Xi,Ni+m), conditional on
X(Ni) = (Xi,1, . . . ,Xi,Ni

), for i = 1, . . . , d . The algorithm can be adapted in a
straightforward way to mixture models with p̃1, . . . , p̃d modeling latent random
variables in dependent mixtures. Finally, in Section 6.2 we devise a conditional
algorithm, which allows to simulate the trajectories of (p̃1, . . . , p̃d) from its pos-
terior distribution. These posterior trajectories can then be immediately used for
prediction and mixture modeling.

6.1. Blackwell–MacQueen urn scheme. The pEPPFs established in Theo-
rems 3–4 arise upon marginalizing out the hierarchical random probability mea-
sures and naturally lend themselves to be used for addressing predictive inferen-
tial issues. To be more specific, conditional on observed data X(Ni), we aim at
determining the probability distribution of the mi additional outcomes for each
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population i = 1, . . . , d:

P

[
d⋂

i=1

{
X(mi |Ni) ∈ Ai

}|X(N1), . . . ,X(Nd)

]

(26)

=
∫

PX

d∏
i=1

p
(mi)
i (Ai)Qd

(
dp1, . . . ,dpd |X(N1), . . . ,X(Nd)),

where X(mi |Ni) = (Xi,Ni+1, . . . ,Xi,Ni+mi
) and Ai ∈ X mi . Based on (26), one can

predict specific features of X(mi |Ni), for i = 1, . . . , d , such as, for example, the
number of new distinct values in the additional mi sample data or the number of
distinct values that have appeared r times in the observed sample X(Ni) that will
be recorded in X(mi |Ni). These and a number of related problems have been exten-
sively studied in the exchangeable case in view of species sampling applications
where such quantities can be seen as measures of species diversity; see, for exam-
ple, [8, 21]. The results of this paper allow to cover also the more realistic partially
exchangeable case for the first time.

The direct evaluation of (26) is unfeasible and one needs to resort to some
simulation scheme. To this end, one may rely on the pEPPF in (12)–(15) to de-
vise a Blackwell–MacQueen urn scheme, for any d ≥ 2, that generates X(mi |Ni)

for any hierarchical NRMI. In order to simplify the notation and the descrip-
tion of the algorithm, we consider the case d = 2. The goal is to generate sam-
ples X1,N1+1, . . . ,X1,N1+m1 and X2,N2+1, . . . ,X2,N2+m2 , conditional on X(N1)

and X(N2), for any two positive integers m1 and m2. One needs to introduce
N1 +m1 +N2 +m2 latent variables T1,1, . . . , T1,N1+m1 , T2,1, . . . , T2,N2+m2 , which
are the labels identifying the tables at which the different costumers are seated
in the restaurants. The determination of the full conditionals follows immediately
from Theorems 3–4 and, more specifically, (14). The sampler allows one to gener-
ate (Ti,1, . . . , Ti,Ni

) and (Xi,Ni+r , Ti,Ni+r ), for r = 1, . . . ,mi and i = 1,2. In order
to provide details on this, the label −r is used to identify a quantity determined
after removing r th element. Hence, for each i = 1,2, one has:

(1) At t = 0, start from an initial configuration X
(0)
l,Nl+1, . . . ,X

(0)
l,Nl+ml

and

T
(0)
l,1 , . . . , T

(0)
l,Nl+mi

, for l = 1,2.
(2) At iteration t ≥ 1

(2.a) With Xi,r = X∗
h generate latent variables T

(t)
i,r , for r = 1, . . . ,Ni , from

P
(
Ti,r = “new”| · · · ) = wh,r

�
(Ni)


̄−r
i• +1,i

(q−r
i,1 , . . . , (q−r

i,h,1), . . . ,q−r
i,k )

�
(Ni−1)


̄−r
i• ,i

(q−r
1,1, . . . ,q

−r
1,h, . . . ,q

−r
i,k )
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and, for κ = 1, . . . , 
−r
i,h ,

P
(
Ti,r = T

∗,−r
i,h,κ | · · · ) =

�
(Ni)


̄−r
i• ,i

(q−r
i,1 , . . . ,q−r

i,h + 1κ , . . . ,q−r
i,k )

�
(Ni−1)


̄−r
i• ,i

(q−r
i,1 , . . . ,q−r

i,h, . . . ,q−r
i,k )

,

where

wh,r = �
(|�−r |+1)
k,0 (
̄−r

•1 , . . . , 
̄−r
•h + 1, . . . , 
̄−r

•k )

�
(|�−r |)
k,0 (
̄−r

•1 , . . . , 
̄−r
•h , . . . , 
̄−r

•k )
1{0}c

(

̄−r
i,h

) + 1{0}
(

̄−r
i,h

)

and 1κ is a vector of dimension 
−r
i,h with all components being zero but the κ th

which equals 1. Moreover, T
∗,−r
i,h,1 , . . . , T

∗,−r

i,h,
−r
i,h

are the tables at the first restaurant

where the hth dish is served, after the removal of Ti,r .
(2.b) For r = 1, . . . ,mi , generate (X

(t)
i,Ni+r , T

(t)
i,Ni+r ) from the following predic-

tive distributions:

P
(
Xi,Ni+r = “new”, Ti,Ni+r = “new”| · · · )

= �
(|�−r |+1)

k+j−r+1,0(
̄
−r
•1 , . . . , 
̄−r

•k+j−r ,1)

�
(|�−r |)
k+j−r ,0(
̄

−r
•1 , . . . , 
̄−r

•k+j−r )

�
(Ni+mi)


̄−r
i• +1,i

(q−r
i,1 , . . . ,q−r

i,k ,1)

�
(Ni+mi−1)


̄−r
i• ,i

(q−r
i,1 , . . . ,q−r

i,k )

while, for any h = 1, . . . , k + j−r and κ = 1, . . . , 
−r
i,h ,

P
(
Xi,Ni+r = X

∗,−r
h , Ti,Ni+r = “new”| · · · )

= �
(|�−r |+1)

k+j−r ,0 (
̄−r
•1 , . . . , 
̄−r

1,h + 1, . . . , 
̄−r
•k+j−r )

�
(|�−r |)
k+j−r ,0(
̄

−r
•1 , . . . , 
̄−r

•k+j−r )

×
�

(Ni+mi)


̄−r
i• +1,i

(q−r
i,1 , . . . , (q−r

i,h,1), . . . ,q−r
i,k )

�
(Ni+mi−1)


̄−r
i• ,i

(q−r
i,1 , . . . ,q−r

i,k )
,

P
(
Xi,Ni+r = X

∗,−r
h , Ti,Ni+r = T

∗,−r
i,h,κ | · · · )

=
�

(Ni+mi)


̄−r
i• ,i

(q−r
i,1 , . . . ,q−r

i,h + 1κ , . . . ,q−r
i,k ,1)

�
(Ni+mi−1)


̄−r
i• ,i

(q−r
i,1 , . . . ,q−r

i,h, . . . ,q−r
i,k )

1{n−r
i,h>0},

where X
∗,−r
h , for h = 1, . . . , k + j−r denote the distinct dishes in the whole fran-

chise after the removal of the r th observation, while the condition n−r
i,h > 0 entails

that the hth dish is served in the ith restaurant.
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The above algorithm holds for any hierarchical NRMI and only requires insertion
of the specific ρ, ρ0 and P0 to specialize to a particular instance of hierarchi-
cal NRMI. The sampling schemes outlined above can also be tailored, in a quite
straightforward way, to the hierarchical Pitman–Yor case (see the Supplementary
Material [2] for details and [3] for applications). Finally, note that the proposed
algorithm can also be adapted to yield a marginal sampling schemes for mixture
models with dependent hierarchical mixing measures.

6.2. Simulation of (p̃1, . . . , p̃d) from its posterior distribution. The posterior
representations derived in Theorems 10 and 13 are of great importance also from
a computational standpoint as they allow to establish algorithms that generate the
trajectories of p̃1, . . . , p̃d from their posterior distributions, conditional on T . The
resulting sampling scheme can be viewed as an extension of a Ferguson and Klass–
type algorithm (see [9, 36] for additional details) to a partially exchangeable set-
ting. With respect to the generalized Blackwell–MacQueen urn scheme described
in Section 6.1, the possibility of generating posterior samples of hierarchical pro-
cesses is a significant addition. Just to give an example, it allows to obtain estimates
of nonlinear functionals, such as credible intervals, of the vector (p̃1, . . . , p̃d) that
cannot be otherwise achieved.

For the sake of simplicity, assume that X = R
+. Using a representation of Xt

given in [9] and the notation of Theorems 9–10, one has

(27) η∗
0
(
(0, t]) =

∞∑
h=1

J
(0)
h 1

{
Vh ≤ P0

(
(0, t])},

with V1,V2, . . .
i.i.d.∼ U(0,1). The jumps J

(0)
h are in decreasing order and can be

obtained by solving the following:

(28) Sh,0 = c0

∫ ∞
J

(0)
h

e−U0sρ0(s)ds,

where S1,0, S2,0, . . . are the points of a standard Poisson process on R
+, that is to

say Sh,0 − Sh−1,0 are i.i.d. exponential random variables having unit mean. Simi-
larly, one has

(29) μ̃∗
i

(
(0, t]) =

∞∑
h=1

J
(i)
h 1

{
Vh ≤ p̃∗

0
(
(0, t])},

where the ordered jumps J
(i)
h are now the solution of

(30) Sh,i = c

∫ ∞
J

(i)
h

e−Uisρ(s)ds,

where S1,i , S2,i −S1,i , . . . are i.i.d. exponential random variables having unit mean.
In view of these representations, once one has sampled the latent variables T
through the algorithm described in Section 6.1, one can proceed as follows:
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(1) Generate p̃0 from its posterior distribution, described in Theorem 9, namely:
(1.a) Generate U0 from f0(· | X,T ) in (20);
(1.b) Generate Ij from fj (· | X,T ) in Theorem 9(ii), for any j = 1, . . . , k;
(1.c) Fix ε > 0 and for any h ≥ 1

– Generate unit mean exponential random variables Sh,0 − Sh−1,0,
– Determine jumps J

(0)
h according to (28),

– Stop at h̄ = min{h ≥ 1 : J (0)
h ≤ ε},

– Generate i.i.d. V1, . . . , Vh̄ from a U(0,1)

and evaluate an approximate draw of η∗
0 on (0, t] as

η∗
0
(
(0, t]) ≈

h̄∑
h=1

J
(0)
h 1

{
Vh ≤ P0

(
(0, t])},

(1.d) Evaluate an approximate draw of a posterior sample of p̃0 as

p̃∗
0
(
(0, t]) ≈

∑h̄
h=1 J

(0)
h 1{Vh ≤ P0((0, t])} + ∑k

j=1 Ij δX∗
j
((0, t])∑h̄

h=1 J
(0)
h + ∑k

j=1 Ij

.

Having drawn p̃∗
0 , one can now rely on Theorem 10 in order to approximately

sample (p̃1, . . . , p̃d) from its posterior distribution. This can be easily deduced
and described as follows:

(2) For any i = 1, . . . , d , generate p̃i |(X,T , p̃∗
0) as follows:

(2.a) Generate Ui from fi(·|X,T ) in (22);
(2.b) Generate Ji,j,t from fi,j,t (·|X,T ) in Theorem 10(ii);
(2.c) Fix ε > 0 and for any h ≥ 1

– Generate unit mean exponential random variables Sh,i − Sh−1,i ,
– Determine jumps J

(i)
h according to (30),

– Stop at h̄i = min{h ≥ 1 : J (i)
h ≤ ε}

and evaluate an approximate sample of the posterior trajectory of p̃i as fol-
lows:

p̃i((0, t]) ≈
∑h̄i

h=1 J
(i)
h 1{Vh ≤ p̃∗

0((0, t])} + ∑k
j=1

∑
i,j

t=1 Ji,j,t δX∗
j
((0, t])∑h̄i

h=1 J
(i)
h + ∑ki

j=1
∑
i,j

t=1 Ji,j,t

.

An important, and well known, advantage of the procedure is the fact that it gener-
ates jumps J

(0)
h and J

(i)
h , for i = 1, . . . , d , in decreasing order. This entails that the

truncation at h̄ or h̄i is such that the most relevant jumps are taken into account and
one is discarding a negligible random mass of the actual trajectory. Future work,
of more computational nature, will aim at: (i) investigating the implementation of
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the algorithm to applied problems, such as density estimation with accurate un-
certainty quantification, allowed by the conditional structure of the algorithm and
(ii) comparing the performance of our proposal with the so-called direct assign-
ment algorithm, which is widely used within estimation problems involving the
hierarchical Dirichlet process.
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SUPPLEMENTARY MATERIAL

Distribution theory for hierarchical processes: Supplementary material
(DOI: 10.1214/17-AOS1678SUPP; .pdf). We provide the proofs of the theoreti-
cal results and specialize the Blackwell–MacQueen urn scheme of Section 6.1 to
the case of hierarchies of Pitman–Yor processes.
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