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FUNCTIONAL DATA ANALYSIS BY MATRIX COMPLETION1

BY MARIE-HÉLÈNE DESCARY AND VICTOR M. PANARETOS

Ecole Polytechnique Fédérale de Lausanne

Functional data analyses typically proceed by smoothing, followed by
functional PCA. This paradigm implicitly assumes that rough variation is
due to nuisance noise. Nevertheless, relevant functional features such as time-
localised or short scale fluctuations may indeed be rough relative to the global
scale, but still smooth at shorter scales. These may be confounded with the
global smooth components of variation by the smoothing and PCA, poten-
tially distorting the parsimony and interpretability of the analysis. The goal
of this paper is to investigate how both smooth and rough variations can be
recovered on the basis of discretely observed functional data. Assuming that
a functional datum arises as the sum of two uncorrelated components, one
smooth and one rough, we develop identifiability conditions for the recovery
of the two corresponding covariance operators. The key insight is that they
should possess complementary forms of parsimony: one smooth and finite
rank (large scale), and the other banded and potentially infinite rank (small
scale). Our conditions elucidate the precise interplay between rank, band-
width and grid resolution. Under these conditions, we show that the recovery
problem is equivalent to rank-constrained matrix completion, and exploit this
to construct estimators of the two covariances, without assuming knowledge
of the true bandwidth or rank; we study their asymptotic behaviour, and then
use them to recover the smooth and rough components of each functional
datum by best linear prediction. As a result, we effectively produce separate
functional PCAs for smooth and rough variation.

1. Introduction. Functional principal component analysis, the empirical ver-
sion of the celebrated Karhunen–Loève expansion, is arguably the workhorse of
Functional Data Analysis (Bosq [2], Ramsay and Silverman [18], Horvath and
Kokoszka [10], Hsing and Eubank [11], Wang et al. [20]). It aims to construct a
parsimonious yet accurate finite dimensional representation of n observable i.i.d.
replicates {X1, . . . ,Xn} of a real-valued random function {X(t) : t ∈ [0,1]} un-
der study. The sought representation is in terms of a Fourier series built using the
eigenfunctions {ϕk} of the integral operator R with kernel Cov(X(t),X(s)). Such
a finite-dimensional representation is key in functional data analysis: not only does
it serve as a basis for motivating methodology by analogy to multivariate statistics,
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but it constitutes the canonical means of regularization in regression, testing, and
prediction, which are all ill-posed inverse problems when dealing with functional
data; see Panaretos and Tavakoli [17] for an account of the genesis and evolution of
functional PCA and Wang et al. [20] for an overview of its manifold applications
in functional data analysis.

Since the covariance operator R is unknown in practice, functional PCA must
be based on its empirical counterpart (Dauxois et al. [7], Bosq [2]),

R̂n =
n∑

i=1

(Xi −X)⊗ (Xi −X) where X = 1

n

n∑
i=1

Xi.

Even this, however, is seldom accessible: one cannot perfectly observe the com-
plete sample paths of {X1, . . . ,Xn}. Instead, one has to make do with discrete
measurements

(1.1) Xij =Xi(tj )+ εij , i = 1, . . . , n, j = 1, . . . ,K,

where the points tj can be random or deterministic and the array εij is assumed
to be comprised of centred i.i.d. perturbations, independent of the Xi (see, e.g.,
Ramsay and Silverman [18], Hall et al. [9], Li and Hsing [14]). Roughly speaking,
there are two major approaches to deal with discrete measurements: to smooth the
discretely observed curves and then obtain the covariance operator and spectrum
of the smooth curves; and the converse, that is, to first obtain a smoothed estimate
of the covariance operator and to use this to estimate the unobservable curves and
their spectrum.

The first general approach was popularised by Ramsay and Silverman [18], by
means of smoothing splines, and is widely used, chiefly when the observation grid
{t1, . . . , tK} is sufficiently dense. One defines smoothed curves X̃i as

(1.2) X̃i(t)= arg min
f∈C2[0,1]

{
K∑

j=1

(
f (tj )−Xij

)2 + τ
∥∥∂2

t f
∥∥2
L2

}
, i = 1, . . . , n,

for C2[0,1] the space of twice continuously differentiable functions on [0,1], and
τ > 0 a regularising constant. The proxy curves {X̃i} are used in lieu of the unob-
servable {Xi} in order to construct a “smooth” empirical covariance operator R̃,
and the curves {X̃i} are finally projected onto the span of the first r eigenfunctions
of R̃.

A second general approach, Principal Analysis by Conditional Expectation
(PACE), was introduced by Yao et al. [21] (see also Yao et al. [22]), motivated
by the need to consider situations where the grid is sparse and curves are sampled
at varying grid points. In our sampling setup, and assuming the array {εij } to be
i.i.d. of variance σ 2, they exploit the fact that the K × K covariance matrix of
the vector (Xi1, . . . ,XiK)� equals (up to a factor) ρ(ti, tj ) + σ 21{i = j}. Thus,
the effect of the term ε is restricted to the addition of a σ 2-ridge to the diagonal.
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Yao et al. [21] then delete the diagonal i = j of the empirical covariance matrix of
{Xij ; i = 1, . . . , n; j = 1, . . . ,K} and smooth what remains to obtain a smooth es-
timate ρ̃(s, t) of the kernel ρ(s, t). The smoothing assumes (and induces) C2-level
behaviour near t = s. The kernel ρ̃(s, t) is then used to construct mean-square
optimal predictors {X̃1, . . . , X̃n} of the unobservable sample paths, truncated to
belong to the span of the first r eigenfunctions of ρ̃(s, t).

Proceeding in either of these two ways essentially consigns any variations of
smoothness class less than C2 to pure noise, and subsequently smears them by
means of smoothing; any further rough variations are expected to be negligible,
and due to small fluctuations around eigenfunctions of order at least r + 1 (thus
orthogonal to the smooth variations) and are also discarded post-PCA.

Mathematically speaking, “smooth-then-PCA” approaches correspond to an un-
derlying ansatz that X(t) is well approximated by the sum of two uncorrelated
components: a “true signal” Y(t) of (essentially) finite rank r and of smoothness
class Ck (k ≥ 2) and a noise component W(t) whose covariance kernel is a scaled
delta function σ 2δ(s − t), corresponding to white noise:

Xi(t)= Yi(t)+Wi(t), i = 1, . . . , n,(1.3)

Xij = Yi(tj )+Wi(tj )= Yi(tj )+ εij , i = 1, . . . , n; j = 1, . . . ,K.(1.4)

The first equation can formally be understood only in the weak sense as an SDE,
and in reality W would have a covariance supported on some band {|t − s| < δ}
for some infinitesimally small δ > 0. The construction of the rank r version (by
PCA) of the smoothed curves {X̃i(t)} can thus be seen as an the estimation of
the unobservable {Yi(t)}. Any residual variation is then indirectly attributed to Wi ,
seen as functional residuals, and subsequently ignored.

It may very well happen, though, that W be rough but still be mean-square con-
tinuous, possessing a covariance kernel b(s, t)= b(s, t)1{|t − s|< δ}, for b a con-
tinuous nonconstant function and δ > 0 nonnegligible: “the functional variation
that we choose to ignore is itself probably smooth at a finer scale of resolution”
(Ramsay and Silverman [18], Section 3.2.4). In this case, the rough variations are
not due to pure noise, but to actual signal, and contain second-order structure that
we may not wish to confound with that of Y or discard. Quite to the contrary,
it should be fair game for functional data analysis to aim to deal with variations
at smaller scales δ; to quote Ramsay and Silverman [18], Section 3.2.4, again:
“this can pay off in terms of better estimation, and this type of structure may be
in itself interesting; a thoughtful application of functional data analysis will al-
ways be open to these possibilities”. To accommodate a nontrivial kernel b(s, t),
the smoothing spline approach would need to replace the “uncorrelated” objective
function in equation (1.2), with the “correlated” version

(1.5) X̃i(t)= arg min
f∈C2[0,1]

{
(Xi − f)B−1(Xi − f)� + τ

∥∥∂2
t f

∥∥2
L2

}
,
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for B the covariance matrix of (Wi(t1), . . . ,Wi(tK))�, Xi = (Xi1, . . . ,XiK)� and
f = (f (t1), . . . , f (tK))�. Unfortunately, B is unknown, and worse still, B and
Xi(t) are not jointly identifiable without further (parametric) restrictions (see Op-
somer et al. [16]). Similarly, the PACE approach would need to remove a nontrivial
band around the diagonal of the empirical covariance operator prior to smoothing;
this would lead to unidentifiability without further assumptions. It would seem that
the two approaches cannot be remedied by means of a simple modification, and a
novel approach would be needed.

The aim of the paper is to put forward such a novel approach and to fill this gap.
Without assuming knowledge of the rank r or the scale δ, we set out to:

1. Determine nonparametric conditions under which the smooth and rough
variation are jointly identifiable on the basis of discrete data, and elucidate how
the effective rank r of the smooth component, the scale δ of the rough component,
and the grid resolution K affect identifiability.

2. Construct estimators of the covariance structure of Y and W , and of their
separate functional PCA decompositions (equivalently, separating the component
in X attributable to Y from that attributable to W ) on the basis of n curves sampled
discretely at a grid of resolution K .

We formulate the problem rigorously in Section 2. Though it might seem that a
smooth-plus-rough decomposition is neither unique nor identifiable (except un-
der parametric conditions), we demonstrate in Section 3 that under nonparametric
conditions on the covariances of Y and W , such a decomposition is indeed unique
(Section 3.1, Theorem 1) and moreover identifiable on the basis of discrete mea-
surements (Section 3.2, Theorem 2). These elucidate the interplay of rank, scale
and grid resolution. Estimators of the covariances of Y and W (without assuming
knowledge of the rank r and scale δ) are then constructed in Section 4 by means of
band deletion and low rank matrix completion using nonlinear least squares (com-
bining smoothing and dimension reduction into a single step). Their asymptotic
behaviour is studied in Section 6. These estimates are then used in Section 5 to
recover the separate functional PCAs of the Yi and the Wi , producing a separation
of the two scales of variation. The finite sample performance of the methodology
is investigated by means of a simulation study in Section 8.

2. Problem statement. Let X : [0,1]→R be a mean-zero mean square con-
tinuous random function, viewed as a random element of the space of integrable
real functions defined on [0,1], say L2([0,1]), with the usual inner product and
induced norm

〈f,g〉L2 =
∫ 1

0
f (t)g(t) dt and ‖f ‖2

L2 = 〈f,f 〉L2 .

Assume that X can be decomposed as

(2.1) X(t)= Y(t)+W(t), t ∈ [0,1],
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where Y and W are uncorrelated random functions corresponding to a “smooth”
and a “rough” component, respectively. This implies an additive decomposition of
X’s covariance operator R, and of its integral kernel ρ(s, t)= E[X(s)X(t)], as

R =L +B,(2.2)

ρ(s, t)= 	(s, t)+ b(s, t), s, t ∈ [0,1],(2.3)

respectively, where the terms on the right are the covariance operators, and kernels,
of Y and W , respectively:

	(s, t)= E
[
Y(s)Y (t)

]−E
[
Y(s)

]
E
[
Y(t)

]
,(2.4)

b(s, t)= E
[
W(s)W(t)

]−E
[
W(s)

]
E
[
W(t)

]
.(2.5)

We will understand the smoothness in Y to represent smooth variation of X, that
is, large scale variation occurring over the entire [0,1]. On the other hand, the
roughness of W corresponds to variations that occur at scales distinctly smaller
than the global scale [0,1], but not necessarily the instantaneous time scale that
characterizes white noise: variation that is smooth only at shorter time scales.

Heuristically, if B is to capture variation at short time scales only, say at scales
of order δ ∈ (0,1), we expect its kernel to vanish outside a band of size δ,

b(s, t)= 0 ∀|s − t | ≥ δ.

Of course, it will still admit a Mercer decomposition

b(s, t)=
∞∑

j=1

βjψj (s)ψj (t)= 1
{|t − s|< δ

} ∞∑
j=1

βjψj (s)ψj (t),

for an orthonormal system of eigenfunctions {ψj }. On the other hand, since L
captures global and smooth variation features, it cannot be allowed to have lo-
calised eigenfunctions: these should be smooth enough to be essentially global. At
the same time, they should be finitely many, otherwise they may still succeed in
spanning local variations.2 We thus postulate that

	(s, t)=
r∑

j=1

λjηj (s)ηj (t),

for r <∞ and for {ηj }rj=1 sufficiently smooth orthonormal functions in L2[0,1].
We will refer to the operator L as the smooth operator, and to B as the banded
operator.

2Since there exist infinitely smooth orthonormal systems that are complete in L2[0,1]. To be
more precise, what one needs is an exponential rate of decay of the eigenvalues {λj }, rather than a
precisely finite rank, but we will see in Section 3 that a fast rate of decay alone would not suffice for
identifiability to hold.
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In summary, our setup is

ρ(s, t)=
r∑

j=1

λjηj (s)ηj (t)+
∞∑

j=1

βjψj (s)ψj (t),

where: (1) 0 < δ < 1; (2) r <∞; (3) the {ηj } are sufficiently smooth. The statis-
tical problem then is: given K discrete measurements on each of n independent
copies of X,

Xij =Xi(tj )= Yi(tj )+Wi(tj ), i = 1, . . . , n,

obtained by point evaluation at some grid points {t1, . . . , tK}:
1. estimate the components L and B, and their spectral decomposition, and
2. construct separate functional PCAs for the smooth and rough components

{Yi}ni=1 and {Wi}ni=1 on the basis of these estimates (effectively separating the two
scales of variation and recovering the Yi and Wi).

To do so, we will need to formulate more precise conditions on the smoothness
and roughness of the two components, or equivalently the rank and scale of these
variations, as it is clear that the problem can otherwise be severely ill-posed (in
a sense, the problem can be seen as an infinite-dimensional version of density
estimation with contamination by measurement error of an unknown distribution,
also known as double-blind deconvolution). This is done next, in Section 3.

3. Well-posedness: Uniqueness and identifiability.

3.1. Uniqueness of the decomposition R = L +B. An obvious challenge
with a decomposition of the form R =L +B, is that there may be infinitely many
distinct pairs (L ,B) whose sum yields the same R: we are asking to identify two
summands from knowledge of their sum. As it turns out, uniqueness is a matter of
scale: assuming that variations of the W process propagate only locally, at most at
scale δ, whereas that variations of Y are purely nonlocal. The next theorem makes
this statement precise via the notion of analyticity.

THEOREM 1 (Uniqueness). Let L1,L2 : L2[0,1] → L2[0,1] be trace-class
covariance operators of rank r1 < ∞ and r2 < ∞, respectively. Let B1,B2 :
L2[0,1] → L2[0,1] be banded trace-class covariance operators of bandwidth
δ1 < 1 and δ2 < 1, respectively. If the eigenfunctions of L1 and L2 are real ana-
lytic, then we have the equivalence:

L1 +B1 =L2 +B2 ⇐⇒ L1 =L2 and B1 =B2.

REMARK 1 (Sufficiency vs. necessity). The conditions of the theorem can ac-
tually be strictly weakened, with the same conclusion: instead of requiring finite
ranks and analytic eigenfunctions for (L1,L2), it suffices to require the weaker
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condition that their kernels be analytic on an open set U ⊂ [0,1]2 that contains the
larger of the two bands, U ⊃ {(s, t) ∈ [0,1]2 : |t − s| ≤max(δ1, δ2)}. This can be
relaxed no further, though: if the kernels of (L1,L2) are not analytic on such a
U , one can construct counterexamples, at least at this level of generality. For such
counterexamples, see the Supplementary Material [8], Section 3. Thus analyticity
is necessary, unless further assumptions are imposed on the banded covariances.
We choose to put the spotlight on the stronger assumption of the finite rank analytic
eigenfunction case, because: (a) this is the one that will be practically relevant in
light of the identifiability conditions that will be established in Section 3.2 (Theo-
rem 2), and (b) the set of rank r covariance operators with analytic eigenfunctions
is a dense subset of the set of all rank r covariance operators (see Proposition 1
below), giving us a rich set of identifiable models of the form (2.1).

Recall that a function is real analytic on an open interval if and only if its Fourier
coefficients decay at a rate that is at least geometric (see Krantz and Parks [13]
for a detailed survey of real analytic functions). For instance, if we write η(x) =∑∞

k=1(αk cos(kx)+ bk sin(kx)), then η is real analytic on (−π,π) if an only if

lim sup
k→∞

(|αk| + |βk|)1/k
< 1.

Examples of analytic functions include polynomials, trigonometric functions,
exponential and logarithmic functions, rational functions with no poles, truncated
Gaussians and finite location/scale mixtures thereof, to name only a few; such
functions have been routinely used as typical examples of low order eigenfunc-
tions capturing smooth variation in functional data analysis. The class of real an-
alytic functions is also closed under finite linear combination, multiplication and
division (assuming a nonvanishing denominator), composition, differentiation and
integration. Thus, one can generate rich collections of analytic eigenfunctions (and
hence analytic covariance operators) by combining analytic functions. In fact, the
set of rank r covariance operators with analytic eigenfunctions is a dense subset of
the set of all rank r covariance operators:

PROPOSITION 1. Let Z be an L2[0,1]-valued random function with a trace
class covariance G of rank r <∞. Then, for any ε > 0 there exists a random
function Y whose covariance L has analytic eigenfunctions and rank q ≤ r , such
that

E‖Z− Y‖2
L2 < ε and ‖G −L ‖∗ < ε,

for ‖ · ‖∗ the nuclear norm. If additionally G has C1 eigenfunctions on [0,1], then
we have the stronger result that for any ε > 0, there exists a random function Y

whose covariance L has analytic eigenfunctions and rank q ≤ r , such that

sup
t∈[0,1]

E
∣∣Z(t)− Y(t)

∣∣2 < ε and sup
s,t∈[0,1]

∣∣g(s, t)− 	(s, t)
∣∣ < ε,

where g and 	 are the kernels of G and L , respectively.
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Note that an immediate conclusion is that, for a given r , the accuracy of a rank r

analytic approximation of a mean-square continuous process can be made arbitrar-
ily close to the accuracy of the (optimal) rank r Karhunen–Loève approximation,
in the same uniform mean square sense. Thus, if we expect a process to be ap-
proximately of low rank r (as in our model of Section 2), then this process can be
very well approximated by an analytic process of the same low rank r . This shows
that the condition of analyticity, at least as a model that guarantees uniqueness of
decomposition R =L +B, is not nearly as restrictive as it may seem at first sight
(and in any case, it is sharp given the discussion in Remark 1).

3.2. Identifiability at finite resolution. Theorem 1 relies on an analyticity as-
sumption, which is a fundamentally functional assumption, so it is not clear
whether the result is useful in practice: is the decomposition identifiable on the
basis of finitely many discrete measurements? Remarkably the answer is yes, and
crucially depends both on the finite rank and the analyticity assumption.

Suppose we are given K discrete measurements on each of n independent copies
of X,

Xij =Xi(tj )= Yi(tj )+Wi(tj ), i = 1, . . . , n,

obtained by evaluation at points {tj }Kj=1, where

(t1, . . . , tK) ∈ TK = {
(x1, . . . , xK) ∈R

K : x1 ∈ I1,K, . . . , xK ∈ IK,K

}
,

and {Ij,K}Kj=1 is the partition of [0,1] into intervals of length 1/K . With this infor-
mation, we can of course only hope to be able to uniquely identify the K-resolution
versions of the operators, (L ,B), say (L K,BK) on the basis of the K-resolution
version of their sum, say RK =L K +BK . These operators are defined to have
kernels

ρK(x, y)=
K∑

i,j=1

ρ(ti, tj )1
{
(x, y) ∈ Ii,K × Ij,K

}
,(3.1)

	K(x, y)=
K∑

i,j=1

	(ti, tj )1
{
(x, y) ∈ Ii,K × Ij,K

}
,(3.2)

bK(x, y)=
K∑

i,j=1

b(ti, tj )1
{
(x, y) ∈ Ii,K × Ij,K

}
,(3.3)

which can be summarised via the following K ×K matrix representations:

RK(i, j)= ρ(ti, tj ), LK(i, j)= 	(ti, tj ), BK(i, j)= b(ti, tj ).

Without loss of generality, one can assume that RK has been re-normalised to be
of unit trace norm, whenever convenient. As it turns out, there exists a finite critical
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FIG. 1. Graphic representation of the interplay between rank, scale and resolution. For different
values of the scale parameter δ, the maximal identifiable rank r is plotted as a function of the reso-
lution K .

resolution K∗, with explicit dependence on the rank r and scale δ, beyond which
identification is possible, provided that r <∞ and δ < 1/2. This encapsulates the
interplay between rank, resolution and scale.

THEOREM 2 (Discrete identifiability). Let L1 and L2 be covariance opera-
tors of finite ranks r1 <∞ and r2 <∞, respectively, and assume without loss of
generality that r1 ≥ r2. Let B1 and B1 be two banded continuous covariance op-
erators of bandwidth δ1 < 1/2 and δ2 < 1/2, respectively. Given (t1, . . . , tK) ∈ TK ,
define their K-resolution matrix coefficients to be (LK

1 ,BK
1 ,LK

2 ,BK
2 ) ∈R

K×K ,

LK
m(i, j)= 	m(ti, tj ) and BK

m (i, j)= bm(ti, tj ), i, j ∈ {1, . . . ,K},
for m= 1,2. If the eigenfunctions of L1 and L2 are all real analytic, and

K ≥K∗ =max
(

2r1 + 2

1− 2δ1
,

2r1 + 2

1− 2δ2

)
,

then we have the equivalence

LK
1 +BK

2 = LK
2 +BK

2 ⇐⇒ LK
1 = LK

2 and BK
1 = BK

2 ,

almost everywhere on TK with respect to Lebesgue measure.

The theorem reveals the interplay between the fundamental parameters of the
problem, which is governed by the constraint:

(3.4) r ≤
(

1

2
− δ

)
K − 1.

This yields the maximal rank that the smooth operator can have, for a given res-
olution K and scale δ of the banded operator, if the problem is to be identifiable.
Figure 1 plots this maximal rank r as a function of K for different values of the
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parameter δ. We note that things are not particularly restrictive, allowing iden-
tifiability for quite large values of the bandwidth δ and rather modest values of
K , when the rank r is not exceedingly large, as is nearly always assumed in the
practice of FDA.

An attractive feature of this result is that the conditions imposed are determin-
istic and yet not particularly restrictive. This is in contrast with results in recent
progress on matrix completion which either have restrictive deterministic condi-
tions, or more relaxed but random conditions. The reason is that we are fortunate
to have a deterministic and known structure of the missing set of values to be
completed.

The main caveat of passing from the continuum to discrete observation is that
the theorem is valid almost everywhere on TK , rather than pointwise on TK . Thus,
we know that the identifiability holds for almost all grids without being able to
conclusively say so for a specific grid. In probabilistic terms, if the points tj are
chosen independently at random, each according to an absolutely continuous dis-
tribution on the corresponding interval Ij , then we know that identifiability holds
with probability 1.

4. Estimation by matrix completion. Our strategy for estimation will be to
define an objective function depending only on RK whose unique optimum yields
the required matrix LK . Then we will define an estimator of LK on the basis of an
empirical version of this objective function. Ideally, the objective function should
not depend on the knowledge of the unknown quantities δ and r , otherwise there
would be two “competing” tuning parameters to choose. The following proposition
yields such an objective function, in the form of a low rank matrix completion
problem.

PROPOSITION 2. Let L : L2[0,1] → L2[0,1] be a rank r <∞ covariance
operator with analytic eigenfunctions and kernel 	, and B : L2[0,1]→ L2[0,1] a
trace-class covariance operator with δ-banded kernel b. For (t1, . . . , tK) ∈ TK , let

LK = {
	(ti, tj )

}
ij , BK = {

b(ti, tj )
}
ij ,

and RK = LK +BK . Assume that

δ <
1

4
and K ≥ 4r + 4.

Define the matrix P K ∈ R
K×K by P K(i, j) = 1{|i − j | > �K/4�}. Then, for al-

most all grids in TK :

1. The matrix LK is the unique solution to the optimization problem

(4.1) min
θ∈RK×K

rank{θ} subject to
∥∥P K ◦ (RK − θ

)∥∥2
F = 0.
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2. Equivalently, in penalised form,

(4.2) LK = arg min
θ∈RK×K

{∥∥P K ◦ (RK − θ
)∥∥2

F + τ rank(θ)
}
,

for all τ > 0 sufficiently small.

Here, ‖ · ‖F is the Frobenius matrix norm and “◦” denotes the Hadamard product.

Simply put, among all possible matrix completions of P K ◦(RK−θ), the matrix
LK is uniquely the one of lowest rank: no matrix of rank lower than the true rank
r will provide a completion; and any completion other than LK will have rank at
least r + 1. Notice that neither of the objective functions (4.1) or (4.2) depends on
δ or r : unique recovery of LK and BK is feasible even when we do not know the
true values of r or δ. The concession we had to make to achieve this adaptation is
to require δ < 1/4 (compared to δ < 1/2 in Theorem 2). In particular, we use the
penalised form in equation (4.2) to motivate the formal definition of our estimation
approach [the equivalent form in equation (4.1) will be useful for computation, see
Section 7]:

DEFINITION 1 (Estimator of LK ). Let (X1, . . . ,Xn) be i.i.d. copies of X =
Y +W . Let (t1, . . . , tK) ∈ TK and assume we observe

Xij =Xi(tj ), i = 1, . . . , n; j = 1, . . . ,K.

Let RK
n ∈R

K×K be the empirical covariance matrix of the vectors{
(Xi1, . . . ,XiK)�

}n
i=1.

We define the estimator L̂K
n of LK to be an approximate minimum of

(4.3) min
θ∈�K

{
K−2∥∥P K ◦ (RK

n − θ
)∥∥2

F + τ rank(θ)
}
,

where P K ∈R
K×K is defined as P K(i, j)= 1{|i − j |> �K/4�}, τ > 0 is a suffi-

ciently small tuning parameter, and �K is the set of K ×K nonnegative matrices
of trace norm bounded by that of RK

n (which can be renormalised to unit trace
norm). By approximate minimum, it is meant that the value of the functional at
L̂K

n is within OP(n
−1) of the value of the overall minimum.

We discuss the practical implementation of the estimation method of Defini-
tion 1, including the selection of the tuning parameter, in Section 7. Once L̂K

n has
been constructed, we may also construct a plug-in estimator for BK .

DEFINITION 2 (Plug-in estimator of BK ). Let RK
n and L̂K

n be as in Def-
inition 1. We define the plug-in estimator B̂K

n of BK
n to be the projection of

�K
n = RK

n − L̂K
n onto the convex set of nonnegative banded K ×K matrices of

bandwidth at most �K/4�.
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We could of course have used �K
n = RK

n − L̂K
n itself to estimate BK , but there

is no guarantee that this will be positive definite. Asymptotically in n, �K
n and

B̂K
n will coincide. Note that the intersection of the set of banded matrices (with

given band) and the set of nonnegative matrices is a closed convex set, thus the
projection uniquely exists. In practice, it can be approximately determined by the
method of alternative projections, or Dykstra’s algorithm (see Section 7).

Once L̂K
n and B̂K

n are at hand, it is reasonable to use their sum as an estimator of
RK , instead of the empirical version RK

n , as the former is in principle less “noisy”
than the latter.

DEFINITION 3 (Plug-in estimator of RK ). Let L̂K
n and B̂K

n be as in Definitions
1 and 2. We define the plug-in estimator R̂K

n of RK as R̂K
n = L̂K

n + B̂K
n .

Our K-resolution estimators (L̂ K
n , B̂K

n , R̂K
n ) of (L , B, R) will now be de-

fined as the operators with step-function kernels [	̂K
n (x, y), b̂K

n (x, y), ρ̂K
n (x, y)]

whose coefficients are given by the matrices (L̂K
n , B̂K

n , R̂K
n ):

	̂K
n (x, y)=

K∑
j=1

L̂K
n (i, j)1

{
(x, y) ∈ Ii,K × Ij,K

}
,

b̂K
n (x, y)=

K∑
j=1

B̂K
n (i, j)1

{
(x, y) ∈ Ii,K × Ij,K

}
,

ρ̂K
n (x, y)=

K∑
j=1

R̂K
n (i, j)1

{
(x, y) ∈ Ii,K × Ij,K

}
.

Correspondingly, the estimators of their spectra will be given by the spectra of
L̂ K

n , B̂K
n , and R̂K

n :

L̂ K
n =

r̂∑
j=1

λ̂j η̂j ⊗ η̂j , B̂K
n =

K∑
j=1

β̂j ψ̂j ⊗ ψ̂j , R̂K
n =

K∑
j=1

θ̂j ϕ̂j ⊗ ϕ̂j .

Here, r̂ ≤ K/4 is the rank of L̂ K
n . Note that the empirical eigenfunctions η̂j of

L̂ K
n will be step functions. They can, of course, be replaced by smooth versions

thereof. For example, one can smooth the covariance function 	̂K
n , and then cal-

culate the spectrum of the induced covariance operator. The amount of smoothing
required will be rather limited since 	̂K

n is effectively already de-noised. One could
also directly smooth the eigenfunctions, but then there is no guarantee that their
smoothed versions will be still orthogonal. Without any additional smoothness as-
sumptions on B, we cannot presume to smooth the step functions ψ̂j in order to
obtain smoother versions (recall that only continuity of b was assumed).
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5. Separation of scales. With estimators of the covariance operators (L ,B)

and their spectra at our disposal, we now wish to carry out functional PCA sep-
arately for the smooth and the rough components, thus separating the two scales
of variation. In order to have identifiability at the level of curves, we need to add
the assumption that at least one of the two processes Y and W has a known mean.
Here, we assume that the rough process W is known to have mean zero, and to
simplify the presentation we assume that the mean of Y has been removed from
the data so we have E[Y ] = 0, too. Focussing on the smooth component, we note
that its Karhunen–Loève expansion is

Yi =
r∑

j=1

〈Yi, ηj 〉ηj .

Having estimated ηj already, it suffices to estimate the scores {〈Yi, ηj 〉}ni=1, in
order to have a complete analysis into principal components. If we were able to
observe {Yi(tj )}i,j , then the natural estimator would be given by

〈
YK

i , η̂j

〉
L2 = 1

K

K∑
k=1

Yi(tk)η̂j (tk),

where YK
i (t) =∑K

j=1 Yi(tj )1{t ∈ Ij,K}. A parallel discussion holds in the case
of the rough components {Wi}. In effect, we see that the problem of estimating
the principal scores of Y and W separately is equivalent to that of separating the
unobservable components Yi(tj ) and Wi(tj ) in the decomposition

Xi(tj )= Yi(tj )+Wi(tj ),

on the basis of the observations Xi(tj ). We concentrate on a specific observation,
say i = 1, and drop the index 1 for the sake of tidiness.

Separation can be viewed as a problem of prediction (similar to the ap-
proach taken by Yao et al. [21]). If the covariance operators R and L were
known precisely, then we would attempt to recover the components YK(t) =∑K

j=1 Y(tj )1{t ∈ Ij,K} and WK(t) =∑K
j=1 W(tj )1{t ∈ Ij,K} by means of their

best predictors given the observation XK(t) =∑K
j=1 X(tj )1{t ∈ Ij,K}. The most

tractable case is that of using the best linear predictor (which is best overall in
the Gaussian case), and this is what we will pursue. Noting that Y and W are
zero mean and uncorrelated, the best linear predictor of YK given XK (viewed as
random elements of L2) is

(5.1) �
(
XK)= r∑

j=1

q∑
i=1

λK
j

θK
i

〈
ϕK

i , ηK
j

〉〈
ϕK

i ,XK 〉
ηK

j =
r∑

j=1

ξjη
K
j ,

where {θK
i , ϕK

i }qi=1 is the spectrum of RK (with q ≤∞) and {λK
j , ηK

j }rj=1 that of

L K (see Bosq [3], Proposition 3.1, and Bosq [3], Example 3.3). Note that RK is
the covariance operator of XK .
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We estimate the best linear predictor, by replacing the unknown elements in
equation (5.1) by their corresponding estimators. Specifically, recalling that

R̂K
n =

q̂∑
i=1

θ̂i ϕ̂i ⊗ ϕ̂i , q̂ = rank
(
R̂K

n

)
and

L̂ K
n =

r̂∑
j=1

λ̂j η̂j ⊗ η̂j , r̂ = rank
(
L̂ K

n

)
,

our estimator of the predictor of YK given XK is

(5.2) Ŷ K
n :=

r̂∑
j=1

q̂∑
i=1

λ̂j

θ̂i

〈ϕ̂i , η̂j 〉〈ϕ̂i ,X
K 〉

η̂j =
r̂∑

j=1

ξ̂j η̂j .

In matrix notation, the estimated scores (ξ̂1, . . . , ξ̂r̂ )
� of Y satisfy

(5.3) ξ̂j = 〈
λ̂j

(
R̂K

n

)†
η̂j ,X

K 〉= 1

K
λ̂j X�

(
R̂K

n

)†
η̂j =

1

K
λ̂j X�

(
L̂K

n + B̂K
n

)†
η̂j ,

where X= (X(t1), . . . ,X(tK))�, η̂j = (η̂j (t1), . . . , η̂j (tK))�, and we use the no-
tation A † to denote the generalised inverse of an operator (or matrix) A . It is
worth remarking that the last expression in equation (5.3) is essentially the same
as that of the PACE estimator of Yao et al. [21], with the exception that one has
a banded matrix B̂K

n in lieu of a diagonal matrix of the form σ̂ 2I . The best lin-
ear predictor of WK given XK , say �(XK), can be estimated by means of the
residuals

Ŵ (tj )=X(tj )− Ŷ K
n (tj ), j = 1, . . . ,K.

This definition is motivated from the simple fact that

�
(
XK)= E

[
WK |XK ]= E

[
XK −YK |XK ]=XK −E

[
YK |XK ]=XK −�

(
XK)

.

6. Asymptotic theory. We now turn to consider the asymptotic behaviour of
the estimators constructed in the last two sections. Our first result considers the
asymptotic behaviour of our estimator L̂ K

n and its spectrum, in terms of the obser-
vation grid and the number of curves. In the sequel, we will follow the usual con-
vention that the sign of the estimated eigenfunctions is correctly identified (since
only the eigenprojectors are formally identifiable).

THEOREM 3. In the setting of Section 4, let the r <∞ eigenvalues of L be
of multiplicity one, E‖X‖4

L2 <∞ and δ < 1
4 , and define K∗ = 4(r + 1) to be the

critical resolution. Then, for any K > K∗ and almost all grids in TK it holds that∥∥L̂ K
n −L

∥∥2
HS ≤OP

(
n−1)+ 4K−2 sup

x,y∈[0,1]
∥∥∇	(x, y)

∥∥2
2,(6.1)
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‖η̂j − ηj‖2
L2 ≤OP

(
n−1)+ 2K−2∥∥η′j∥∥2

∞, j ∈ {1, . . . , r},(6.2)

sup
j≥1
|λ̂j − λj |2 ≤OP

(
n−1)+ 4K−2 sup

x,y∈[0,1]
∥∥∇	(x, y)

∥∥2
2,(6.3)

for all τ > 0 sufficiently small, where ‖ · ‖HS is the Hilbert–Schmidt norm of an
operator. Furthermore, the rank of L̂ K

n satisfies

(6.4)
∣∣rank

(
L̂ K

n

)− r
∣∣=OP(n

−1).

REMARK 2. The fact that the theorem holds true almost everywhere on TK

can equivalently be stated in probabilistic terms. Assume that the grid tK =
{tj,K}Kj=1 is chosen at random according to the uniform distribution on TK . Then
the theorem holds with probability 1 over the grid choice. Note that the uniform
measure on TK can be generated by selecting {tj,K}Kj=1 to be independent for
j ∈ {1, . . . ,K}, each uniformly distributed on the corresponding subinterval Ij,K .

Similar asymptotics for B̂K
n follow as a corollary, since it is defined as a con-

traction of the difference RK
n − L̂ K

n .

COROLLARY 1. Assume that the eigenvalues of B are of multiplicity one. If
the covariance function b(s, t) : [0,1]2 → R associated with B is continuously
differentiable, then under the same conditions as in Theorem 3, and for any K >

K∗ and almost all grids in TK we have∥∥B̂K
n −B

∥∥2
HS ≤OP

(
n−1)+ 4K−2 sup

x,y∈[0,1]
∥∥∇b(x, y)

∥∥2
2,(6.5)

σ 2
j

8
‖ψ̂j −ψj‖2

L2 ≤OP(n
−1)+ σ 2

j

4
K−2∥∥ψ ′j∥∥2

∞,(6.6)

sup
j≥1
|β̂j − βj |2 ≤OP

(
n−1)+ 4K−2 sup

x,y∈[0,1]
∥∥∇b(x, y)

∥∥2
2,(6.7)

for all τ > 0 sufficiently small. Here

σ1 = β1−β2 and σj =min{βj−1−βj ,βj−βj+1}, 2≤ j ≤ rank(B)∧K,

The last two results can now be combined to obtain the asymptotic behaviour
of R̂K

n .

COROLLARY 2. Under the same conditions as in Theorem 3 and Corollary 1,
we have that for any K > K∗ and almost all grids in TK ,∥∥R̂K

n −R
∥∥2

HS ≤OP

(
n−1)+ 4K−2 sup

x,y∈[0,1]
∥∥∇ρ(x, y)

∥∥2
2,(6.8)

for all τ > 0 sufficiently small.
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Finally, we show that the predictors of YK and WK based on a finite grid of res-
olution K are consistent in the L2 sense, which also implies that the corresponding
estimated PCA scores are consistent, too.

COROLLARY 3. In the same setting as in Theorem 3, let K > K∗. If RK , is of
full rank, and if the kernel b(s, t) : [0,1]2→R of B is continuously differentiable,
then ∥∥Ŷ K

n −�
(
XK)∥∥

L2 =OP

(
n−1/2),∥∥ŴK

n −�
(
XK)∥∥

L2 =OP

(
n−1/2),

almost everywhere on TK .

7. Practical implementation via band-deleted PCA. To compute the esti-
mators L̂K

n and B̂K
n from a sample of discretely observed curves X1, . . . ,Xn, where

Xi = (Xi(t1), . . . ,Xi(tK))�, we apply the following algorithm:

(A) Compute the empirical covariance matrix of the sample

RK
n =

1

n

n∑
i=1

(Xi − μ̂)(Xi − μ̂)� where μ̂= 1

n

n∑
i=1

Xi .

(B) Solve the optimisation problem

(7.1) min
0�θ∈RK×K

∥∥P K ◦ (RK
n − θ

)∥∥2
F subject to rank(θ)≤ i,

for i = {1, . . . ,K/4− 1}, obtaining minimisers θ̂1, . . . , θ̂K/4−1.
(C) Calculate the fits {f (i) = ‖P K ◦ (RK

n − θ̂i )‖2
F : i = 1, . . . ,K/4− 1}, and

the quantities

f (i)+ τ i,

for some choice of the tuning parameter τ > 0.
(D) Determine the i that minimises the above quantity, and declare the corre-

sponding optimising matrix to be the estimator L̂K
n .

(E) Use an alternating projection algorithm (Bauschke and Borwein [1]) to
compute an approximation of the projection of RK

n − L̂K
n onto the intersection

of the set of banded K ×K matrices of bandwidth at most �K/4� and the set of
nonnegative definite K ×K matrices. Set the resulting matrix to be B̂K

n .

Notice that τ being positive in step (C) precludes us from overfitting by choos-
ing a matrix of arbitrarily large rank. A natural question is: how does one choose
the precise τ in Step (C)? The answer is that, any choice of τ implies a choice
of rank iτ (this being the rank of the optimum corresponding to τ ), and thus a fit
value f (iτ ). Thus one can use the the scree-plot i �→ f (i) as a guide to implicitly
choose τ , by replacing step (C) with:
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(C′) Plot the nonincreasing function i �→ f (i), and choose a value of i to be
the smallest one such that f (i) < c, for some threshold value c. Then declare the
corresponding optimising matrix to be the estimator L̂K

n . Again, c being positive
precludes us from overfitting by choosing an arbitrarily large rank.

REMARK 3. The solution of (C′) for a certain choice of c > 0 is equivalent to
the solution of (C) for a certain corresponding choice of τ (when the scree plot has
a convex shape, as has been the case in all the simulations we carried out, there
is an explicit relationship between c and τ ; see the Supplementary Material [8],
Section 4).

The value c is in principle chosen to be small (converging to zero as n increases),
and corresponds to selecting a value i for the rank beyond which the function f

levels out. This is precisely an “elbow selection rule” as is usual with scree-plots
in PCA. The analogy with traditional scree plots and PCA is, in fact, quite strong:
in traditional PCA, for each i one determines a rank i matrix that best fits the
empirical covariance, and then chooses an appropriate i via a scree plot. Here, we
do almost that: for each i, we determine a rank i matrix that best fits the band-
deleted empirical covariance, and then we choose an appropriate i via a scree plot.
Particularly in our case, a clear motivation for the “elbow” approach comes from
the fact that if we could solve (7.1) with RK instead of RK

n , then we would have

f (i) > 0 if i = 1, . . . , r − 1 and f (i)= 0 if i ≥ r.

The asymptotic validity of this motivation is shown in the Supplementary Material
[8], Section 4.

Going back to Step (B), another difference with traditional PCA, is that the
best rank i approximation of the off-band elements of the empirical covariance
cannot be determined in closed form by simple eigenanalysis. Thus, we must use
approximate schemes in order to solve the optimisation problem (7.1). For a given
value of i, we use the fact that any K ×K positive semi-definite matrix of rank at
most i can be factorised as CC�, with C ∈R

K×i . The problem thus reduces to

(7.2) min
C∈RK×i

∥∥P K ◦ (RK
n −CC�

)∥∥2
F ,

for i = 1, . . . ,K/4− 1. Notice that these problems are not convex in C, and we
thus do not have guarantees that gradient descent-type algorithms will converge to
a global optimum (of which there are multiple, since the matrix factorisation is not
unique). That being said, recent theoretical progress (e.g., Chen and Wainwright
[4]) shows that, remarkably, projected gradient descent methods with a reasonable
starting point have high probability of yielding “good” local optima in factorised
matrix completion problems. In our own implementations for example, in our sim-
ulations in Section 8, we solve the optimisation problem (7.2) (which can be seen
as factorised matrix completion) using the function fminunc of the optimization
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toolbox in MATLAB [15], with starting point C0 =Ui�
1/2
i , where: U�UT is the

singular value decomposition of RK
n ; Ui is the n× i matrix obtained by keeping

the first i columns of U ; and �i is the i × i matrix obtained by keeping the first i

lines and columns of �. This function uses a subspace trust-region method based
on the interior-reflective Newton method described in [6] and [5] to perform the
optimization. Though we do not use the exact same method, we are in a similar
setup as Chen and Wainwright [4], so we can expect to obtain “good” local optima.
Indeed, in our simulations (Section 8), the computational method was stable and
quickly converged to a reasonable local optimum.

8. Simulation study. In order to study the performance of our method on a
broad range of setups, we consider nine general scenarios to simulate our data.
For each of these scenarios, we simulate n i.i.d. mean-zero functions Yi and n i.i.d.
mean-zero functions Wi on a grid of K equally spaced points on the interval [0,1].
From these samples of discretised curves, we calculate the matrices LK

n and BK
n :

LK
n (a, b)= 1

n

n∑
i=1

Yi(ta)Yi(tb) and BK
n (a, b)= 1

n

n∑
i=1

Wi(ta)Wi(tb),

for a, b ∈ {1, . . . ,K}, and then set RK
n = LK

n +BK
n .

We construct the smooth curves Yi by setting Yi(tj ) = ∑r
a=1 ciaλ

1/2
a ηa(tj ),

where λ1, . . . , λr are positive scalars and cia ∼ N(0,1). We consider three dif-
ferent cases for the functions η1, . . . , ηr (which are, by construction, the eigen-
functions of L ). In the first case, we take the {ηj }rj=1 as the first r Fourier basis
elements (denoted by FB in the sequel), and for the particular case r = 1, instead
of using the constant function η1(t)= 1, we take η1(t)= sin(2πt); in the second
case, the {ηj }rj=1 are constructed as the Gram–Schmidt orthogonalisation of the
first r analytic functions (denoted by AC in the sequel) from the following list:

η1(t)= 5t sin (2πt), η2(t)= t cos (2πt)− 3,

η3(t)= 5t + sin (2πt)− 2,

η4(t)= cos (4πt)+ (t/2)2, η5(t)= �(4)

�(2)�(2)
t (1− t).

Finally, in the third case, we take the {ηj }rj=1 as the first r shifted Legendre

polynomials P̃i(x) (denoted by LP in the sequel) defined as

η1(t)= 6t2 − 6t + 1, η2(t)= 2t − 1, η3(t)= 1,

η4(t)= 20t3 − 30t2 + 12t − 1, η5(t)= 70t4 − 140t3 + 90t2 − 20t + 1.

The rough curves Wi are produced in one of the following three ways:

1. We set Wi(tj ) =∑q
a=0 θaεi,j−a , where q = �Kδ/2�, θ0 = 1, θ1, . . . , θq ∈

(−1,1) are scalars and εi,j
i.i.d.∼ N(0,1) (denoted by MA in the sequel).
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TABLE 1
Scenarios for the simulation study

Scenarios A B C D E F G H I

Yi FB AC LP FB AC LP FB AC LP
Wi MA MA MA TRI TRI TRI RBB RBB RBB

2. We set Wi(tj )=∑d
a=1 biaβ

1/2
a ψa(tj ), where β1, . . . , βd are positive scalars

and bia ∼N(0,1). The functions ψa are triangular functions of norm 1 with sup-
port [(a − 1)δ, aδ] (denoted by TRI in the sequel).

3. We set Wi(tj )=∑d
a=1 biaβ

1/2
a ψa(tj ), where β1, . . . , βd are positive scalars

and bia ∼N(0,1). The functions ψa are realisations of reflected Brownian bridges
defined on [(a − 1)δ, aδ] (denoted by RBB in the sequel).

The nine different scenarios resulting from the three possible choices for the eigen-
functions η and the three possible choices for the rough component W are sum-
marised in Table 1.

For each scenario, we consider 6 different combinations of the rank and band-
width parameters r and δ, as given in the Table 2.

Finally, we also consider two different regimes for the choice of the eigenval-
ues λ1 < · · ·< λr of L and β1 < · · ·< βd of B; the first one can be seen as the
easy case where there is a clear ordering distinction between the two sets, that is,
λr � β1 (regime 1); the second one is the interlaced case, when λr < β1 < λr−1
(regime 2). In regime 1, the r eigenvalues λ are equally spaced between λ1 = 1.45
and λr = 0.25, and we use λ1 = 0.25 for r = 1. In regime 2, the eigenvalues
{λ1, . . . , λr} are equally spaced between λ1 = 1 and λr = 0.04. In either regime,
the rough processes are simulated with β1 = 0.09. The remaining eigenvalues for
the scenarios (TRI) or (RBB) are smaller than 0.04 and decreasing toward zero,
while those for the scenario (MA) are slowly decreasing toward zero, yielding a
challenging situation in regime 2, since in this case there is more than one eigen-
value of the rough process that exceeds the smallest eigenvalue of the smooth
process. For each combination (r, δ) with r > 1 of Table 2, we consider each of
the two regimes and for the particular case r = 1, we consider only regime 1. In
total, we consider 10 different cases in each one of the nine simulation scenarios.

TABLE 2
Different values of the rank and bandwidth parameter

Combination 1 2 3 4 5 6

r 1 1 3 3 5 5
δ 0.05 0.1 0.05 0.1 0.05 0.1
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Our simulation study is divided into two parts. We first illustrate how the scree
plots used to select the rank r of the operator L behave for the different scenarios.
These show that using the scree plot as a basis for selection can be a very reason-
able approach. We then compare our estimator L̂K

n of LK
n to the one obtained by

three other methods: a direct use of a truncated Karhunen–Loève expansion; the
spline smoothing approach popularised by Ramsay and Silverman [18]; and the
PACE method of Yao et al. [21]. We also construct the estimated predictors Ŷ K

n

of YK for a subset of the scenarios in order to probe their predictive accuracy. In
doing this, we use the true rank of L , as the simulations are computationally very
intensive, and it would be infeasible to use an automatic selection method (and of
course, it would be impossible to make a choice based on inspection of scree plots
for all replications). Note that for the rest of this section we consider the maximal
bandwidth of BK to be 10 instead of K/4= 25 (without emphasising it by a new
notation), since one would rarely expect a rough process to have such a long mem-
ory, and since using a smaller maximal bandwidth value gives more stable and
accurate numerical results. We have also carried out a simulation study to probe
the performance of the estimators L̂K

n , B̂K
n and Ŷ K

n when the data are corrupted
by measurement errors and/or high frequency noise. The results can be found in
the Supplementary Material ([8], Section 7.3), and are qualitatively very similar to
those presented in the main text.

8.1. Rank selection. In order to probe the appropriateness of using a scree-
type plot in order to estimate the rank r of the operator L , we ran simulations
on one sample of each scenario, each combination of the parameters r and δ and
both regimes (for a total of 9 × 6 + 9 × 4 = 90 simulations). As explained in
Section 7, we plot the function f (i)= ‖P K ◦ (RK

n − ĈiĈ
�
i )‖2

F , where Ĉi ∈RK×i

is the minimiser of the optimisation problem (7.2), and then we select the rank
j beyond which f (j) levels out, that is, beyond which no meaningful reduction
to the objective function is achieved. In practice we evaluate the function f over
i = 1, . . . ,10 and not over 1, . . . ,K/4− 1= 24 as mentioned in the theory since
the procedure is quite computationally intensive; it is clear from the resulting plots
that this is not restrictive. The results are presented by scenario and by regime in
Figure 2. Since the functions f are not on the same scale for every regime and
every combination, we plotted a normalised version of f given by f (i)/‖P K ◦
RK

n ‖2
F . For each scenario, the function f for the samples generated with r = 5 are

in black, the ones generated with r = 3 are in red and the ones generated with r = 1
in blue. The dotted vertical lines indicate the location of the true rank, that is, 5 (in
black), 3 (in red) and 1 (in blue). The figure reveals that for most of the scenarios,
we would select the rank quite accurately in regime 1 and we would underestimate
it a little bit in regime 2. In further simulations (reported in the Supplementary
Material [8], Section 7.1) we study the effect of rank misspecification. It seems that
underestimation is quite impactful in Regime 1 (noninterlaced eigenvalues) and
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that overestimation does not have a severe impact in both regimes, which suggests
that one should not hesitate to over-estimate the rank relative to what the scree-plot
indicates.

8.2. Comparisons. We investigate the performance of our estimator of LK
n ,

alongside the three following methods:

1. The spline smoothing approach, popularised by Ramsay and Silverman [18]:
compute X̃i , the smooth version of the observed curves Xi , by using B-spline
smoothing; then define the estimator of LK

n as L̂K
RS(a, b)= 1

n

∑n
i=1 X̃i(ta)X̃i(tb);

2. The PACE method (Yao et al. [21]) described in Section 1: the estimator of
LK

n is given by L̂K
PACE(a, b)= ρ̃(ta, tb). Of course it must be noted that PACE was

primarily introduced for the sparse sampling case, but it can still be used in a dense
setting.

3. Truncation of the empirical Karhunen–Loève (KL) expansion: we derive the
spectral decomposition of RK

n , and the estimator of LK
n is simply equal to a spec-

trally truncated version thereof, at a level rk, where rk is chosen such that the
variance explained is at least 95%.

For every choice of scenario (A)–(I), rank/bandwidth combination (1)–(6),
and eigenvalue regime (regime 1 or regime 2), we simulate 100 replications
for a sample size of n = 300 on a grid of K = 100 points. Results for differ-
ent values of n and K can be found in the Supplementary Material [8], Sec-
tion 7.2. For each replicate, we determine the estimators given by the four dif-
ferent methods, and calculate their normalised error, by evaluating the function
Err(u)= (‖u−LK

n ‖F )/‖LK
n ‖F at every one of these estimators. We then form the

ratio between our method’s relative error (in the denominator) and the relative error
of each of the three other methods (in the numerator). Consequently, we calculate
3× 100 ratios per simulation regime. Their corresponding first quartiles, medians
and third quartiles are presented in Table 3 (regime 1) and in Table 4 (regime 2),
where those medians exceeding 1 have been highlighted in bold. These indicate
settings where our approach typically performs comparably or at least as well any
as the approach it is being compared to. Corresponding boxplots are provided in
the Supplementary Material ([8], Section 7.4), allowing for a finer appreciation of
the distribution of relative errors.

Of course, one cannot expect there to be a uniformly best method (for instance,
the KL expansion is expected to perform best when all the eigenfunctions are
approximately mutually orthogonal and the eigenvalues are not interlaced). That
being said, Tables 3 and 4 reveal that our method has a performance that is typ-
ically better than or comparable to that of the best competitor in all but one sce-
narios/combinations. The exceptional case corresponds to a situation where the
smooth curves were generated with the first 5 Legendre polynomials. In this par-
ticular setup, our optimisation problem was quite unstable due to the particular
shape of the matrix LK

n —it had very high values on the band relative to values
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FIG. 2. Plots of the function f (·) (defined in Section 7) normalised by ‖PK ◦ RK
n ‖2

F for a given
scenario, a given combination of parameters and a given regime. The curves in black correspond to
a setting with r = 5, those in red to a setting with r = 3 and those in blue to a setting with r = 1.
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TABLE 3
Table containing the median (the first and third quartiles are in parentheses) of the ratios for the

three methods we compared our method with and for the 9 scenarios we considered with the
regime 1. We highlight in bold the medians that exceed 1

Scenario (rk, δ) PACE KL RS

Regime 1
A (1,0.05) 4.01 (2.51,6.46) 2.87 (1.93,4.18) 4.15 (3.59,5.16)

(1,0.10) 4.44 (2.21,7.83) 3.40 (2.01,5.48) 4.92 (3.79,6.03)

(3,0.05) 3.19 (2.31,4.60) 2.89 (2.19,3.73) 3.02 (2.59,3.46)

(3,0.10) 3.10 (2.13,4.50) 2.75 (1.89,3.97) 2.89 (2.40,3.32)

(5,0.05) 2.58 (2.07,3.26) 2.41 (2.04,2.92) 2.04 (1.81,2.33)

(5,0.10) 2.20 (1.79,2.86) 2.10 (1.71,2.60) 1.87 (1.60,2.08)

B (1,0.05) 3.95 (2.05,5.80) 3.09 (1.79,4.46) 4.30 (3.51,5.02)

(1,0.10) 3.54 (1.83,6.12) 2.55 (1.55,4.83) 4.18 (3.44,5.08)

(3,0.05) 2.93 (2.55,4.11) 2.85 (2.36,3.55) 2.72 (2.37,3.03)

(3,0.10) 3.16 (2.49,4.14) 2.74 (2.22,3.46) 2.71 (2.43,3.11)

(5,0.05) 1.91 (1.49,2.83) 1.84 (1.48,2.38) 1.49 (1.23,1.72)

(5,0.10) 1.62 (1.28,2.20) 1.57 (1.25,2.03) 1.35 (1.07,1.61)

C (1,0.05) 2.22 (0.87,4.20) 1.05 (0.49,2.27) 2.82 (2.17,3.71)

(1,0.10) 1.34 (0.71,3.02) 0.63 (3.38,1.95) 2.23 (1.01,3.78)

(3,0.05) 2.08 (1.58,2.90) 1.73 (1.28,2.27) 2.19 (1.78,2.59)

(3,0.10) 1.52 (1.08,2.36) 1.33 (0.79,2.01) 1.95 (1.33,2.45)

(5,0.05) 0.43 (0.37,0.55) 0.5 (0.48,0.75) 0.42 (0.28,0.74)

(5,0.10) 0.49 (0.40,0.70) 0.51 (0.48,0.69) 0.44 (0.28,0.74)

D (1,0.05) 11.7 (9.89,12.8) 11.7 (9.89,12.8) 10.5 (8.77,11.6)

(1,0.10) 21.0 (18.3,26.5) 21.9 (18.2,26.4) 16.1 (13.4,19.3)

(3,0.05) 6.83 (5.98,7.41) 6.66 (5.85,7.33) 5.00 (5.21,6.46)

(3,0.10) 11.2 (9.62,12.9) 10.8 (9.10,12.4) 8.80 (7.34,10.0)

(5,0.05) 4.51 (3.91,5.18) 4.27 (3.68,4.95) 3.92 (3.38,4.52)

(5,0.10) 7.50 (6.20,8.65) 7.11 (5.65,8.24) 5.94 (4.88,6.74)

E (1,0.05) 7.77 (6.97,9.13) 7.76 (6.97,9.12) 7.03 (6.17,8.01)

(1,0.10) 15.1 (12.6,18.0) 15.0 (12.6,18.0) 11.0 (9.41,13.4)

(3,0.05) 5.55 (5.05,6.31) 5.73 (5.15,6.61) 4.88 (4.45,5.60)

(3,0.10) 9.15 (7.81,10.7) 9.36 (8.00,11.0) 7.08 (5.98,8.25)

(5,0.05) 2.83 (2.26,3.62) 3.03 (2.39,3.95) 2.54 (1.95,3.12)

(5,0.10) 5.40 (4.31,6.71) 5.55 (4.56,7.09) 4.30 (3.34,5.30)

F (1,0.05) 8.91 (7.56,10.2) 9.05 (7.69,10.3) 7.78 (6.77,9.08)

(1,0.10) 18.2 (14.6,24.5) 18.3 (14.7,24.6) 13.3 (10.9,17.9)

(3,0.05) 5.43 (4.58,6.31) 5.67 (4.82,6.67) 4.69 (3.89,5.51)

(3,0.10) 9.84 (8.83,11.2) 10.2 (9.12,11.5) 7.47 (6.51,8.43)

(5,0.05) 0.51 (0.18,0.86) 0.52 (0.19,0.91) 0.44 (0.15,0.72)

(5,0.10) 1.03 (0.47,2.11) 1.07 (0.49,2.20) 0.73 (0.36,1.57)
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TABLE 3
(Continued)

Scenario (rk, δ) PACE KL RS

G (1,0.05) 13.5 (10.2,17.0) 13.4 (10.2,16.8) 12.1 (9.43,15.0)

(1,0.10) 17.2 (13.0,24.6) 17.2 (13.0,25.0) 15.6 (11.6,20.9)

(3,0.05) 9.78 (8.17,11.8) 9.21 (7.38,11.2) 7.93 (6.97,9.71)

(3,0.10) 9.76 (7.94,12.2) 9.34 (7.58,12.2) 8.64 (7.00,10.7)

(5,0.05) 7.05 (6.07,8.36) 7.15 (5.93,8.67) 5.64 (4.85,7.23)

(5,0.10) 6.93 (5.68,8.23) 6.44 (5.37,8.03) 6.00 (5.04,7.46)

H (1,0.05) 11.0 (8.29,13.8) 10.9 (8.49,13.8) 9.29 (7.66,11.8)

(1,0.10) 14.2 (10.4,18.2) 14.2 (10.5,18.2) 11.7 (8.96,16.0)

(3,0.05) 7.76 (6.74,9.89) 8.72 (7.00,10.2) 6.89 (5.65,7.85)

(3,0.10) 8.67 (6.83,11.2) 8.63 (6.88,11.3) 7.95 (6.19,10.2)

(5,0.05) 4.80 (3.41,6.20) 6.01 (4.49,8.14) 4.03 (2.94,5.44)

(5,0.10) 5.36 (3.82,6.89) 5.60 (3.89,7.17) 4.67 (3.38,5.95)

I (1,0.05) 11.1 (9.31,13.7) 11.7 (9.68,14.2) 9.87 (8.21,12.4)

(1,0.10) 16.0 (11.4,20.6) 16.2 (11.5,20.7) 13.8 (9.87,17.4)

(3,0.05) 7.13 (6.00,9.25) 7.61 (6.49,10.0) 6.03 (5.21,7.29)

(3,0.10) 7.72 (6.29,9.58) 8.17 (6.49,9.99) 6.76 (5.46,8.43)

(5,0.05) 1.06 (0.65,1.53) 1.33 (0.72,1.92) 0.88 (0.53,1.27)

(5,0.10) 0.94 (0.18,1.77) 0.99 (0.19,1.82) 0.78 (0.15,1.54)

outside the band, rendering matrix completion difficult. Consequently, some of the
replications returned estimators that where completely off, as is indicated in the ta-
ble by the small values of the first quartile for the scenarios C, F and I with r = 5.
Of course, all the results need to be taken with a grain of salt, as we make use of
the true rank when constructing our estimator, which in practice is unknown and
must be selected (and of course, the methods to which we compare also involve
the choice of tuning parameters, depending on which their performance may vary).
These comparisons should thus be viewed as a benchmark, rather than a claim to
superiority, as we compare to methods not specifically tailored for the problem at
hand.

In practice, it may of course be that the rough component is indeed pure noise.
In order to check whether our method performs comparably well with the other
methods in this more classical setup, we additionally consider a scenario where
the smooth curves are generated using a Fourier basis and the rough curves are
discrete white noise. In this situation, the matrix BK representing the discretised
kernel b is precisely diagonal instead of just banded. The results are presented
in the Table 5. Surprisingly, it appears that our method performs equally well or
better than all other methods in all scenarios considered. A likely explanation is
that, even when the process W has a diagonal kernel, its finite sample empirical
kernel will not be exactly diagonal, but banded (since some empirical correlations
will exist).
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TABLE 4
Table containing the median (the first and third quartiles are in parentheses) of the ratios for the

three methods we compared our method with and for the 9 scenarios we considered with the
regime 2. We highlight in bold the medians that exceed 1

Scenario Combination PACE KL RS

Regime 2
A (3,0.05) 1.84 (1.16,2.54) 1.87 (1.09,2.79) 2.26 (1.28,2.86)

(3,0.10) 1.20 (0.95,1.87) 0.98 (0.83,1.89) 1.14 (0.78,2.17)

(5,0.05) 1.06 (0.87,1.61) 0.96 (0.86,1.72) 1.08 (0.62,1.76)

(5,0.10) 1.01 (0.84,1.24) 0.93 (0.82,1.25) 0.91 (0.63,1.22)

B (3,0.05) 2.11 (1.29,2.90) 2.22 (1.22,2.95) 2.06 (1.30,2.65)

(3,0.10) 1.32 (1.05,1.78) 1.10 (0.91,1.73) 1.26 (0.73,2.24)

(5,0.05) 0.94 (0.82,1.10) 0.89 (0.80,1.04) 0.75 (0.44,1.07)

(5,0.10) 1.04 (0.87,1.24) 0.94 (0.80,1.17) 0.90 (0.60,1.33)

C (3,0.05) 1.18 (0.88,1.61) 0.80 (0.64,1.44) 1.25 (0.93,2.02)

(3,0.10) 1.15 (0.85,1.62) 0.72 (0.58,1.53) 1.35 (0.83,1.91)

(5,0.05) 0.68 (0.54,0.89) 0.53 (0.48,0.71) 0.79 (0.52,1.32)

(5,0.10) 0.74 (0.54,1.03) 0.56 (0.47,1.04) 0.77 (0.58,1.26)

D (3,0.05) 5.70 (5.06,6.62) 5.59 (5.03,6.65) 4.93 (4.42,5.73)

(3,0.10) 10.7 (8.66,12.2) 10.5 (8.48,12.2) 8.03 (6.39,9.37)

(5,0.05) 3.58 (3.10,4.18) 3.48 (3.05,4.03) 3.08 (2.73,3.59)

(5,0.10) 6.81 (5.64,8.09) 6.63 (5.54,7.72) 5.27 (4.23,6.17)

E (3,0.05) 4.60 (3.89,5.43) 4.66 (3.96,5.45) 4.16 (3.60,4.81)

(3,0.10) 8.59 (6.96,10.2) 8.65 (7.00,10.2) 6.51 (5.22,7.80)

(5,0.05) 2.09 (1.11,2.76) 2.14 (1.13,2.82) 1.84 (0.94,2.45)

(5,0.10) 3.96 (3.15,5.46) 4.24 (3.33,5.72) 3.12 (2.42,4.27)

F (3,0.05) 1.13 (0.06,2.74) 1.17 (0.07,2.83) 0.99 (0.06,2.47)

(3,0.10) 3.45 (0.16,7.03) 3.55 (0.16,7.20) 2.61 (0.11,5.21)

(5,0.05) 0.78 (0.07,1.43) 0.81 (0.07,1.50) 0.66 (0.06,1.27)

(5,0.10) 0.70 (0.09,2.85) 0.71 (0.09,2.95) 0.52 (0.07,2.13)

G (3,0.05) 7.87 (6.60,9.69) 7.31 (6.22,9.55) 6.56 (5.56,8.07)

(3,0.10) 8.05 (6.46,9.91) 8.02 (6.41,9.92) 7.03 (5.58,9.10)

(5,0.05) 5.73 (4.73,6.52) 7.03 (5.95,8.53) 4.94 (3.92,5.68)

(5,0.10) 5.87 (4.77,7.88) 5.75 (4.69,7.92) 5.30 (4.35,7.00)

H (3,0.05) 7.10 (6.07,8.22) 6.99 (5.73,8.16) 6.06 (5.13,7.17)

(3,0.10) 7.51 (6.03,9.43) 7.61 (6.09,9.53) 6.74 (5.63,8.19)

(5,0.05) 3.84 (3.16,4.91) 5.26 (4.11,6.90) 3.40 (2.64,4.14)

(5,0.10) 3.89 (1.76,5.46) 4.30 (1.82,5.84) 3.53 (1.47,5.02)

I (3,0.05) 4.94 (3.27,6.13) 5.32 (3.48,6.54) 4.41 (3.12,5.30)

(3,0.10) 3.11 (0.20,6.11) 3.16 (0.20,6.24) 2.87 (0.17,5.12)

(5,0.05) 0.59 (0.06,1.47) 0.67 (0.07,1.58) 0.49 (0.05,1.24)

(5,0.10) 1.16 (0.14,2.54) 1.20 (0.15,2.60) 1.02 (0.11,2.38)
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TABLE 5
Table containing the median (the first and third quartiles are in parentheses) of the ratios for the

three methods we compared our method with for the classical scenario where the rough component
is a white noise. We highlight in bold the results that exceed 1

r PACE KL RS

Regime 1
1 1.92 (1.69,2.16) 1.76 (1.53,2.05) 4.08 (3.77,4.33)

3 2.90 (2.58,3.16) 3.02 (2.66,3.28) 3.36 (3.05,3.53)

5 2.80 (2.61,3.01) 2.78 (2.56,3.02) 2.40 (2.24,2.65)

Regime 2
3 1.63 (1.45,1.76) 2.01 (1.85,2.19) 2.36 (2.22,2.57)

5 1.28 (1.16,1.37) 1.48 (1.36,1.61) 1.64 (1.45,1.75)

8.3. Prediction of the smooth curves. We selected 6 different cases in order
to probe the performance of our estimated predictor Ŷ K

n as a proxy for the true
predictor �(XK). We considered, for both regimes, combination 5 of scenario A,
combination 4 of scenarios F and combination 6 of scenario H. For every sample,
we calculated the average of the approximation of the normalised mean integrated
squared error of Ŷ K

n :

relMISE= 1

n

n∑
i=1

∑K
j=1[Ŷ K

n,i(tj )−�(XK
i )(tj )]2∑K

j=1[�(XK
i )(tj )]2

.

Figure 3 contains boxplots of their distributions. These illustrate that, as expected,
our predictions perform better when the eigenvalues of L and B are not inter-
laced.

9. Proofs of formal statements.

9.1. Proofs of theorems in Section 3.

PROOF OF THEOREM 1. Since the eigenfunctions of L1 and L2 are analytic
and max{r1, r2}<∞, it follows that the corresponding covariance kernels are bi-
variate analytic functions on [0,1]2 ([13], Theorem 4.3.3).

This being the case, the zero set of either kernel is at most 1-dimensional, unless
the kernels are uniformly zero ([13], Theorem 6.33). Since our theorem follows
trivially if L1 and L2 are the zero operator, we can assume that their kernels are
not uniformly zero. Thus, if we can show that the two kernels coincide on an open
subset U of [0,1]2, then they will necessarily coincide everywhere on (0,1)2, and
thus on [0,1]2 by continuity. This, in particular, will in turn imply that B1 and B2
also coincide.
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FIG. 3. Distributions of relMISE. First row: scenario A with r = 5, δ = 0.05, regime 1 on the left
and regime 2 on the right. Middle row: scenario F with r = 3, δ = 0.1, regime 1 on the left and regime
2 on the right. Last row: scenario H with r = 5, δ = 0.1, regime 1 on the left and regime 2 on the
right.

Without lost of generality, assume that δ1 ≥ δ2. Define

U = (δ1,1)× (0,1− δ1).

Since L1+B1 =L2+B2, but B1 =B2 = 0 on U , it must be that the kernels of
L1 and L2 coincide on the open set U , and the proof is complete. �

The proof of Proposition 1 can be found in the Supplementary Material [8],
Section 5. Moving on, the proof of Theorem 2 rests upon the observation that it
is essentially a statement regarding matrix completion. Our strategy of proof will
thus be to translate our functional conditions on B and L into matrix properties
of LK and BK that suffice for unique matrix completion. We first develop the said
matrix properties in the form of Lemma 1 and Theorem 4.

LEMMA 1. Let b(s, t) be a continuous kernel on [0,1]2 such that b(s, t)= 0
whenever |s − t | > δ, and let (t1, . . . , tK) ∈ TK be a grid of K points. Then the
matrix BK = {b(ti , tj )}Ki,j=1 is banded with bandwidth 2�δ ·K� + 1.

THEOREM 4. Let L have kernel 	(s, t)=∑r
i=1 λiηi(s)ηi(t) with r <∞ and

real analytic orthonormal eigenfunctions {η1, . . . , ηr}. If K > r , then the minors
of order r of the matrix LK = {	(ti, tj )}Ki,j=1 are all nonzero, almost everywhere
on TK .
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PROOF. First, notice that from 	(s, t)=∑r
i=1 λiηi(s)ηi(t), we have

LK
jl =

r∑
i=1

λiηi(tj )ηi(tl).

Thus, LK can be written as UK�(UK)�, where

UK =

⎛⎜⎜⎜⎝
η1(t1) η2(t1) · · · ηr(t1)

η1(t2) η2(t2) · · · ηr(t2)
...

...
...

η1(tK) η2(tK) · · · ηr(tK)

⎞⎟⎟⎟⎠ and

(9.1)

� =

⎛⎜⎜⎜⎝
λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λr

⎞⎟⎟⎟⎠ .

Any r × r submatrix of LK obtained by deleting rows and columns, can then be
written as

UK
F �

(
UK

F ′
)�

,

where UK
F (resp., UK

F ′ ) is an r × r matrix obtained by deleting rows of UK whose
indices are not included in F ⊆ {1, . . . ,K} (resp., F ′). The condition that any
minor of order r of LK be nonzero is then equivalent to the condition that

det
[
UK

F �
(
UK

F ′
)�]= det

[
UK

F

]
det[�]det

[
UK

F ′
] �= 0,

for any subset F,F ′ ⊆ {1, . . . ,K} of cardinality r . By construction det(�) �= 0, so
the minor condition is then equivalent to requiring that det(UK

F ) �= 0 for any subset
F ⊆ {1, . . . ,K} of cardinality r .

We will show that this is indeed the case almost everywhere on TK . Let μ denote
Lebesgue measure on TK and let F = {1, . . . , r}, without loss of generality (so that
UK

F is formed by keeping the first r rows of UK ). Using the Leibniz formula, we
have that det(UK

F ) can be written as the function

D(t1, . . . , tr )=
∑
σ∈Sr

ε(σ )

r∏
i=1

ηi(tσ (i)),

where Sr is the symmetric group on r elements and ε(σ ) is the signature of the
permutation σ . Note that the function D is real analytic on (0,1)r , by virtue of
each ηi being real analytic on (0,1).

We will now proceed by contradiction. Assume that

μ
{
(x1, . . . , xK) ∈ TK :D(x1, . . . , xr)= 0

}
> 0.
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Since μ is Lebesgue measure, it follows that the Hausdorff dimension of the set
A= {(x1, . . . , xr) :D(x1, . . . , xr)= 0} is equal to r . However, since D is analytic,
Krantz and Parks [13], Theorem 6.33, implies the dichotomy: either D is constant
everywhere on (0,1)r , or the set A is at most of dimension r − 1. Thus, it must be
that D is everywhere constant on (0,1)r , the constant being of course zero:

D(x1, . . . , xr)=
∑
σ∈Sr

ε(σ )

r∏
i=1

ηi(xσ(i))= 0 ∀(x1, . . . , xr) ∈ (0,1)r .

Now fix (x1, . . . , xr−1) and apply to D (viewed as a function of xr only) the con-
tinuous linear functional Tηr (f )= 〈f,ηr〉. We obtain that for all (x1, . . . , xr−1) ∈
(0,1)r :

0= 〈D,ηr〉 =
∑
σ∈Sr

ε(σ )

[ ∏
i:σ(i) �=r

ηi(xσ(i))

]
〈ησ−1(r), ηr〉

= ∑
σ∈Sr−1

ε(σ )

r−1∏
i=1

ηi(xσ(i)).

Applying iteratively the continuous linear functionals Tηj
(f )= 〈f,ηj 〉 to D while

keeping (x1, . . . , xj−1) fixed then leads to

η1(y)= 0 ∀y ∈ (0,1).

This last equality contradicts the fact that η1 is of norm one, and allows us to
conclude that μ{(x1, . . . , xK) ∈ TK :D(x1, . . . , xr)= 0} = 0. �

We now prove Theorem 2 by demonstrating that the matrix properties of
(LK,BK) that derive from its assumptions are sufficient for unique matrix com-
pletion. The proof is inspired by Proposition 2.12 of [12].

PROOF OF THEOREM 2. Given our conditions, Lemma 1 implies that
B1,B2 ∈R

K×K are banded matrices with bandwidth 2�δi ·K� + 1, for i ∈ {1,2}.
Let δ = max{δ1, δ2} and assume without loss of generality that r1 ≥ r2. Let

� be the set of indices on which both B1 and B2 vanish, which by Lemma 1
is � = {(i, j) ∈ {1, . . . ,K}2 : |i − j | > �δ · K�}. From L1 + B1 = L2 + B2, we
obtain that {L1}ij = {L2}ij ,∀(i, j) ∈�. Let �A be the set of indices of a submatrix
formed by the first r1 rows and the last r1 columns of a K×K matrix, the condition
K ≥K∗ = 2r1+2

1−2δ
implies that �A ⊂�, which in turn implies that the matrices L1

and L2 contain a common submatrix A of dimension r1 × r1.
Assume that all minors of order r1 of L1 are nonzero. Then the determinant of

A is nonzero, which implies that the rank of L2 is also r1. We thus establish that L1
and L2 are two rank r1 matrices equal on �. Let L∗ be a matrix equal to L1 on �,
but unknown at those indices that do not belong to �. We will now show that there
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exists a unique rank r1 completion of L∗. Due to the band pattern of the unobserved
entries of L∗ and the inequality K ≥K∗ = 2r1+2

1−2δ
, it is possible to find a submatrix

of L∗ of dimension (r1 + 1)× (r1 + 1) with only one unobserved entry, denoted
x∗. Using the fact that the determinant of any square submatrix of dimension larger
than r1 + 1 is zero, we obtain a linear equation of the form ax∗ + b = 0, where a

is equal to the determinant of a submatrix of dimension r1 × r1. Since we assume
that any minor of order r1 is nonzero, we have that a �= 0 and the previous equation
has a unique solution. It is then possible to impute the value of x∗. Applying this
procedure iteratively until all missing entries are determined allows us to uniquely
complete the matrix L∗ into a rank r1 matrix. In summary, we have demonstrated
that when all minors of order r1 of L1 are nonzero, it holds that L∗ = L1 = L2 and
hence B1 = B2. Theorem 4 assures us that L1 indeed has nonvanishing minors of
order r1 almost everywhere on TK , and so we conclude that it must be that L1 = L2
and B1 = B2 almost everywhere on TK . �

9.2. Proofs of theorems in Section 4.

PROOF OF PROPOSITION 2. Since δ < 1/4 and K ≥ 4r+1 implies K ≥ 2r+2
1−2δ

,
Theorem 2 implies that the objective function (4.1) achieves its minimal value of
r at LK . To elaborate, note that any minimiser of (4.1) must equal LK on the set
� = {(i, j) ∈ {1, . . . ,K}2 : |i − j | > �δ · K�}, as it has to satisfy the constraint
‖P K(RK − θ)‖2

F = 0. Consequently, any minimiser has a nonzero minor of or-
der r in �, implying that its rank is bounded below by r . Thus its rank must be
exactly r , since LK satisfies the constraint and has rank r . We conclude that any
minimiser of (4.1) must be equal to LK everywhere, following the same iterative
completion process as in the second part of the proof of Theorem 2 (see immedi-
ately above).

We now turn to prove that LK = arg minθ∈RK×K {‖P K ◦ (RK − θ)‖2
F +

τ rank(θ)}, for all τ > 0 sufficiently small. Since we have established that LK

uniquely solves

min
θ∈RK×K

rank{θ} subject to
∥∥P K ◦ (RK − θ

)∥∥2
F = 0,

it follows that for all τ > 0 and any θ ∈ R
K×K of rank greater or equal to r , we

have that∥∥P K ◦ (RK −LK)∥∥2
F + τ rank

(
LK)

<
∥∥P K ◦ (RK − θ

)∥∥2
F + τ rank(θ).

We thus concentrate on matrices θ ∈RK×K of rank at most r − 1, for r > 1. Let

μ= min
θ∈RK×K,rank(θ)≤r−1

{∥∥P K ◦ (RK − θ
)∥∥2

F

}
> 0.

Now let τ∗ = μ
r−1 . Then, for any τ < τ∗, and any θ of rank less than r ,∥∥P K ◦ (RK −LK)∥∥2

F + τ rank
(
LK)= τr < μ+ τ

≤ ∥∥P K ◦ (RK − θ
)∥∥2

F + τ rank(θ).
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In summary, putting our results together, we have shown that for all τ ∈ (0, τ∗),

LK = arg min
θ∈RK×K

{∥∥P K ◦ (RK − θ
)∥∥2

F + τ rank(θ)
}
.

Finally, it is worth pointing out that although τ∗ depends on r , this does not mean
that the objective function depends on unknowns: r can be shown (using Theo-
rem 4) to be equal to the rank of the submatrix formed by the first �K/4� rows and
the last �K/4� columns of RK , and thus we can determine τ∗ directly from the
matrix RK . This completes the proof. �

9.3. Proofs of theorems in Section 6.

PROOF OF THEOREM 3. We begin by the usual bias/variance decomposition∥∥L̂ K
n −L

∥∥2
HS ≤ 2

∥∥L̂ K
n −L K

∥∥2
HS + 2

∥∥L K −L
∥∥2

HS

= 2K−2∥∥L̂K
n −LK

∥∥2
F + 2

∥∥L K −L
∥∥2

HS.

For the second term (bias), we note that by a Taylor expansion∫ 1

0

∫ 1

0

(
	(x, y)− 	K(x, y)

)2
dx dy

=
K∑

i,j=1

∫
Ii,K

∫
Ij,K

(
	(x, y)− 	(ti, tj )

)2
dx dy

≤
K∑

i,j=1

∫
Ii,K

∫
Ij,K

2K−2 sup
(x,y)∈Ii,K×Ij,K

∥∥∇	(x, y)
∥∥2

2

≤ 2K−2 sup
(x,y)∈[0,1]2

∥∥∇	(x, y)
∥∥2

2.

Without loss of generality, we assume that the data are rescaled so that
K−1trace(RK

n ) = 1. To show that K−2‖L̂K
n − LK‖2

F = OP(n
−1) almost every-

where on TK , define �K to be the space of K ×K nonnegative matrices of trace
at most K . Consider the functionals

Sn,K :�K →[0,∞), Sn,K(θ)=K−2∥∥P K ◦ (θ −RK
n

)∥∥2
F︸ ︷︷ ︸

Mn,K(θ)

+ τ rank(θ),

SK :�K →[0,∞), SK(θ)=K−2∥∥P K ◦ (θ −RK)∥∥2
F︸ ︷︷ ︸

MK(θ)

+ τ rank(θ),

where PK(i, j) = 1{|i − j | > �K/4�}. Note that, since K ≥ 4r + 4, Theorem 2
implies that for almost all grids, LK is the unique minimiser of SK , for all τ > 0
sufficiently small. From now on, fix such a grid, and let τ > 0 be sufficiently small.
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First, we will show that L̂K
n is consistent for LK . To this aim, note that∣∣Sn,K(θ)− SK(θ)

∣∣= ∣∣Mn,K(θ)−MK(θ)
∣∣

=K−2∣∣∥∥P K ◦ (θ −RK
n

)∥∥2
F −

∥∥P K ◦ (θ −RK)∥∥2
F

∣∣
≤K−2∣∣∥∥P K ◦ (θ −RK

n

)∥∥
F −

∥∥P K ◦ (θ −RK)∥∥
F

∣∣
× (∥∥P K ◦ (θ −RK

n

)∥∥
F +

∥∥P K ◦ (θ −RK)∥∥
F

)
≤K−2∥∥P K ◦ (RK

n −RK)∥∥
F

(
2‖θ‖F +

∥∥RK
n

∥∥
F +

∥∥RK
∥∥
F

)
.

It follows that supθ∈�K

∣∣Sn,K(θ)− SK(θ)
∣∣ n→∞→ 0 almost surely, and given that

SK(θ) is lower semicontinuous with a unique minimum at LK , and L̂K
n ∈ �K ,

consistency of L̂K
n for LK follows [19, Corollary 3.2.3].

Next we show that rank(L̂K
n ) is consistent for the true rank. Suppose that

this is not true. Then there exist ε > 0, δ > 0 and a subsequence {nj } such
that P{| rank(L̂K

nj
) − r| > ε} > δ for all j ≥ 1. So, P{rank(L̂K

nj
) �= r} > δ for

all j ≥ 1. Thus, there exist possibly two subsequences {jl} and {kl} such that
P{rank(L̂K

jl
) > r}> δ/2 and P{rank(L̂K

kl
) < r}> δ/2 for all l ≥ 1. The latter pos-

sibility is impossible since L̂K
n is consistent, and matrices of rank at most r − 1

form a closed set. For the first possibility, since L̂K
jl

converges to LK in probabil-

ity, there exists a further subsequence {jlm} such that rank(L̂K
jlm

) > r for all m≥ 1

and L̂K
jlm

converges to LK as m→∞. Without any loss of generality, we can as-

sume that P(rank(L̂K
jlm

) > r) > δ/2 for all m ≥ 1, and L̂K
jlm

converges to LK as
m→∞ almost surely (or take further subsequences). So, the set where both of
these events hold has probability at least δ/2. Working on this set, and by L̂K

jlm

being a minimiser,

Mn,K

(
L̂K

jlm

)+ τ(r + 1)

=K−2∥∥P K ◦ (L̂K
jlm
−RK

n

)∥∥2
F + τ(r + 1)

≤K−2∥∥P K ◦ (L̂K
jlm
−RK

n

)∥∥2
F + τ rank

(
L̂K

jlm

)
(9.2)

≤ inf
θ∈�K :rank(θ)=r

{
K−2∥∥P K ◦ (θ −RK

n

)∥∥2
F + τ rank(θ)

}
= inf

θ∈�K :rank(θ)=r
K−2∥∥P K ◦ (θ −RK

n

)∥∥2
F + τr

= inf
θ∈�K :rank(θ)=r

Mn,K(θ)+ τr,

for all m ≥ 1. But supθ∈�K
|Mn,K(θ) − MK(θ)| → 0 almost surely, so

Mn,K(L̂K
jlm

)−MK(L̂K
jlm

)→ 0. Also, by continuity, MK(L̂K
jlm

)→MK(LK) = 0.
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Consequently, Mn,K(L̂K
jlm

)→ 0. Now note that, on the set {θ ∈�K : rank(θ)= r},
the sequence of functions Mn,K(θ) are equi-Lipschitz continuous almost surely.
So, from the uniform convergence, we will also have

inf
θ∈�K :rank(θ)=r

Mn,K(θ)→ inf
θ∈�K :rank(θ)=r

MK(θ)= 0.

Combining the above facts and using (9.2), we arrive at the contradiction that τ ≤
0. Summarising, if we define

d2(θ,LK)=K−2∥∥θ −LK
∥∥2
F + τ

∣∣rank(θ)− rank
(
LK)∣∣,

then we have d(L̂K
n ,LK)→ 0 in probability as n→∞. We will now use consis-

tency in conjunction with [19, Theorem 3.4.1], to obtain the rate. Write

�(θ)= SK(θ)− SK

(
LK)=K−2∥∥P K ◦ (θ −LK)∥∥2

F + τ
(
rank(θ)− r

)
.

Choose η2 < τ and observe that, for any θ with rank(θ) �= r , we must have
d2(θ,LK) ≥ τ | rank(θ) − r| ≥ τ > η2, which implies that d(θ,LK) > η. Thus,
no matrix θ with rank(θ) �= r satisfies γ /2 < d(θ,LK) < γ for γ < η. Hence,

inf
θ∈�K :γ /2<d(θ,LK)<γ

�(θ)= inf
θ∈�K :γ /2<d(θ,LK)<γ,rank(θ)=r

�(θ).

We will show that the latter quantity is bounded below by α0γ
2, where α0 > 0

and γ < η, for η > 0 sufficiently small. This is equivalent to showing that

inf
θ∈�K :γ 2/4<‖θ−LK‖2

F <γ 2,rank(θ)=r

∥∥P K ◦ (θ −LK)∥∥2
F > α1γ

2,(9.3)

for some α1 > 0. We argue by contradiction. Fix any θ with rank(θ) = r and
‖θ −LK‖2

F > d , where we write d = γ 2/4 for tidiness. Suppose that ‖P K ◦ (θ −
LK)‖2

F < βd , for some β ∈ (0,1/2). Now, we can always write θ = LK +A+B ,
where A = P K ◦ A and P K ◦ B = 0 [simply define A = P K ◦ (θ − LK) and
B = θ − LK − A]. If ‖P K ◦ (θ − LK)‖2

F < βd for some β ∈ (0,1/2), we have
‖A‖2

F < βd and ‖A+ B‖2
F = ‖A‖2

F + ‖B‖2
F > d . So, ‖B‖2

F > (1− β)d > d/2
and there exists an element (j, k) (in the band defined by P K ) such that |Bj,k|>√

d/(2cK), where cK is the total number of elements in the band. Observe that
θj,k = LK

j,k +Bj,k .

Now, we know that all possible minors of LK of order r are nonzero, and for
sufficiently small η, the same is true in an η-neighbourhood of LK , which includes
θ . Let the indices of the rows and columns of such an r × r sub-matrix of LK , say
CK , be denoted by {p1,p2, . . . , pr} and {q1, q2, . . . , qr}, respectively. Exploiting
the structure of the band, choose this sub-matrix in such a way that the sub-matrix
elements and the entries {(j, ql) : 1≤ l ≤ r} and {(pl, k) : 1≤ l ≤ r} lie outside the
band defined by P K . Consider the sub-matrix of order r of θ , say E, by taking the
same rows and columns as in CK . Define the sub-matrix F (resp. D) of order (r +
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1) obtained by adjoining to E (resp. to CK ), the elements q1 = (θj,q1, . . . , θj,qr )
′,

q2 = (θp1,k, . . . , θpr ,k)
′ and θj,k [resp. the elements c1 = (LK

j,q1
, . . . ,LK

j,qr
)′, c2 =

(LK
p1,k

, . . . ,LK
pr ,k

)′ and LK
j,k]. So,

F =
[
θj,k q′1
q2 E

]
and D =

[
LK

j,k c′1
c2 CK

]
.

Then, for η sufficiently small, we have that

|Bj,k| = |q′1E−1q2 − c′1C−1
K c2|< κ‖P K ◦ (θ −LK)‖F < κ

√
βd,

by the fact that the map (q1,q2,E) �→ q′1E−1q2 is locally Lipschitz at any
(c1, c2,CK) as constructed above. So for β chosen to be sufficiently small, we have
contradicted the fact that |Bj,k|>√d/(2cK). In summary, for some β ∈ (0,1/2)

sufficiently small, we must have ‖P K ◦ (θ − LK)‖2
F > βd if θ is a rank r matrix

with ‖θ −LK‖2
F > d , as sought.

Next, define

D(θ)= Sn,K(θ)− SK(θ)− Sn,K

(
LK)+ SK

(
LK)

=Mn,K(θ)−MK(θ)−Mn,K

(
LK)+MK

(
LK)

.

We expand (Mn,K −MK) in a first-order Taylor expansion with Lagrange remain-
der, around LK , which gives for a certain p̃ ∈ [0,1] and θ̃ = p̃LK + (1− p̃)θ :

D(θ)= 〈
M
′
n,K(θ̃), θ −LK 〉

F −
〈
M ′

K(θ̃), θ −LK 〉
F

=K−2〈2P K ◦ (θ̃ −RK
n

)
, θ −LK 〉

F −K−2〈2P K ◦ (θ̃ −RK)
,
(
θ −LK)〉

F

=K−2〈2P K ◦ θ̃ − 2P K ◦ θ̃ − 2P K ◦RK
n + 2P K ◦RK, θ −LK 〉

F

≤K−2∥∥2P K ◦ (RK
n −RK)∥∥

F

∥∥θ −LK
∥∥

F

≤ 2K−1∥∥RK
n −RK

∥∥
FK−1∥∥θ −LK

∥∥
F.

Since E‖X‖4
L2 <∞, the process X(s)X(t) is trace class on [0,1]2, and thus has

a continuous covariance kernel on [0,1]4 (and consequently a continuous variance
function on [0,1]2). Assume without loss of generality that EX = 0. Since the
observations Xi(tj ) are independent for distinct i, and since Xm(tj )Xm(tj ) is an
unbiased estimator of E[X(tj )X(tj )], we have

K−2
E
∥∥RK

n −RK
∥∥2
F

=
K∑

i=1

K∑
j=1

K−2
E

[
1

n

n∑
m=1

Xm(ti,K)Xm(tj,K)−E
[
X(ti,K)X(tj,K)

]]2

= K−2

n

K∑
i=1

K∑
j=1

Var
[
X(ti,K)X(tj,K)

]≤ 1

n
sup

(s,t)∈[0,1]2
Var

[
X(s)X(t)

]= C

n
,
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and C = sup[0,1]2 Var[X(s)X(t)]<∞. Once again, by the choice of η in relation
to τ , it follows that

E

{
sup

θ∈�K :dn(θ,LK)<γ

∣∣D(θ)
∣∣}= E

{
sup

θ∈�K :dn(θ,LK)<γ,rank(θ)=r

∣∣D(θ)
∣∣}

= E

{
sup

θ∈�K :K−1
∥∥θ−LK

∥∥
F<γ

∣∣D(θ)
∣∣}

≤ 2γK−1
E
∥∥RK

n −RK
∥∥

F

≤ 2γ

√
C

n
.

It now follows [19, Theorem 3.4.1] that if L̂K
n is an approximate minimiser of

Sn,K , in the sense given by the assumptions, then it holds that

nd2
n

(
L̂K

n ,LK)= nK−2∥∥L̂K
n −LK

∥∥2
F + nτ

∣∣rank
(
L̂K

n

)− r
∣∣=OP(1),

from which we conclude that

K−2∥∥L̂K
n −LK

∥∥2
F =OP(1) and

∣∣rank
(
L̂ K

n

)− r
∣∣=OP(n

−1).

Finally, we now turn our attention to the estimated eigenfunctions. Since these
are finitely many, we will omit the index indicating the order of an eigenfunction
for tidiness, and consider an eigenfunction η. Let ηK be the K-resolution step
function approximation of η, ηK(x)=∑K

j=1 η(tj,K)1{x ∈ Ij,K}. Then, by Taylor
expanding, ∫ 1

0

(
η(x)− ηK(x)

)2
dx =

K∑
j=1

∫
Ij,K

(
η(x)− η(tj,K)

)2
dx

≤
K∑

j=1

∫
Ij,K

K−2∥∥η′∥∥2
∞ =

‖η′‖2∞
K2 .

It follows that

‖η̂− η‖2
L2 ≤ 2

∥∥η̂− ηK
∥∥2
L2 + 2

∥∥ηK − η
∥∥2
L2

≤ c
∥∥L̂ K

n −L K
∥∥2

HS +
2‖η′‖2∞

K2 =OP

(
n−1)+ 2‖η′‖2∞

K2 .

The constant c can be chosen uniformly over the order of eigenfunction, since there
are only r <∞ eigenfunctions to consider. The convergence rate for supj |λ̂j−λj |
follows from the inequality supj |λ̂j − λj | ≤ ‖L̂ K

n −L ‖HS (Bosq [2], equation
(4.43)).

�

The proofs of Corollaries 1 and 3 can be found in the Supplementary Material
[8], Section 5. Corollary 2 follows directly from Theorem 3 and Corollary 1.
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10. Concluding remarks. We conclude the paper with a short discussion and
some perspectives regarding the role of smoothing, and the impact of high fre-
quency noise and/or pure measurement error.

To smooth or not to smooth. As discussed in detail in Section 2 of the Supple-
mentary Material, smoothing should be avoided prior to separating the smooth and
rough components of the process, as it can confound the two types of variation and
distort further analysis when B is not purely diagonal. At the same time, even if
B is purely diagonal, our simulation results in Table 5 show that our method can
still perform at least as well as classical smoothing-based methods, leading to no
apparent loss in efficiency. Therefore, it seems that smoothing prior to separation
is either not advisable, or not necessary. Smoothing can be applied, however, as a
post-processing step, to each of the smooth and rough covariances obtained after
our methodology has been applied (see the discussion at the end of Section 4).
Such a post-processing smoothing step can lead to visually more appealing esti-
mators of the smooth covariance L ; and, in the case of the rough covariance B, to
potentially more efficient estimators, if more regularity can be assumed on B. In
summary, we do not advocate that smoothing should be altogether replaced by our
method. Instead, we suggest that in the presence of nondiagonal error covariance,
smoothing is preferable as a post-processing rather than a pre-processing step. The
two steps (separation and smoothing) are best seen as complementary.

High frequency noise. Our model X = Y + W implicitly assumes that any
high frequency fluctuations in X should be attributed to local variations due to W

(i.e., rough components of variation exhibit short-range dependence). This reflects
a common principle that high frequency features usually are localised in nature,
as one assumes in many wavelet-based methods. Nevertheless, one may ask what
may happen if there exist high frequency fluctuations in X that are global, that is,
have analytic eigenfunctions, and so must be attributed to Y —for example, cases
where Y is not precisely of finite rank, but has most of its variation expressed
in r eigenfunctions, and a small part of its variation expressed by higher order
eigenfunctions. This residual variation can be considered as nuisance noise, but
one may wonder if it would impact the performance of our method. Simulations
carried out in Section 7 of the Supplementary Material [8] consider precisely this
scenario, by adding higher frequency components to Y , such as high frequency
trigonometric functions or diffusion processes with analytic eigenfunctions. It is
observed that the presence of this high frequency noise has a negligible effect on
the performance of our method, at least as far as estimation of L is concerned.
Estimation of B is more appreciably affected, since the band is now contaminated,
and more structural knowledge would be required to reliably separate the global
from the local high frequency fluctuations. More detailed discussion of this point
can be found in the Supplementary Material [8], Section 7.
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Pure measurement error. It can happen that further to the rough – yet trace-
class – component W , there is still some i.i.d. measurement error which enters the
model at the level of discrete measurement. The presence of such measurement
does not impact the method of estimation of L , since this is based on removing
a band of size �K/4� from the empirical covariance RK

n , and carrying out matrix
completion. Without additional assumptions, however, we would not be able to
estimate the kernel b of B near the diagonal. Additional simulations in Section 7
of the Supplementary Material consider contamination by pure measurement error,
and corroborate these theoretical predictions.
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ical results, a data analysis, proofs omitted from the main article, additional simu-
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