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Following Baraud, Birgé and Sart [Invent. Math. 207 (2017) 425–517],
we pursue our attempt to design a robust universal estimator of the joint
distribution of n independent (but not necessarily i.i.d.) observations for an
Hellinger-type loss. Given such observations with an unknown joint distribu-
tion P and a dominated model � for P, we build an estimator P̂ based on
� (a ρ-estimator) and measure its risk by an Hellinger-type distance. When
P does belong to the model, this risk is bounded by some quantity which
relies on the local complexity of the model in a vicinity of P. In most situ-
ations, this bound corresponds to the minimax risk over the model (up to a
possible logarithmic factor). When P does not belong to the model, its risk
involves an additional bias term proportional to the distance between P and
�, whatever the true distribution P. From this point of view, this new ver-
sion of ρ-estimators improves upon the previous one described in Baraud,
Birgé and Sart [Invent. Math. 207 (2017) 425–517] which required that P be
absolutely continuous with respect to some known reference measure. Fur-
ther additional improvements have been brought as compared to the former
construction. In particular, it provides a very general treatment of the regres-
sion framework with random design as well as a computationally tractable
procedure for aggregating estimators. We also give some conditions for the
maximum likelihood estimator to be a ρ-estimator. Finally, we consider the
situation where the statistician has at her or his disposal many different mod-
els and we build a penalized version of the ρ-estimator for model selection
and adaptation purposes. In the regression setting, this penalized estimator
not only allows one to estimate the regression function but also the distribu-
tion of the errors.

1. Introduction. In a previous paper, namely Baraud, Birgé and Sart (2017),
we introduced a new class of estimators that we called ρ-estimators for estimating
the distribution P of a random variable X = (X1, . . . ,Xn) with values in some
measurable space (� ,�) under the assumption that the Xi are independent but
not necessarily i.i.d. These estimators are based on density models, a density model
being a family of densities t with respect to some reference measure μ on � . We
also assumed that P was absolutely continuous with respect to μ with density s
and, following Le Cam (1973), we measured the performance of an estimator ŝ
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of s in terms of h2(s, ŝ), where h is a Hellinger-type distance to be defined later.
Originally, the motivations for this construction were to design an estimator ŝ of s
with the following properties.

— Given a density model S, the estimator ŝ should be nearly optimal over S from
the minimax point of view, which means that it is possible to bound the risk of
the estimator ŝ over S from above by some quantity CDn(S) which is approx-
imately of the order of the minimax risk over S.

— Since in statistics we typically have uncomplete information about the true dis-
tribution of the observations, when we assume that s belongs to S nothing ever
warrants that this is true. We may more reasonably expect that s is close to S
which means that the model S is not exact but only approximate and that the
quantity h(s,S) = inft∈S h(s, t) might therefore be positive. In this case, we
would like the risk of ŝ to be bounded by C′[Dn(S) + h2(s,S)] for some uni-
versal constant C′. In the case of ρ-estimators, the previous bound can actually
be slightly refined and expressed in the following way. It is possible to define
on S a positive function R such that the risk of the ρ-estimator is not larger
than R(s), with R(s) ≤ CDn(S) if s belongs to the model S and not larger than
C′ infs∈S[R(s) + h2(s, s)] when s does not belong to S.

The weak sensibility of this risk bound to small deviations with respect to the
Hellinger-type distance h between s and an element s of S covers some classical
notions of robustness among which robustness to a possible contamination of the
data and robustness to outliers, as we shall see in Section 5.

There are nevertheless some limitations to the properties of ρ-estimators as de-
fined in Baraud, Birgé and Sart (2017).

(a) The study of random design regression required that either the distribution
of the design be known or that the errors have a symmetric distribution. We want
to relax these assumptions and consider the random design regression framework
with greater generality.

(b) We always worked with some reference measure μ and assumed that all
the probabilities we considered, including the true distribution P of X, were ab-
solutely continuous with respect to μ. This is quite natural for the probabilities
that belong to our models since the models are, by assumption, dominated and,
typically, defined via a reference measure μ and a family of densities with respect
to μ. Nevertheless, the assumption that the true distribution P of the observations
be also dominated by μ is questionable. We therefore would like to get rid of it
and let the true distribution be completely arbitrary, relaxing thus the assumption
that the density s exists. Unexpectedly, such an extension leads to subtle compli-
cations as we shall see below and this generalization is actually far from being
straightforward.

(c) Our construction was necessarily restricted to countable models rather than
the uncountable ones currently used in statistics.
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We want here to design a method based on “probability models” rather than “den-
sity models,” which means working with dominated models P consisting of prob-
abilities rather than of densities as for S. Of course, the choice of a dominating
measure μ and a specific set S of densities leads to a probability model P . This
is by the way what is actually done in statistics, but the converse is definitely not
true and there exist many ways of representing a dominated probability model by a
reference measure and a set of densities. It turns out (see Section 2.3) that the per-
formance of a very familiar estimator, namely the Maximum Likelihood Estimator
(MLE), can be strongly affected by the choice of a specific version of the densities.
Our purpose here is to design an estimator the performance of which only depends
on the probability model P and not on the choice of the reference measure and the
densities that are used to represent it.

In order to get rid of the above mentioned restrictions, we have to modify our
original construction which leads to the new version that we present here. This
new version retains all the nice properties that we proved in Baraud, Birgé and
Sart (2017) and the numerous illustrations we considered there remain valid for
the new version. It additionally provides a general treatment of conditional density
estimation and regression, allowing the statistician to estimate both the regression
function and the error distribution even when the distribution of the design is to-
tally unknown and the errors admit no finite moments. From this point of view,
our approach contrasts very much with that based on the classical least squares.
An alternative point of view on the particular problem of estimating a conditional
density can be found in Sart (2017).

A thorough study of the performance of the least squares estimator (or trun-
cated versions of it) can be found in Györfi et al. (2002) and we refer the reader
to the references therein. A nice feature of these results lies in the fact that they
hold without any assumption on the distribution of the design. While few moment
conditions on the errors are necessary to bound the L2-integrated risk of their es-
timator, much stronger ones, typically boundedness of the errors, are necessary to
obtain exponential deviation bounds. In contrast, in linear regression, Audibert and
Catoni (2011) established exponential deviation bounds for the risk of some robust
versions of the ordinary least squares estimator. Their idea is to replace the sum of
squares by the sum of their truncated version in view of designing a new criterion
which is less sensitive to possible outliers than the original least squares. Their
way of modifying the least squares criterion shares some similarity with our way
of modifying the log-likelihood criterion, as we shall see below. However, their
results require some conditions on the distribution of the design as well as some
(weak) moment condition on the errors while ours do not.

It is known, and we shall give an additional example below, that the MLE, which
is often considered as a “universal” estimator, does not possess, in general, the
properties that we require and more specifically robustness. An illustration of the
lack of robustness of the MLE with respect to Hellinger deviations is provided in
Baraud and Birgé (2016). Some other weaknesses of the MLE have been described
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in Le Cam (1990) and Birgé (2006), among other authors, and various alternatives
aimed at designing some sorts of “universal” estimators (for the problem we con-
sider here) which would not suffer from the same weaknesses have been proposed
in the past by Le Cam (1973) and (1975) followed by Birgé (1983) and (2006).
The construction of ρ-estimators, as described in Baraud, Birgé and Sart (2017)
was in this line. In that paper, we actually introduced ρ-estimators via a testing
argument as was the case for Le Cam and Birgé for their methods. This argument
remains valid for the generalized version we consider here (see Lemma D.3 of the
Supplementary Material) but ρ-estimators can also be viewed as a generalization,
and in fact a robustified version, of the MLE. We shall even show, in Section 6, that
in favorable situations (i.i.d. observations and a convex separable set of densities
as a model for the true density) the MLE is actually a ρ-estimator and, therefore,
shares their properties.

To explain the idea underlying the construction of ρ-estimators, let us assume
that we observe an n-sample X = (X1, . . . ,Xn) with an unknown density q be-
longing to a set Q of densities with respect to some reference measure μ. We may
write the log-likelihood of q as

∑n
i=1 log(q(Xi)) and the log-likelihood ratios as

L
(
X, q, q ′)=

n∑
i=1

log
(

q ′(Xi)

q(Xi)

)
=

n∑
i=1

log
(
q ′(Xi)

)− n∑
i=1

log
(
q(Xi)

)
,

so that maximizing the likelihood is equivalent to minimizing with respect to q

L(X, q) = sup
q ′∈Q

n∑
i=1

log
(

q ′(Xi)

q(Xi)

)
= sup

q ′∈Q
L
(
X, q, q ′).

This happens simply because of the magic property of the logarithm which says
that log(a/b) = loga − logb. However, the use of the unbounded log function in
the definition of L(X, q) leads to various problems that are responsible for some
weaknesses of the MLE. Replacing the log function by another function ϕ amounts
to replace L(X, q, q ′) by

(1) T
(
X, q, q ′)= n∑

i=1

ϕ

(
q ′(Xi)

q(Xi)

)
which is different from

∑n
i=1 ϕ(q ′(Xi)) − ∑n

i=1 ϕ(q(Xi)) since ϕ is not the log
function. We may nevertheless define the analogue of L(X, q), namely

(2) ϒ(X, q) = sup
q ′∈Q

T
(
X, q, q ′)= sup

q ′∈Q

n∑
i=1

ϕ

(
q ′(Xi)

q(Xi)

)
and define our estimator q̂(X) as a minimizer with respect to q ∈ Q of the quantity
ϒ(X, q). The resulting estimator is an alternative to the MLE and we shall show
that, for a suitable choice of a bounded function ϕ, it enjoys various properties,
among which robustness, that are often not shared by the MLE.
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To analyse the performance of this new estimator, we have to study the be-
haviour of the process T(X, q, q ′) when q is fixed, q · μ is close to the true distri-
bution of the Xi and q ′ varies in Q. Since the function ϕ is bounded, the process is
similar to those considered in learning theory for the purpose of studying empiri-
cal risk minimization. As a consequence, the tools we use are also similar to those
described in great detail in Koltchinskii (2006).

It is well known that working with a single model for estimating an unknown
distribution is not very efficient unless one has very precise pieces of information
about the true distribution, which is rarely the case. Working with many models si-
multaneously and performing model selection improves the situation drastically.
Refining the previous construction of ρ-estimators by adding suitable penalty
terms to the statistic T(X, q, q ′) allows one to work with a finite or countable
family of probability models {Pm,m ∈ M} instead of a single one, each model
Pm leading to a risk bound of the form C′[Dn(Pm) + h2(Pm,P)], and to choose
from the observations a model with approximately the best possible bound which
results in a final estimator P̂ and a bound for h2(P̂,P) of the form

C′′ inf
m∈M

[
Dn(Pm) + h2(Pm,P) + �m

]
,

where the additional term �m is connected to the complexity of the family of
models we use.

The paper is organised as follows. We shall first make our framework, which
is based on dominated families of probabilities rather than families of densities
with respect to a given dominating measure, precise in Section 2. This section
is devoted to the definition of models and of our new version of ρ-estimators,
then to the assumptions that the function ϕ we use to define the statistic T in
(1) should satisfy. In Section 3, we define the ρ-dimension function of a model,
a quantity which measures the difficulty of estimation within the model using a
ρ-estimator, and present the main results, namely the performance of these new ρ-
estimators. Section 4 is devoted to the extension of the construction from countable
to uncountable statistical models (which are the ones currently used in statistics)
under suitable assumptions. We describe the robustness properties of ρ-estimators
in Section 5. In Section 6, we investigate the relationship between ρ-estimators and
the MLE when the model is a convex set of densities. Section 7 provides various
methods that allow one to bound the ρ-dimension functions of different types of
models and indicates how these bounds are to be used to bound the risk of ρ-
estimators in typical situations with applications to the minimax risk over classical
statistical models. We also provide a few examples of computations of bounds
for the ρ-dimension function. Many applications of our results about ρ-estimators
have already been given in Baraud, Birgé and Sart (2017) and we deal here with
a new one: estimation of conditional distributions in Section 8. In Section 9, we
apply this additional result to the special case of random design regression when
the distribution of the design is completely unknown, a situation for which not
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many results are known. We provide here a complete treatment of this regression
framework with simultaneous estimation of both the regression function and the
density of the errors. Section 10 is devoted to estimator selection and aggregation:
we show there how our procedure can be used either to select an element from
a family of preliminary estimators or to aggregate them in a convex way. The
supplemental article [Baraud and Birgé (2018)] contains most of the proofs as
well as some additional facts and comments.

2. Our new framework and estimation strategy. As already mentioned, our
method is based on statistical models which are sets of probability distributions, in
opposition with more classical models which are sets of densities with respect to a
given dominating measure.

2.1. A probabilistic framework. We observe a random variable X = (X1, . . . ,

Xn) defined on some probability space (�,�,P) with independent components Xi

and values in the measurable product space (� ,�) = (
∏n

i=1 Xi ,
⊗n

i=1 Bi ). We
denote by� the set of all product probabilities on (� ,�) and by P =⊗n

i=1 Pi ∈
� the true distribution of X. We identify an element Q =⊗n

i=1 Qi of� with the
n-tuple (Q1, . . . ,Qn) and extend this identification to the elements μ =⊗n

i=1 μi

of the set� of all σ -finite product measures on (� ,�).
When Q is absolutely continuous with respect to μ ∈� (Q � μ) or, equiv-

alently, μ dominates Q, each Qi , for i = 1, . . . , n, is absolutely continuous with
respect to μi with density qi so that Qi = qi ·μi . We denote by L(μi) the set of all
densities with respect to μi , that is, the set of measurable functions q from Xi to
R+ such that

∫
Xi

q(x) dμi(x) = 1. We then write Q = q · μ where q is the n-tuple
(q1, . . . , qn) and we say that q is a density for Q with respect to μ. We denote
by L(μ) =∏n

i=1 L(μi) the set of such densities q and by � μ the set of all those
P′ ∈� which are absolutely continuous with respect to μ.

Our aim is to estimate the unknown distribution P = (P1, . . . ,Pn) from the ob-
servation of X. In order to evaluate the performance of an estimator P̂(X) ∈ �
of P, we shall introduce, following Le Cam (1975), an Hellinger-type distance h
on � . We recall that, given two probabilities Q and Q′ on a measurable space
(X ,B), the Hellinger distance and the Hellinger affinity between Q and Q′ are
respectively given by

(3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h2(Q,Q′)= 1

2

∫
X

(√
dQ

dμ
−
√

dQ′
dμ

)2

dμ,

ρ
(
Q,Q′)=

∫
X

√
dQ

dμ

dQ′
dμ

dμ = 1 − h2(Q,Q′),
where μ denotes any measure that dominates both Q and Q′, the result being
independent of the choice of μ. The Hellinger-type distance h(Q,Q′) and affinity
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ρ(Q,Q′) between two elements Q = (Q1, . . . ,Qn) and Q′ = (Q′
1, . . . ,Q

′
n) of �

are then given by the formulas

h2(Q,Q′)=
n∑

i=1

h2(Qi,Q
′
i

)=
n∑

i=1

[
1 − ρ

(
Qi,Q

′
i

)]= n − ρ
(
Q,Q′).

We shall denote by � the topology of the metric space (� ,h).

2.2. Models and their representations. Let us start with this definition.

DEFINITION 1. We call model any dominated subset � of � and we call
representation of (the model) � a pair R(�) = (μ,Q) where μ = (μ1, . . . ,μn)

is a σ -finite measure which dominates� and Q is a subset of L(μ) such that for
any Q in� there exists a unique density q ∈Q with Q = q · μ.

This means that, given a representation (μ,Q) of the model � , we can as-
sociate to each probability Q ∈ � a density q ∈ Q and vice versa. Clearly, a
dominated subset � has different representations depending on the choice of the
dominating measure μ and the versions of the densities qi = dQi/dμi .

Our estimation strategy is based on specific dominated subsets of � that we
call ρ-models.

DEFINITION 2. A ρ-model is a countable (which in this paper always means
either finite or infinite and countable) subset� of � .

A ρ-model � being countable, it is necessarily dominated. One should think
of it as a probability set to which the true distribution is believed to be close (with
respect to the Hellinger-type distance h).

2.3. Construction of a ρ-estimator on a model � . Given the model � , our
estimator is defined as a random element of Cl(�), where Cl(�) denotes the
closure of the subset � of � in the metric space (� ,h), and its construction
relies on a particular representation R(�) of the model� . It actually depends on
three elements with specific properties to be made precise below:

(i) A function ψ (which will serve as a substitute for the logarithm to derive
an alternative to the MLE) with the following properties.

ASSUMPTION 1. The function ψ is nondecreasing from [0,+∞] to [−1,1],
Lipschitz and satisfies

(4) ψ(x) = −ψ(1/x) for all x ∈ [0,+∞), hence ψ(1) = 0.

Throughout this paper, we shall only consider, without further notice, functions
ψ satisfying Assumption 1.
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(ii) A model� ⊂� (in most cases a ρ-model) with a representation R(�) =
(μ,Q).

(iii) A penalty function “pen” mapping � to R, the role of which will be ex-
plained later in Section 3. We may, at first reading, assume that this penalty func-
tion is identically 0.

It is essential to note that the dominating measure μ is chosen by the statistician
and that there is no reason that the true distribution P of X be absolutely continuous
with respect to μ. On the contrary, all probabilities P′ on � belonging to Cl(�)

are absolutely continuous with respect to μ.
Given the function ψ and the representation R(�), we define the real-valued

function T on� ×Q×Q by

(5) T
(
x,q,q′)=

n∑
i=1

ψ

(√
q ′
i (xi)

qi(xi)

)
for x = (x1, . . . , xn) ∈� and q,q′ ∈Q,

with the conventions 0/0 = 1 and a/0 = +∞ for all a > 0. We then set (with
Q = q · μ and Q′ = q′ · μ)

(6) ϒ(X,q) = sup
q′∈Q

[
T
(
X,q,q′)− pen

(
Q′)]+ pen(Q) for all q ∈ Q.

DEFINITION 3 (ρ-estimators). Let 	 (ψ,X) be the (nonvoid) set

(7) 	 (ψ,X) =
{

Q = q · μ,q ∈ Q
∣∣∣∣ϒ(X,q) < inf

q′∈Qϒ
(
X,q′)+ κ

25

}
,

where the positive constant κ is given by (19) below. A ρ-estimator P̂ = P̂(X)

relative to (R(�),pen) is any (measurable) element of Cl(	 (ψ,X)).

Since P̂ belongs to Cl(	 (ψ,X)), the elements of which are dominated by μ,
there exists a random density p̂ = (p̂1, . . . , p̂n) with p̂i ∈ L(μi) for i = 1, . . . , n

such that P̂ = p̂ · μ. Note that P̂ might not belong to� .
As an immediate consequence of Assumption 1 and the convention 1/0 = +∞,

ψ(+∞) = −ψ(0) and

(8) T
(
X,q,q′)= −T

(
X,q′,q

)
for all q,q′ ∈ Q.

Moreover,

ϒ(X,q) ≥ [
T(X,q,q) − pen(Q)

]+ pen(Q) = T(X,q,q) = nψ(1) = 0

for all q ∈ Q, which implies that any element P̂ = p̂ ·μ in� such that ϒ(X, p̂) <

κ/25 is a ρ-estimator. In particular, when pen(Q) = 0 for all Q ∈� (which we
shall write in the sequel pen = 0) and ϒ(X, p̂) = 0, it follows from (6) that

T
(
X, p̂,q

)≤ ϒ
(
X, p̂

)= 0 = T
(
X, p̂, p̂

)≤ −T
(
X, p̂,q

)= T
(
X,q, p̂

)
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for all q ∈ Q. This means that, in this case, (p̂, p̂) is a saddle point of the map
(q,q′) 	→ T(X,q,q′).

A ρ-estimator P̂ depends on the chosen representation R(�) of � and there
are different versions of the ρ-estimators associated to� , even though most of the
time � will directly be given by a specific representation, that is a family Q of
densities with respect to some reference measure μ. Here is the important point,
to be proven in Section 3: when � is a ρ-model, the risk bounds we shall derive
only depend on � and the penalty function but not on the chosen representation
of � , which allows us to choose the more convenient one for the construction. In
contrast, the performances of many classical estimators are sensitive to the repre-
sentation of the model� and this is in particular the case of the MLE as shown by
the following example.

PROPOSITION 1. Let us consider a sequence of i.i.d. random variables
(Xk)k≥1 defined on a measurable space (�,A ,P) with normal distribution Pθ =
N (θ,1) for some unknown θ ∈ R. We choose for reference measure μ = N (0,1)

and for the version of dPθ/dμ, θ ∈ R, the function

(9) pθ(x) = exp
[
θx − (

θ2/2
)+ (

θ2/2
)

exp
(
x2)1θ (x)1(0,+∞)(θ)

]
.

Whatever the value of the true parameter θ , on a set of probability tending to
1 when n goes to infinity, the MLE is given by X(n) = max{X1, . . . ,Xn} and is
therefore inconsistent.

The proof of Proposition 1 is given in Section D.1 of the Supplementary
Material [Baraud and Birgé (2018)]. Note that the usual choice for pθ : x 	→
exp[−xθ + (θ2/2)] for dPθ/dμ is purely conventional. Mathematically speak-
ing, our choice (9) is perfectly correct but leads to an inconsistent MLE. Also note
that the usual tools that are used to prove consistency of the MLE, like bracket-
ing entropy [see, for instance, Theorem 7.4 of van de Geer (2000)] are not stable
with respect to changes of versions of the densities in the family. The same is true
for arguments based on VC-classes that we used in Baraud, Birgé and Sart (2017).
Choosing a convenient set of densities to work with is well grounded as long as the
reference measure μ not only dominates the model but also the true distribution P.
If not, sets of null measure with respect to μ might have a positive probability un-
der P and it becomes unclear how the choice of this set of densities influences the
performance of the estimator.

2.4. Notation and conventions. Throughout this paper, given a representa-
tion R(�) = (μ,Q) of a model � , we shall use lower case letters q,q′, . . .
and qi, q

′
i , . . . for denoting the chosen densities of Q,Q′, . . . and Qi,Q

′
i , . . . with

respect to the reference measures μ and μi , respectively, for all i = 1, . . . , n.
We set log+(x) = max{logx,0} for all x > 0; |A| denotes the cardinality of the
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set A; �(P, r) = {Q ∈ � |h(P,Q) ≤ r} is the closed Hellinger-type ball in �
with center Q and radius r . Given a set E, a nonnegative function � on E × E,
x ∈ E and A ⊂ E, we set �(x,A) = infy∈A �(x, y). In particular, for � ⊂ � ,
h(P,�) = infR∈� h(P,R). We set x ∨ y and x ∧ y for max{x, y} and min{x, y},
respectively. By convention sup∅ = 0, the ratio u/0 equals +∞ for u > 0, −∞
for u < 0 and 1 for u = 0.

2.5. Our assumptions. Given the ρ-model � , let us now indicate what prop-
erties the function ψ (satisfying Assumption 1) are required in view of controlling
the risk of the resulting ρ-estimators.

ASSUMPTION 2. Let � be the ρ-model to be used for the construction of
ρ-estimators. There exist three positive constants a0, a1, a2 with a0 ≥ 1 ≥ a1 and
a2

2 ≥ 1 ∨ (6a1) such that, whatever the representation R(�) = (μ,Q) of � , the
densities q,q′ ∈ Q, the probability R ∈� and i ∈ {1, . . . , n},

(10)
∫
Xi

ψ

(√
q ′
i

qi

)
dRi ≤ a0h

2(Ri,Qi) − a1h
2(Ri,Q

′
i

)
and

(11)
∫
Xi

ψ2

(√
q ′
i

qi

)
dRi ≤ a2

2
[
h2(Ri,Qi) + h2(Ri,Q

′
i

)]
.

Note that the left-hand sides of (10) and (11) depend on the choices of the refer-
ence measures μi and versions of the densities qi = dQi/dμi and q ′

i = dQ′
i/dμi

while the corresponding right-hand sides do not.
Given ψ that satisfies Assumption 2, the values of a0, a1 and a2 are clearly not

uniquely defined but, in the sequel, when we shall say that Assumption 2 holds,
this will mean that the function ψ satisfies (10) and (11) with given values of these
constants which will therefore be considered as fixed once ψ has been chosen.
When we shall say that some quantity depends on ψ , it will implicitly mean that it
depends on these chosen values of a0, a1 and a2.

An important consequence of (8), (10) and (11) is the fact that, for all Q, Q′ in
� and P ∈� ,

(12) a1h2(P,Q) − a0h2(P,Q′)≤ E
[
T
(
X,q,q′)]≤ a0h2(P,Q) − a1h2(P,Q′).

These inequalities follow by summing the inequalities (10) with respect to i with
R = P, then exchanging the roles of Q and Q′ and applying (8). They imply that
the sign of E[T(X,q,q′)] tells us which of the two distributions Q and Q′ is closer
to the true one when the ratio between the distances h(P,Q) and h(P,Q′) is far
enough from one.

In view of checking that a given function ψ satisfies Assumption 2, the next
result to be proved in Section D.3 of the Supplementary Material [Baraud and
Birgé (2018)] is useful.
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PROPOSITION 2. If, for a particular representation R(�) = (μ,Q) of the
ρ-model � and any probability R ∈ � μ, the function ψ satisfies (10) and (11)
for positive constants a0 > 2, a1 ≤ [(a0 − 2)/2] ∧ 1 and a2

2 ≥ 1 ∨ (6a1), then it
satisfies Assumption 2 with the same constants a0, a1 and a2.

This proposition means that, up to a possible adjustment of the constants a0
and a1, it is actually enough to check that (10) and (11) hold true for a given
representation (μ,Q) of� and all probabilities R � μ.

Let us now introduce two functions ψ which do satisfy Assumption 2.

PROPOSITION 3. Let ψ1 and ψ2 be the functions taking the value 1 at +∞
and defined for x ∈ R+ by

ψ1(x) = x − 1√
x2 + 1

and ψ2(x) = x − 1

x + 1
.

These two functions are continuously increasing from [0,+∞] to [−1,1], Lips-
chitz (with respective Lipschitz constants 1.143 and 2) and satisfy Assumption 2
for all ρ-models� with a0 = 4.97, a1 = 0.083, a2

2 = 3 + 2
√

2 for ψ1 and a0 = 4,
a1 = 3/8, a2

2 = 3
√

2 for ψ2.

Both functions can therefore be used everywhere in the applications of the
present paper. Nevertheless, we prefer ψ2 because it leads to better constants in
the risk bounds of the estimator. Proposition 3 is proved in Section D.4 of the
Supplementary Material [Baraud and Birgé (2018)]. Some comments on Assump-
tion 2 can be found in Section D.2 of the Supplementary Material [Baraud and
Birgé (2018)]. When the ρ-model reduces to two elements, our selection proce-
dure can be interpreted as a robust test between two simple hypotheses. Upper
bounds on the errors of the first and second kinds are established in Section D.10
of the Supplementary Material [Baraud and Birgé (2018)].

3. The performance of ρ-estimators on ρ-models.

3.1. The ρ-dimension function. The deviation h(P, P̂) between the true distri-
bution P and a ρ-estimator P̂ built on the ρ-model � is controlled by two terms
which are the analogue of the classical bias and variance terms and we shall first
introduce a function that replaces here the variance.

Let y > 0, P,P ∈� and �0 be an arbitrary subset of � ; we define

��0
(
P,P, y

)= {
Q ∈�0

∣∣∣h2(P,P
)+ h2(P,Q) < y2

}
and for measurable nonnegative functions q, q′ on (� ,�), we set

(13) Z
(
X,q,q′)= T

(
X,q,q′)−E

[
T
(
X,q,q′)].
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Given a representation R = (μ,Q) of� ∪ {P}, we define

(14) w
(
R,�,P,P, y

)= E

[
sup

Q∈�� (P,P,y)

∣∣Z(X,p,q
)∣∣],

where, for Q ∈��(P,P, y) ⊂� , q denotes the (unique) element of Q such as
Q = q · μ and p denotes the element of Q such that P = p · μ. We recall that
we use the convention sup∅ = 0. Since � is countable, so is ��(P,P, y) ⊂� .
Therefore, the supremum of |Z(X,p, ·)| over ��(P,P, y) is measurable and
the right-hand side of (14) is well defined. Also note that, since T(X,p,p) =
nψ(1) = 0,

E

[
sup

Q∈�� (P,P,y)

∣∣Z(X,p,q
)∣∣]= E

[
sup

Q∈��∪{P}(P,P,y)

∣∣Z(X,p,q
)∣∣].

Hence w(R,�,P,P, y) = w(R,� ∪ {P},P,P, y).

DEFINITION 4 (ρ-dimension function). Let � be a ρ-model and ψ some
function satisfying Assumption 2 with constants a0, a1 and a2. The ρ-dimension
function D� of� is the mapping from � ×� to [1,+∞) given by

(15) D�(P,P
)=

[
β2 sup

{
y2

∣∣∣∣∣w�(P,P, y
)
>

a1y
2

8

}]
∨ 1

with β = a1/(4a2) and

w�(P,P, y
)= inf

R
w
(
R,�,P,P, y

)
for all y > 0,

where the infimum runs over all the representations R = (μ,Q) of� ∪ {P}.
Note that the ρ-dimension function of� depends on the choice of the function

ψ and not on the choice of the representations of � ∪ {P}. Since it measures the
local fluctuations of the centred empirical process Z(X,p,q) indexed by q ∈ Q,
it is quite similar to the local Rademacher complexity introduced in Koltchinskii
(2006) for the purpose of studying empirical risk minimization. Its importance
comes from the following property.

PROPOSITION 4. Let� be a ρ-model, P ∈� and R = (μ,Q), an arbitrary
representation of� ∪ {P}. Whatever P ∈� ,

(16) w
(
R,�,P,P, y

)≤ w�(P,P, y
)+ 8h2(P,P

)
for all y > 0,

hence, for all y > β−1
√

D�(P,P
)

(17) w
(
R,�,P,P, y

)≤ (
a1y

2/8
)+ 8h2(P,P

)
.

The proof is provided in Section D.5 of the Supplementary Material [Baraud
and Birgé (2018)].
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3.2. Exponential deviation bounds. Our first theorem, to be proven in Sec-
tion A.2 of the Supplementary Material [Baraud and Birgé (2018)], deals with the
situation of a null penalty function pen = 0.

THEOREM 1. Let P be an arbitrary distribution in � , � a ρ-model and ψ

a function satisfying Assumption 2. Whatever the representation R of � , a ρ-
estimator P̂ relative to (R,0) as defined in Section 2.3 satisfies, for all P ∈� and
ξ > 0,

(18) P

[
h2(P, P̂

)≤ γ h2(P,P
)+ 4κ

a1

(
D�(P,P

)
4.7

+ 1.49 + ξ

)]
≥ 1 − e−ξ ,

with

(19) γ = 4(a0 + 8)

a1
+ 2 + 84

a2
2

and κ = 35a2
2

a1
+ 74, hence

κ

25
≥ 11.36.

In particular, if the ρ-dimension function D� is bounded on � ×� by Dn ≥ 1,
then

(20) P

[
Ch2(P, P̂

)≤ h2(P,�) + Dn + ξ
]
≥ 1 − e−ξ for all ξ > 0

and for some constant C > 0 which only depends on the choice of ψ .

None of the quantities involved in (18) depends on the chosen representation
R of � , which means that the performance of P̂ does not depend on R although
its construction depends on it. We shall therefore (abusively) refer to P̂ as a ρ-
estimator on � omitting to mention what representation is used for its construc-
tion.

Introducing a nontrivial penalty function allows one to favour some probabilities
as compared to others in � and gives thus a Bayesian flavour to our estimation
procedure. We shall mainly use it when we have at our disposal not only one
single ρ-model for P but rather a countable collection {�m,m ∈ M} of candidate
ones, in which case � =⋃

m∈M�m is still a ρ-model that we call the reference
ρ-model. The penalty function may not only be used for estimating P but also for
performing model selection among the family {�m,m ∈ M} by deciding that the
procedure selects the ρ-model �m̂ if the resulting estimator P̂ belongs to �m̂.
Since P̂ may belong to several ρ-models, this selection procedure may result in a
(random) set of possible ρ-models for P and a common way of selecting one is to
choose that with the smallest complexity in a suitable sense. In the present paper,
the complexity of a ρ-model �m will be measured by means of a nonnegative
weight function � mapping M into R+ and which satisfies

(21)
∑

m∈M
e−�(m) ≤ 1,
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where the number “1” is chosen for convenience. When equality holds in (21),
e−�(·) can be viewed as a prior distribution on the family of ρ-models {�m,m ∈
M}.

In such a context, we shall describe how our penalty term should depend on this
weight function � in view of selecting a suitable ρ-model for P. The next theorem
is proved in Section A.3 of the Supplementary Material [Baraud and Birgé (2018)].

THEOREM 2. Let P be an arbitrary distribution in � , {�m,m ∈ M} be a
countable collection of ρ-models, � a weight function satisfying (21), R(�) a
representation of� =⋃

m∈M�m, ψ a function satisfying Assumption 2 and κ be
given by (19). Assume that there exists a mapping Dn : M → R+ and a number
K ≥ 0 such that, whatever m ∈ M,

(22) D�m
(
P,P

)≤ Dn(m) + KDn

(
m′) for all

(
P,P

) ∈� ×�m′ .

Let the penalty function satisfy, for some constant κ1 ∈ R,

(23) pen(Q) = κ1 + κ inf{m∈M|�m�Q}

[
Dn(m)

4.7
+ �(m)

]
for all Q ∈�.

Then any ρ-estimator P̂ relative to (R(�),pen) satisfies, for all ξ > 0 with prob-
ability at least 1 − e−ξ and with γ given by (19),

h2(P, P̂
)≤ inf

m∈M

[
γ h2(P,�m) + 4κ

a1

(
K + 1

4.7
Dn(m) + �(m)

)]
(24)

+ 4κ

a1
(1.49 + ξ).

3.3. The case of density estimation. Of special interest is the situation where
the Xi are assumed to be i.i.d. with values in a measurable set (X ,B) in which
case � = X n,� = B⊗n, P and M denote respectively the set of all probabil-
ity distributions and all positive σ -finite measures on (X ,B) and P is expected
(although this is not necessarily true) to belong to Pn = {P ⊗n,P ∈ P}. Note that
the Hellinger distance h(·, ·) on P is related to the Hellinger-type distance h(·, ·)
on Pn in the following way:

h2(Q,Q′)= nh2(Q,Q′) for all Q,Q′ ∈ P with Q = Q⊗n,Q′ = (
Q′)⊗n

.

If P = P ⊗n ∈ Pn, estimating P then amounts to estimating the marginal distribu-
tion P and we model the probability P rather than P.

DEFINITION 5. We call density ρ-model any countable subset Q of P .

Given such a density ρ-model Q for P with representation (μ,Q) (which im-
plies that the mapping q 	→ Q = q · μ is one to one), the corresponding ρ-model
for P is simply � = {Q = Q⊗n,Q ∈ Q} with representation (μ,Q), μ = μ⊗n
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and Q= {q : (x1, . . . , xn) 	→ (q(x1) . . . q(xn)), q ∈Q}. In this case, for simplicity,
we write T(X, q, q ′) and ϒ(X, q) for T(X,q,q′) and ϒ(X,q), respectively. Ex-
amples involving density estimation will be considered in Sections 5, 6, 8 and 9
below.

We may also work with several density ρ-models {Qm,m ∈ M} for P simul-
taneously, in which case Q = ⋃

m∈M Qm is also a density ρ-model. A penalty
function pen on Q leads to a penalty function pen on � = ⋃

m∈M�m defined
by pen(Q) = pen(Q⊗n) = pen(Q) for all Q ∈ Q. Any ρ-estimator P̂ relative to
((μ,Q),pen ) is of the form P̂ = P̂ ⊗n with P̂ ∈ Cl(Q) and P̂ will be called a
density ρ-estimator for P relative to ((μ,Q),pen ).

We deduce that, under the assumptions of Theorem 1, if P is truly of the form
P = P ⊗n, for all P ∈ Q,

P

[
Ch2(P, P̂ ) ≤ h2(P,P

)+ D�
(
P,P

⊗n
)

n
+ ξ

n

]
≥ 1 − e−ξ for all ξ > 0.

Under the assumptions of Theorem 2, for all ξ > 0 and a positive constant C

depending only on ψ ,

P

[
Ch2(P, P̂

)≤ inf
m∈M

[
h2(P,Qm) + Dn(m) + �(m)

n

]
+ ξ

n

]
≥ 1 − e−ξ .

4. From ρ-models to uncountable statistical models. The previous results
apply to statistical models� that are countable, which is not the common case in
statistics. The aim of this section is to explain how our general theory on ρ-models
can be used to solve estimation problems on models that are possibly uncountable.
Hereafter, we shall denote by � a general statistical model, that is, an arbitrary
subset of � .

4.1. Working with nets. Let us first recall this classical definition.

DEFINITION 6. Given η ≥ 0, a subset � of � such that h(Q,�) ≤ η for all
Q ∈� is called an η-net of� . The case η = 0 corresponds to the situation where
� is � -dense in� .

If there exists a countable η-net � for � , it is a ρ-model. If its ρ-dimension
D� is bounded by Dn = Dn(η) ≥ 1 on � ×� , we deduce from Theorem 1 and
the inequality h(P,�) ≤ h(P,�) + η that any ρ-estimator on� satisfies

(25) P

[
Ch2(P, P̂

)≤ h2(P,�)+ Dn(η) + η2 + ξ
]
≥ 1 − e−ξ for all ξ > 0,

hence

(26) E

[
h2(P, P̂

)]≤ C′[h2(P,�)+ Dn(η) + η2
]
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for some constants C,C′ > 0 depending on ψ only. Most of the statistical models
� that are used in statistics possess η-nets for all values of η ≥ 0. Since the ρ-
dimension function D� can only increase with inclusion, choosing for each η ≥ 0
an η-net with the smallest possible cardinality and then the value η� of η that min-
imizes Dn(η) + η2 leads to a ρ-estimator P̂ with the smallest possible risk bound
in (26). This risk bound turns out to be minimax (up to possible extra logarithmic
factors) in all cases we know; see Section 7.1.

4.2. Models that are universally separable. Following Pollard (1984), we
shall say that a class of densities Q ⊂ L(μ) is universally separable if one can
find a countable subset Q ⊂ Q such that, for each q ∈ Q, there exists a sequence(
q(j)

)
j≥1 in Q which converges towards q pointwise, that is,

(27) q
(j)
i (x) −→

j→+∞qi(x) for 1 ≤ i ≤ n and all x ∈ Xi .

We shall then say that Q is 
 -dense in Q. Note that if
(
q(j)

)
j≥1 converges to-

wards q pointwise, by Scheffé’s lemma, the sequence of probabilities Qj = q(j) ·μ
converges in total variation, hence in Hellinger distance, towards Q = q · μ. This
implies that if Q is 
 -dense in Q, the set of probabilities � = {q · μ,q ∈ Q} is
� -dense in� = {q · μ,q ∈ Q}.

We shall work here within the following framework. For some μ ∈� , let
{Qm,m ∈ M} be a countable family of universally separable subsets of L(μ)

with Qm ⊂ Qm a countable and 
 -dense subset of Qm. We set Q =⋃
m∈MQm,

Q =⋃
m∈MQm, �m = {q · μ,q ∈ Qm} for all m ∈ M, � = {q · μ,q ∈ Q} and

� = {q · μ,q ∈ Q}. Note that� is a ρ-model since Q is countable and that� is
� -dense in � since Q is 
 -dense in Q. Let now pen be some penalty function
on� with the following property.

ASSUMPTION 3. There exists a function p : M →R such that

(28) pen(Q) = inf
m∈M,�m�Q

p(m) for all Q ∈�

and, for any Q ∈� , there exists some mQ ∈M such that Q ∈�mQ and pen(Q) =
p(mQ).

Note that this assumption holds in particular in the case of a single model with
pen = 0. Within this framework, we can prove the following result.

THEOREM 3. Let {Qm, ;m ∈M} be a countable family of universally separa-
ble subsets of L(μ) and pen a penalty function on � that satisfies Assumption 3.
Any ρ-estimator P̂ on � relative to ((μ,Q),pen) is also a ρ-estimator on the
ρ-model� relative to ((μ,Q),pen) where pen is the restriction of pen to� .
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The proof is postponed to Section A.5 of the Supplementary Material [Baraud
and Birgé (2018)].

This result says that, provided that the penalty function satisfies (28), which is
consistent with (23), the construction of a ρ-estimator on the possibly uncountable
set � with representation (μ,Q) actually results in a ρ-estimator based on the
ρ-model� .

As soon as we can control the ρ-dimension function of � by some features of
� , in the case of a single model, or the ρ-dimension functions of the ρ-models
�m = {q · μ,q ∈ Qm} by the features of the models �m, in the general case, we
are able to bound the risk of the ρ-estimator relative to ((μ,Q),pen) using the
results of Theorems 1 and 2.

For illustration, let us mention a few examples of density sets that are universally
separable:

(a) the set HD of right-continuous histograms on R with at most D ≥ 1 pieces;
(b) for L > 0 and α = r +β with r ∈ N, β ∈ (0,1], the set Hα(L) of functions

f on [0,1] that are r-times differentiable and satisfy∣∣f (r)(x) − f (r)(y)
∣∣≤ L|x − y|β for all x, y ∈ [0,1];

(c) the set H↓ of nonincreasing and right-continuous densities on (0,+∞).

The set Hα(L) is universally separable because the larger set consisting of con-
tinuous functions on [0,1] is separable for the topology induced by the norm of
the uniform convergence; hence all its subsets are separable with respect to this
topology which implies pointwise convergence. We prove that the sets HD and
H↓ are universally separable in Section B of the Supplementary Material [Baraud
and Birgé (2018)]. We shall see in Section 6 that the MLE on the convex density
sets Hα(L) and H↓ is actually a ρ-estimator.

5. Why is a ρ-estimator robust? The aim of this section is to analyse the
robustness properties of ρ-estimators. For the sake of simplicity, we shall restrict
ourselves to the particular case of density estimation as described in Section 3.3.

5.1. Misspecification and contamination. We assume here that we work with
a single ρ-model � (so that Theorem 1 applies) for which D�(P,P) is bounded
from above independently of P ∈� and P ∈� by some some number Dn(Q) ≥ 1
depending on the marginal model Q and the number n of marginals. Examples of
such situations will be provided in Section 7.

When P = P ⊗n, that is when the data are truely i.i.d. with marginal distribution
P , (18) becomes

(29) P

[
Ch2(P, P̂

)≤ h2(P,Q) + n−1[Dn(Q) + ξ
]]≥ 1 − e−ξ for all ξ > 0,

where C is a positive constant only depending on ψ .
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The bias term in (29), namely h2(P,Q), accounts for the robustness property of
the ρ-estimator with respect to the Hellinger distance and measures the additional
loss we get as compared to the case when P belongs to Q. If this quantity is small,
the performance of the ρ-estimator will not deteriorate too much as compared to
the ideal situation where P does belong to Q. In fact, if there exists some proba-
bility P ∈ Q such that h2(P,Q) = h2(P,P ) is small as compared to Dn(Q)/n,
everything is almost as if the ρ-estimator P̂ were built from an i.i.d. sample with
distribution P . The ρ-estimators under P and P would therefore look the same.
This includes the following situations.

Misspecification. The true distribution P of the observations does not belong
to Q but is close to Q. For example, let Q be countable and � -dense in the set of
all Gaussian distributions on R

k with identity covariance matrix and mean vector
belonging to a linear subspace S ⊂ R

k . Assume that the true distribution P has the
same form except for the fact that its mean does not belong to S but is at Euclidean
distance ε > 0 from S. Then it follows from classical formulas that

h2(P,Q) = 1 − e−ε2/8 ≤ ε2/8.

Contamination. The true distribution P is of the form (1 − ε)P + εR with
P ∈ Q and R �= P but otherwise arbitrary. This situation arises when a proportion
ε ∈ (0,1) of the sample X1, . . . ,Xn is contaminated by another sample. It follows
from the convexity property of the Hellinger distance that

h2(P,Q) ≤ h2(P,P
)≤ εh2(R,P

)≤ ε,

and this bound holds whatever the contaminating distribution R. From a more
practical point of view, one can see the contaminated case as follows: for each
i, one decides between no contamination with a probability 1 − ε and contami-
nation with a probability ε and draws Xi accordingly with distribution either P

or R. If it were possible to extract from the sample X1, . . . ,Xn these N data, with
N ∼ B(n,1 − ε), which are really distributed according to the distribution P ∈ Q,
we would build a ρ-estimator P̃ on these data. The robustness property ensures
that the ρ-estimator P̂ based on the whole data set remains close to P̃ . Every-
thing works almost as if the ρ-estimator P̂ only considered the noncontaminated
subsample and ignored the other data, at least when ε is small enough.

5.2. More robustness. There is an additional aspect of robustness that is not
apparent in (29). Our general result about the performance of ρ-estimators, as
stated in (18), actually allows that our observations be independent but not nec-
essarily i.i.d., in which case the joint distribution P of (X1, . . . ,Xn) is actually of
the form

⊗n
i=1 Pi but not necessarily of the form P ⊗n. Of course we do not know

whether P is of the first form or the second and, proceeding as if X1, . . . ,Xn were
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i.i.d., we build a ρ-estimator P̂ ∈ Cl(Q) of the presumed common density P and
make a mistake which is no longer h2(P, P̂ ) but

1

n
h2(P, P̂

)
with P̂ = P̂ ⊗n and h2(P, P̂

)=
n∑

i=1

h2(Pi, P̂
)
,

which is consistent with the i.i.d. case Pi = P for all i. In this context, we actually
get the following analogue of (29): for all ξ > 0,

(30) P

[
C

n
h2(P, P̂

)≤ inf
Q∈Q

(
1

n

n∑
i=1

h2(Pi,Q)

)
+ Dn(Q) + ξ

n

]
≥ 1 − e−ξ .

This allows many more possibilities of deviations between P and the statistical
model {Q⊗n,Q ∈ Q}. For instance, we may have h(Pi,P ) ≤ ε for some P ∈ Q
and all i, Pi �= Pi′ for all i �= i′, and nevertheless

inf
Q∈Q

(
1

n

n∑
i=1

h2(Pi,Q)

)
≤ ε2.

An alternative situation corresponds to a small number of “outliers”, namely, Pi =
P except on a subset J ⊂ {1, . . . , n} of indices of small cardinality and, for i ∈ J ,
Pi is completely arbitrary, for instance a Dirac measure. In such a case, for any
probability Q,(

1 − |J |
n

)
h2(P,Q) ≤ 1

n

n∑
i=1

h2(Pi,Q) ≤
(

1 − |J |
n

)
h2(P,Q) + |J |

n
,

and we deduce from (30) that, on a set of probability at least 1 − e−ξ ,

C(n − |J |)
n

h2(P, P̂
)≤ C

h2(P, P̂
)

n
≤
[(

n − |J |
n

)
h2(P,Q) + |J |

n

]
+ Dn(Q) + ξ

n
.

Finally,

P

[
Ch2(P, P̂

)≤ h2(P,Q) + |J | + Dn(Q) + ξ

n − |J |
]

≥ 1 − e−ξ for all ξ > 0.

When |J |/n is small enough, this bound appears to be a slight modification of
what we would get from (29) if P were of the form P ⊗n. This means that the ρ-
estimator P̂ is also robust with respect to a possible departure from the assumption
that the Xi are i.i.d.
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6. The ρ-estimators and the MLE. As mentioned in the Introduction, there
are some deep connexions between the MLE and ρ-estimators which are mostly
due to the similarities in the neighbourhood of 1 between the logarithm and the
functions ψ of Proposition 3. A nice result in this direction was communicated to
the authors by Weijie Su in October 2016. It concerns the case of density estima-
tion, as described in Section 3.3 with a single density model Q = {q · μ,q ∈ Q}
where Q is universally separable as defined in Section 4.2.

ASSUMPTION 4. The function x 	→ ϕ(x) = ψ(
√

x), where ψ is the function
used to define the statistic T in (5), satisfies ϕ(1) = 0, is concave and admits a
positive derivative at 1.

PROPOSITION 5 [Weijie Su, private communication (2016)]. Let Assump-
tion 4 hold, Q be a convex set of densities on the measured space (X ,B,μ)

and the likelihood be not identically equal to 0 on Q. The maximum likelihood
estimator Q̂ = q̂ · μ on the density model Q = {q · μ,q ∈ Q}, when it exists,
satisfies

ϒ
(
X, q̂

)= sup
q ′∈Q

T
(
X, q̂, q ′)= 0 = inf

q∈Q
sup
q ′∈Q

T
(
X, q, q ′)= inf

q∈Q
ϒ(X, q)

and is therefore a ρ-estimator relative to (Q,0).

PROOF. Given the data X1, . . . ,Xn, if the maximum likelihood q̂ exists, it is
unique since the logarithm is strictly concave. Moreover, q̂(Xi) > 0 for all i ∈
{1, . . . , n}. Since ϒ(X, q̂) ≥ T(X, q̂, q̂) = 0, it suffices to prove that

L(q) = T
(
x, q̂, q

)= n∑
i=1

ϕ

(
q(Xi)

q̂(Xi)

)
≤ 0 for all q ∈ Q.

For q ∈ Q and ε ∈ [0,1], (1 − ε)q̂ + εq ∈ Q and, when ε → 0,

L
(
(1 − ε)q̂ + εq

)= nϕ(1) + ε

[
ϕ′(1)

n∑
i=1

q(Xi)

q̂(Xi)
+ o(1)

]
(31)

= ε

[
ϕ′(1)

n∑
i=1

q(Xi)

q̂(Xi)
+ o(1)

]

since ϕ(1) = 0. When ϕ is the logarithm and ε > 0, the right-hand side of (31) is
negative since q̂ is the unique MLE. Letting ε go to 0 we derive that

(32)
n∑

i=1

q(Xi)

q̂(Xi)
≤ 0 for all q ∈ Q.
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Moreover, the concavity of ϕ implies that for all ε ∈ [0,1]
ϕ

(
(1 − ε)q̂(Xi) + εq(Xi)

q̂(Xi)

)
≤ ϕ(1) + ε

q(Xi)

q̂(Xi)
ϕ′(1) = εϕ′(1)

q(Xi)

q̂(Xi)

so that, for all q ∈ Q, L((1 − ε)q̂ + εq) ≤ εϕ′(1)
∑n

i=1 q(Xi)/q̂(Xi) and

T
(
x, q̂, q

)= L(q) ≤ ϕ′(1)

n∑
i=1

q(Xi)

q̂(Xi)
≤ 0 for all q ∈ Q

by (32), which completes the proof. �

Note that both functions ψ1 and ψ2 of Proposition 3 satisfy Assumption 4.
We may now derive the following relationship between the MLE and ρ-

estimators, the proof of which immediately follows from Theorem 3 and Su’s
proposition.

COROLLARY 1. Let Q be a convex set of densities on the measured space
(X ,B,μ) which is universally separable on X with countable and 
 -dense
subset Q and ψ satisfy Assumptions 1 and 4. The maximum likelihood estimator
Q̂ = q̂ ·μ on the density model Q = {q ·μ,q ∈ Q}, when it exists, is a ρ-estimator
on the ρ-density model Q = {q · μ,q ∈Q}.

For illustration, the set Q = HI of right-continuous histograms based on a fixed
partition I of [0,1) into D ≥ 1 intervals is convex and obviously universally sep-
arable. The usual histogram p̂ based on I , which corresponds to the MLE on HI ,
can be viewed as a ρ-estimator on a countable subset of HI . Taking back some
of the examples of convex and universally separable density sets given in Sec-
tion 4.2, we deduce that the MLE on H↓, that is, the Grenander estimator, or on
the set Hα(L) are also ρ-estimators.

7. Bounding the ρ-dimension function of a ρ-model with applications to
the risk of ρ-estimators. It clearly follows from the results of Section 3 that
bounding the risk of ρ-estimators amounts to bounding the ρ-dimension of ρ-
models which we shall now do under various assumptions. Throughout this sec-
tion, we fix the function ψ satisfying Assumption 2 (typically ψ1 or ψ2) and when
we shall say that some quantity depends on ψ , this will mean that it actually de-
pends on a1 and a2.

In view of (20), of special interest is the situation where the ρ-dimension func-
tion (P,P) 	→ D�(P,P) of the ρ-model � is uniformly bounded from above
on � ×� by some constant Dn ≥ 1. Let us begin by a few elementary con-
siderations. If one can find a representation R = (μ,Q) of � ∪ {P} such that
w(R,�,P,P, y) ≤ a1y

2/8 for all y ≥ β−1
√

D, we immediately derive from the
definition of D� that

(33) D�(P,P
)≤ D ∨ 1 for

(
P,P

) ∈� 2.
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In particular, since |ψ | ≤ 1, the expectation in (14) is never larger than 2n so that
w(R,�,P,P, y) ≤ a1y

2/8 for y ≥ 4
√

(n/a1) and (33) always holds with
√

D = 4β
√

(n/a1) = √
na1/a2 or equivalently D = na1/a

2
2 ≤ n/6.

Finally, whatever the choices of� and ψ ,

(34) D�(P,P
)≤ n/6 for all

(
P,P

) ∈� 2.

More precise bounds will now be given that depend on some specific features
of� .

7.1. The finite case. Given a finite subset� ⊂� , let us set

(35) H (�, y) = sup
P∈�

log+
(
2
∣∣� ∩�(P, y)

∣∣) for all y > 0

and, for x0 = √
2
[√

1 + (β/a2) + 1
]
,

(36) η = sup
{
z > 0,

√
� (�, z/β) > z/x0

}
.

Since � is finite, the function y 	→ H (�, y) is bounded by log(2|�|) and since
β/a2 = a1/(4a2

2) ≤ 1/24,

(37) η ≤ x0

√
log

(
2|�|)< 3

√
log

(
2|�|).

PROPOSITION 6. If� is a finite subset of � and η is defined by (36),

D�(P,P
)≤ Dn(�) = η2 ∨ 1 < 9 log

(
2|�|) for all

(
P,P

) ∈� 2.

The proof of this result is given in Section D.6 of the of the Supplementary
Material [Baraud and Birgé (2018)]. The first upper bound η2 ∨ 1 for D�(P,P)

neither depends on P nor on P but might depend on β . The second bound only
depends on the cardinality of� and, therefore, holds whatever ψ .

If a model� is a totally bounded subset of the metric space (� ,h) and η > 0,
one can cover� by a finite number of closed balls of radius η and the set�[η] of
their centers is an η-net for� (see Definition 6), which means that h(Q,�[η]) ≤ η

for all Q ∈� . The function y 	→ H (�[η], y) measures in a sense the massive-
ness of �[η] and turns out to be a useful tool to measure that of � . We shall
in particular use the following classical notions of dimension based on the metric
structure of� .

DEFINITION 7. A set� ⊂� is said to have a metric dimension bounded by
D̃, where D̃ is a right-continuous function from (0,+∞) to [1/2,+∞], if, for any
positive η, there exists an η-net�[η] for� which satisfies

(38) � (�[η], y)≤ (y/η)2D̃n(η) for all y ≥ 2η.
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We shall say that� has an entropy dimension bounded by V ≥ 0 if, for any η > 0,
there exists an η-net�[η] of� such that

(39) � (�[η], y)≤ V log(y/η) for all y ≥ 2η.

For the sake of convenience, we have slightly modified the original definition
of the metric dimension due to Birgé [(2006), Definition 6, page 293] which is
actually obtained by replacing the left-hand side of (38) by � (�[η], y) − log 2.
Since in both definitions the metric dimension is not smaller than 1/2, it is easy
to check that, if � has a metric dimension bounded by DM in Birgé’s sense, it
has a metric dimension bounded by D̃ = (1 + (log 2)/2)DM in our sense and,
conversely, if � has a metric dimension bounded by D̃ in our sense, it also has
a metric dimension bounded by D̃ in Birgé’s sense. Hence, changing D̃ into DM

only changes the numerical constants.
The logarithm being a slowly varying function, it is not difficult to see that the

notion of metric dimension is more general than the entropy one in the sense that
if� has an entropy dimension bounded by V , then it also has a metric dimension
bounded by D̃n(·) with

(40) D̃n(η) ≤ (1/2) ∨ [
V (log 2)/4

]
for all η > 0.

If� has a metric dimension bounded by D̃ and if η is a positive number satis-
fying

(41) D̃n(η) ≤ (βη/x0)
2,

with x0 given by (36), we deduce from (38) that there exists an η-net�[η] for�
for which √

� (�[η], z/β)≤ z/x0 for all z ≥ 2βη.

It then follows that η, as defined in (36), satisfies η ≤ 2βη and we deduce from
Proposition 6 that the ρ-dimension function D� of� =�[η] ⊂� satisfies

(42) D�(P,P
)≤ Dn(�) = (2βη)2 ∨ 1 for all

(
P,P

) ∈� 2.

If, in particular, � has an entropy dimension bounded by V ≥ 0 we deduce from
(40) that (41) holds for

(43) η2 = x2
0

2β2

(
1 ∨ V log 2

2

)
<

9

2β2

(
1 ∨ V log 2

2

)
and we derive from (42) that

(44) D�(P,P
)≤ Dn(�) = 18

(
1 ∨ V log 2

2

)
for all

(
P,P

) ∈� 2.

Since in both cases h(P,�) ≤ h(P,�) + η for all P ∈� because � is a η-net
for� , we obtain from (42), (44) and (25) the following result.
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COROLLARY 2. Let ψ be a function satisfying Assumption 2.

(i) If � has a metric dimension bounded by D̃ and η satisfies (41), any ρ-
estimator P̂ based on a suitable η-net� for� satisfies for all P ∈� and ξ > 0:

(45) P

[
Ch2(P, P̂

)≤ h2(P,�)+ (
η2 ∨ 1

)+ ξ
]
≥ 1 − e−ξ .

(ii) If � has an entropy dimension bounded by V and η satisfies (43), any ρ-
estimator P̂ based on a suitable η-net� for� satisfies for all P ∈� and ξ > 0:

(46) P

[
Ch2(P, P̂

)≤ h2(P,�)+ (V ∨ 1) + ξ
]
≥ 1 − e−ξ .

In both cases, C is a constant depending only on the choice of ψ .

7.2. Bounds based on the VC-index. In this section, we investigate the case of
a model � given by a specific representation (μ,Q) where the density set Q is
possibly uncountable but satisfies some property to be described below.

A density q = (q1, . . . , qn) ∈ L(μ) can be viewed as a function on X =⋃n
i=1({i} × Xi ) defined, for x = (i, x) with x ∈ Xi , by q(i, x) = qi(x) so that a

subset Q ⊂ L(μ) is now viewed as a class of real-valued functions on X . A com-
mon notion of dimension for the class Q is the following one.

DEFINITION 8. A class F of functions from a set X with values in
(−∞,+∞] is VC-subgraph with index V (or equivalently with dimension V −
1 ≥ 0) if the class of subgraphs {(x, u) ∈ X ×R |f (x) > u} as f varies in F is a
VC-class of sets in X ×R with index V (or dimension V − 1).

We recall that, by definition, the index V of a VC-class is a positive integer,
hence its dimension V − 1 ∈ N. For additional information about VC-classes and
related notions, we refer to van der Vaart and Wellner (1996) and Baraud, Birgé
and Sart (2017), Section 8.

PROPOSITION 7. Let ψ satisfy Assumption 2 and Q ⊂ L(μ) be a VC-
subgraph class of densities on X with index not larger than V . For any ρ-model
� ⊂� = {q · μ,q ∈ Q}, for all (P,P) ∈� ×� μ

D�(P,P
)≤ Dn

(�)= C1
(
V ∧ n

)[
1 + log+

(
n/V

)]
,

where C1 is a universal constant.

The proof is given in Section D.7 of the Supplementary Material [Baraud and
Birgé (2018)]. A nice feature of this bound lies in the fact that it neither depends
on the choices of ψ nor on the cardinality of� which can therefore be arbitrarily
large. In particular, when� is � -dense in� we deduce the following result from
Proposition 7, (25) (with η = 0) and Theorem 3.
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COROLLARY 3. Let ψ be a function satisfying Assumption 2 and Q ⊂ L(μ)

a VC-subgraph class of densities on X with index V . Any ρ-estimator P̂ built on
a countable and � -dense subset� of� = {q · μ,q ∈ Q} satisfies, for all P ∈�
and ξ > 0,

(47) P

[
Ch2(P, P̂

)≤ h2(P,�)+ (
V ∧ n

)[
1 + log+

(
n/V

)]+ ξ
]
≥ 1 − e−ξ ,

where the constant C only depends on the choice of ψ . If, moreover, Q is univer-
sally separable, then (47) holds for any ρ-estimator relative to ((μ,Q),0).

In the particular case of density estimation, the following result is useful in view
of applying Proposition 7.

PROPOSITION 8. If Q ⊂ L(μ) is VC-subgraph on X with index V , then the
set Q = {q = (q, . . . , q), q ∈ Q} ⊂L(μ) is VC-subgraph on X with an index not
larger than V .

PROOF. If the class of subgraphs {(x,u) ∈ X ×R |q(x) > u}, with q running
in Q, shatters the subset {(x1, u1), . . . , (xk, uk)} of X × R, then whatever J ⊂
{1, . . . , k}, there exists q ∈Q such that j ∈ J is equivalent to q(xj ) = q(xj ) > uj .
Hence, the class of subgraphs {(x, u) ∈ X × R |q(x) > u} with q running in Q
shatters the subset {(x1, u1), . . . , (xk, uk)} of X × R and, therefore, k + 1 ≤ V .

�

7.3. More bounds. As we have observed in the previous sections [see (45),
(46) and (47)], there are various situations for which, given a model� ⊂� , it is
possible to build a ρ-estimator P̂ with values in � satisfying for all P ∈� and
ξ > 0,

P

[
Ch2(P, P̂

)≤ h2(P,�)+ Dn

(�)+ ξ
]
≥ 1 − e−ξ

for some quantity Dn(�) ≥ 1 only depending on the specific features of � and
some constant C > 0 depending on the choice of ψ . Such an inequality leads to a
risk bound of the following form (with C ′ > 0):

(48) E

[
h2(P, P̂

)]≤ C′[h2(P,�)+ Dn

(�)] for all P ∈ P

and allows us to bound from above the minimax risk over� by C′Dn(�).
However, not all statistical models admit a finite minimax risk and for such mod-

els there is consequently no hope to bound from above the ρ-dimension function
uniformly as we did in the previous sections. One such example is the set of prob-
abilities on (0,+∞) with nonincreasing densities with respect to the Lebesgue
measure. More examples can also be found in Baraud and Birgé (2016). For some
of these models, it is possible to build a ρ-estimator the risk of which does not
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degenerate, a typical example being the Grenander estimator which is, as already
seen, a ρ-estimator.

Following Baraud (2016), we introduce this definition.

DEFINITION 9. A class of functions F defined on a set X and with values
in [−∞,+∞] is said to be weak VC-major with dimension not larger than k ∈ N

if, for all u ∈ R, the class of subsets

Cu(F ) = {{x ∈ X |f (x) > u}, f ∈ F
}

is a VC-class with dimension not larger than k (index not larger than k + 1). The
weak dimension of F is the smallest of such integers k.

DEFINITION 10. Let F be a class of real-valued functions on X . We shall
say that an element f ∈ F is extremal in F with degree d ∈ N if the class of
functions (

F/f
)= {

f/f ,f ∈ F
}

is weak VC-major with dimension d .

For μ ∈� , we consider a density set Q ⊂ L(μ) which is viewed as a class
of real-valued functions on X = ⋃n

i=1({i} × Xi ) as we did in Section 7.2. The
corresponding model � is {q · μ,q ∈ Q} and, for d ∈ {1, . . . , n}, we denote by
Qd the subset of Q of those densities q which are extremal in Q with degree d .
We set �d = {q · μ,q ∈ Qd} and let D be the subset of {1, . . . , n} consisting of
those d such that�d �= ∅.

PROPOSITION 9. Let ψ satisfy Assumption 2. For all ρ-models � ⊂� and
all d ∈ D,

D�(P,P
)≤ 33d

[
log

(
e2n/d

)]3 for all
(
P,P

) ∈� ×�d .

The proof is given in Section D.8 of the Supplementary Material [Baraud and
Birgé (2018)]. This upper bound, although depending on the specific features of
� , is free from the choices of ψ . We immediately derive from Proposition 9 and
Theorem 1 with a suitable choice of P the following result.

COROLLARY 4. Let ψ satisfy Assumption 2 and assume that D �=∅ and that
�d contains a countable and � -dense subset �d for all d ∈ D. Any ρ-estimator
P̂ on a ρ-model� ⊂� containing

⋃
d∈D�d satisfies, for all P ∈� and ξ > 0,

(49) P

[
Ch2(P, P̂

)≤ inf
d∈D

[
h2(P,�d

)+ d
[
log

(
e2n/d

)]3]+ ξ
]
≥ 1 − e−ξ ,

for some constant C depending on ψ only. If, moreover, Q is universally separable,
any ρ-estimator relative to ((μ,Q),0) also satisfies (49).
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PROOF. Proposition 9 and Theorem 1 lead to (49). When Q is universally
separable there exists a countable and 
 -dense subset Q′ ⊂ Q. The countable
set Q = Q′ ∪ (

⋃
d∈DQd) is still countable and 
 -dense in Q and the corre-

sponding ρ-model � is � -dense in � and contains
⋃

d∈D�d . By Theorem 3,
any ρ-estimator relative to ((μ,Q),0) is also a ρ-estimator relative to ((μ,�),0)

and, therefore, satisfies (49). �

Note that the bound depends on the initial representation (μ,Q) because the
sets Qd , hence the sets�d , depend on Q. This result looks like a model selection
result among the sets {�d, d ∈ D} although the ρ-estimator P̂ is built on a single
ρ-model� ⊂� with a null penalty function. It implies that the minimax risk over
each set�d is necessarily finite, while that on� might not be.

In the particular case of density estimation, the following result turns to be use-
ful in view of applying Proposition 9.

PROPOSITION 10. Let Q be a subset of L(μ) viewed as a class of functions
on X . If p is extremal in Q with degree d , p = (p, . . . , p) is extremal in Q = {q =
(q, . . . , q), q ∈ Q}, viewed as a class of functions on X , with degree not larger
than d .

PROOF. Let u ∈ R. If Cu((Q/p)) shatters {x1, . . . , xk} ⊂ X , for all J ⊂
{1, . . . , k} there exists q ∈ Q such that j ∈ J if and only if (q/p)(xj ) =
(q/p)(xj ) > u. Hence, Cu((Q/p)) shatters {x1, . . . , xk} ⊂ X which is only pos-
sible for k ≤ d . �

7.4. Some examples of statistical models. Let us restrict ourselves here to the
density framework where X1, . . . ,Xn are assumed to be i.i.d. with common dis-
tribution P on X and we have at hand a set of candidate probabilities Q = q · μ
with q ∈ Q ⊂ L(μ) for P . We shall provide here some examples of density sets Q
to which Proposition 7 or 9 applies.

Piecewise constant functions. Let k be a positive integer and X an arbitrary
interval of R (possibly X = R). We define Fk as the class of functions f on X
such that there exists a partition I (f ) of X into at most k intervals (of positive
lengths) with f constant on each of these intervals. Note that I (f ) depends on f .
The following result is to be proved in Section C.1 of the Supplementary Material
[Baraud and Birgé (2018)].

PROPOSITION 11. The set Fk is VC-subgraph with dimension bounded by 2k.

Let us apply this to histogram estimation on X = R. For a positive integer
D, we denote by QD the subset of FD+2 of right-continuous densities with re-
spect to the Lebesgue measure μ, that is, the set of right-continuous and piecewise
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constant densities on R with at most D pieces and by QD = {q · μ,q ∈ QD} the
corresponding model for P . We derive from Propositions 7 and 11 that, for some
universal constant C > 0 and all ρ-models� ⊂�D ,

D�(P,P
)≤ C(D ∧ n)

[
1 + log+(n/D)

]
for all

(
P,P

) ∈� ×� μ.

Hence, by Corollary 3, for all ρ-estimators P̂ on some countable and � -dense
subset�D of�D ,

(50) CE

[
h2(P, P̂

)]≤ h2(P,�D

)+ (D ∧ n)
[
1 + log+(n/D)

]
.

Since QD is universally separable (see Section B of the Supplementary Material
[Baraud and Birgé (2018)]), we deduce from Theorem 3 that (50) remains true for
any ρ-estimator P̂ on the noncountable model �D relative to the representation
(μ,QD) (with a null penalty function).

The logarithmic factor in this bound turns out to be necessary. The argu-
ment is as follows. When P ∈ �D , it follows from (50) that E[h2(P, P̂)] ≤
C′(D ∧ n)[1 + log+(n/D)] for some universal constant C′ > 0. This inequal-
ity appears to be optimal (up to the numerical constant C′) in view of the
lower bound established in Proposition 2 of Birgé and Massart (1998). This also
shows that the logarithmic factor involved in the bound of the ρ-dimension func-
tion established in Proposition 7 is necessary, at least for some VC-subgraph
classes.

Piecewise exponential families. Using similar arguments based on Corollar-
ies 3 and 4 as we did above, we may establish risk bounds of the same flavour as
(50) with the following density sets.

DEFINITION 11. Let g1, . . . , gJ be J ≥ 1 real-valued functions on a set X .
We shall say that a class F of positive functions on X is an exponential family
based on g1, . . . , gJ if the elements f of F are of the form

(51) f = exp

[
J∑

j=1

βjgj

]
for β1, . . . , βJ ∈ R.

If X is a nontrivial interval of R and k a positive integer, we shall say that F
is a k-piecewise exponential family based on g1, . . . , gJ if for any f ∈ F there
exists a partition I (f ) of X into at most k intervals such that for all I ∈ I (f ),
the restriction fI of f to I is of the form (51) with coefficients βj depending
on I .

The properties of exponential and piecewise exponential families are described
by the following proposition to be proven in Section C of the Supplementary Ma-
terial [Baraud and Birgé (2018)].
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PROPOSITION 12. Let Q be a class of functions on X .

(i) If Q is an exponential family based on J ≥ 1 functions, Q is VC-subgraph
with index not larger than J + 2.

(ii) Let I be a partition of X with cardinality not larger than k ≥ 1. If for all
I ∈ I , the family QI consisting of the restrictions of the functions q in Q to the
set I is an exponential family on I based on J ≥ 1 functions, Q is VC-subgraph
with index not larger than k(J + 2).

(iii) If X is a nontrivial interval of R and Q is a k-piecewise exponential family
based on J functions, all densities p ∈ Q are extremal in Q with degree d not
larger than �9.4k(J + 2)� = inf{j ∈ N, j ≥ 9.4k(J + 2)}.

8. Estimating a conditional distribution.

8.1. Description of the framework. Let us now apply our result to the esti-
mation of a conditional distribution. We consider i.i.d. pairs Xi = (Wi, Yi), i =
1, . . . , n of random variables with values in the product space (W × Y ,B(W ) ⊗
B(Y )) and common distribution P , assuming that truly P = P ⊗n. We denote by
PW the marginal distribution of W and assume the existence of a conditional dis-
tribution Pw of Y when W = w, which means that for all bounded measurable
functions f on Y ,

E
[
f (Y )|W = w

]= ∫
Y

f (y) dPw(y) PW -a.s.

and for all bounded measurable functions g on W × Y ,

E
[
g(W,Y )

]= ∫
W

[∫
Y

g(w,y) dPw(y)

]
dPW(w).

Our purpose is to estimate the conditional distribution Pw without the knowl-
edge of PW which may therefore be completely arbitrary. To do so, we con-
sider a reference measure λ on (Y ,B(Y )) and the set Lc(W , λ) of condi-
tional densities with respect to λ, that is, the set of measurable functions t

from (W × Y ,B(W ) ⊗ B(Y )) to R+ such that for all w ∈ W , the function
tw : y 	→ t (w, y) ∈ L(λ). Then to each element t ∈ Lc(W , λ) is associated a con-
ditional distribution tw ·λ for Y . In order to build our estimators, we first introduce
a countable family {Sm,m ∈ M} of countable subsets Sm of Lc(W , λ), and a non-
negative weight function � on M satisfying (21). To each Sm, we associate the
ρ-density model Qm = {Qt, t ∈ Sm} for P , where the probability Qt on W × Y
is given by

Qt(A × B) =
∫
A

[∫
B

tw(y) dλ(y)

]
dPW(w),

or equivalently

dQt

dPW ⊗ dλ
(w,y) = t (w, y).
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This means that Qt has a marginal distribution PW on W and a conditional dis-
tribution given W = w with density tw with respect to λ. Note that the ρ-models
Qm depend on the unknown distribution PW but the densities with respect to the
dominating measure PW ⊗ λ do not. This leads to a family of ρ-models�m for P
and a reference ρ-model � =⋃

m∈M�m. If we introduce a suitable penalty pen
on � , we may build a ρ-estimator of P from our sample X1, . . . ,Xn according
to the recipe of Section 2.3 since its values only depend on the family of densi-
ties in Q = ⋃

m∈M Sm. As a consequence, our estimation strategy neither needs
to know PW nor to estimate it. Such a ρ-estimator will be of the form Q⊗n

ŝ with
Qŝ = ŝ · (PW ⊗λ) and will provide an estimator ŝw ·λ of the conditional probabil-
ity Pw .

Within this framework, the Hellinger distance between the probabilities at hand
writes, for any measure ν that dominates both P and PW ⊗ λ,

1

2

∫
W ×Y

(√
dPW(w)dPw(y)

dν
−
√

t (w, y)
dPW(w)dλ(y)

dν

)2

dν(w,y)

= h2(P,Qt) =
∫
W

h2(Pw, tw · λ)dPW(w).

Therefore,

(52) h2(P,Qm) = inf
t∈Sm

∫
W

h2(Pw, tw · λ)dPW(w).

Note that h2(P,Qt) can actually be viewed as a loss function for the conditional
distributions, of the form �(Pw, tw ·λ) since it actually only depends on Pw and tw .

8.2. Assumptions and results. Let us assume the following.

ASSUMPTION 5. For all m ∈ M, Sm is VC-subgraph with index not larger V m.

We may then deduce from Theorem A.1 of the Supplementary Material [Baraud
and Birgé (2018)] the following result.

COROLLARY 5. Let {Sm,m ∈ M} be a family of countable subsets of
Lc(W , λ) satisfying Assumption 5, � be a weight function on M which satis-
fies (21), ψ a function satisfying Assumption 2, Q = ⋃

m∈M{Qt, t ∈ Sm} and
pen : Q →R+ given, for all Q ∈ Q, by

pen(Q) = κ inf{m∈M |Q=Qt with t∈Sm}

[
C1

4.7

(
V m ∧ n

)[
1 + log+

(
n

V m

)]
+ �(m)

]
,

where κ is given by (19) and C1 is the constant appearing in Proposition 7. Then
any density ρ-estimator Qŝ relative to [(μ,Q),pen] satisfies, for some constant
C′ > 0 depending on the choice of ψ only,

E
[
h2(P,Qŝ)

]≤ C′ inf
m∈M

[
h2(P,Qm) + V m ∧ n

n

(
1 + log+

(
n

V m

))
+ �(m)

n

]
.
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Note that this result does not require any information or assumption on the dis-
tribution of W . If, in particular, the conditional probability Pw is absolutely con-
tinuous with respect to λ for almost all w with density dPw/dλ = sw , PW -a.s., one
can write ⎧⎪⎨⎪⎩

h2(P,Qŝ) =
∫
W

h2(sw · λ, ŝw · λ)dPW(w),

h2(P,Qm) = inf
t∈Sm

∫
W

h2(sw · λ, tw · λ)dPW(w).

PROOF OF COROLLARY 5. If we apply Propositions 7 and 8 to each ρ-model
�m with m ∈ M, we obtain under Assumption 5 the existence of a universal con-
stant C1 > 0 such that for all (P,P) ∈� ×� μ:

D�m
(
P,P

)≤ Dn(m) = C1
(
V m ∧ n

)[
1 + log+

(
n/V m

)]
.

Inequality (22) is fulfilled with K = 0 and the penalty function therefore satisfies
(23) with κ1 = 0 for all m ∈ M. The result follows from Theorem 2, then an
integration of (24), with respect to ξ > 0. �

9. Regression with a random design. In this section, we assume that the
observations Xi = (Wi, Yi), 1 ≤ i ≤ n are i.i.d. copies of a random pair

(53) X = (W,Y ) with Y = f (W) + ε,

where W is a random variable with distribution PW on a measurable space
(W ,B(W )), f is an unknown regression function mapping W into R and ε is
a real-valued random variable with distribution Pε , which is independent of W .
Both distributions PW and Pε are assumed to be unknown. We shall use the spe-
cific notation introduced in Section 3.3 when the data are i.i.d. and denote by μ

the product measure PW ⊗ λ where λ is the Lebesgue measure on R. Note that μ

is unknown since it depends on the distribution PW of the design W .
If ε had a density s with respect to λ, the distribution P of X = (W,Y ) would

be absolutely continuous with respect to μ with density p given by

(54) p(w,y) = s
(
y − f (w)

)
for (w,y) ∈ X ,

depending thus on two parameters: the density s of the errors and the regression
function f .

Denoting by D the set of all densities on (R,B(R), λ) and F the set of all
measurable functions mapping W into R, our aim is to estimate P assuming that
it is close to some distribution of the form p · μ with p given by (54) for some
s ∈ D and f ∈ F . Besides, when P is truly of this form we shall also derive
estimators for both s and f .
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9.1. The main result. For r ∈ D and g ∈ F , we set

Qr,g = qr,g · μ with qr,g(w,y) = r
(
y − g(w)

)
,

which means that Qr,g is the distribution of X in (53) when f = g and ε is dis-
tributed according to R = r · λ. Given a density r ∈ D and a countable subset F of
F , we define the ρ-model:

Qm = {Qr,g, g ∈ F } for m = (r,F ).

Given a countable subset D of D and a countable family F of countable subsets
F of F , we estimate P on the basis of the collection of ρ-models {Qm,m ∈ M}
with M ⊂ D × F. We endow the family {�m,m ∈ M} with a weight function �

satisfying (21) and assume the following.

ASSUMPTION 6.
(i) The densities r ∈ D are unimodal.
(ii) Each F in F is VC-subgraph with index V (F).
(iii) The function ψ satisfies Assumption 2 with � = {Q⊗n,Q ∈ Q =⋃
m∈M Qm}.
Under Assumptions 6-(i) and 6-(ii), the family of densities Qm is a VC-

subgraph on X with index not larger than

(55) V m = 9.41V (F) for all m = (r,F ) ∈ M.

This result derives from Baraud, Birgé and Sart (2017), Proposition 42. Besides,
under Assumption 6-(iii), Proposition 7 applies and implies that, for some univer-
sal constant C1 > 0, all m ∈ M, P ∈� and P ∈� , D�m(P,P) ≤ Dn(m) with

(56) Dn(m) = C1
(
V m ∧ n

)[
1 + log+

(
n/V m

)]
for all m = (r,F ) ∈ M,

so that (22) holds with K = 0. Setting

pen(Q) = κ inf{m∈M|Qm�Q}

{
Dn(m)

4.7
+ �(m)

}
,

we may apply Theorem 2 with κ1 = 0, which leads, in this particular case, to the
following analogue of (24).

THEOREM 4. Assume that Assumption 6 holds. For any distribution P ∈ P
and P = P ⊗n, any ρ-estimator P̂ = (P̂ , . . . , P̂ ) satisfies, for all ξ > 0, with prob-
ability at least 1 − e−ξ ,

Ch2(P, P̂ )
(57)

≤ inf
m∈M

[
h2(P,Qm) + V m ∧ n

n

[
1 + log+

(
n

V m

)]
+ �(m)

n

]
+ ξ

n
,

for some constant C > 0 only depending on the choice of ψ .
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At this stage, some comments are in order:

(a) This result holds without any assumption on the distribution PW of the
design.

(b) The result is true even if the regression framework (53) is not exact as long
as the Xi are i.i.d. In particular, the distribution P needs not have a density with
respect to μ = PW ⊗ λ.

(c) If r admits k modes with k > 1 and F is a VC-subgraph with index not
larger than V , Q(r,F ) remains a VC-subgraph and its index is still bounded by
C(k)V for some constant C(k) that now depends on k. Consequently, the above
result generalizes to families D of densities admitting more than a single mode in
which case V (F) should be replaced by c(r)V (F ) where c(r) is a positive number
depending on the number of modes of the density r .

(d) With Theorem 4 at hand, we could obtain in the present random design
context an analogue of Corollary 39 in Baraud, Birgé and Sart (2017) which was
established when the Wi were deterministic (fixed design regression).

9.2. Estimation of s and f . Let us now consider the situation where the re-
gression framework (53) is exact and ε has an unknown density s with respect to
the Lebesgue measure λ. Then P = Qs,f admits a density qs,f with respect to μ

which is given by (54) with s belonging to D and f to F but not necessarily to our
ρ-models D and F =⋃

F∈F F , respectively. Since we may choose our ρ-estimator
of the form

P̂ = qŝ,f̂ · μ with
(̂
s, f̂

) ∈ D ×F,

our procedure results in estimators ŝ and f̂ for s and f , respectively, and our aim
in this section is to establish risk bounds for these two estimators.

Since the map (r, g) 	→ Qr,g is not necessarily one-to-one from D ×F to P , an
identifiability condition is required on our ρ-model Q so that the equality Qr,g =
Qr ′,g′ with r, r ′ ∈ D and g,g′ ∈ F implies that r = r ′ λ-a.e. and g = g′ PW -a.s. In
order to state this identifiability condition, let us introduce the following notation.
For r ∈ D and a ∈ R, we shall denote by Ra the probability on (R,B(R), λ) with
density ra(·) = r(· − a). When ε has density r and a = g(w) for some w ∈ W , Ra

can be viewed as the conditional distribution of Y = g(W)+ε given W = w. Given
r, r ′ ∈ D , g,g′ ∈ F and w ∈ W , the Hellinger distance between the probabilities
Rg(w), and R′

g′(w) is given by

h2(Rg(w),R
′
g′(w)

)= 1

2

∫
R

[√
r
(
y − g(w)

)−√
r ′(y − g′(w)

)]2
dλ(y)

and the Hellinger distance between the corresponding probabilities Qr,g and Qr ′,g′
on (X ,B) writes

(58) h2(Qr,g,Qr ′,g′) =
∫
W

h2(Rg(w),R
′
g′(w)

)
dPW(w).
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We recall that the Hellinger distance is translation invariant which means that for
all densities r, r ′ ∈ D , a, a′ ∈R,

(59) h2(Ra,R
′
a′
)= h2(Ra−a′,R′).

In particular, taking a = g(w) and a′ = g′(w) for g,g′ ∈ F and w ∈ W and inte-
grating (59) with respect to PW we get for all (g, g′) ∈ F 2 and (r, r ′) ∈ D2

(60) h2(Qr,g,Qr ′,g′) = h2(Qr,g−g′,Qr ′,0).

In order to warrant identifiability, we assume the following.

ASSUMPTION 7. There exists a positive constant A such that, for all r, r ′ ∈ D,
R = r · λ and R′ = r ′ · λ,

h
(
R,R′)≤ A inf

a∈Rh
(
Ra,R

′).
When Qr,g = Qr ′,g′ , (58) asserts that h(Rg(w),R

′
g′(w)) = 0 for PW -almost all

w ∈ W and (59) implies that h(Rg(w)−g′(w),R
′) = 0 for all such w ∈ W . Applying

Assumption 7 with a = g(w) − g′(w) leads to R = R′ and g(w) = g′(w) which
solves our identifiability problem.

In order to evaluate the risk of our estimator f̂ of f , we endow F with the loss
function ds defined on F × F by

d2
s

(
g,g′)= 1

2

∫
W ×R

(√
sg(w)(y) −

√
sg′(w)(y)

)2
dPW(w)dy for g,g′ ∈ F .

This loss function depends on the true density s of the errors ε and on the dis-
tribution PW of the design, hence on P . We have seen in Section 6.3 of Baraud,
Birgé and Sart (2017) that, if the density s is of order α with α ∈ (−1,1] (see
Definition 26 of that paper for the order of a function), the restriction of ds to
the L∞(PW)-ball B∞(b) centred at 0 with radius b is equivalent (up to factors
depending on b and s) to

∥∥g − g′∥∥(1+α)/2
1+α,PW

with
∥∥g − g′∥∥

1+α,PW
=
[∫

W

∣∣g − g′∣∣1+α
dPW

]1/(1+α)

.

In particular, if F ⊂ B∞(b) and the true regression function f also belongs to
B∞(b),

c(s, b)‖f − g‖(1+α)/2
1+α,PW

≤ ds(f, g) ≤ C(s, b)‖f − g‖(1+α)/2
1+α,PW

for all g ∈ F

and suitable positive numbers c(s, b) and C(s, b). Of special interest is the case
of α = 1 for which ds(f, g) is of the order of the L2(PW)-distance between f

and g for all g ∈ F . This situation is met when the translation ρ-model associ-
ated to s is regular which is the case when s is Cauchy, Gaussian, Laplace, etc.
When s is uniform or exponential, d2

s (·, ·) is then equivalent to the L1(PW)-norm.
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Furthermore, when F is a subset of a k-dimensional linear space F generated by
φ1, . . . , φk , these norms can in turn be translated into a norm on R

k between the
coefficients relative to this basis. More precisely, if f belongs to F and writes
as
∑k

j=1 βjφj and f = ∑k
j=1 βjφj is an element of F , there exist two positive

constants c′(s, b, k) and C′(s, b, k) such that

c′(s, b, k)

[
max

j=1,...,k
|βj − βj |

](1+α)/2

≤ ds

(
f,f

)≤ C′(s, b, k)

[
max

j=1,...,k
|βj − βj |

](1+α)/2
.

In particular, if f = f (n) converges towards f at a rate vn with respect to the
distance ds(·, ·), the coefficients of f converge in sup-norm towards those of f at
rate v

2/(1+α)
n ; this latter rate being faster than vn when α < 1.

In view of evaluating the risk of our estimator ŝ of the density s, we shall con-
sider the loss between two densities r, r ′ ∈ D induced by the Hellinger distance
between the two corresponding measures r · λ and r ′ · λ and we shall write this
loss h(r, r ′) so that

h
(
r, r ′)= h

(
r · λ, r ′ · λ)= h

(
Qr,0,Qr ′,0

)
for all r, r ′ ∈ D .

We deduce from Theorem 4 the following result.

COROLLARY 6. Assume that the Xi are i.i.d. with density p given by (54) and
that Assumptions 6 and 7 are satisfied. For all ξ > 0 and all ρ-estimators Qŝ,f̂ ,
with ŝ ∈D and f̂ ∈ F , based on the family of ρ-models Qm defined in Section 9.1,
with probability at least 1 − e−ξ ,

C max
{
d2
s

(
f, f̂

)
, h2(s, ŝ)}

≤ inf
m

{
d2
s (f,F ) + h2(s, r) + V m ∧ n

n

[
1 + log+

(
n

V m

)]
+ �(m)

n

}
+ ξ

n
,

where the infimum runs among all m = (r,F ) ∈ M, C is a positive constant de-
pending on A and the choice of ψ and V m is given by (55).

The risk bound is the same for the two estimators and depends on the approxi-
mation properties of F and D with respect to f and s, respectively. The proof of
this corollary is given in Section D.9 of the Supplementary Material [Baraud and
Birgé (2018)].

10. Estimator selection and aggregation. In the case of density estimation,
ρ-estimators can also be used to perform selection or aggregation of preliminary
estimators. In this case, we assume that we have at hand a set X1 = (X1, . . . ,Xn)
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of n independent random variables with an unknown joint distribution P to be
estimated. We also have at hand a finite family � = {Pj , j ∈ J } of probabili-
ties that can be considered as candidate estimators for P. These are completely
arbitrary, but in a typical situation, it is assumed (although this may not be true)
that the observations Xi are i.i.d. and the Pj are preliminary estimators of the
form Pj = P ⊗n

j (X2), where X2 is a second sample independent from X1, and
the Pj = Pj (X2) are estimators that derive from various procedures applied to the
sample X2.

10.1. Estimator selection. Taking M = J , we view each probability Pj as
a ρ-model �j = {Pj } with a single element. As a consequence, it follows from
Proposition 6 that D�j (P,Pj ) ≤ 9 log 2 < 6.3 so that (22) holds with Dn(j) = 6.3
for all j and K = 0. Then we choose the weights �(j) satisfying (21). We may
choose �(j) = log |J | for all j ∈ J but other more Bayesian choices are possible,
or choices based on the confidence we have in the various procedures used to build
the preliminary estimators. To compute the penalized ρ-estimator P̂ of P, we may
use the penalty function pen(Pj ) = κ�(j) for all j ∈ J which is of the form (23)
with κ1 = −κ(6.3/4.7). Finally, (24) shows that, for all ξ > 0 and P ∈� ,

P

[
h2(P, P̂

)≤ C inf
j∈J

(
h2(P,Pj ) + �(j) + 1 + ξ

)]
≥ 1 − e−ξ ,

where C denotes a suitable constant depending on ψ only.

10.2. Convex estimator aggregation. In this case, we set J = {1, . . . ,N},
N ≥ 2 and C for the N -dimensional simplex:

C =
{
(α1, . . . , αN) such that αj ≥ 0 for 1 ≤ j ≤ N and

N∑
j=1

αj = 1

}
.

We select a dominating measure μ, densities pj = dPj/dμ and we then consider
a single density model:

Q =
{

N∑
j=1

αjpj for (α1, . . . , αN) ∈ C

}
.

The following result then holds.

PROPOSITION 13. Let ψ satisfy Assumption 2. Any ρ-estimator P̂ on � =
{q · μ,q ∈ Q} relative to ((μ,Q),0) satisfies

P

[
Ch2(P, P̂

)≤ h2(P,�)+ N logn + ξ
]
≥ 1 − e−ξ for all ξ > 0

and some constant C > 0 depending on ψ only.
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PROOF. The map (α1, . . . , αn) 	→ ∑N
j=1 αjpj from C to Q is continuous if

we equip C with the usual Euclidean distance and Q with the topology of point-
wise convergence. Since C is separable, Q is universally separable and contains
thus a countable subset Q which is 
 -dense in Q. The set Q being furthermore
a subset of an N -dimensional linear space, it is a VC-subgraph with index V not
larger than N + 2 and it follows from Proposition 7 (and Proposition 8) that, for
all ρ-models� ⊂� ,

D�(P,P
)≤ Dn = CN logn for all

(
P,P

) ∈� ×� μ.

We may apply Theorem 3 with p ≡ 0 to the single model � . A ρ-estimator P̂ on
� relative to ((μ,Q),0) is also a ρ-estimator on the ρ-model� = {q ·μ,q ∈ Q}
and we deduce from Theorem 1, more precisely from (20), that

P

[
Ch2(P, P̂

)≤ h2(P,�) + N logn + ξ
]
≥ 1 − e−ξ for all ξ > 0,

some constant C depending on ψ only and all P ∈� . We conclude using the fact
that� is � -dense in� since Q is 
 -dense in Q. �

It should be noted that there is no L2-type argument here; the densities pj can
be absolutely anything and the true distribution P should be a product measure but
not necessarily of the form P ⊗n.

Practical implementation. Since the set Q is convex, Proposition 5 applies
with ψ = ψ1 or ψ = ψ2 of Proposition 3 and the MLE on Q is a ρ-estimator. It is
obtained by maximizing over the convex set C the concave map

(α1, . . . , αN) 	→
n∑

i=1

log

(
N∑

j=1

αjpj (Xi)

)
.
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know about the nice connection between the MLE and ρ-estimators in the case of
a convex parameter set and for allowing them to include his result (Proposition 5)
in this paper.

SUPPLEMENTARY MATERIAL

Supplement to “Rho-estimators revisited: general theory and applications”
(DOI: 10.1214/17-AOS1675SUPP; .pdf). This supplement provides the proofs of
most results given in the paper and an additional section (D.10) devoted to robust
tests.

https://doi.org/10.1214/17-AOS1675SUPP


3804 Y. BARAUD AND L. BIRGÉ

REFERENCES

AUDIBERT, J.-Y. and CATONI, O. (2011). Robust linear least squares regression. Ann. Statist. 39
2766–2794. MR2906886

BARAUD, Y. (2016). Bounding the expectation of the supremum of an empirical process over a
(weak) VC-major class. Electron. J. Stat. 10 1709–1728. MR3522658

BARAUD, Y. and BIRGÉ, L. (2016). Rho-estimators for shape restricted density estimation. Stochas-
tic Process. Appl. 126 3888–3912.

BARAUD, Y. and BIRGÉ, L. (2018). Supplement to “Rho-estimators revisited: General theory and
applications.” DOI:10.1214/17-AOS1675SUPP.

BARAUD, Y., BIRGÉ, L. and SART, M. (2017). A new method for estimation and model selection:
ρ-estimation. Invent. Math. 207 425–517.

BIRGÉ, L. (1983). Approximation dans les espaces métriques et théorie de l’estimation. Z. Wahrsch.
Verw. Gebiete 65 181–237. MR0722129

BIRGÉ, L. (2006). Model selection via testing: An alternative to (penalized) maximum likelihood
estimators. Ann. Inst. Henri Poincaré Probab. Stat. 42 273–325.

BIRGÉ, L. and MASSART, P. (1998). Minimum contrast estimators on sieves: Exponential bounds
and rates of convergence. Bernoulli 4 329–375.

GINÉ, E. and KOLTCHINSKII, V. (2006). Concentration inequalities and asymptotic results for ratio
type empirical processes. Ann. Probab. 34 1143–1216. MR2243881
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