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OPTIMAL ADAPTIVE ESTIMATION OF LINEAR FUNCTIONALS
UNDER SPARSITY

BY OLIVIER COLLIER∗,1, LAËTITIA COMMINGES†,
ALEXANDRE B. TSYBAKOV‡,2 AND NICOLAS VERZELEN§

Université Paris-Ouest∗, Université Paris Dauphine†, CREST-ENSAE‡, and
INRA§

We consider the problem of estimation of a linear functional in the Gaus-
sian sequence model where the unknown vector θ ∈ R

d belongs to a class of
s-sparse vectors with unknown s. We suggest an adaptive estimator achiev-
ing a nonasymptotic rate of convergence that differs from the minimax rate
at most by a logarithmic factor. We also show that this optimal adaptive rate
cannot be improved when s is unknown. Furthermore, we address the issue of
simultaneous adaptation to s and to the variance σ 2 of the noise. We suggest
an estimator that achieves the optimal adaptive rate when both s and σ 2 are
unknown.

1. Introduction. We consider the model

(1) yj = θj + σξj , j = 1, . . . , d,

where θ = (θ1, . . . , θd) ∈ R
d is an unknown vector of parameters, ξj are i.i.d. stan-

dard normal random variables, and σ > 0 is the noise level. We study the problem
of estimation of the linear functional

L(θ) =
d∑

i=1

θi,

based on the observations y = (y1, . . . , yd).
For s ∈ {1, . . . , d}, we denote by �s the class of all θ ∈ R

d satisfying ‖θ‖0 ≤ s,
where ‖θ‖0 denotes the number of nonzero components of θ . We assume that θ

belongs to �s for some s ∈ {1, . . . , d}. Parameter s characterizes the sparsity of
vector θ . The problem of estimation of L(θ) in this context arises, for example,
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if one wants to estimate the value of a function f at a fixed point from noisy
observations of its Fourier coefficients knowing that the function admits a sparse
representation with respect to the first d functions of the Fourier basis. Indeed, in
this case the value f (0) is equal to the sum of Fourier coefficients of f with even
indices.

As a measure of quality of an estimator T̂ of the functional L(θ) based on the
sample (y1, . . . , yd), we consider the maximum squared risk

ψT̂
s � sup

θ∈�s

Eθ

(
T̂ − L(θ)

)2
,

where Eθ denotes the expectation with respect to the distribution Pθ of (y1, . . . , yd)

satisfying (1). For each fixed s ∈ {1, . . . , d}, the best quality of estimation is char-
acterized by the minimax risk

ψ∗
s � inf

T̂

sup
θ∈�s

Eθ

(
T̂ − L(θ)

)2
,

where the infimum is taken over all estimators. An estimator T ∗ is called rate
optimal on �s if ψT ∗

s � ψ∗
s . Here and in the following, we write a(d, s, σ ) �

b(d, s, σ ) for two functions a(·) and b(·) of d, s and σ if there exist absolute
constants c > 0 and c′ > 0 such that c < a(d, s, σ )/b(d, s, σ ) < c′ for all d , all
s ∈ {1, . . . , d} and all σ > 0.

The problem of estimation of the linear functional from the minimax point of
view has been analyzed in Ibragimov and Khas’minskii (1984), Cai and Low
(2004, 2005), Golubev (2004), Golubev and Levit (2004), Laurent, Ludeña and
Prieur (2008) among others. Most of these papers study minimax estimation of
linear functionals on classes of vectors θ different from �s . Namely, θ is consid-
ered as a vector of first d Fourier or wavelet coefficients of functions belonging to
some smoothness class, such as Sobolev or Besov classes. In particular, the class of
vectors θ is assumed to be convex, which is not the case of class �s . Cai and Low
(2004) were the first to address the problem of constructing rate optimal estimators
of L(θ) on the sparsity class �s and evaluating the minimax risk ψ∗

s . They stud-
ied the case s < da for some a < 1/2, with σ = 1/

√
d , and established upper and

lower bounds on ψ∗
s that are accurate up to a logarithmic factor in d . The sharp

nonasymptotic expression for the minimax risk ψ∗
s is derived in Collier, Com-

minges and Tsybakov (2017) where it is shown that, for all d , all s ∈ {1, . . . , d}
and all σ > 0

ψ∗
s � σ 2s2 log

(
1 + d/s2)

.

Furthermore, Collier, Comminges and Tsybakov (2017) prove that a simple esti-
mator of the form

(2) L̂∗
s =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d∑
j=1

yj1y2
j >2σ 2 log(1+d/s2) if s <

√
d,

d∑
j=1

yj otherwise,
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is rate optimal. Here and in the following, 1{·} denotes the indicator func-
tion.

Note that the minimax risk ψ∗
s critically depends on the parameter s that in prac-

tice is usually unknown. More importantly, the rate optimal estimator L̂∗
s depends

on s as well, which makes it inaccessible in practice.
In this paper, we suggest adaptive estimators of L(θ) that do not depend on s

and achieve a nonasymptotic rate of convergence �L(σ, s) that differs from the
minimax rate ψ∗

s at most by a logarithmic factor. We also show that this rate can-
not be improved when s is unknown in the sense of the definition that we give
in Section 2 below. Furthermore, in Section 3 we address the issue of simultane-
ous adaptation to s and σ . We suggest an estimator that achieves the best rate of
adaptive estimation �L(σ, s) when both s and σ are unknown.

2. Main results. Our aim is to show that the optimal adaptive rate of conver-
gence is of the form

�L(σ, s) = σ 2s2 log
(
1 + d(logd)/s2)

and to construct an adaptive estimator attaining this rate. Note that

(3) �L(σ, s) � σ 2d(logd) for all
√

d logd ≤ s ≤ d.

Indeed, since the function x 	→ x log(1 + 1/x) is increasing for x > 0,

(4)
d(logd)/2 ≤ s2 log

(
1 + d(logd)/s2)

≤ d(logd) ∀
√

d logd ≤ s ≤ d, d ≥ 3.

To construct an adaptive estimator, we first consider a collection of nonadaptive
estimators indexed by s = 1, . . . , d:

(5) L̂s =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d∑
j=1

yj1y2
j >ασ 2 log(1+d(logd)/s2) if s ≤

√
d logd/2,

d∑
j=1

yj otherwise,

where α > 0 is a constant that will be chosen large enough. Note that if in Defini-
tion (5) we replace d(logd) by d , and α by 2, we obtain the estimator L̂∗

s suggested
in Collier, Comminges and Tsybakov (2017); cf. (2). It is proved in Collier, Com-
minges and Tsybakov (2017) that the estimator L̂∗

s is rate optimal in the minimax
nonadaptive sense. The additional logd factor is necessary to achieve adaptivity as
it will be clear from the subsequent arguments.

We obtain an adaptive estimator via data-driven selection in the collection of
estimators {L̂s}. The selection is based on a Lepski type scheme. For s = 1, . . . , d ,
consider the thresholds ωs > 0 given by

ω2
s = βσ 2s2 log

(
1 + d(logd)/s2) = β�L(σ, s),
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where β > 0 is a constant that will be chosen large enough. We define the selected
index ŝ by the relation

(6) ŝ � min
{
s ∈ {

1, . . . , 
√

d logd/2�} : |L̂s − L̂s′ | ≤ ωs′ for all s′ > s
}

with the convention that ŝ = √d logd/2� + 1 if the set in (6) is empty. Here,
√d logd/2� denotes the largest integer less than

√
d logd/2. Finally, we define

an adaptive to s estimator of L as

(7) L̂� L̂ŝ .

The following theorem exhibits an upper bound on its risk.

THEOREM 1. Assume that α > 48, β ≥ 16
9 (

√
12 + 2

√
α)2 and d ≥ d0, where

d0 ≥ 3 is an absolute constant. Let L̂ be the estimator defined in (7). Then, for all
σ > 0 and s ∈ {1, . . . , d}, we have

sup
θ∈�s

Eθ

(
L̂ − L(θ)

)2 ≤ C�L(σ, s)

for some absolute constant C.

Observe that for small s (such that s ≤ db for b < 1/2), we have 1 ≤
�L(σ, s)/ψ∗

s ≤ c′ where c′ > 0 is an absolute constant. Therefore, for such s our
estimator L̂ attains the best possible rate on �s given by the minimax risk ψ∗

s and
it cannot be improved, even by estimators depending on s. Because of this, the
only issue is to check that the rate �L(σ, s) cannot be improved if s is greater than
db with b < 1/2. For definiteness, we consider below the case b = 1/4 but with
minor modifications the argument applies to any b < 1/2. Specifically, we prove
that any estimator whose maximal risk over �s is smaller (within a small constant)
than �L(σ, s) for some s ≥ d1/4, must have a maximal risk over �1 of power order
in d instead of the logarithmic order �L(σ,1) corresponding to our estimator. In
other words, if we find an estimator that improves upon our estimator only slightly
(by a constant factor) for some s ≥ d1/4, then this estimator inevitably loses much
more for small s, such as s = 1, since there the ratio of maximal risks of the two
estimators behaves as a power of d .

THEOREM 2. Let d ≥ 6 and σ > 0. There exist two small absolute constants
C0 > 0 and C1 > 0 such that the following holds. Any estimator T̂ that satisfies

sup
θ∈�s

Eθ

[(
T̂ − L(θ)

)2] ≤ C0�
L(σ, s) for some s ≥ d1/4

has a degenerate maximal risk over �1, that is,

sup
θ∈�1

Eθ

[(
T̂ − L(θ)

)2] ≥ C1σ
2d1/4.
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The property obtained in Theorem 2 can be paraphrased in an asymptotic con-
text to conclude that �L(σ, s) is the adaptive rate of convergence on the scale of
classes {�s, s = 1, . . . , d} in the sense of the definition in Tsybakov (1998). In-
deed, assume that d → ∞. Following Tsybakov (1998), we call a function s 	→
�d(s) the adaptive rate of convergence on the scale of classes {�s, s = 1, . . . , d}
if the following holds:

(i) There exists an estimator L̂ such that, for all d ,

(8) max
s=1,...,d

sup
θ∈�s

Eθ

(
L̂ − L(θ)

)2
/�d(s) ≤ C,

where C > 0 is a constant (clearly, such an estimator L̂ is adaptive since it cannot
depend on s).

(ii) If there exist another function s 	→ � ′
d(s) and a constant C′ > 0 such that,

for all d ,

(9) inf
T̂

max
s=1,...,d

sup
θ∈�s

Eθ

(
T̂ − L(θ)

)2
/� ′

d(s) ≤ C′,

and

(10) min
s=1,...,d

� ′
d(s)

�d(s)
→ 0 as d → ∞,

then there exists s̄ ∈ {1, . . . , d} such that

(11)
� ′

d(s̄)

�d(s̄)
min

s=1,...,d

� ′
d(s)

�d(s)
→ ∞ as d → ∞.

In words, this definition states that the adaptive rate of convergence �d(s) is such
that any improvement of this rate for some s [cf. (10)] is possible only at the
expense of much greater loss for another s̄ [cf. (11)].

COROLLARY 1. The rate �L(σ, s) is the adaptive rate of convergence on the
scale of classes {�s, s = 1, . . . , d}.

It follows from the above results that the rate �L(σ, s) cannot be improved
when adaptive estimation on the family of sparsity classes {�s, s = 1, . . . , d} is
considered. The ratio between the best rate of adaptive estimation �L(σ, s) and
the minimax rate ψ∗

s is equal to

φ∗
s = �L(σ, s)

ψ∗
s

= log(1 + d(logd)/s2)

log(1 + d/s2)
.

As mentioned above, φ∗
s � 1 if s ≤ db for b < 1/2. In a vicinity of s = √

d, we
have φ∗

s � log logd , whereas for s ≥ √
d logd the behavior of this ratio is log-

arithmic: φ∗
s � logd . Thus, there are different regimes and we see that, in some
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of them, rate adaptive estimation of the linear functional on the sparsity classes
is impossible without loss of efficiency as compared to the minimax estimation.
However, this loss is at most logarithmic in d .

We study now the adaptive rate of convergence on restricted scale of classes
{�s,d

r1 ≤ s ≤ dr2} for some 0 < r1 < r2 ≤ 1.

PROPOSITION 1. Fix 0 < r1 < r2 ≤ 1. The adaptive rate of convergence on the
scale of classes {�s,d

r1 ≤ s ≤ dr2} is �L(σ, s) if r1 < 1/2 and σ 2d if r1 ≥ 1/2.

PROOF OF PROPOSITION 1. For r1 ≥ 1/2, it is proved in Collier, Comminges
and Tsybakov (2017) that the simple estimator L̂∗

d = ∑d
j=1 yj simultaneously

achieves the minimax risk ψ∗
s � σ 2d for all s = √d�, . . . , d . As a consequence,

there is no loss for adaptation to the classes {�s,d
1/2 ≤ s ≤ d}.

Now assume that r1 < 1/2. In view of Theorem 1, the estimator L̂ simultane-
ously achieves the rate �L(σ, s) for all classes {�s,d

r1 ≤ s ≤ dr2}. It suffices to
prove that this rate is optimal. Below, �x� stands for the smallest integer greater
than or equal to x.

PROPOSITION 2. Fix r1 ∈ (1/4,1/2) Let d ≥ 6 and σ > 0. There exist two
absolute constants C0 > 0 and C1 > 0 such that the following holds. Any estimator
T̂ that satisfies

sup
θ∈�s

Eθ

[(
T̂ − L(θ)

)2] ≤ C0(1/2 − r1)�
L(σ, s) for some s ≥ d(1/2+r1)/2

has a degenerate maximal risk over ��dr1�, that is,

sup
θ∈��dr1 �

Eθ

[(
T̂ − L(θ)

)2] ≥ C1(1/2 − r1)σ
2d3r1/2+1/2.

Note that �L(σ, �dr1�) is not of larger order than σ 2d2r1 log(d), which is much
smaller than d3r1/2+1/2. The proof of Proposition 2 follows immediately by apply-
ing Lemma 7 with a = (r1 + 1/2)/2 and then concluding the proof as in Corol-
lary 1. �

3. Adaptation to s when σ is unknown. In this section, we discuss a gener-
alization of our adaptive estimator to the case when the standard deviation σ of the
noise is unknown.

To treat the case of unknown σ , we first construct an estimator σ̂ of σ such that,
with high probability, σ ≤ σ̂ ≤ 10σ . Then we consider the family of estimators
defined by a relation analogous to (5):

(12) L̂′
s =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d∑
j=1

yj1y2
j >ασ̂ 2 log(1+d(logd)/s2) if s ≤

√
d logd/2,

d∑
j=1

yj otherwise,
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where α > 0 is a constant to be chosen large enough. The difference from (5)
consists in the fact that we replace the unknown σ by σ̂ . Then we define a random
threshold ω′

s > 0 as (
ω′

s

)2 = βσ̂ 2s2 log
(
1 + d(logd)/s2)

,

where β > 0 is a constant to be chosen large enough. The selected index ŝ′ is
defined by the formula analogous to (6):

(13) ŝ′ � min
{
s ∈ {

1, . . . , 
√

d logd/2�} : |L̂′
s − L̂′

s′ | ≤ ω′
s′ for all s′ > s

}
.

Finally, the adaptive estimator when σ is unknown is defined as

L̂′ � L̂′
ŝ′ .

The aim of this section is to show that the risk of the estimator L̂′ admits an upper
bound with the same rate as in Theorem 1 for all d large enough. Consequently,
L̂′ attains the best rate of adaptive estimation as follows from Section 2.

Different estimators σ̂ can be used. By slightly modifying the method suggested
in Collier, Comminges and Tsybakov (2017), we consider the statistic

(14) σ̂ = 9
(

1

d/2�
∑

j≤d/2

y2
(j)

)1/2
,

where y2
(1) ≤ · · · ≤ y2

(d) are the order statistics associated to y2
1 , . . . , y2

d . This statis-
tic has the properties stated in the next proposition. In particular, σ̂ overestimates
σ but it turns out to be without prejudice to the attainment of the best rate by the
resulting estimator L̂′

s .

PROPOSITION 3. There exists an absolute constant d0 ≥ 3 such that the fol-
lowing holds. Let σ̂ be the estimator defined in (14). Then, for all integers d ≥ d0

and s < d/2 we have

(15) inf
θ∈�s

Pθ (σ ≤ σ̂ ≤ 10σ) ≥ 1 − d−5,

and

(16) sup
θ∈�s

Eθ

(
σ̂ 4) ≤ C̄σ 4,

where C̄ is an absolute constant.

The proof of this proposition is given in Section 4. Using Proposition 3, we
establish the following bound on the risk of the estimator L̂′.
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THEOREM 3. Assume that α > 48, β ≥ 16
9 (

√
12 + 2

√
α)2 and d ≥ d0 where

d0 ≥ 3 is an absolute constant. Let σ̂ be the estimator defined in (14). Then, for
the estimator L̂′ with tuning parameters α and β , for all σ > 0, and all s < d/2
we have

(17) sup
θ∈�s

Eθ

(
L̂′ − L(θ)

)2 ≤ C�L(σ, s)

for some absolute constant C.

Thus, the estimator L̂′, which is independent of both s and σ achieves the rate
�L(σ, s) that is, the best possible rate of adaptive estimation established in Sec-
tion 2.

The condition s < d/2 in this theorem can be generalized to s ≤ ζd for some
ζ ∈ (0,1). In fact, for any ζ ∈ (0,1), we can modify the definition of (14) by sum-
ming only over the (1 − ζ )d smallest values of y2

i . Then, changing the numerical
constants α and β in the definition of ω′

s , we obtain that the corresponding estima-
tor L̂′ achieves the best possible rate simultaneously for all s ≤ ζd with a constant
C in (17) that would depend on ζ . However, we cannot set ζ = 1. Indeed, the fol-
lowing proposition shows that it is not possible to construct an estimator, which is
simultaneously adaptive to all σ > 0 and to all s ∈ [1, d].

PROPOSITION 4. Let d ≥ 3 and σ > 0. There exists a small absolute constant
C0 > 0 such that the following holds. Any estimator T̂ that satisfies

(18) sup
θ∈�1

Eθ

[(
T̂ − L(θ)

)2] ≤ C0σ
2d ∀σ > 0,

has a degenerate maximal risk over �d , that is, for any fixed σ > 0,

(19) sup
θ∈�d

Eθ

[(
T̂ − L(θ)

)2] = ∞.

In other words, when σ is unknown, any estimator, for which the maximal risk
over �d is finite for all σ , cannot achieve over �1 a risk of smaller order than
σ 2d , and hence cannot be minimax adaptive. Indeed, as shown above, the adaptive
minimax rate over �1 is of the order σ 2 logd .

4. Proofs of the upper bounds. In the following, we will denote c1, c2, . . .

absolute positive constants and write for brevity L instead of L(θ).

4.1. Proof of Theorem 1. Let s ∈ {1, . . . , d} and assume that θ belongs to �s .
We have

(20) Eθ (L̂ − L)2 = Eθ

[
(L̂ŝ − L)21ŝ≤s

] + Eθ

[
(L̂ŝ − L)21ŝ>s

]
.
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Consider the first summand on the right-hand side of (20). Set for brevity s0 =
√d logd/2� + 1. Using the definition of ŝ we obtain, on the event {ŝ ≤ s},

(L̂ŝ − L)2 ≤ 2ω2
s + 2(L̂s − L)2 if s < s0 or s ≥ s0, ŝ < s0.

Thus,

∀s < s0: Eθ

[
(L̂ŝ − L)21ŝ≤s

] ≤ 2β�L(σ, s) + 2Eθ (L̂s − L)2,(21)

∀s ≥ s0: Eθ

[
(L̂ŝ − L)21ŝ≤s

] ≤ Eθ

[
(L̂ŝ − L)2(1ŝ≤s,ŝ<s0 + 1ŝ=s0)

]
≤ 2β�L(σ, s) + 2Eθ (L̂s − L)2(22)

+ Eθ (L̂s0 − L)2.

By Lemma 6 proved at the end of this section, we have

sup
θ∈�s

Eθ (L̂s − L)2 ≤ c1�
L(σ, s), s = 1, . . . , s0 − 1.

Note that, in view of (3), for all s ∈ [s0, d] we have

�L(σ, s0) ≤ σ 2d logd ≤ 2σ 2s2 log
(
1 + (d logd)/s2) = 2�L(σ, s),

and by definition of L̂s , for all s ∈ [s0, d] and all θ ∈ R
d , we have Eθ (L̂s − L)2 ≤

σ 2d ≤ 2�L(σ, s). Combining these remarks with (21) and (22) yields

(23) sup
θ∈�s

Eθ

[
(L̂ŝ − L)21ŝ≤s

] ≤ c2�
L(σ, s), s = 1, . . . , d.

Consider now the second summand on the right-hand side of (20). Since ŝ ≤ s0,
we obtain the following two facts. First,

(24) sup
θ∈�s

Eθ

[
(L̂ŝ − L)21ŝ>s

] = 0 ∀s ≥ s0.

Second, on the event {ŝ > s},
(L̂ŝ − L)4 ≤ ∑

s<s′≤s0

(L̂s′ − L)4.

Thus,

sup
θ∈�s

Eθ

[
(L̂ŝ − L)21ŝ>s

]
≤ sup

θ∈�s

[√
Pθ (ŝ > s)(d logd)1/4 max

s<s′≤s0

√
Eθ (L̂s′ − L)4

]
≤ (d logd)1/4 sup

θ∈�s

√
Pθ (ŝ > s) max

s′≤s0

[
sup

θ∈�s′

√
Eθ (L̂s′ − L)4

]
,

(25)

where for the second inequality we have used that �s ⊂ �s′ for s < s′. To evaluate
the right- hand side of (25), we use the following two lemmas.
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LEMMA 1. Recall the definitions of L̂s and L̂′
s in (5) and (12). For all s ≤

s0 = √d logd/2� + 1, we have

sup
θ∈�s

Eθ (L̂s − L)4 ≤ c3σ
4d4(logd)2,

sup
θ∈�s

Eθ

(
L̂′

s − L
)4 ≤ c4σ

4d4(logd)2.

LEMMA 2. Assume that α > 48 and β = 16
9 (

√
12 + 2

√
α)2.

(i) We have

(26) max
s≤√

d logd/2
sup
θ∈�s

Pθ (ŝ > s) ≤ c5d
−5.

(ii) We have

max
s≤√

d logd/2
sup
θ∈�s

Pθ

(
ŝ′ > s

) ≤ c6d
−5.

From (24), (25), the first inequality in Lemma 1, and part (i) of Lemma 2 we
find that

sup
θ∈�s

Eθ

[
(L̂ŝ − L)21ŝ>s

] ≤ √
c3c5σ

2 ≤ c7�
L(σ, s), s = 1, . . . , d.

Combining this inequality with (20) and (23), we obtain the theorem.

4.2. Proofs of the lemmas.

PROOF OF LEMMA 1. For s = s0, L̂s −L = L̂′
s −L = σ

∑d
i=1 ξi . As a conse-

quence,

Eθ (L̂s − L)4 = Eθ

(
L̂′

s − L
)4 = 3σ 4d2 ≤ 3σ 4d4(logd)2.

Henceforth, we focus on the case s ≤ √
d log(d)/2. We have

(27) L̂s − L = σ

d∑
i=1

ξi −
d∑

i=1

yi1y2
i ≤ασ 2 log(1+d(logd)/s2).

Thus,

Eθ (L̂s − L)4 ≤ 8

(
σ 4E

(
d∑

i=1

ξi

)4

+ d4α2σ 4 log2(
1 + d(logd)/s2))

≤ c3σ
4d4(logd)2.

In a similar way,

(28) L̂′
s − L = σ

d∑
i=1

ξi −
d∑

i=1

yi1y2
i ≤ασ̂ 2 log(1+d(logd)/s2),
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and

Eθ

(
L̂′

s − L
)4 ≤ 8

(
σ 4E

(
d∑

i=1

ξi

)4

+ d4α2Eθ

(
σ̂ 4)

log2(
1 + d(logd)/s2))

.

The desired bound for Eθ (L̂
′
s − L)4 follows from this inequality and (16). �

PROOF OF LEMMA 2. We start by proving part (i) of Lemma 2. Note first that,
for s ≤ √

d logd/2 and all θ we have

(29) Pθ

(|L̂s − L| > 3ωs′/4
) ≤ Pθ

(|L̂s − L| > 3ωs/4
) ∀s < s′ ≤ d.

Indeed, if s < s′ we have ωs′ > ωs since the function t 	→ ωt is increasing for
t > 0. Thus,

Pθ

(|L̂s′ − L̂s | > ωs′
) ≤ Pθ

(|L̂s′ − L| > 3ωs/4
) + Pθ

(|L̂s − L| > ωs/4
)
.

This inequality and the definition of ŝ imply that, for all s ≤ √
d logd/2 and all θ ,

Pθ (ŝ > s) ≤ ∑
s<s′≤d

Pθ

(|L̂s′ − L̂s | > ωs′
)

≤ dPθ

(|L̂s − L| > 3ωs/4
) + ∑

s<s′≤d

Pθ

(|L̂s′ − L| > ωs′/4
)
.

(30)

Note that, for
√

d logd/2 < s′ ≤ d , we have L̂s′ = ∑d
i=1 yi , and ωs′ ≥ σ ×√

βd logd
√

log(3)/2 by monotonicity. Hence, for
√

d logd/2 < s′ ≤ d , and all
θ ,

Pθ

(|L̂s′ − L| > ωs′/4
) ≤ P

(∣∣∣∣∣
d∑

i=1

ξi

∣∣∣∣∣ >

√
βd logd

4

√
log(3)/2

)
≤ 2d−β log(3)/64,

where we have used that ξi are i.i.d. standard Gaussian random variables. This
inequality and (30) imply that, for s ≤ √

d logd/2, and all θ ,

Pθ (ŝ > s) ≤
√

d logd/2 max
s<s′≤√

d logd
Pθ

(|L̂s′ − L| > 3ωs′/4
)

+ dPθ

(|L̂s − L| > 3ωs/4
) + 2d−β log(3)/64.

(31)

As �s ⊂ �s′ for s < s′, we have

max
s<s′≤√

d logd
sup
θ∈�s

Pθ

(|L̂s′ − L| > 3ωs′/4
)

≤ max
s′≤√

d logd
sup

θ∈�s′
Pθ

(|L̂s′ − L| > 3ωs′/4
)
.
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Together with (31), this implies

max
s≤√

d logd
sup
θ∈�s

Pθ (ŝ > s)

≤ 2d max
s′≤√

d logd
sup

θ∈�s′
Pθ

(|L̂s′ − L| > 3ωs′/4
) + 2d−β log(3)/64.

Considering the assumption on β , the last summand in this inequality does not
exceed 2d−5. Thus, it remains to bound the first term on the right-hand side.

Fix s ≤ √
d logd/2 and let θ belong to �s . We will denote by S the support of

θ and we set for brevity

a �
√

log
(
1 + d(logd)/s2

)
.

From (27) and the fact that yi = θi + σξi , we have

|L̂s − L| =
∣∣∣∣σ ∑

i∈S

ξi − ∑
i∈S

yi1y2
i ≤ασ 2a2 + σ

∑
i /∈S

ξi1ξ2
i >αa2

∣∣∣∣
≤ σ

∣∣∣∣∑
i∈S

ξi

∣∣∣∣ + σ

∣∣∣∣∑
i /∈S

ξi1ξ2
i >αa2

∣∣∣∣ + √
ασsa.

(32)

Recalling that ωs = √
βσsa we find

Pθ

(|L̂s − L| > 3ωs/4
) ≤ P

(∣∣∣∣∑
i /∈S

ξi1ξ2
i >αa2

∣∣∣∣ >
√

αsa

)

+ P
(∣∣∣∣∑

i∈S

ξi

∣∣∣∣ > (3
√

β/4 − 2
√

α)sa

)
.

(33)

Since ξi are i.i.d. N (0,1) random variables, we have

(34) P
(∣∣∣∣∑

i∈S

ξi

∣∣∣∣ > (3
√

β/4 − 2
√

α)sa

)
≤ 2 exp

(
−(3

√
β/4 − 2

√
α)2

2
sa2

)
.

We now use the relation

(35) sa2 = s log
(
1 + d(logd)/s2) ≥ logd for all s ∈ [1,

√
d logd/2],

since the function s → s log(1 + d log(d)/s2) is increasing. It follows from (34),
(35) and the assumption on α and β that

(36) P
(∣∣∣∣∑

i∈S

ξi

∣∣∣∣ > (3
√

β/4 − 2
√

α)sa

)
≤ 2d−6.

Next, consider the first probability on the right-hand side of (33). To bound it
from above, we invoke the following lemma.
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LEMMA 3. If α > 48, for all s ≤ √
d logd/2 and all U ⊆ {1, . . . , d},

P
(

sup
t∈[1,10]

∣∣∣∣∑
i∈U

ξi1|ξi |>√
αat

∣∣∣∣ >
√

αsa

)
≤ c8d

−6.

Combining (33), (36) and Lemma 3, we obtain part (i) of Lemma 2.
We now proceed to the proof of part (ii) of Lemma 2. Proposition 3 implies that,

for s ≤ √
d logd and θ ∈ �s ,

Pθ

(
ŝ′ > s

) ≤ Pθ

(
ŝ′ > s, σ̂ ∈ [σ,10σ ]) + Pθ

(
σ̂ /∈ [σ,10σ ]).

On the event {σ̂ ∈ [σ,10σ ]}, we can replace σ̂ in the definition of ŝ′ either by σ

or by 10σ according to cases, thus making the analysis of Pθ (ŝ
′ > s, σ̂ ∈ [σ,10σ ])

equivalent, up to the values of numerical constants, to the analysis of Pθ (ŝ > s)

given below. The only nontrivial difference consists in the fact that the analog of
(32) when L̂s is replaced by L̂′

s contains the term σ |∑i /∈S ξi1ξ2
i >ασ̂ 2a2/σ 2 | instead

of σ |∑i /∈S ξi1ξ2
i >αa2 | while σ̂ depends on ξ1, . . . , ξd . This term is evaluated using

Lemma 3 and the fact that

P
(∣∣∣∣∑

i /∈S

ξi1|ξi |>√
ασ̂a/σ

∣∣∣∣ >
√

αsa, σ̂ ∈ [σ,10σ ]
)

≤ P
(

sup
t∈[1,10]

∣∣∣∣∑
i /∈S

ξi1|ξi |>√
αat

∣∣∣∣ >
√

αsa

)
.

We omit further details that are straightforward from inspection of the proof of part
(i) of Lemma 2 given above. Thus, part (ii) of Lemma 2 follows. �

For the proof of Lemma 3, recall the following fact about the tails of the standard
Gaussian distribution, which can be proven by integration by part.

LEMMA 4. Let X ∼ N (0,1), x > 1 and q ∈ N. There is a constant C∗
q such

that

E
[
X2q1|X|>x

] ≤ C∗
qx2q−1e−x2/2.

Moreover, simulations suggest that C∗
1 ≤ 1.1.

We will also use the Fuk–Nagaev inequality [Petrov (1995), page 78] that we
state here for the reader’s convenience.

LEMMA 5 (Fuk–Nagaev inequality). Let p > 2 and v > 0. Assume that
X1, . . . ,Xn are independent random variables with E(Xi) = 0 and E|Xi |p < ∞,
i = 1, . . . , n. Then

P

(
n∑

i=1

Xi > v

)
≤ (1 + 2/p)p

n∑
i=1

E|Xi |pv−p + exp
(
− 2v2

(p + 2)2ep
∑n

i=1 EX2
i

)
.
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PROOF OF LEMMA 3. We have

p0 � P
(

sup
t∈[1,10]

∣∣∣∣∑
i∈U

ξi1|ξi |>√
αat

∣∣∣∣ >
√

αsa

)

= E
[
P

(
sup

t∈[1,10]

∣∣∣∣∑
i∈U

εi |ξi |1|ξi |>√
αat

∣∣∣∣ >
√

αsa
∣∣∣|ξi |, i ∈ U

)]
,

where εi denotes the sign of ξi . Consider the function

g(x) = sup
t∈[1,10]

∣∣∣∣∑
i∈U

xi |ξi |1|ξi |>√
αat

∣∣∣∣,
where x = (xi, i ∈ U) with xi ∈ {−1,1}. For any i0 ∈ U , let gi0,u(x) denote the
value of this function when we replace xi0 by u ∈ {−1,1}. Note that, for any fixed
(|ξi |, i ∈ U), we have the bounded differences condition:

sup
x

∣∣g(x) − gi0,u(x)
∣∣ ≤ 2|ξi |1|ξi |>√

αa � 2Zi ∀u ∈ {−1,1}, i0 ∈ U.

The vector of Rademacher random variables (ε1, . . . , εd) is independent from
(|ξ1|, . . . , |ξd |).Thus, for any fixed (|ξi |, i ∈ U) we can use the bounded differences
inequality, which yields

(37)

p0 ≤ E
[
exp

(
− αs2a2

2
∑

i∈U Z2
i

)]

≤ exp
(
−αs2a2

2�

)
+ P

(∑
i∈U

Z2
i > �

)
∀� > 0.

We now set � = ∑
i∈U EZ2

i + dαa2 exp(−αa2/(2p)) with p = α/8 > 6.
To bound from above the probability P(

∑
i∈U Z2

i > �), we apply Lemma 5 with
Xi = Z2

i − E(Z2
i ) and v = αa2d exp(−αa2/(2p)). The random variables Xi are

centered and satisfy, in view of Lemma 4,

(38) E|Xi |p ≤ 2p−1E|Zi |2p ≤ 2p−1C∗
p(

√
αa)2p−1e−αa2/2.

Thus, Lemma 5 yields

P
(∑

i∈U

Z2
i > �

)
≤ C∗

p2p−1(1 + 2/p)p
(
√

αa)−1

dp

+ exp
(
−

√
αad exp(αa2(1/2 − 1/p))

2(p + 2)2epC∗
2

)
.

The expression in the last display can be made smaller than c9d
−6 for all d ≥ 3.
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Finally, using (38) we find

αs2a2

2�
≥ αs2a2

2d(C∗
1
√

αa exp(−αa2/2) + αa2 exp(−αa2/(2p)))

≥ s2 exp(αa2/(2p))

4.4d
,

whereas

s2 exp(αa2/(2p))

d
= s2

d

(
1 + d logd

s2

)α/(2p)

= logd

(
s2

d log(d)
+ 1

)
×

(
1 + d logd

s2

)α/(2p)−1

≥ 33 logd

for any s ≤ √
d logd/2, since α = 8p. Hence, for such s,

exp
(
−αs2a2

2�

)
≤ c10d

−6.

Thus, Lemma 3 follows. �

LEMMA 6. There exists an absolute constant d0 ≥ 3 such that if α > 48, we
have

sup
θ∈�s

Eθ (L̂s − L)2 ≤ c1�
L(σ, s),

sup
θ∈�s

Eθ

(
L̂′

s − L
)2 ≤ c11�

L(σ, s) ∀s ≤
√

d logd/2.

PROOF. We easily deduce from (32) that

Eθ (L̂s − L)2 ≤ 3σ 2(
s + dE

[
X21X2>αa2

] + αs2a2)
,

where X ∼N (0,1). By Lemma 4,

dE
[
X21X2>2a2

] ≤ C∗
1ad exp

(−a2) = C∗
1ads2

s2 + d logd
≤ C∗

1 s2a

logd
,

which implies that the desired bound for Eθ (L̂s −L)2 holds since α ≥ 2. Next, we
prove the bound of the lemma for Eθ (L̂

′
s − L)2. Similarly to (32),

L̂′
s − L = σ

∑
i∈S

ξi − ∑
i∈S

yi1y2
i ≤ασ̂ 2a2 + σ

∑
i /∈S

ξi1σ 2ξ2
i >ασ̂ 2a2 .
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This implies

Eθ

[(
L̂′

s − L
)21σ̂∈[σ,10σ ]

] ≤ Eθ

(
σ

∣∣∣∣∑
i∈S

ξi

∣∣∣∣ + √
ασ̂ sa + σW

)2

≤ 3
(
σ 2s + αEθ

(
σ̂ 2)

a2s2 + σ 2E
(
W 2))

,

(39)

where W � supt∈[1,10] |
∑

i /∈S ξi1|ξi |>√
αat |. Using Lemma 3 we find that, for all

α > 48,

E
(
W 2) ≤ (

√
αsa)2 + E

(∑
i /∈S

|ξi |
)2

1W>
√

αsa

≤ αs2a2 +
[
E

(∑
i /∈S

|ξi |
)4]1/2

c9d
−3 ≤ αs2a2 + c9

√
3d−1.

Plugging this bound in (39) and using (16), we get

Eθ

[(
L̂′

s − L
)21σ̂∈[σ,10σ ]

] ≤ c12�
L(σ, s).

On the other hand, by virtue of Lemma 1 and (15),

Eθ

[(
L̂′

s − L
)21σ̂ /∈[σ,10σ ]

] ≤
√

Pθ

(
σ̂ /∈ [σ,10σ ])√Eθ

(
L̂′

s − L
)4

≤
√

c3σ
2 logd

d1/2 ≤ c13�
L(σ, s).

The desired bound for Eθ (L̂
′
s − L)2 follows from the last two displays. �

4.3. Proofs of Proposition 3 and of Theorem 3.

PROOF OF PROPOSITION 3. Since s ≤ d/2, there exists a subset T of size
d/2� such that T ∩ S =∅. By Definition of σ̂ 2, we obtain that

σ̂ 2 ≤ 81σ 2

d/2�
∑
i∈T

ξ2
i .

This immediately implies (16). To prove (15), note that the Gaussian concentration
inequality [cf. Ledoux and Talagrand (1991)] yields

P
((∑

i∈T

ξ2
i

)1/2
>

√
100d/2�/81

)
≤ exp(−cd),

for a positive constant c. Therefore,

(40) Pθ (σ̂ ≤ 10σ) ≥ 1 − exp(−cd).

Next, let G be the collection of all subsets of {1, . . . , d} of cardinality d/2�. We
now establish a bound on the deviations of random variables ZG = 1

σ 2

∑
i∈G y2

i
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uniformly over all G ∈ G. Fix any G ∈ G. The random variable ZG has a chi-
square distribution with d/2� degrees of freedom and noncentrality parameter∑

i∈G θ2
i . In particular, this distribution is stochastically larger than a central chi-

square distribution with d ′ = d/2� degrees of freedom. Let Z be a random vari-
able with this central chi-square distribution. For the tail probability of Z, we can
use Lemma 11.1 in Verzelen (2012) that gives

P
(
Z ≤ d ′

e
x2/d ′

)
≤ x ∀x > 0.

Take x = (d
d ′

)−1
e−d ′/2. Using the bound log

(d
d ′

) ≤ d ′ log(ed/d ′), it follows that
log(1/x) ≤ d ′(3

2 + log( d
d ′ )) ≤ d ′(3

2 + log 2) + 1. Taking the union bound over all
G ∈ G, we conclude that

P
(

inf
G∈G ZG ≤ d ′

4e3

(
1 − 2

d ′
))

≤ e−d ′/2 < d−5/2

for all d large enough. Since σ̂ 2 = σ 2 81
d ′ infG∈G Z2

G, we obtain that σ̂ 2 ≥ σ 2 with
probability at least 1−d−5/2 for all d large enough. Combining this with (40), we
get (15) for all d large enough. �

PROOF OF THEOREM 3. We repeat the proof of Theorem 1 replacing there
L̂s by L̂′

s and ŝ by ŝ′. The difference is that, in view of (16), the relation (21) now
holds with c14β�L(σ, s) instead of β�L(σ, s), and we use the results of Lemmas
1, 2 and 6 related to L̂′

s rather than to L̂s . �

5. Proofs of the lower bounds.

5.1. Proof of Theorem 2. Theorem 2 is an immediate consequence of the fol-
lowing lemma with a = 1/4.

LEMMA 7. For all d ≥ 6, a ∈ [1/4,1/2), and s ≥ da ,

R(s) � inf
L̃

{
E0(L̃ − L)2σ−2d−3a+1/2 + sup

θ∈�s

Eθ (L̃ − L)2(
�L(σ, s)

)−1
}

≥ 1/2 − a

40
.

(41)

PROOF. We first introduce some notation. For a probability measure μ on
�s , we denote by Pμ the mixture probability measure Pμ = ∫

�s
Pθμ(dθ). Let

S(s, d) denote the set of all subsets of {1, . . . , d} of size s, and let S be a set-
valued random variable uniformly distributed on S(s, d). For any ρ > 0, denote
by μρ the distribution of the random variable σρ

∑
j∈S ej where ej is the j th

canonical basis vector in R
d . Next, let χ2(Q,P ) = ∫

(dQ/dP )2 dP − 1 denote
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the chi-square divergence between two probability measures Q and P such that
Q � P , and χ2(Q,P ) = +∞ if Q �� P .

Take any a ∈ [1/4,1/2) and s ≥ da . Set

ρ �
√

(1/2 − a) log
(
1 + d(logd)/s2

) =
√

1/2 − a
(
�L(σ, s)

)1/2
/(sσ ).

Consider the mixture distribution Pμρ with this value of ρ. For any estimator L̃, we

have supθ∈�s
Eθ (L̃−L)2 ≥ Eμρ (L̃−L)2 ≥ Eμρ (L̃−Eμρ (L))2 = Eμρ (L̃−σsρ)2.

Therefore,

R(s) ≥ inf
L̃

{
E0

(
L̃2)

σ−2d−3a+1/2 +Eμρ (L̃ − σsρ)2(
�L(σ, s)

)−1}
≥ 1/2 − a

4
inf
L̃

{
P0(L̃ > σsρ/2)σ−2d−3a+1/2�L(σ, s)

+ Pμρ (L̃ < σsρ/2)
}

≥ 1/2 − a

4
inf
A

{
P0(A)σ−2d−3a+1/2�L(σ, s) + Pμρ

(
Ac)},

(42)

where infA denotes the infimum over all measurable events A, and Ac denotes the
complement of A. It remains to prove that the expression in (42) is not smaller
than (1/2 − a)/40. This will be deduced from the following lemma, the proof of
which is given at the end of this section.

LEMMA 8. Let P and Q be two probability measures on a measurable space
(X,U). Then, for any q > 0,

inf
A∈U

{
P(A)q + Q

(
Ac)} ≥ max

0<τ<1

[
qτ

1 + qτ

(
1 − τ

(
χ2(Q,P ) + 1

))]
.

We now apply Lemma 8 with P = P0, Q = Pμρ , and

(43) q = σ−2d−3a+1/2�L(σ, s) = s2d−3a+1/2 log
(

1 + d(logd)

s2

)
.

By Lemma 1 in Collier, Comminges and Tsybakov (2017), the chi-square diver-
gence χ2(Pμρ ,P0) satisfies

χ2(Pμρ ,P0) ≤
(

1 − s

d
+ s

d
eρ2

)s

− 1 ≤
(

1 + s

d

(
eρ2 − 1

))s

.

Since ρ2 = (1/2 − a) log(1 + d(logd)

s2 ), we find

χ2(Pμρ ,P0) ≤ exp
[
s log

[
1 + s

d

((
1 + d(logd)

s2

)1/2−a

− 1
)]]

≤ exp
[
s log

(
1 + (1/2 − a)

logd

s

)]
≤ d1/2−a,

(44)
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where we have used that (1 + x)1/2−a ≤ 1 + (1/2 − a)x for x > 0. Take

(45) τ = (
d1/2−a + 1

)−1
/2.

Then, using (43) and the inequality s ≥ da we find

qτ = s2 log(1 + d(logd)

s2 )

2d3a−1/2(d1/2−a + 1)
≥ d2a log(1 + d1−2a(logd))

2d3a−1/2(d1/2−a + 1)

>
1

4
∀d ≥ 6.

(46)

Lemma 8 and inequalities (44)–(46) imply

inf
A

{
P0(A)σ−2d−3a+1/2�L(σ, s) + Pμρ

(
Ac)} ≥ qτ

2(1 + qτ)
≥ 1

10
. �

PROOF OF LEMMA 8. We follow the same lines as in the proof of Proposi-
tion 2.4 in Tsybakov (2009). Thus, for any τ ∈ (0,1),

P(A) ≥ τ
(
Q(A) − v

)
where v = Q

(
dP

dQ
< τ

)
≤ τ

(
χ2(Q,P ) + 1

)
.

Then

inf
A

{
P(A)q + Q

(
Ac)} ≥ inf

A

{
qτ

(
Q(A) − v

) + Q
(
Ac)}

≥ min
0≤t≤1

max
(
qτ(t − v),1 − t

) = qτ(1 − v)

1 + qτ
. �

5.2. Proof of Corollary 1. First, note that condition (8) with �d(s) =
C�L(σ, s) is satisfied due to Theorem 1. Next, the minimum in condition (10)
with �d(s) = C�L(σ, s) can be only attained for s ≥ d1/4, since for s < d1/4 we
have �L(σ, s) � ψ∗

s where ψ∗
s is the minimax rate on �s . Thus, it is not possible

to achieve a faster rate than �L(σ, s) for s < d1/4 and, therefore, (10) is equivalent
to the condition

min
s≥d1/4

� ′
d(s)

�L(σ, s)
→ 0,

and

min
s=1,...,d

� ′
d(s)

�L(σ, s)
� min

s≥d1/4

� ′
d(s)

�L(σ, s)
.

Obviously, � ′
d(s) cannot be of smaller order than the minimax rate ψ∗

s , which
implies that

min
s≥d1/4

� ′
d(s)

�L(σ, s)
≥ min

s≥d1/4

cψ∗
s

�L(σ, s)
= min

s≥d1/4

c log(1 + d/s2)

log(1 + d(logd)/s2)
≥ c′

logd
,
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where c, c′ > 0 are absolute constants. On the other hand, Theorem 2 yields

C′� ′
d(1)

�L(σ,1)
≥ C′C1σ

2d1/4

�L(σ,1)
= C′C1d

1/4

log(1 + d(logd))
.

Combining the last three displays, we find

� ′
d(1)

�L(σ,1)
min

s=1,...,d

� ′
d(s)

�L(σ, s)
≥ c′C′C1d

1/4

(logd) log(1 + d(logd))
→ ∞,

as d → ∞, thus proving (11) with s̄ = 1.

5.3. Proof of Proposition 4. Since in this proof we consider different values
of σ , we denote the probability distribution of (y1, . . . , yd) satisfying (1) by Pθ,σ 2 .
Let Eθ,σ 2 be the corresponding expectation. Assume that T̂ satisfies (18) with
C0 = 1/512. We will prove that (19) holds for σ = 1. The extension to arbitrary
σ > 0 is straightforward and is therefore omitted.

Let a > 1 be a positive number and let μ be the d-dimensional normal distribu-
tion with zero mean and covariance matrix a2Id where Id is the identity matrix. In
what follows, we consider the mixture probability measure Pμ = ∫

�d
Pθ,1μ(dθ).

Observe that Pμ = P0,1+a2 .
Fixing θ = 0 and σ 2 = 1+a2 in (18), we get E0,1+a2[T̂ 2] ≤ 2C0a

2d and, there-
fore, P0,1+a2(|T̂ | ≥ 1

8a
√

d) ≤ 1
4 . Since Pμ = P0,1+a2 , this implies

(47) Pμ

(
|T̂ | < 1

8
a
√

d

)
>

3

4
.

For θ distributed according to μ, L(θ) has a normal distribution with mean 0 and
variance a2d . Hence, using the table of standard normal distribution, we find

μ

(∣∣L(θ)
∣∣ ≤ a

4

√
d

)
<

1

4
.

Combining this with (47), we conclude that, with Pμ-probability greater than 1/2,
we have simultaneously |L(θ)| > a

√
d/4 and |T̂ | < a

√
d/8. Hence,

sup
θ∈�d

Eθ,1
[(

T̂ − L(θ)
)2] ≥ Eμ

[(
T̂ − L(θ)

)2] ≥ 1

128
a2d

where Eμ denotes the expectation with respect to Pμ. The result now follows by
letting a tend to infinity.
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