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OVERCOMING THE LIMITATIONS OF PHASE
TRANSITION BY HIGHER ORDER ANALYSIS

OF REGULARIZATION TECHNIQUES1

BY HAOLEI WENG, ARIAN MALEKI AND LE ZHENG

Columbia University

We study the problem of estimating a sparse vector β ∈ R
p from the re-

sponse variables y = Xβ + w, where w ∼ N(0, σ 2
wIn×n), under the follow-

ing high-dimensional asymptotic regime: given a fixed number δ, p → ∞,
while n/p → δ. We consider the popular class of �q -regularized least squares
(LQLS), a.k.a. bridge estimators, given by the optimization problem

β̂(λ, q) ∈ arg min
β

1

2
‖y − Xβ‖2

2 + λ‖β‖q
q ,

and characterize the almost sure limit of 1
p ‖β̂(λ, q)−β‖2

2, and call it asymp-
totic mean square error (AMSE). The expression we derive for this limit does
not have explicit forms, and hence is not useful in comparing LQLS for dif-
ferent values of q, or providing information in evaluating the effect of δ or
sparsity level of β. To simplify the expression, researchers have considered
the ideal “error-free” regime, that is, w = 0, and have characterized the values
of δ for which AMSE is zero. This is known as the phase transition analysis.

In this paper, we first perform the phase transition analysis of LQLS. Our
results reveal some of the limitations and misleading features of the phase
transition analysis. To overcome these limitations, we propose the small error
analysis of LQLS. Our new analysis framework not only sheds light on the
results of the phase transition analysis, but also describes when phase tran-
sition analysis is reliable, and presents a more accurate comparison among
different regularizers.

1. Introduction.

1.1. Objective. Consider the linear regression problem where the goal is to
estimate the parameter vector β ∈ R

p from a set of n response variables y ∈ R
n,

under the model y = Xβ + w. This problem has been studied extensively in the
last two centuries since Gauss and Legendre developed the least squares estimate
of β . The instability or high variance of the least squares estimates led to the de-
velopment of the regularized least squares. One of the most popular regularization
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classes is the �q -regularized least squares (LQLS), a.k.a. bridge regression [24,
25], given by the following optimization problem:

(1.1) β̂(λ, q) ∈ arg min
β

1

2
‖y − Xβ‖2

2 + λ‖β‖q
q,

where ‖β‖q
q = ∑p

i=1 |βi |q and 1 ≤ q ≤ 2.2 LQLS has been extensively studied in
the literature. In particular, one can prove the consistency of β̂(λ, q) under the clas-
sical asymptotic analysis (p fixed while n → ∞) [30]. However, this asymptotic
regime becomes irrelevant for high-dimensional problems in which n is not much
larger than p. Under this high-dimensional setting, if β does not have any specific
“structure,” we do not expect any estimator to perform well. One of the structures
that has attracted attention in the last twenty years is the sparsity, that assumes only
k of the elements of β are nonzero and the rest are zero. To understand the behavior
of the estimators under structured linear model in high dimension, a new asymp-

totic framework has been proposed in which it is assumed that Xij
i.i.d.∼ N(0,1/n),

k,n,p → ∞, while n/p → δ and k/p → ε, where δ and ε are fixed numbers [1,
6, 16, 19, 22].

One of the main notions that has been widely studied in this asymptotic frame-
work is the phase transition [1, 16, 19, 39]. Intuitively speaking, phase transition
analysis assumes the error w equals zero and characterizes the value of δ above
which an estimator converges to the true β (in certain sense that will be clari-
fied later). While there is always an error in the response variables, it is believed
that phase transition analysis provides reliable information when the errors are
small. In this paper, we start by studying the phase transition diagrams of LQLS
for 1 ≤ q ≤ 2. Our analysis reveals several limitations of the phase transition anal-
ysis. We will clarify these limitations in the next section. We then propose a higher
order analysis of LQLS in the small-error regime. As we will explain in the next
section, our new framework sheds light on the peculiar behavior of the phase tran-
sition diagrams, and explains when we can rely on the results of phase transition
analysis in practice.

1.2. Limitations of the phase transition and our solution. In this section, we
intuitively describe the results of phase transition analysis, its limitations and our
new framework. Consider the class of LQLS estimators and suppose that we would
like to compare the performance of these estimators through the phase transition
diagrams. For the purpose of this section, we assume that the vector β has only k

nonzero elements, where k/p → ε with ε ∈ (0,1). Since phase transition analysis
is concerned with w = 0 setting, it considers limλ→0 β̂(λ, q) which is equivalent

2Bridge regression is a name used for LQLS with any q ≥ 0. In this paper, we focus on 1 ≤ q ≤ 2.
To analyze the case 0 ≤ q < 1, Zheng et al. [46] has used the replica method from statistical physics.
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to the following estimator:

arg min
β

‖β‖q
q,

subject to y = Xβ.

(1.2)

Below we informally state the results of the phase transition analysis. We will
formalize the statement and describe in detail the conditions under which this result
holds in Section 3.

INFORMAL RESULT 1. For a given ε > 0 and q ∈ [1,2], there exists a number
Mq(ε) such that as p → ∞, if δ ≥ Mq(ε)+ γ (γ > 0 is an arbitrary number), then
(1.2) succeeds in recovering β , while if δ ≤ Mq(ε) − γ , (1.2) fails.3

The curve δ = Mq(ε) is called the phase transition curve of (1.2). We will show
that Mq(ε) is given by the following formula:

(1.3) Mq(ε) =
⎧⎨
⎩

1 if 2 ≥ q > 1,

inf
χ≥0

(1 − ε)Eη2
1(Z;χ) + ε

(
1 + χ2)

if q = 1,

where η1(u;χ) = (|u| − χ)+ sign(u) denotes the soft thresholding function and
Z ∼ N(0,1). While the above phase transition curves can be obtained with dif-
ferent techniques, such as the statistical dimension framework proposed in [1] and
Gordon’s lemma applied in [36, 42], we will derive them as a simple byproduct of
our main results in Section 3 under message passing framework. Also the phase
transition analysis of the regularized least squares has already been performed in
the literature [16, 20, 35]. Hence, we should emphasize that the presentation of the
phase transition results for bridge regression is not our main contribution here. We
rather use it to motivate our second-order analysis of the asymptotic risk, which
will appear later in this section. Before we proceed further, let us mention some of
the properties of M1(ε) that will be useful in our later discussions.

LEMMA 1. M1(ε) satisfies the following properties:

(i) M1(ε) is an increasing function of ε.
(ii) limε→0 M1(ε) = 0.

(iii) limε→1 M1(ε) = 1.
(iv) M1(ε) > ε, for ε ∈ (0,1).

PROOF. Define F(χ, ε)� (1−ε)Eη2
1(Z;χ)+ε(1+χ2). It is straightforward

to verify that F(χ, ε), as a function of χ over [0,∞), is strongly convex and has a

3Different notions of success have been studied in the phase transition analysis. We will mention
one notion later in our paper.
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unique minimizer. Let χ∗(ε) be the minimizer. We write it as χ∗(ε) to emphasize
its dependence on ε. By employing the chain rule, we have

dM1(ε)

dε
= ∂F (χ∗(ε), ε)

∂ε
+ ∂F (χ∗(ε), ε)

∂χ
· dχ∗(ε)

dε
= ∂F (χ∗(ε), ε)

∂ε

= 1 + (
χ∗(ε)

)2 −Eη2
1
(
Z;χ∗(ε)

)
> 1 + (

χ∗(ε)
)2 −E|Z|2

= (
χ∗(ε)

)2
> 0,

which completes the proof of part (i). To prove (ii), note that

0 ≤ lim
ε→0

min
χ≥0

(1 − ε)Eη2
1(Z;χ) + ε

(
1 + χ2)

≤ lim
ε→0

(1 − ε)Eη2
1
(
Z; log(1/ε)

) + ε
(
1 + log2(1/ε)

)
= lim

ε→0
2(1 − ε)

∫ ∞
log(1/ε)

(
z − log(1/ε)

)2
φ(z) dz

= lim
ε→0

2(1 − ε)

∫ ∞
0

z2φ
(
z + log(1/ε)

)
dz

≤ lim
ε→0

2(1 − ε)e− log2(1/ε)
2

∫ ∞
0

z2φ(z) dz = 0,

where φ(·) is the density function of standard normal. Regarding the proof of part
(iii), first note that as ε → 1, χ∗(ε) → 0. Otherwise, suppose χ∗(ε) → χ0 > 0
(taking a convergent subsequence if necessary). Since Eη2

1(Z;χ∗(ε)) ≤ E|Z|2 =
1, we obtain

lim
ε→1

F
(
χ∗(ε), ε

) = 1 + χ2
0 > 1.

On the other hand, it is clear that

lim
ε→1

F
(
χ∗(ε), ε

) ≤ lim
ε→1

F(0, ε) = 1.

A contradiction arises. Hence, the fact χ∗(ε) → 0 as ε → 1 leads directly to

lim
ε→1

M1(ε) = lim
ε→1

F
(
χ∗(ε), ε

) = 1.

Part (iv) is clear from the definition of M1(ε). �

Figure 1 shows Mq(ε) for different values of q . We observe several peculiar
features: (i) As is clear from both Lemma 1 and Figure 1, q = 1 requires much
fewer observations than all the other values of q > 1 for successful recovery of β .
(ii) The values of the nonzero elements of β do not have any effect on the phase
transition curves. In fact, even the sparsity level does not have any effect on the
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FIG. 1. Phase transition curves of LQLS for (i) q < 1: these results are derived in [46] by the
nonrigorous replica method from statistical physics. We have just included them for comparison
purposes. In this paper, we have focused on q ≥ 1. (ii) q = 1: the blue curve exhibits the phase
transition of LASSO. Below this curve LASSO can “successfully” recover β . (iii) q > 1: The magenta
curve represents the phase transition of LQLS for any q > 1. This figure is based on Informal Result 1
and will be carefully defined and derived in Section 3.

phase transition for q > 1. (iii) For every q > 1, the phase transition of (1.2) hap-
pens at exactly the same value.

These features raise the following question: how much and to what extent are
these phase transition results useful in applications, where at least small amount
of error is present in the response variables? For instance, intuitively speaking,
we do not expect to see much difference between the performance of LQLS for
q = 1.01 and q = 1. However, according to the phase transition analysis, q = 1
outperforms q = 1.01 by a wide margin. In fact, the performance of LQLS for
q = 1.01 seems to be closer to that of q = 2 than q = 1. Also, in contrast to the
phase transition implication, we may not expect LQLS to perform the same for β

with different values of nonzero elements. The main goal of this paper is to present
a new analysis that will shed light on the misleading features of the phase transition
analysis. It will also clarify when and under what conditions the phase transition
analysis is reliable for practical guidance.

In our new framework, the variance σ 2
w of the error w is assumed to be small.

We consider (1.1) with the optimal value of λ for which the asymptotic mean

square error, that is, limp→∞
‖β̂(λ,q)−β‖2

2
p

, is minimized. We first obtain the formula
for the asymptotic mean square error (AMSE) characterized through a series of
nonlinear equations. Since σw is assumed small, we then derive the asymptotic
expansions for AMSE as σw → 0. As we will describe later, the phase transition
of LQLS for different values of q can be obtained from the first dominant term in
the expansion. More importantly, we will show that the second dominant term is
capable of evaluating the importance of the phase transition analysis for practical
situations and also provides a much more accurate analysis of different bridge
estimators. Here is one of the results of our paper, presented informally to clarify
our claims. All the technical conditions will be determined in Sections 2 and 3.
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INFORMAL RESULT 2. If λ∗ denotes the optimal value of λ, then for any
q ∈ (1,2), δ > 1, and ε < 1

lim
p→∞

1

p

∥∥β̂(λ∗, q) − β
∥∥2

2 = σ 2
w

1 − 1/δ
− σ 2q

w

δq+1(1 − ε)2(E|Z|q)2

(δ − 1)q+1εE|G|2q−2 + o
(
σ 2q

w

)
,

where Z ∼ N(0,1) and G is a random variable whose distribution is specified by
the nonzero elements of β . We will clarify this in the next section. Finally, the limit
notation we have used above is the almost sure limit.

As we will discuss in Section 3, the first term σ 2
w

1−1/δ
determines the phase transi-

tion. Moreover, we have further derived the second dominant term in the expansion
of the asymptotic mean square error. This term enables us to clarify some of the
confusing features of the phase transitions. Here are some important features of
this term: (i) It is negative. Hence, the AMSE that is predicted by the first term (and
phase transition analysis) is overestimated specially when q is close to 1. (ii) Fix-
ing q , the magnitude of the second dominant term grows as ε decreases. Hence,
for small values of σw all values of 1 < q < 2 benefit from the sparsity of β . Also,
smaller values of q seem to benefit more. (iii) Fixing ε and δ, the power of σw de-
creases as q decreases. This makes the absolute value of the second dominant term
bigger. As q decreases to one, the order of the second dominant term gets closer to
that of the first dominant term, and thus the predictions of phase transition analysis
become less accurate. We will present a more detailed discussion of the second
order term in Section 3. To show some more interesting features of our approach,
we also informally state a result we prove for LASSO.

INFORMAL RESULT 3. Suppose that the nonzero elements of β are all larger
than a fixed number μ. If λ∗ denotes the value of λ that leads to the smallest
AMSE, and if δ > M1(ε), then

(1.4) lim
p→∞

1

p

∥∥β̂(λ∗,1) − β
∥∥2

2 − δM1(ε)σ
2
w

δ − M1(ε)
= O

(
exp

(−μ̃/σ 2
w

))
,

where μ̃ is a constant that depends on μ.

As can be seen here, compared to the other values of q , q = 1 has smaller first
order term (according to Lemma 1), but much smaller (in magnitude) second-order
term. The first implication of this result is that the first dominant term provides an
accurate approximation of AMSE. Hence, phase transition analysis in this case is
reliable even if small amount of noise is present; that is one of the main reasons
why the theoretically derived phase transition curve matches the empirical one
for LASSO. Furthermore, note that in order to obtain Informal result 3, we have
made certain assumption about the nonzero components of β . As will be shown
in Section 3, any violation of this assumption has major impact on the second
dominant term.
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In the rest of the paper, we first state all the assumptions required for our anal-
ysis. We then present the formal statements of aforementioned and related results
and provide a more comprehensive discussion.

1.3. Organization of the paper. The rest of the paper is organized as follows:
Section 2 presents the asymptotic framework of our analysis. Section 3 discusses
the main contributions of our paper. Section 4 compares our results with the related
work. Section 5 shows some simulation results and discusses some open problems
that require further research. Section 6 and the Supplementary Material [45] are
devoted to the proofs of all the results.

2. The asymptotic framework. The main goal of this section is to formally
introduce the asymptotic setting under which we study LQLS. In the current and
next sections only, we may write vectors and matrices as β(p), X(p), w(p) to em-
phasize the dependence on the dimension of β . Similarly, we may use β̂(λ, q,p)

as a substitute for β̂(λ, q). Note that since we assume n/p → δ, we do not include
n in our notation. Now we define a specific type of a sequence known as a converg-
ing sequence. Our definition is borrowed from other papers [2, 3, 18] with some
minor modifications.

DEFINITION 1. A sequence of instances {β(p),X(p),w(p)} is called a con-
verging sequence if the following conditions hold:

– The empirical distribution4 of β(p) ∈ R
p converges weakly to a probability

measure pβ with bounded second moment. Further, 1
p
‖β(p)‖2

2 converges to the
second moment of pβ .

– The empirical distribution of w(p) ∈ R
n converges weakly to a zero mean dis-

tribution with variance σ 2
w . And, 1

n
‖w(p)‖2

2 → σ 2
w .

– The elements of X(p) are i.i.d. with distribution N(0,1/n).

For each of the problem instances in a converging sequence, we solve the LQLS
problem (1.1) and obtain β̂(λ, q,p) as the estimator. The interest is to evaluate the
accuracy of this estimator. Below we define the asymptotic mean square error.

DEFINITION 2. Let β̂(λ, q,p) be the sequence of solutions of LQLS for
the converging sequence of instances {β(p),X(p),w(p)}. The asymptotic mean
square error is defined as the almost sure limit of

AMSE(λ, q, σw)� lim
p→∞

1

p

p∑
i=1

∣∣β̂i(λ, q,p) − βi(p)
∣∣2,

where the subscript i is used to denote the ith component of a vector.

4It is the distribution that puts a point mass 1/p at each of the p elements of the vector.
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Note that we have suppressed δ and pβ in the notation of AMSE for simplicity,
despite the fact that the asymptotic mean square error depends on them as well. In
the above definition, we have assumed that the almost sure limit exists. Under the
current asymptotic setting, the existence of AMSE can be proved. In fact, we are
able to derive the asymptotic limit for general loss functions as presented in the
following theorem.

THEOREM 2.1. Consider a converging sequence {β(p),X(p),w(p)}. For
any given q ∈ [1,2], suppose that β̂(λ, q,p) is the solution of LQLS defined in
(1.1). Then for any pseudo-Lipschitz function5 ψ :R2 →R, almost surely

(2.1) lim
p→∞

1

p

p∑
i=1

ψ
(
β̂i(λ, q,p),βi(p)

) = EB,Z

[
ψ

(
ηq

(
B + σ̄Z; χ̄ σ̄ 2−q)

,B
)]

,

where B and Z are two independent random variables with distributions pβ and
N(0,1), respectively; the expectation EB,Z(·) is taken with respect to both B and
Z; ηq(·; ·) is the proximal operator for the function ‖ · ‖q

q ;6 and σ̄ and χ̄ satisfy
the following equations:

σ̄ 2 = σ 2
ω + 1

δ
EB,Z

[(
ηq

(
B + σ̄Z; χ̄ σ̄ 2−q) − B

)2]
,(2.2)

λ = χ̄ σ̄ 2−q

(
1 − 1

δ
EB,Z

[
η′

q

(
B + σ̄Z; χ̄ σ̄ 2−q)])

,(2.3)

where η′
q(·; ·) denotes the derivative of ηq with respect to its first argument.

The result for q = 1 has been proved in [3]. The key ideas of the proof for gen-
eralizing to q ∈ (1,2] are similar to those of [3]. We describe the main proof steps
in Section J of the Supplementary Material [45]. According to Theorem 2.1, in or-
der to calculate the asymptotic mean square error (or any other loss) of β̂(λ, q,p),
we have to solve (2.2) and (2.3) for (σ̄ , χ̄). The following lemma shows these two
nonlinear equations have a unique solution.

LEMMA 2. For any positive values of λ, δ, σw > 0, any random variable B

with finite second moment, and any q ∈ [1,2], there exists a unique pair (σ̄ , χ̄)

that satisfies both (2.2) and (2.3).

5A function ψ : R2 → R is pseudo-Lipschitz of order k if there exists a constant L > 0 such

that for all x, y ∈ R
2, we have |ψ(x) − ψ(y)| ≤ L(1 + ‖x‖k−1

2 + ‖y‖k−1
2 )‖x − y‖2. We consider

pseudo-Lipschitz functions with order 2 in this paper.
6Proximal operator of ‖ · ‖q

q is defined as ηq(u;χ) � arg minz
1
2 (u − z)2 + χ |z|q . For further

information on these functions, please refer to the Supplementary Material [45].
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The proof of this lemma can be found in Section D of the Supplementary Ma-
terial [45]. Theorem 2.1 provides the first step in our analysis of LQLS. We first
calculate σ̄ and χ̄ from (2.2) and (2.3). Then, incorporating σ̄ and χ̄ in (2.1), gives
the following expression for the asymptotic mean square error:

(2.4) AMSE(λ, q, σw) = EB,Z

(
ηq

(
B + σ̄Z; χ̄ σ̄ 2−q) − B

)2
.

Given the distribution of B (the sparsity level ε included), the variance of the error
σ 2

w , the number of response variables (normalized by the number of predictors) δ

and the regularization parameter λ, it is straightforward to write a computer pro-
gram to find the solution of (2.2) and (2.3) and then compute the value of AMSE.
However, it is needless to say that this approach does not shed much light on the
performance of bridge regression estimates, since there are many factors involved
in the computation and each affects the result in a nontrivial fashion. In this paper,
we would like to perform an analytical study on the solution of (2.2) and (2.3) and
obtain an explicit characterization of AMSE in the small-error regime.

3. Our main contributions.

3.1. Optimal tuning of λ. The performance of LQLS, as defined in (1.1), de-
pends on the tuning parameter λ. In this paper, we consider the value of λ that
gives the minimum AMSE. Let λ∗,q denote the value of λ that minimizes AMSE
given in (2.4). Then LQLS is solved with this specific value of λ, that is,

(3.1) β̂(λ∗,q , q,p) ∈ arg min
β

1

2
‖y − Xβ‖2

2 + λ∗,q‖β‖q
q .

Note that this is the best performance that LQLS can achieve in terms of the
AMSE. Theorem 2.1 enables us to evaluate this optimal AMSE of LQLS for every
q ∈ [1,2]. The key step is to compute the solution of (2.2) and (2.3) with λ = λ∗,q .
Since λ∗,q has to be chosen optimally, it seemingly causes an extra complication
for our analysis. However, as we show in the following corollary, the study of
equations (2.2) and (2.3) can be simplified to some extent.

COROLLARY 1. Consider a converging sequence {β(p),X(p),w(p)}. Sup-
pose that β̂(λ∗,q , q,p) is the solution of LQLS defined in (3.1). Then for any
q ∈ [1,2]
(3.2) AMSE(λ∗,q , q, σw) = min

χ≥0
EB,Z

(
ηq(B + σ̄Z;χ) − B

)2
,

where B and Z are two independent random variables with distributions pβ and
N(0,1), respectively; and σ̄ is the unique solution of the following equation:

(3.3) σ̄ 2 = σ 2
ω + 1

δ
min
χ≥0

EB,Z

[(
ηq(B + σ̄Z;χ) − B

)2]
.
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The proof of Corollary 1 is shown in Section E of the Supplementary Material
[45]. Corollary 1 enables us to focus the analysis on a single equation (3.3), rather
than two equations (2.2) and (2.3). The results we will present in the next section
are mainly based on investigating the solution of (3.3).

3.2. Analysis of AMSE. In this paper, since we are focused on the sparsity
structure of β , from now on we assume that the distribution, to which the empirical
distribution of β ∈ R

p converges, has the form

pβ(b) = (1 − ε)δ0(b) + εg(b),

where δ0(·) denotes a point mass at zero, and g(·) is a generic distribution that
does not have any point mass at 0. Here, the mixture proportion ε ∈ (0,1) is a
fixed number that represents the sparsity level of β . The smaller ε is, the sparser
β will be. The distribution g(b) specifies the values of nonzero components of β .
We will use G to denote a random variable having such a distribution. Since our
results and proof techniques look very different for the case q > 1 and q = 1, we
study these cases separately.

3.2.1. Results for q > 1. Our first result is concerned with the optimal AMSE
of LQLS for 1 < q ≤ 2, when the number of response variables is larger than the
number of predictors p, that is, δ > 1.

THEOREM 3.1. Suppose P(|G| ≤ t) = O(t) (as t → 0) and E|G|2 < ∞, then
for 1 < q < 2, δ > 1 and ε ∈ (0,1), we have

(3.4) AMSE(λ∗,q , q, σw) = σ 2
w

1 − 1/δ
− δq+1(1 − ε)2(E|Z|q)2

(δ − 1)q+1εE|G|2q−2 σ 2q
w + o

(
σ 2q

w

)
.

For q = 2, δ > 1 and ε ∈ (0,1), if E|G|2 < ∞, we have

AMSE(λ∗,q , q, σw) = σ 2
w

1 − 1/δ
− δ3σ 4

w

(δ − 1)3εE|G|2 + o
(
σ 4

w

)
.

Note that Z ∼ N(0,1) and G ∼ g(·) are independent.

The proof of the result is presented in Section F of the Supplementary Material
[45]. There are several interesting features of this result that we would like to
discuss: (i) The second dominant term of AMSE is negative. This means that the
actual AMSE is smaller than the one predicted by the first-order term, especially
for smaller values of q . (ii) Neither the sparsity level nor the distribution of the

nonzero components of β appear in the first dominant term, that is, σ 2
w

1−1/δ
. As we

will discuss later in this section, the first dominant term is the one that specifies
the phase transition curve. Hence, these calculations show a peculiar feature of
phase transition analysis we discussed in Section 1.2, that the phase transition of
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q ∈ (1,2] is neither affected by nonzero components of β or the sparsity level.
However, we see that both factors come into play in the second dominant term.
(iii) For the fully dense vector, that is, ε = 1, (3.4) may imply that for 1 < q < 2,

AMSE(λ∗,q , q, σw) = σ 2
w

1 − 1/δ
+ o

(
σ 2q

w

)
.

Hence, we require a different analysis to obtain the second dominant term (with
different orders). We refer the interested readers to [44] for further information
about this case. (iv) For ε < 1, the choice of q ∈ (1,2] does not affect the first
dominant term. That is the reason why all the values of q ∈ (1,2] share the same
phase transition curve. However, the value of q has a major impact on the second
dominant term. In particular, as q approaches 1, the order of the second dominant
term in terms of σw gets closer to that of the first dominant term. This means that
in any practical setting, phase transition analysis may lead to misleading conclu-
sions. Specifically, in contrast to the conclusion from phase transition analysis that
q ∈ (1,2] have the same performance, the second-order expansion enables us to
conclude that the closer to 1 the value of q is, the better its performance will be.
Our next theorem discusses the AMSE when δ < 1.

THEOREM 3.2. Suppose E|G|2 < ∞, then for 1 < q ≤ 2 and δ < 1,

(3.5) lim
σw→0

AMSE(λ∗,q , q, σw) > 0.

The proof of this theorem is presented in Section G of the Supplementary Ma-
terial [45]. Theorems 3.1 and 3.2 together show a notion of phase transition. For
δ > 1, as σw → 0, AMSE = O(σ 2

w), and hence it will go to zero, while AMSE � 0
for δ < 1. In fact, the phase transition curve δ = 1 can be derived from the first
dominant term in the expansion of AMSE. If δ = 1, the first dominant term is infin-
ity and there will be no successful recovery, while it becomes zero when σw = 0 if
δ > 1. A more rigorous justification can be found in the proof of Theorems 3.1 and
3.2. Therefore, we may conclude that the first-order term contains the phase tran-
sition information. Moreover, the derived second-order term offers us additional
important information regarding the accuracy of the phase transition analysis. To
provide a comprehensive understanding of these two terms, in Section 5 we will
evaluate the accuracy of first- and second-order approximations to AMSE through
numerical studies.

3.2.2. Results for q = 1. So far we have studied the case 1 < q ≤ 2. In this
section, we study q = 1, a.k.a. LASSO. In Theorems 3.1 and 3.2, we have char-
acterized the behavior of LQLS with q ∈ (1,2] for a general class of G. It turns
out that the distribution of G has a more serious impact on the second dominant
term of AMSE for LASSO. We thus analyze it in two different settings. Our first
theorem considers the distributions that do not have any mass around zero.



3110 H. WENG, A. MALEKI AND L. ZHENG

THEOREM 3.3. Suppose P(|G| > μ) = 1 with μ being a positive constant and
E|G|2 < ∞, then for δ > M1(ε),7

(3.6) AMSE(λ∗,1,1, σw) = δM1(ε)

δ − M1(ε)
σ 2

w + o

(
φ

(√
δ − M1(ε)

δ

μ̃

σw

))
,

where μ̃ is any positive constant smaller than μ and φ(·) is the density function of
standard normal.

The proof of Theorem 3.3 is given in Section 6. Different from LQLS with
q ∈ (1,2], we have not derived the exact analytical expression of second dominant
term for LASSO. However, since it is exponentially small, the first-order term (or
phase transition analysis) is sufficient for evaluating the performance of LASSO
in the small-error regime. This will be further confirmed by the numerical studies
in Section 5. Below is our result for the distributions of G that have more mass
around zero.

THEOREM 3.4. Suppose that P(|G| ≤ t) = �(t�) (as t → 0) with � > 0 and
E|G|2 < ∞, then for δ > M1(ε),

−�
(
σ�+2

w

)
� AMSE(λ∗,1,1, σw) − δM1(ε)

δ − M1(ε)
σ 2

w

� −�
(
σ�+2

w

) ·
(

log log · · · log︸ ︷︷ ︸
m times

(
1

σw

))�/2
,

where m is an arbitrary but finite natural number, and a � b means a ≥ b holds
for sufficiently small σw .

The proof of this theorem can be found in Section H of the Supplementary
Material [45]. It is important to notice the difference between Theorems 3.3 and
3.4. The first point we would like to emphasize is that the first dominant terms are
the same in both cases. The second dominant terms are different though. As we will
show in Section 6 and Section H from the Supplementary Material [45], similar to
LQLS for 1 < q ≤ 2, the second dominant terms are in fact negative. Hence, the
actual AMSE will be smaller than the one predicted by the first dominant term.
Furthermore, note that the magnitude of the second dominant term in Theorem 3.4
is much larger than that in Theorem 3.3. This seems intuitive. LASSO tends to
shrink the parameter coefficients toward zero, and hence, if the true β has more
mass around zero, the AMSE will be smaller. The more mass the distribution of
G has around zero, the better the second-order term will be. Our next theorem
discusses what happens if δ < M1(ε).

7Recall M1(ε) = infχ≥0(1 − ε)Eη2
1(Z;χ) + ε(1 + χ2) with Z ∼ N(0,1).
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THEOREM 3.5. Suppose that E|G|2 < ∞. Then for δ < M1(ε),

(3.7) lim
σw→0

AMSE(λ∗,1,1, σw) > 0.

The proof is presented in Section I of the Supplementary Material [45]. Simi-
larly, as we discussed in Section 3.2.1, Theorems 3.3, 3.4 and 3.5 imply the phase
transition curve of LASSO. Such information can be obtained from the first domi-
nant term in the expansion of AMSE as well.

4. Related work.

4.1. Other phase transition analyses and n/p → δ asymptotic results. The
asymptotic framework that we considered in this paper evolved in a series of pa-
pers by Donoho and Tanner [13, 14, 19, 20]. This framework was used before
on similar problems in engineering and physics [10, 26, 41]. Donoho and Tanner
characterized the phase transition curve for LASSO and some of its variants. In-
spired by this framework, many researchers started exploring the performance of
different algorithms or estimates under these asymptotic settings [1–3, 6, 11, 12,
15, 17, 21, 22, 32, 37, 39, 42, 46].

Our paper performs the analysis of LQLS under such asymptotic framework.
Also, we adopt the message passing analysis that was developed in a series of
papers [2, 3, 16, 18, 33]. The notion of phase transition we consider is similar
to the one introduced in [18]. However, there are three major differences: (i) The
analysis of [18] is performed for LASSO, while we have generalized the analysis
to any LQLS with 1 < q ≤ 2. (ii) The analysis of [18] is performed on the least
favorable distribution for LASSO, while here we characterize the effect of the
distribution of G on the AMSE as well. (iii) Finally, [18] is only concerned with
the first dominant term in AMSE of LASSO, while we derive the second dominant
term whose importance has been discussed in the last few sections.

Another line of research that has connections with our analysis is presented in a
series of papers [35, 36, 42]. In [42], the authors have derived a minimax formula-
tion that (if it has a unique solution and is solved) can give an accurate characteri-
zation of the asymptotic mean square error. Compared with Theorem 2.1 in our pa-
per, that result works for more general penalized M-estimators, while Theorem 2.1
holds for general pseudo-Lipschitz loss functions. When applying the minimax
formulation in [42] to bridge regression, the AMSE formula in (2.4) can be recov-
ered. However, the derivation of phase transition curves for bridge regression under
optimal tuning is not found in [42]. Furthermore, [35, 36] proposed a geometric
approach to characterize the risk of penalized least square estimates with general
convex penalties. In particular, both papers obtained phase transition results based
on a key convex geometry quantity called “Gaussian squared-distances.” However,
[36] only rigorously proved the negative results (equivalent to Theorems 3.2 and
3.5) and left the positive part as a conjecture. The phase transition results in [35]
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and are concerned with the prediction errors ‖y − Xβ̂‖2
2 and ‖Xβ − Xβ̂‖2

2, rather
than the estimation error ‖β̂ − β‖2

2. Also, neither of the two papers went beyond
the first-order or phase transition analysis of the risk.

Several researchers have also worked on the analysis of LQLS for q < 1 [29, 37,
46]. These analyses are based on nonrigorous, but widely accepted replica method
from statistical physics. The current paper extends the analysis of [46] to q ≥ 1
case, makes the analysis rigorous by using the message passing framework rather
than the replica method, and finally provides a higher order analysis.

4.2. Other analysis frameworks. One of the first papers that compared the
performance of penalization techniques is [27] which showed that there exists a
value of λ with which Ridge regression, that is, LQLS with q = 2, outperforms
the vanilla least squares estimator. Since then, many more regularizers have been
introduced to the literature each with a certain purpose. For instance, we can men-
tion LASSO [43], elastic net [47], SCAD [23], bridge regression [24] and more
recently SLOPE [5]. There has been a large body of work on studying all these
regularization techniques. We partition all the work into the following categories
and explain what in each category has been done about the bridge regression:

(i) Simulation results: One of the main motivations for our work comes from
the nice simulation study of the bridge regression presented in [25]. This paper
finds the optimal values of λ and q by generalized cross validation and compares
the performance of the resulting estimator with both LASSO and ridge. The main
conclusion is that the bridge regression can outperform both LASSO and ridge.
Given our results we see that if sparsity is present in β , then smaller values of q

perform better than ridge (in their second dominant term).
(ii) Asymptotic study: Knight and Fu [30] studied the asymptotic properties

of bridge regression under the setting where n → ∞, while p is fixed. They es-
tablished the consistency and asymptotic normality of the estimates under quite
general conditions. Huang et al. [28] studied LQLS for q < 1 under a high-
dimensional asymptotic setting in which p grows with n but is still assumed to
be less than n. They not only derived the asymptotic distribution of the estimators,
but also proved LQLS has oracle properties in the sense of Fan and Li [23]. They
have also considered the case p > n, and have shown that under partial orthogonal-
ity assumption on X, bridge regression distinguishes correctly between covariates
with zero and nonzero coefficients. Note that under the asymptotic regime of our
paper, both LASSO and the other bridge estimators have false discoveries [40] and
possibly nonzero AMSE. Hence, they may not provide consistent estimates. We
should also mention that the analysis of bridge regression with q ∈ [0,1) under
the asymptotic regime n/p → δ is presented in [46]. Finally, the performance of
LASSO under a variety of conditions has been studied extensively. We refer the
reader to [7] for the review of those results.
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(iii) Nonasymptotic bounds: One of the successful approaches that has been
employed for studying the performance of regularization techniques such as
LASSO is the minimax analysis [4, 38]. We refer the reader to [7] for a com-
plete list of references on this direction. In this minimax approach, a lower bound
for the prediction error or mean square error of any estimation technique is first de-
rived. Then a specific estimate, like the one returned by LASSO, is considered and
an upper bound is derived assuming the design matrices satisfy certain conditions
such as restrictive eigenvalue assumption [4, 31], restricted isometry condition [9]
or coherence conditions [8]. These conditions can be confirmed for matrices with
i.i.d. sub-Gaussian elements. Based on these evaluations, if the order of the upper
bound for the estimate under study matches the order of the lower bound, we can
claim that the estimate (e.g., LASSO) is minimax rate-optimal. This approach has
some advantages and disadvantages compared to our asymptotic approach: (i) It
works under more general conditions. (ii) It provides information for any sample
size. The price paid in the minimax analysis is that the constants derived in the re-
sults are usually not sharp, and hence many schemes have similar guarantees and
cannot be compared to each other. Our asymptotic framework loses the generality
and in return gives sharp constants that can then be used in evaluating and com-
paring different schemes as we do in this paper. Along similar directions, [31] has
studied the penalized empirical risk minimization with �q penalties for the values
of q ∈ [1,1+ 1

logp
] and has found upper bounds on the excess risk of these estima-

tors (oracle inequalities). Similar to minimax analysis, although the results of this
analysis enjoy generality, they suffer from loose constants that impede an accurate
comparisons of different bridge estimators.

5. Numerical results and discussions.

5.1. Summary. The analysis of AMSE we presented in Section 3.2 is per-
formed as σw → 0. For such asymptotic analysis, it would be interesting to check
the approximation accuracy of the first- and second-order expansions of AMSE
over a reasonable range of σw . Toward this goal, this section performs several
numerical studies to (i) evaluate the accuracy of the first- and second-order ex-
pansions discussed in Section 3.2, (ii) discover situations in which the first-order
approximation is not accurate (for reasonably small noise levels) while the second-
order expansion is, and (iii) identify situations where both first- and second-
orders are inaccurate and propose methods for improving the approximations. Sec-
tions 5.2 and 5.3 study the performance of LASSO and other bridge regression
estimators with q > 1, respectively. Finally, we should also mention that all the re-
sults presented in this paper are concerned with the asymptotic setting n,p → ∞
and n/p → δ. To evaluate the accuracy of these results for finite sample sizes, we
have performed additional simulations whose results are presented in Section B of
the Supplementary Material [45].
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5.2. LASSO. One of the conclusions from Theorem 3.3 is that the first domi-
nant term provides a good approximation of AMSE for the LASSO problem when
the distribution of G does not have a large mass around 0. To test this claim, we
conduct the following numerical experiment. We set the parameters of our problem
instances in the following way:

1. δ can take any value in {1.1,1.5,2}.
2. ε can take values in {0.25,0.7}.
3. σw ranges within the interval [0,0.25].
4. the distribution of G is specified as g(b) = 0.5δ1(b)+0.5δ−1(b), where δa(·)

denotes a point mass at point a.

We then use the formula in Corollary 1 to calculate AMSE(λ∗,1,1, σw). Finally, we
compare AMSE(λ∗,1,1, σw), computed numerically from (3.2) and (3.3), with its
first-order approximation provided in Theorem 3.3. The results of this experiment
are summarized in Figure 2. As is clear in this figure, the first-order expansion
gives a very good approximation for AMSE over a large range of σw .

5.3. Bridge regression estimators with q > 1. In this numerical experiment,
we would like to vary σw and see under what conditions our first-order or second-
order expansions can lead to accurate approximation of AMSE for a wide range
of σw . Throughout this section, we set the distribution of G to g(b) = 0.5δ1(b) +
0.5δ−1(b), as we did in Section 5.2. We then investigate different conditions by
specifying various values of other parameters in our problem instances. The ex-
pansion of AMSE for q > 1 is presented in Theorem 3.1. For q ∈ (1,2), recall the
two terms in the expansion below:

(5.1) AMSE(λ∗,q , q, σw) = σ 2
w

1 − 1/δ
− δq+1(1 − ε)2(E|Z|q)2

(δ − 1)q+1εE|G|2q−2 σ 2q
w + o

(
σ 2q

w

)
.

We expect the first-order term to present a good approximation over a reason-
ably large range of σw , when the second-order term is sufficiently small. According
to the analytical form of the second-order term in (5.1), it is small if the following
three conditions hold simultaneously: (i) δ is not close to 1, (ii) ε is not small and
(iii) q is not close to 1. Our first numerical result shown in Figure 3 is in agreement
with this claim. In this simulation, we have set three different cases for δ, ε and
q so that they satisfy the above three conditions. The nonzero elements of β are
independently drawn from 0.5δ1(b) + 0.5δ−1(b). As demonstrated in this figure,
the first- order term approximates AMSE accurately. Another interesting finding
is that the second-order expansion provides an even better approximation.

To understand the limitation of the first-order approximation, we consider the
cases in which the second-order term is large and suggests that at least the first-
order approximation is not necessarily good. This happens when either δ decreases
to 1, ε decreases to 0 or q decreases to 1. The settings of our experiments and the
results are summarized below.
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FIG. 2. Plots of actual AMSE and its approximations for (a) δ = 1.1 and ε = 0.7, (b) δ = 1.1 and
ε = 0.25, (c) δ = 1.5 and ε = 0.7, (d) δ = 1.5 and ε = 0.25, (e) δ = 2 and ε = 0.7, (f) δ = 2 and
ε = 0.25.

1. We keep q = 1.5 and ε = 0.7 fixed and study different values of δ ∈
{5,2,1.5,1.1}. Figure 4 summarizes the results of this simulation. As is clear in
this figure (and is consistent with the message of the second dominant term), as we
decrease δ, the first-order approximation becomes less accurate. The second-order
approximation in these cases is more accurate than the first-order approximation.
However interestingly, the second-order approximation becomes less accurate as δ

decreases also. These observations suggest that to have a good approximation for
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FIG. 3. Plots of actual AMSE and its approximations for (a) δ = 5, ε = 0.7,q = 1.5, (b) δ = 4,
ε = 0.7, q = 1.6, (c) δ = 5, ε = 0.6, q = 1.8.

the values of δ that are very close to 1, although the second-order approximation
outperforms the first-order, it may not be sufficient and higher order terms are re-
quired. Such terms can be derived with strategies similar to the ones we used in the
proof of Theorem 3.1. Note that the insufficiency of the second-order expansion
partially results from the wide range of σw ∈ [0,0.25]. If we evaluate the approx-

FIG. 4. Plots of actual AMSE and its approximations for q = 1.5, ε = 0.7 with (a) δ = 5, (b) δ = 2,
(c) δ = 1.5 and (d) δ = 1.1.
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FIG. 5. Plots of actual AMSE and its approximations for δ = 5, ε = 0.4 with (a) q = 1.8,
(b) q = 1.5 and (c) q = 1.1.

imation when σw is small enough, we will expect the success of the second-order
expansion.

2. In our second simulation, we fix δ = 5, ε = 0.4 and let q ∈ {1.8,1.5,1.1}. All
the simulation results are summarized in Figure 5. As we expected, the first-order
approximation becomes less accurate when q decreases. Furthermore, we notice
that when q is very close to 1 (check q = 1.1 in the figure), even the second-order
approximation is not necessarily good. This again calls for higher order approxi-
mation of the AMSE.

3. For the last simulation, we fix δ = 5, q = 1.8, and let ε ∈ {0.7,0.5,0.3,0.1}.
Our simulation results are presented in Figure 6. We see that as ε decreases the
first-order approximation becomes less accurate. The second-order approximation
is always better than the first one. Moreover, we observe that when ε is very close
to 0 (check ε = 0.1 in the figure), even the second-order approximation is not
necessarily sufficient. As we discussed in the previous two simulations, we might
need higher order approximation of the AMSE in such cases.

5.4. Discussion. First, our numerical studies confirm that the first-order term
gives good approximations of AMSE for LASSO in the case where the distribu-
tion of nonzero elements of β is bounded away from zero. Second, as the numer-
ical results for q > 1 demonstrate, while the second-order approximation always
improves over the first-order term and works well in many cases, in the following
situations it may not provide very accurate evaluation of AMSE: (i) when δ is close
to 1, (ii) ε is close to zero and (iii) q is close to 1. In such cases, the value of the
second-order term becomes large, and hence the approximation is only accurate
for very small value of σw . The remedy that one can propose is to derive higher or-
der expansions. Such terms can be calculated with the same strategy that we used
to obtain the second dominant term.

6. Proof of Theorem 3.3. Due to the limited space in the main text, we only
present the proof of Theorem 3.3, one of our main results for LASSO, in this sec-
tion. The proofs of all the other results are deferred to the Supplementary Material
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FIG. 6. Plots of actual AMSE and its approximations for δ = 5 and q = 1.8 with (a) ε = 0.7,
(b) ε = 0.5, (c) ε = 0.3 and (d) ε = 0.1.

[45]. Although some techniques used in the proofs are quite different for LASSO
and LQLS with q ∈ (1,2], the roadmap remains the same. Hence, we suggest read-
ers to first read the proof in this section. Once this relatively simple proof is clear,
the other more complicated proofs will be easier to read.

6.1. Roadmap of the proof. Since the proof of this result has several steps and
is long, we lay out the roadmap of the proof here to help readers navigate through
the details. According to Corollary 1 (let us accept Corollary 1 for the moment; its
proof will be fully presented in Section E of the Supplementary Material [45]), in
order to evaluate AMSE(λ∗,1,1, σw) as σw → 0, the crucial step is to characterize
σ̄ from the following equation:

(6.1) σ̄ 2 = σ 2
ω + 1

δ
min
χ≥0

EB,Z

[(
η1(B + σ̄Z;χ) − B

)2]
.

To study (6.1), the key part is to analyze the term minχ≥0 EB,Z[(η1(B +
σ̄Z;χ) − B)2]. A useful fact that we will prove in Section 6.4 can simplify
the analysis of (6.1): The condition δ > M1(ε) implies that σ̄ → 0, as σw → 0.
Hence, one of the main steps of this proof is to derive the convergence rate of
minχ≥0 EB,Z[(η1(B + σZ;χ) − B)2], as σ → 0. Once we obtain that rate, we
then characterize the convergence rate for σ̄ as σw → 0 from (6.1). Finally, we
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connect σ̄ to AMSE(λ∗,1,1, σw) based on Corollary 1, and derive the expansion
for AMSE(λ∗,1,1, σw) as σw → 0. We introduce the following notation:

R(χ,σ ) = EB,Z

[(
η1(B/σ + Z;χ) − B/σ

)2]
, χ∗(σ ) = arg min

χ≥0
R(χ,σ ),

where we have suppressed the subscript B , Z in E for notational simplicity. Ac-
cording to [34], R(χ,σ ) is a quasi-convex function of χ and has a unique global
minimizer. Hence, χ∗(σ ) is well defined. It is straightforward to confirm

min
χ≥0

EB,Z

[(
η1(B + σZ;χ) − B

)2] = σ 2R
(
χ∗(σ ), σ

)
.

Throughout the proof, we may write χ∗ for χ∗(σ ) when no confusion is caused,
and we use F(g) to denote the distribution function of |G|. The rest of the proof
of Theorem 3.3 is organized in the following way:

1. We first prove R(χ∗(σ ), σ ) → M1(ε), as σ → 0 in Section 6.2.
2. We further bound the convergence rate of R(χ∗(σ ), σ ) in Section 6.3.
3. We finally utilize the convergence rate bound derived in Section 6.3

to characterize the convergence rate of σ̄ and then derive the expansion for
AMSE(λ∗,1,1, σw) in Section 6.4.

6.2. Proof of R(χ∗(σ ), σ ) → M1(ε), as σ → 0. Our goal in this section is to
prove the following lemma.

LEMMA 3. Suppose E|G|2 < ∞, then limσ→0 χ∗(σ ) = χ∗∗ and

lim
σ→0

R
(
χ∗(σ ), σ

) = (1 − ε)E
(
η1

(
Z;χ∗∗))2 + ε

(
1 + (

χ∗∗)2)
,

where χ∗∗ is the unique minimizer of (1−ε)E(η1(Z;χ))2 +ε(1+χ2) over [0,∞),
and Z ∼ N(0,1).

PROOF. By taking derivatives, it is straightforward to verify that (1 −
ε)E(η1(Z;χ))2 + ε(1 + χ2), as a function of χ over [0,∞), is strongly convex
and has a unique minimizer. Hence, χ∗∗ is well defined.

We first claim that χ∗(σn) is bounded for any given sequence σn → 0. Other-
wise there exists an unbounded subsequence χ∗(σnk

) → +∞ with σnk
→ 0. Since

the distribution of G does not have point mass at zero and

η1
(
G/σnk

+ Z;χ∗(σnk
)
) = sign(G/σnk

+ Z)
(|G/σnk

+ Z| − χ∗(σnk
)
)
+,

it is not hard to conclude that∣∣η1
(
G/σnk

+ Z;χ∗(σnk
)
) − G/σnk

∣∣ → +∞ a.s.

By Fatou’s lemma, we then have

(6.2) R
(
χ∗(σnk

), σnk

) ≥ εE
(
η1

(
G/σnk

+ Z;χ∗(σnk
)
) − G/σnk

)2 → +∞.
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On the other hand, the optimality of χ∗(σnk
) implies

R
(
χ∗(σnk

), σnk

) ≤ R(0, σnk
) = 1,

contradicting the unboundedness in (6.2).
We next show the sequence χ∗(σn) converges to a finite constant, for any

σn → 0. Taking a convergent subsequence χ∗(σnk
), due to the boundedness of

χ∗(σn), the limit of the subsequence is finite. Call it χ̃ . Note that

E
(
η1

(
G/σnk

+ Z;χ∗(σnk
)
) − G/σnk

)2

= 1 +E
(
η1

(
G/σnk

+ Z;χ∗(σnk
)
) − G/σnk

− Z
)2

+ 2EZ
(
η1

(
G/σnk

+ Z;χ∗(σnk
)
) − G/σnk

− Z
)
.

Since η1(u;χ) = sign(u)(|u| − χ)+, we have the following three inequalities:

∣∣η1
(
Z;χ∗(σnk

)
)∣∣2 ≤ |Z|2,(

η1
(
G/σnk

+ Z;χ∗(σnk
)
) − G/σnk

− Z
)2 ≤ (

χ∗(σnk
)
)2

,∣∣Z(
η1

(
G/σnk

+ Z;χ∗(σnk
)
) − G/σnk

− Z
)∣∣ ≤ |Z|χ∗(σnk

).

Furthermore, all the terms on the right-hand side of the above inequalities are
integrable. Therefore, we can apply the Dominated Convergence Theorem (DCT)
to obtain

lim
nk→∞R

(
χ∗(σnk

), σnk

)
= lim

nk→∞(1 − ε)E
(
η1

(
Z;χ∗(σnk

)
))2

+ εE
(
η1

(
G/σnk

+ Z;χ∗(σnk
)
) − G/σnk

)2

= (1 − ε)E
(
η1(Z; χ̃ )

)2 + ε
(
1 + χ̃2)

.

Moreover, since χ∗(σnk
) is the optimal threshold value for R(χ,σnk

),

lim
nk→∞R

(
χ∗(σnk

), σnk

) ≤ lim
nk→∞R

(
χ∗∗, σnk

)
= (1 − ε)E

(
η1

(
Z;χ∗∗))2 + ε

(
1 + (

χ∗∗)2)
.

Combining the last two limiting results, we can conclude χ̃ = χ∗∗. Since χ∗(σnk
)

is an arbitrary convergent subsequence, this implies that the sequence χ∗(σn) con-
verges to χ∗∗ as well. This is true for any σn → 0; hence, χ∗(σ ) → χ∗∗, as σ → 0.
limσ→0 R(χ∗(σ ), σ ) can then be directly derived. �
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6.3. Bounding the convergence rate of R(χ∗(σ ), σ ). In Section 6.2, we have
shown R(χ∗(σ ), σ ) → M1(ε) as σ → 0. Our goal in this section is to bound the
difference R(χ∗(σ ), σ )−M1(ε). For that purpose, we first bound the convergence
rate of χ∗(σ ).

LEMMA 4. Suppose P(|G| ≥ μ) = 1 with μ being a positive constant and
E|G|2 < ∞, then as σ → 0:∣∣χ∗(σ ) − χ∗∗∣∣ = O

(
φ

(−μ/σ + χ∗∗))
,

where φ(·) is the density function of the standard normal.

PROOF. Since χ∗(σ ) minimizes R(χ,σ ), we have ∂R(χ∗(σ ),σ )
∂χ

= 0, which
gives the following expression for χ∗(σ ):

χ∗(σ ) = 2(1 − ε)φ(χ∗) + εEφ(χ∗ − G/σ) + εEφ(χ∗ + G/σ)

2(1 − ε)
∫ ∞
χ∗ φ(z) dz + εE

∫ ∞
χ∗−G/σ φ(z) dz + εE

∫ −χ∗−G/σ
−∞ φ(z) dz

.

Letting σ go to zero on both sides in the above equation, we then obtain

χ∗∗ = 2(1 − ε)φ(χ∗∗)
2(1 − ε)

∫ ∞
χ∗∗ φ(z) dz + ε

,

where we have applied Dominated Convergence Theorem (DCT). To bound
|χ∗(σ ) − χ∗∗|, we first bound the convergence rate of the terms in the expression
of χ∗(σ ). A direct application of the mean value theorem leads to

φ
(
χ∗) − φ

(
χ∗∗) = (

χ∗∗ − χ∗)
χ̃φ(χ̃),(6.3) ∫ ∞

χ∗
φ(z) dz −

∫ ∞
χ∗∗

φ(z) dz = (
χ∗∗ − χ∗)

φ( ˜̃χ),(6.4)

with χ̃ , ˜̃χ being two numbers between χ∗ and χ∗∗. We now consider the other
four terms. By the condition P(|G| ≥ μ) = 1, we can conclude that for sufficiently
small σ ,

Eφ
(
χ∗ − G/σ

) ≤ Eφ
(
χ∗ − |G|/σ ) ≤ φ

(
μ/σ − χ∗)

,(6.5)

Eφ
(
χ∗ + G/σ

) ≤ Eφ
(
χ∗ − |G|/σ ) ≤ φ

(
μ/σ − χ∗)

.(6.6)

Moreover, it is not hard to derive

1 −E

∫ ∞
χ∗−G/σ

φ(z) dz −E

∫ −χ∗−G/σ

−∞
φ(z) dz

=
∫ ∞

0

∫ χ∗−g/σ

−χ∗−g/σ
φ(z) dz dF (g)

≤
∫ χ∗−μ/σ

−χ∗−μ/σ
φ(z) dz ≤ 2χ∗φ

(
μ/σ − χ∗)

,

(6.7)
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where to obtain the last two inequalities we have used the condition P(|G| ≥ μ) =
1 and the fact χ∗ − μ/σ < 0 for σ small enough. We are now in the position to
bound |χ∗(σ ) − χ∗∗|. Define the following notation:

e1 � εE

∫ ∞
χ∗−G/σ

φ(z) dz + εE

∫ −χ∗−G/σ

−∞
φ(z) dz − ε,

e2 � εEφ
(
χ∗ − G/σ

) + εEφ
(
χ∗ + G/σ

)
,

S � 2(1 − ε)φ
(
χ∗∗)

, T � 2(1 − ε)

∫ ∞
χ∗∗

φ(z) dz + ε.

Using the new notation and equations (6.3) and (6.4), we obtain

χ∗(σ ) = S + 2(1 − ε)(χ∗∗ − χ∗)χ̃φ(χ̃) + e2

T + 2(1 − ε)(χ∗∗ − χ∗)φ( ˜̃χ) + e1
, χ∗∗ = S

T
.

Hence, we can do the following calculations:

χ∗(σ ) − χ∗∗ = S + 2(1 − ε)(χ∗∗ − χ∗)χ̃φ(χ̃) + e2

T + 2(1 − ε)(χ∗∗ − χ∗)φ( ˜̃χ) + e1
− S

T

= 2(1 − ε)(χ∗∗ − χ∗)χ̃φ(χ̃) + e2

T + 2(1 − ε)(χ∗∗ − χ∗)φ( ˜̃χ) + e1

− S(2(1 − ε)(χ∗∗ − χ∗)φ( ˜̃χ) + e1)

T (T + 2(1 − ε)(χ∗∗ − χ∗)φ( ˜̃χ) + e1)

= 2(1 − ε)(χ∗∗ − χ∗)(χ̃φ(χ̃) − χ∗∗φ( ˜̃χ))

T + 2(1 − ε)(χ∗∗ − χ∗)φ( ˜̃χ) + e1

+ e2 − χ∗∗e1

T + 2(1 − ε)(χ∗∗ − χ∗)φ( ˜̃χ) + e1
.

(6.8)

From (6.8), we obtain

(
χ∗(σ ) − χ∗∗)(

1 + 2(1 − ε)(χ̃φ(χ̃) − χ∗∗φ( ˜̃χ))

T + 2(1 − ε)(χ∗∗ − χ∗(σ ))φ( ˜̃χ) + e1

)

= e2 − χ∗∗e1

T + 2(1 − ε)(χ∗∗ − χ∗(σ ))φ( ˜̃χ) + e1
.

(6.9)

Note that in the above expression we have χ̃ → χ∗∗ and ˜̃χ → χ∗∗ since
χ∗(σ ) → χ∗∗. Therefore, we conclude that χ̃φ(χ̃) − χ∗∗φ( ˜̃χ) → 0 and (χ∗∗ −
χ∗(σ ))φ( ˜̃χ) → 0. Moreover, since (6.5), (6.6) and (6.7) together show both e1 and
e2 go to 0 exponentially fast, we conclude from (6.9) that (χ∗(σ ) − χ∗∗)/σ → 0.
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This enables us to proceed:

lim
σ→0

|χ∗(σ ) − χ∗∗|
φ(μ/σ − χ∗∗)

= lim
σ→0

|χ∗(σ ) − χ∗∗|
φ(μ/σ − χ∗)

(a)= lim
σ→0

|e2 − χ∗∗e1|
T φ(μ/σ − χ∗)

(b)≤ lim
σ→0

2ε(1 + χ∗(σ )χ∗∗)φ(μ/σ − χ∗)
T φ(μ/σ − χ∗)

= 2ε(1 + (χ∗∗)2)

T
.

We have used (6.9) to obtain (a). We derived (b) by the following steps:

1. According to (6.7), |e1| ≤ 2εχ∗φ(μ/σ − χ∗).
2. According to (6.5) and (6.6), |e2| ≤ 2εφ(μ/σ − χ∗).

This completes the proof of Lemma 4. �

The next step is to bound the convergence rate of R(χ∗(σ ), σ ) based on the
convergence rate of χ∗(σ ) we have derived in Lemma 4.

LEMMA 5. Suppose P(|G| ≥ μ) = 1 with μ being a positive constant and
E|G|2 < ∞, then as σ → 0,∣∣R(

χ∗(σ ), σ
) − M1(ε)

∣∣ = O
(
φ

(
μ/σ − χ∗∗))

,

where φ(·) is the density function of the standard normal.

PROOF. We recall the two quantities

M1(ε) = (1 − ε)E
(
η1

(
Z;χ∗∗))2 + ε

(
1 + (

χ∗∗)2)
,(6.10)

R
(
χ∗(σ ), σ

) = (1 − ε)E
(
η1

(
Z;χ∗))2

+ ε
[
1 +E

(
η1

(
G/σ + Z;χ∗) − G/σ − Z

)2]
(6.11)

+ 2εEZ
(
η1

(
G/σ + Z;χ∗) − G/σ − Z

)
.

We bound |R(χ∗(σ ), σ ) − M1(ε)| by bounding the difference between the corre-
sponding terms in (6.11) and (6.10). From the proof of Lemma 4, we know e1 < 0
and e2 > 0. Hence, (6.9) implies χ∗(σ ) > χ∗∗ for small enough σ . We start with∣∣E(

η1
(
Z;χ∗))2 −E

(
η1

(
Z;χ∗∗))2∣∣

= ∣∣E(
η1

(
Z;χ∗) − η1

(
Z;χ∗∗))(

η1
(
Z;χ∗) + η1

(
Z;χ∗∗))∣∣

≤ E
[∣∣χ∗ − χ∗∗ + χ∗

I
(|Z| ∈ (

χ∗∗, χ∗))∣∣ · ∣∣η1
(
Z;χ∗) + η1

(
Z;χ∗∗)∣∣]

(a)≤ 2
(
χ∗ − χ∗∗) ·E|Z| + 2χ∗

E
[
I
(|Z| ∈ (

χ∗∗, χ∗))|Z|]
≤ 2

(
χ∗ − χ∗∗) ·E|Z| + 4χ∗(

χ∗ − χ∗∗)
χ̃φ(χ̃) = O

(
φ

(
μ/σ − χ∗∗))

,

(6.12)
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where we have used the fact |η1(u;χ)| ≤ |u| to obtain (a); χ̃ is a number between
χ∗(σ ) and χ∗∗; and the last equality is due to Lemma 4. We next bound the differ-
ence between E(η1(G/σ + Z;χ∗) − G/σ − Z)2 and (χ∗∗)2:∣∣(χ∗∗)2 −E

(
η1

(
G/σ + Z;χ∗) − G/σ − Z

)2∣∣
≤ ∣∣(χ∗)2 −E

(
η1

(
G/σ + Z;χ∗) − G/σ − Z

)2∣∣ + ∣∣(χ∗∗)2 − (
χ∗)2∣∣.(6.13)

To bound the two terms on the right-hand side of (6.13), first note that

0 ≤ (
χ∗)2 −E

(
η1

(
G/σ + Z;χ∗) − G/σ − Z

)2

= E
[
I
(|G/σ + Z| ≤ χ∗) · ((

χ∗)2 − (G/σ + Z)2)]
≤ (

χ∗)2
∫ ∞

0

∫ −g/σ+χ∗

−g/σ−χ∗
φ(z) dz dF (g)

(b)≤ (
χ∗)2

∫ −μ/σ+χ∗

−μ/σ−χ∗
φ(z) dz ≤ 2

(
χ∗)3

φ
(
μ/σ − χ∗)

= O
(
φ

(
μ/σ − χ∗∗))

,

(6.14)

where (b) is due to the condition P(|G| ≥ μ) = 1, and the last equality holds since
(χ∗ − χ∗∗)/σ → 0 implied by Lemma 4. Furthermore, Lemma 4 yields

(6.15)
(
χ∗)2 − (

χ∗∗)2 = O
(
φ

(
μ/σ − χ∗∗))

.

Combining (6.13), (6.14) and (6.15), we obtain

(6.16)
∣∣(χ∗∗)2 −E

(
η1

(
G/σ + Z;χ∗) − G/σ − Z

)2∣∣ = O
(
φ

(
μ/σ − χ∗∗))

.

Regarding the remaining term in R(χ∗(σ ), σ ), we can derive

0 ≤ EZ
(
G/σ + Z − η1

(
G/σ + Z;χ∗))

(c)= E
(
1 − ∂1η1

(
G/σ + Z;χ∗))

= P
(|G/σ + Z| ≤ χ∗) (d)= O

(
φ

(
μ/σ − χ∗∗))

.

(6.17)

We have employed Stein’s lemma (see Lemma E in the Supplementary Material)
to obtain (c). Equality (d) holds due to (6.7). Putting the results (6.12), (6.16) and
(6.17) together completes the proof. �

6.4. Deriving the expansion of AMSE(λ∗,1,1, σw). In this section, we utilize
the convergence rate result of R(χ∗(σ ), σ ) from Section 6.3 to derive the expan-
sion of AMSE(λ∗,1,1, σw) in (3.6), and thus complete the proof of Theorem 3.3.
Toward that goal, we first prove a useful lemma.
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LEMMA 6. Let σ̄ be the solution to the following equation:

(6.18) σ̄ 2 = σ 2
ω + 1

δ
min
χ≥0

EB,Z

[(
η1(B + σ̄Z;χ) − B

)2]
.

Suppose δ > M1(ε), then

lim
σw→0

σ 2
w

σ̄ 2 = δ − M1(ε)

δ
.

PROOF. We first claim that E(η1(α + Z;χ)− α)2 is an increasing function of
α, because

d

dα
E

(
η1(α + Z;χ) − α

)2 = 2E
(
αI

(|α + Z| ≤ χ
)) ≥ 0.

Hence, we obtain

(6.19) E
(
η1(α + Z;χ) − α

)2 ≤ lim
α→∞E

(
η1(α + Z;χ) − α

)2 = 1 + χ2.

Inequality (6.19) then yields

R(χ, σ̄ ) = (1 − ε)E
(
η1(Z;χ)

)2 + εE
(
η1(G/σ̄ + Z;χ) − G/σ̄

)2

≤ (1 − ε)E
(
η1(Z;χ)

)2 + ε
(
1 + χ2)

.

Taking minimum over χ on both sides above gives us

(6.20) R
(
χ∗(σ̄ ), σ̄

) ≤ M1(ε).

Moreover, since σ̄ is the solution of (6.18), it satisfies

(6.21) σ̄ 2 = σ 2
w + σ̄ 2

δ
R

(
χ∗(σ̄ ), σ̄

)
.

Combining (6.20) and (6.21) with the condition δ > M1(ε), we have

σ̄ 2 ≤ σ 2
w

1 − M1(ε)/δ
,

which leads to σ̄ → 0, as σw → 0. Then applying Lemma 3 shows

lim
σw→0

R
(
χ∗(σ̄ ), σ̄

) = lim
σ̄→0

R
(
χ∗(σ̄ ), σ̄

) = M1(ε).

Diving both sides of (6.21) by σ̄ 2 and letting σw → 0 completes the proof. �

To complete the proof of Theorem 3.3, first note that Corollary 1 tells us

AMSE(λ∗,1,1, σw) = σ̄ 2R
(
χ∗(σ̄ ), σ̄

)
, σ 2

w = σ̄ 2 − σ̄ 2

δ
R

(
χ∗(σ̄ ), σ̄

)
.
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We then have

AMSE(λ∗,1,1, σw) − δM1(ε)

δ − M1(ε)
σ 2

w

= σ̄ 2R
(
χ∗(σ̄ ), σ̄

) − δM1(ε)

δ − M1(ε)
·
[
σ̄ 2 − σ̄ 2

δ
R

(
χ∗(σ̄ ), σ̄

)]

= δ(R(χ∗(σ̄ ), σ̄ ) − M1(ε))

δ − M1(ε)
σ̄ 2 (a)= O

(
σ̄ 2φ

(
μ/σ̄ − χ∗∗))

,

(6.22)

where (a) is due to Lemma 5. Finally, since limσw→0
σ 2

w

σ̄ 2 = δ−M1(ε)
δ

according to
Lemma 6, it is not hard to see

(6.23) O
(
σ̄ 2φ

(
μ/σ̄ − χ∗∗)) = o

(
φ(μ̄/σ̄ )

) = o

(
φ

(√
δ − M1(ε)

δ

μ̃

σw

))
,

where μ̄ and μ̃ are any constants satisfying 0 ≤ μ̃ < μ̄ < μ. Results (6.22) and
(6.23) together close the proof of Theorem 3.3.

REMARK. (6.20) and (6.22) together imply that the second dominant term of
AMSE(λ∗,1,1, σw) is in fact negative.
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Supplement to “Overcoming the limitations of phase transition by higher
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.pdf). Due to space constraints, additional simulations and technical proofs are
relegated a supplementary document in [45], which contains Sections A–J.

REFERENCES

[1] AMELUNXEN, D., LOTZ, M., MCCOY, M. B. and TROPP, J. A. (2014). Living on the
edge: Phase transitions in convex programs with random data. Inf. Inference 3 224–294.
MR3311453

[2] BAYATI, M. and MONTANARI, A. (2011). The dynamics of message passing on dense graphs,
with applications to compressed sensing. IEEE Trans. Inform. Theory 57 764–785.
MR2810285

[3] BAYATI, M. and MONTANARI, A. (2012). The LASSO risk for Gaussian matrices. IEEE Trans.
Inform. Theory 58 1997–2017. MR2951312

[4] BICKEL, P. J., RITOV, Y. and TSYBAKOV, A. B. (2009). Simultaneous analysis of lasso and
Dantzig selector. Ann. Statist. 37 1705–1732. MR2533469

https://doi.org/10.1214/17-AOS1651SUPP
http://www.ams.org/mathscinet-getitem?mr=3311453
http://www.ams.org/mathscinet-getitem?mr=2810285
http://www.ams.org/mathscinet-getitem?mr=2951312
http://www.ams.org/mathscinet-getitem?mr=2533469


HIGHER ORDER ANALYSIS OF REGULARIZATION TECHNIQUES 3127

[5] BOGDAN, M., VAN DEN BERG, E., SABATTI, C., SU, W. and CANDÈS, E. J. (2015).
SLOPE—adaptive variable selection via convex optimization. Ann. Appl. Stat. 9 1103–
1140. MR3418717

[6] BRADIC, J. (2016). Robustness in sparse high-dimensional linear models: Relative efficiency
and robust approximate message passing. Electron. J. Stat. 10 3894–3944. MR3581957

[7] BÜHLMANN, P. and VAN DE GEER, S. (2011). Statistics for High-Dimensional Data: Methods,
Theory and Applications. Springer, Heidelberg. MR2807761

[8] BUNEA, F., TSYBAKOV, A. and WEGKAMP, M. (2007). Sparsity oracle inequalities for the
Lasso. Electron. J. Stat. 1 169–194. MR2312149

[9] CANDÈS, E. J. (2008). The restricted isometry property and its implications for compressed
sensing. C. R. Math. Acad. Sci. Paris 346 589–592. MR2412803

[10] COOLEN, A. C. C. (2005). The Mathematical Theory of Minority Games: Statistical Mechan-
ics of Interacting Agents. Oxford Univ. Press, Oxford. MR2127290

[11] DONOHO, D. and MONTANARI, A. (2015). Variance breakdown of Huber (M)-estimators.
n/p → m. Preprint.

[12] DONOHO, D. and MONTANARI, A. (2016). High dimensional robust M-estimation: Asymp-
totic variance via approximate message passing. Probab. Theory Related Fields 166 935–
969. MR3568043

[13] DONOHO, D. L. (2006). High-dimensional centrally symmetric polytopes with neighborliness
proportional to dimension. Discrete Comput. Geom. 35 617–652. MR2225676

[14] DONOHO, D. L. (2006). For most large underdetermined systems of equations, the minimal
l1-norm near-solution approximates the sparsest near-solution. Comm. Pure Appl. Math.
59 907–934. MR2222440

[15] DONOHO, D. L., GAVISH, M. and MONTANARI, A. (2013). The phase transition of matrix
recovery from Gaussian measurements matches the minimax MSE of matrix denoising.
Proc. Natl. Acad. Sci. USA 110 8405–8410. MR3082268

[16] DONOHO, D. L., MALEKI, A. and MONTANARI, A. (2009). Message-passing algorithms for
compressed sensing. Proc. Natl. Acad. Sci. USA 106 18914–18919.

[17] DONOHO, D. L., MALEKI, A. and MONTANARI, A. (2011). The noise-sensitivity phase tran-
sition in compressed sensing. IEEE Trans. Inform. Theory 57 6920–6941. MR2882271

[18] DONOHO, D. L., MALEKI, A. and MONTANARI, A. (2011). The noise-sensitivity phase tran-
sition in compressed sensing. IEEE Trans. Inform. Theory 57 6920–6941. MR2882271

[19] DONOHO, D. L. and TANNER, J. (2005). Sparse nonnegative solution of underdetermined
linear equations by linear programming. Proc. Natl. Acad. Sci. USA 102 9446–9451.
MR2168715

[20] DONOHO, D. L. and TANNER, J. (2005). Neighborliness of randomly projected simplices in
high dimensions. Proc. Natl. Acad. Sci. USA 102 9452–9457. MR2168716

[21] EL KAROUI, N. (2013). Asymptotic behavior of unregularized and ridge-regularized high-
dimensional robust regression estimators: Rigorous results. Preprint. Available at
arXiv:1311.2445.

[22] EL KAROUI, N., BEAN, D., BICKEL, P., LIM, C. and YU, B. (2013). On robust regression
with high-dimensional predictors. Proc. Natl. Acad. Sci. USA 110 14557–14562.

[23] FAN, J. and LI, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle
properties. J. Amer. Statist. Assoc. 96 1348–1360. MR1946581

[24] FRANK, L. and FRIEDMAN, J. (1993). A statistical view of some chemometrics regression
tools. Technometrics 35 109–135.

[25] FU, W. J. (1998). Penalized regressions: The bridge versus the lasso. J. Comput. Graph. Statist.
7 397–416. MR1646710

[26] GUO, D. and VERDÚ, S. (2005). Randomly spread CDMA: Asymptotics via statistical physics.
IEEE Trans. Inform. Theory 51 1983–2010. MR2235278

http://www.ams.org/mathscinet-getitem?mr=3418717
http://www.ams.org/mathscinet-getitem?mr=3581957
http://www.ams.org/mathscinet-getitem?mr=2807761
http://www.ams.org/mathscinet-getitem?mr=2312149
http://www.ams.org/mathscinet-getitem?mr=2412803
http://www.ams.org/mathscinet-getitem?mr=2127290
http://www.ams.org/mathscinet-getitem?mr=3568043
http://www.ams.org/mathscinet-getitem?mr=2225676
http://www.ams.org/mathscinet-getitem?mr=2222440
http://www.ams.org/mathscinet-getitem?mr=3082268
http://www.ams.org/mathscinet-getitem?mr=2882271
http://www.ams.org/mathscinet-getitem?mr=2882271
http://www.ams.org/mathscinet-getitem?mr=2168715
http://www.ams.org/mathscinet-getitem?mr=2168716
http://arxiv.org/abs/arXiv:1311.2445
http://www.ams.org/mathscinet-getitem?mr=1946581
http://www.ams.org/mathscinet-getitem?mr=1646710
http://www.ams.org/mathscinet-getitem?mr=2235278


3128 H. WENG, A. MALEKI AND L. ZHENG

[27] HOERL, A. and KENNARD, R. (1970). Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics 12 55–67.

[28] HUANG, J., HOROWITZ, J. L. and MA, S. (2008). Asymptotic properties of bridge estimators
in sparse high-dimensional regression models. Ann. Statist. 36 587–613. MR2396808

[29] KABASHIMA, Y., WADAYAMA, T. and TANAKA, T. (2009). A typical reconstruction limit for
compressed sensing based on Lp-norm minimization. J. Stat. Mech. Theory Exp. 2009
L09003.

[30] KNIGHT, K. and FU, W. (2000). Asymptotics for lasso-type estimators. Ann. Statist. 28 1356–
1378. MR1805787

[31] KOLTCHINSKII, V. (2009). Sparsity in penalized empirical risk minimization. Ann. Inst. Henri
Poincaré Probab. Stat. 45 7–57. MR2500227

[32] KRZAKALA, F., MÉZARD, M., SAUSSET, F., SUN, Y. and ZDEBOROVÁ, L. (2012). Statistical-
physics-based reconstruction in compressed sensing. Phys. Rev. X 2 021005.

[33] MALEKI, A. (2010). Approximate message passing algorithms for compressed sensing. Ph.D.
thesis, Stanford Univ., Stanford, CA.

[34] MOUSAVI, A., MALEKI, A. and BARANIUK, R. G. (2017). Consistent parameter estimation
for LASSO and approximate message passing. Ann. Statist. 45 2427–2454. MR3737897

[35] OYMAK, S. and HASSIBI, B. (2016). Sharp MSE bounds for proximal denoising. Found. Com-
put. Math. 16 965–1029. MR3529131

[36] OYMAK, S., THRAMPOULIDIS, C. and HASSIBI, B. (2013). The squared-error of general-
ized lasso: A precise analysis. In 51st Annual Allerton Conference on Communication,
Control, and Computing (Allerton) 1002–1009. IEEE, New York.

[37] RANGAN, S., GOYAL, V. and FLETCHER, A. (2009). Asymptotic analysis of map estima-
tion via the replica method and compressed sensing. In Advances in Neural Information
Processing Systems 1545–1553.

[38] RASKUTTI, G., WAINWRIGHT, M. J. and YU, B. (2011). Minimax rates of estimation for
high-dimensional linear regression over �q -balls. IEEE Trans. Inform. Theory 57 6976–
6994. MR2882274

[39] STOJNIC, M. (2009). Various thresholds for �1-optimization in compressed sensing. Preprint.
Available at arXiv:0907.3666.

[40] SU, W., BOGDAN, M. and CANDES, E. (2015). False discoveries occur early on the lasso path.
Preprint. Available at arXiv:1511.01957.

[41] TANAKA, T. (2002). A statistical-mechanics approach to large-system analysis of CDMA mul-
tiuser detectors. IEEE Trans. Inform. Theory 48 2888–2910. MR1945581

[42] THRAMPOULIDIS, C., ABBASI, E. and HASSIBI, B. (2016). Precise error analysis of regular-
ized M-estimators in high-dimensions. Preprint. Available at arXiv:1601.06233.

[43] TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc.
Ser. B 58 267–288. MR1379242

[44] WENG, H. and MALEKI, A. (2017). Low noise sensitivity analysis of �q -minimization in
oversampled systems. Preprint. Available at arXiv:1705.03533.

[45] WENG, H., MALEKI, A. and ZHENG, L. (2018). Supplement to “Overcoming the lim-
itations of phase transition by higher order analysis of regularization techniques.”
DOI:10.1214/17-AOS1651SUPP.

[46] ZHENG, L., MALEKI, A., WENG, H., WANG, X. and LONG, T. (2016). Does �p-minimization
outperform �1-minimization? Preprint. Available at arXiv:1501.03704v2.

[47] ZOU, H. and HASTIE, T. (2005). Regularization and variable selection via the elastic net. J. R.
Stat. Soc. Ser. B. Stat. Methodol. 67 301–320. MR2137327

http://www.ams.org/mathscinet-getitem?mr=2396808
http://www.ams.org/mathscinet-getitem?mr=1805787
http://www.ams.org/mathscinet-getitem?mr=2500227
http://www.ams.org/mathscinet-getitem?mr=3737897
http://www.ams.org/mathscinet-getitem?mr=3529131
http://www.ams.org/mathscinet-getitem?mr=2882274
http://arxiv.org/abs/arXiv:0907.3666
http://arxiv.org/abs/arXiv:1511.01957
http://www.ams.org/mathscinet-getitem?mr=1945581
http://arxiv.org/abs/arXiv:1601.06233
http://www.ams.org/mathscinet-getitem?mr=1379242
http://arxiv.org/abs/arXiv:1705.03533
https://doi.org/10.1214/17-AOS1651SUPP
http://arxiv.org/abs/arXiv:1501.03704v2
http://www.ams.org/mathscinet-getitem?mr=2137327


HIGHER ORDER ANALYSIS OF REGULARIZATION TECHNIQUES 3129

H. WENG

A. MALEKI

DEPARTMENT OF STATISTICS

COLUMBIA UNIVERSITY

1255 AMSTERDAM AVENUE

NEW YORK, NEW YORK, 10027
USA
E-MAIL: hw2375@columbia.edu

arian@stat.columbia.edu

L. ZHENG

DEPARTMENT OF ELECTRICAL ENGINEERING

COLUMBIA UNIVERSITY

1300 S. W. MUDD BUILDING, MC 4712
500 W. 120TH STREET

NEW YORK, NEW YORK 10027
USA
E-MAIL: le.zheng.cn@gmail.com

mailto:hw2375@columbia.edu
mailto:arian@stat.columbia.edu
mailto:le.zheng.cn@gmail.com

	Introduction
	Objective
	Limitations of the phase transition and our solution
	Organization of the paper

	The asymptotic framework
	Our main contributions
	Optimal tuning of lambda
	Analysis of AMSE
	Results for q>1
	Results for q=1


	Related work
	Other phase transition analyses and n/ p ->delta asymptotic results
	Other analysis frameworks

	Numerical results and discussions
	Summary
	LASSO
	Bridge regression estimators with q>1
	Discussion

	Proof of Theorem 3.3
	Roadmap of the proof
	Proof of R(chi*(sigma),sigma) ->M1(epsilon), as sigma->0
	Bounding the convergence rate of R(chi*(sigma), sigma)
	Deriving the expansion of AMSE(lambda*,1,1,sigmaw)

	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

