The Annals of Statistics

2018, Vol. 46, No. 6A, 29602984
https://doi.org/10.1214/17-A0S 1645

© Institute of Mathematical Statistics, 2018

TESTING FOR PERIODICITY IN FUNCTIONAL TIME SERIES

BY SIEGFRIED HORMANN!, PIOTR KOKOSZKAZ AND GILLES NisoL3

Graz University of Technology, Colorado State University and
Université libre de Bruxelles

We derive several tests for the presence of a periodic component in a
time series of functions. We consider both the traditional setting in which the
periodic functional signal is contaminated by functional white noise, and a
more general setting of a weakly dependent contaminating process. Several
forms of the periodic component are considered. Our tests are motivated by
the likelihood principle and fall into two broad categories, which we term
multivariate and fully functional. Generally, for the functional series that mo-
tivate this research, the fully functional tests exhibit a superior balance of
size and power. Asymptotic null distributions of all tests are derived and their
consistency is established. Their finite sample performance is examined and
compared by numerical studies and application to pollution data.

1. Introduction. Periodicity is one of the most important characteristics of
time series, and tests for periodicity go back to the very origins of the field, for
example, Schuster (1898), Walker (1914), Fisher (1929), Jenkins and Priestley
(1957), Hannan (1961), among many others. An excellent account of these early
developments is given in Chapter 10 of Brockwell and Davis (1991).

We respond to the need to develop periodicity tests for time series of functions—
short functional time series (FTSs). Examples of FTSs include annual temper-
ature or smoothed precipitation curves, for example, Gromenko, Kokoszka and
Reimbherr (2017), daily pollution level curves; Aue, Norinho and Hormann (2015),
various daily curves derived from high frequency asset price data; Horvath,
Kokoszka and Rice (2014), yield curves; Hays, Shen and Huang (2012), daily
vehicle traffic curves and Klepsch, Kliippelberg and Wei (2017). This work is mo-
tivated both by the need to address a general inferential problem and by specific
data with which we have worked over the past decade. We first discuss the general
motivation; then we illustrate it using the data.
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FI1G. 1. Boxplots of PM10 (left) and NO (right) for each to day of the week. The sample consists of
N =167 days.

Most inferential procedures for FTSs require that the series be stationary; see
Horvéth and Kokoszka (2012). However, pollution levels, finance or traffic data
may exhibit periodic (e.g., weekly) patterns, and then the stationarity assumption
is violated. Horvath, Kokoszka and Rice (2014) propose several procedures to test
stationarity of an FTS. Their approach is based on functionals of a CUSUM pro-
cess, which makes it powerful when testing against changes in the mean or against
integration of order 1. However, it is not designed for testing against a periodic
signal.

Finding periodicity in a data set is also of direct relevance for understanding the
problem at hand as will be illustrated in Section 6. Tests of periodicity for FTSs
can be applied to the observed functions or to residual functions obtained after
model fitting. If periodicity is found in the residuals, it may indicate an inadequate
model.

The following motivating example, which is described in detail in Section 6,
illustrates the need to develop tests that exploit the functional structure of the
data. Figure 1 shows boxplots of daily averages of the pollutants PM10 (fine dust)
and NO (nitrogen monoxide) measured in Graz, Austria, during the winter sea-
son 2015/16. The boxplots are grouped by weekdays and we want to infer if the
corresponding group means differ significantly. Due to the traffic exposure of the
measuring device in the city center and the weekday dependent traffic volumes re-
ported in Stadlober and Pfeiler (2004), significant differences between the groups
are expected. But although the boxplots indicate lower concentrations on Sundays,
the variation within the groups is relatively large, and from a one-way ANOVA
we do not obtain evidence against the null hypothesis of equal weekday means.
The p-values are 0.75 (PM10) and 0.27 (NO), respectively. It needs to be stressed
at this point, that formally ANOVA is not theoretically justified since we are ana-
lyzing time series data which are serially correlated. Nevertheless, we will see in
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FI1G. 2.  Weekday means of PM10 (solid black) and NO (red dashed).

Section 6 that for the PM10 data set the conclusion remains the same even after ad-
justing the test for dependence. Now let us look at this problem from a functional
data perspective. Figure 2 shows intraday mean curves (our raw pollution data are
available up to half-hour resolution) of both pollutants during the same winter sea-
son. The plot suggests that Saturday and Sunday mean curves differ from those of
working days. While they have smaller peaks, they have higher lows (presumably
due to lower commuter traffic and higher nighttime activity on weekends). The
methodology developed in subsequent sections, will allow us to judge whether
the differences in the functional means are significant. In this particular example,
the answer is affirmative. Hence, in contrast to daily averages, the intraday mean
functions do show significant dependence on the day of the week.

One of the important contributions of this paper is the development of a fully
functional ANOVA test for dependent data. Using a frequency domain approach,
we obtain the asymptotic null distribution of the functional ANOVA statistic. This
result is formulated in Corollary 4.1. The limiting distribution has an interesting
form and can be written as a sum of independent hypoexponential variables whose
parameters are eigenvalues of the spectral density operator of (Y;). To the best of
our knowledge, there exists no comparable asymptotic result in FDA literature.

Adapting ANOVA to stationary time series is one way to conduct periodic-
ity analysis. It is suitable when the periodic component has no particular form.
If, however, the alternative is more specific, then we can construct simpler and
more powerful tests. In Section 2, we introduce three different models of increas-
ing complexity, and in Section 3 we develop the appropriate test statistics. By
considering specific local alternatives, the power advantage will be numerically
illustrated in Section 8 and theoretical supported in the Supplementary Material
[Hormann, Kokoszka and Nisol (2018), Appendix E]. General consistency results
are provided in Section 5.
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We have emphasized so far fully functional procedures which are theoretically
elegant and appealing. A common approach to inference for functional data is
to project observations onto a low dimensional basis system, and then apply a
suitable multivariate procedure to the vector of projections. This approach will be
outlined in Section 3.1. Our multivariate results improve upon MacNeill (1974) in
two ways: First, our tests are derived from a (Gaussian) likelihood-ratio approach.
As we will see, this provides a power advantage over MacNeill’s test. Second,
we extend in Section 4 all of our tests to a general class of weakly dependent
processes, which includes the class of linear processes studied in MacNeill (1974)
and Hannan (1961).

Our methodology and theory for dependent FTSs are based on new develop-
ments in the Fourier methods for such series. The work of Panaretos and Tavakoli
(2013a, 2013Db) introduces the main concepts of this approach, such as the func-
tional periodogram and spectral density operators. This framework has been re-
cently extended and used in other contexts; see, for example, Hormann, Kidzinski
and Hallin (2015) and Zhang (2016). Zamani, Haghbin and Shishebor (2016) use
it in a setting that falls between our models (2.3) and (2.6) (i.i.d. Gaussian error
functions), which also allows them to derive tests for hidden periodicities; the cli-
mate data they study may exhibit some a priori unspecified periods. For the data
that motivate our work (pollution, traffic, temperature, economic and and finance
data), the potential period is known (week, year, etc.), and they generally exhibit
dependence under the null. This work therefore focuses on a fixed known period
and weakly dependent functions.

The remainder of the paper is organized as follows. In Sections 2 and 3, we con-
sider models and tests under the null of iid Gaussian functions. Section 4 considers
dependent, non-Gaussian functions. Consistency of the tests is established in Sec-
tion 5. Applications to pollution data and a simulation study are presented, respec-
tively, in Sections 6 and 7. In Section 8, we numerically assess asymptotic local
power of the tests. The main contributions and findings are summarized in Sec-
tion 9. All technical results and proofs that are not essential to understand and ap-
ply the new methodology are presented in the Supplementary Material [Hérmann,
Kokoszka and Nisol (2018)].

2. Models for periodic functional time series. The classical model, Fisher
(1929), for a (scalar) periodic signal contaminated by noise is

2.1 vy = 1+ acos(t0) + Bsin(t0) + z;,

where the z; are normal white noise, «, 8 and i are unknown constants and 6 €
[—m, ] is a known frequency which determines the period. Model (2.1) has been
extended in several directions, for example, by replacing a pure harmonic wave by
an arbitrary periodic component and/or by replacing the normal white noise by a
more general stationary time series, as well as by considering multivariate series.
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In this section, we list extensions to functional time series organizing them by
increasing complexity. Our theory is valid in an arbitrary separable Hilbert space
H,in which (x, y) denotes the inner product and || x || = 4/(x, x) the corresponding
norm, x, y € H. In most applications, it is the space L? of square integrable func-
tions on a compact interval, in which case (x, y) = [ x(u)y(u) du. For simplicity
of presentation, we stick with this setting in our paper. A comprehensive exposition
of Hilbert space theory for functional data is given in Hsing and Eubank (2015).

We begin by stating the following (preliminary) assumption on the functional
noise process.

ASSUMPTION 2.1. The noise (Z;) is an i.i.d. sequence in H, with each Z;
being a Gaussian element in H with zero mean and covariance operator I".

Recall that a random variable Z in H is Gaussian, in short Z ~ Ny (u, '), if
and only if all projections (Z, v), v € H, are normally distributed with mean (i, v)
and variance (I"(v), v). Working under Assumption 2.1 is convenient because we
can motivate our tests proposed in Section 3 by a likelihood ratio approach and cal-
culate exact distributions. Nevertheless, this framework is too restrictive for many
applied problems. We devote Section 4 to procedures applicable in case of noise
which is a general stationary functional time series. The testing problems remain
the same, but the test statistics and/or critical values change.

To make the exposition more specific and focused on the main ideas, we intro-
duce the following assumption.

ASSUMPTION 2.2. The sample size N is a multiple of the period, N = dn,
where the period d > 1 is odd. We set ¢ = (d — 1)/2.

Section A discusses modifications needed in case of even d. Assuming that the
sample size N is a multiple of d is not really restrictive and can easily be achieved
by trimming up to d — 1 data points.

The simplest extension of model (2.1) to a functional setting is

(M.1) Y (u) = pu(u) + [ cos(t) + Bsin(t0) Jw(u) + Z; (u),

with u, w € H and o, B e R. If p :=\/a? + B2 =0, then (¥;: ¢t > 1) is functional
Gaussian white noise with a mean function w. If p > 0, then a periodic pattern is
added, which varies along the direction of a function w. To ensure identifiability,
we assume that ||w||? := fol w?(u) du = 1. The functions p and w, as well as the
parameters « and g are assumed to be unknown. As explained in the Introduction,
the parameter 8, which determines the period d, is assumed to be a known positive
fundamental frequency, that is,

0 €Oy :={0,=27j/N,j=1,....m:=[(N—1)/2]}.
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The testing problem is
(2.2) Ho: p=0 vs. Ha:p>0.

A first extension of (M.1) is to replace « cos(6¢) + B sin(f¢) by some arbitrary
d—periodic sequence. A more general model thus is

M.2) Yi(u) = pn(u) +s;wu) + Zi(u), St =Si+d, 0, w € H.
‘We wish to test

(2.3) Ho:s1=s2=---=s54=0 against H,: max |s;| > 0.
1<t<d

Here, we impose the identifiability constraints |jw| = 1 and Zle s; = 0. The
latter ensures that the vector (sq, ..., sg)’ is contained in the subspace spanned by
the orthogonal vectors

cos(6,) sin(6,) cos(Ongq) sin(Gq)
cos(26,) sin(26,) c0s(20,4) sin(20,,4)
cos(d6b,) sin(d6,,) cos(dBg) sin(d6g)

cf. Assumption 2.2. With the convention

2.4) Oy := O =2mk/d,

model (M.2) can be written as

q
2.5 Vi) =pw) + (Z(ak cos(t9) + B sin(n?k)))w(u) + Zo(w),
k=1

with some coefficients o and .

Model (M.2) assumes that at any point of time, the periodic functional compo-
nent is proportional to a single function w. A model which imposes periodicity in
a very general sense is

(M.3) Yi(u) = p(u) + wi(u) + Zi (u), W, we € H,
with w; = wyy4 and Zf: 1 wy = 0. In this context, we test
(2.6) Ho: wi=wy=---=wy =0 against Hy: max |w] > 0.

1<t<d
The three models are nested, but coincide under Hg. Test procedures presented
in Section 3 are motivated by specific models as they point toward specific al-
ternatives. However, they can be applied to any data, and, as we demonstrate in

Sections 6 and 7, tests motivated by simple models often perform very well for
more complex alternatives.
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3. Test procedures in presence of Gaussian noise. Throughout this section,
we work under Assumptions 2.1 and 2.2. In Section 4 and Section A, respectively,
we show how to remove these assumptions. Details of mathematical derivations
are given in Section B.

Let us start by introducing the necessary notation and notational conventions.
Given a vector time series (Y;: 1 <t < N) the discrete Fourier transform (DFT) is
D)= «/Lﬁ 21]{\]:1 Yie %9 6 e [—m, 7]. We will use the decomposition into real
and complex parts: D(0) = R(0) +iC (). At some places, we may add a subscript
to indicate the dependence on the sample size and/or a superscript to refer to the
underlying data [e.g., R% (6)]. We proceed analogously for a functional time series
(Y;: 1 <t < N). Then the DFT is denoted by D(6) = R(0) +iC(0).

Set A(0;,,...,0;) =[R(;,),...,R(6;),CY;),...,C6;)] and analogously
define A(6;,, ..., 6;,) to be a 2k-vector of functions with components R (6; j) and
C;). If A= (Ay,..., Ay) is any k-vector of functions, then AA’ is the k x k
matrix of scalar products (A;, Aj). We use || M|| for the usual (Euclidean) norm
and || M || for the trace norm of some generic matrix M. Finally, W, (n) denotes
the real p x p Wishart matrix with n degrees of freedom and ¢, (X) is the «-
quantile of some variable X.

3.1. Projection based approaches. Typically, functional data are represented
in a smoothed form by finite dimensional systems, such as B-splines, Fourier ba-
sis, wavelets, etc. Additional dimension reduction can be achieved by functional
principal components or similar data-driven systems. It is thus natural to search for
a periodic pattern within a lower dimensional approximation of the data.

In this section, we assume that vy, v2,..., v, is a suitably chosen set of lin-
early independent functions. Section F shows that if the vy are replaced by con-
sistent estimates, then under mild condition (e.g., conditions met by empirical
functional principal components), the asymptotic distribution of the test statistics
is not affected. Setting Y; := ((¥;, v1), ..., (Y3, vp))’, we obtain vector observa-
tions. Under Hg, the time series (Y;) is i.i.d. Gaussian with covariance matrix
X =({T'(vi),v;): 1 =i, j < p). Under H 4, we can write the projected version of
model (M.3) as

(3.1) Yi=p+w +Z;,

with p = ({(@, v1) -+ (u, vp)), wy = (wy, v1) -+ (wy, vp))" and the innovations
Z; = ((Z:,v1)---(Z;,vp)) . This in turn can be specialized to projected versions
of models (M.1) and (M.2). The periodic component can be detected if it is not
orthogonal to span{vy, v2, ..., vp}. In the following theorem, we state the likeli-
hood ratio tests. Recall the definition of the frequencies ¥ in (2.4) and the notation

g=(d—-1)/2.
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THEOREM 3.1. Assuming known X, the likelihood-ratio tests for the multi-
variate analogues of testing problems (2.2), (2.3) and (2.6) [related to the pro-
Jjected models (M.1), (M.2) and (M.3), respectively] are given as follows: Reject
the null-hypothesis at level o if

TV = |A@DZ T A’ @) > q1-a[[W,@)] /2]:
T2 = AWy, ..., 00T A D1, ..., 0| > q1-o[|W,(d — D] /2];
TYR2 = AW, ..., 0)E A/ W1, ..., 0|, > q1—«[Erlang(pg, D)].

Some remarks are in order:

1. The superscript MEV in our tests stands for Multivariate EigenValue. Multi-
variate, as opposed to functional, and eigenvalue, refers to the fact that the Eu-
clidean matrix norm of a symmetric matrix is equal to its largest eigenvalue. MTR
abbreviates Multivariate TRace.

2. By Lemma B.1, the columns of X~1/2A4'(®¥y, ..., ¥y) are i.i.d. NV} (0, %Ip).
This explains the Wishart distribution. For explicit computation of the quantiles
q1—alllW, (k) ||], we refer to Chiani (2014).

3. An alternative to the test based on TMEV1 is

TR = AW Z A (0], > q1—«[Erlang(p, 1)].

The latter can be seen to be equivalent to the test proposed by MacNeill (1974)
for a multivariate version of model (M.1). The likelihood ratio and MacNeill’s
test statistic are related to different matrix norms of A(9)X~'A'(9)). By the
Neyman—Pearson lemma, a likelihood ratio test, even in an approximate form, can
be expected to have good and sometimes even optimal power properties. Likewise,
replacing the matrix norm in T7™EV2 by the trace norm leads to T"™®2, As Figure 3

o < o <
- [ o - [ o
« @ _|
o @ o [sp)
=] [ o
© ©
g ° o g 8 ° L o &
& < o =) ﬂo_ < o [=)
S 7 S 7
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FIG. 3.  Local asymptotic power curves of tests TMEV2 (EV) and T*™R2 (TR), and their difference
(Diff, right scale). Left panel: p =5 and d =7, right panel: p =5 and d = 31. Details of the
implementation are given in Section 8.
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illustrates, the difference in power between the two tests can be quite noticeable,
especially when d is large.

4. In practice, ¥ must be replaced by a consistent estimator. General construc-
tion of estimators, which remain consistent under H 4, is discussed in Section D.
A natural choice is

. 1 L _ _
Tp=— > > Y =YY =Y
N .
k=1i=1
with ¥y = Ygi(—1)q and Y = % "_1 Y. With this plug-in estimator, one can

show that the resulting test statistics are asymptotically equivalent to the LR ap-
proach with unknown X. It is possible to directly formulate time domain likelihood
ratio tests based on unknown X (Wilks’ Lambda), but it is not evident how to ex-
tend them to the fully functional setting. Using a spectral domain formulation with
known X points toward an extension to the fully functional tests introduced in
the next section and will allow for adapting the method for stationary noise; see
Section 4.

3.2. Fully functional tests. The projection based approaches of the previous
section may be sensitive to the choice of the basis and to the number of basis
functions. It is therefore desirable to develop some fully functional procedures
to bypass this problem. Before we introduce fully functional test statistics, let us
observe that 7"®Vi and TM™: (i = 1,2) are computed from the rescaled sam-
ple X712y, ..., X712y y, which results in asymptotically pivotal tests. The
rescaling guarantees that the component processes with larger variation are not
concealing potential periodic patterns in components with little variance. While
this is clearly a very desirable property in multivariate analysis, one may favor
a different perspective for functional data. If Y, are principal component scores,
then ¥ = diag(A1, ..., Ap), where A; are the eigenvalues of Cov(Z;). Suppose that
Y, (u) = /Mg cos(2mt /d)ve(u) + Z;(u), £ > 1. Then, due to Ay — 0, the bigger ¢,
the smaller and more negligible the periodic signal is. However, it is easily seen
that for any of our multivariate tests, the probability of rejecting Hy is the same
for all values 1 < £ < p.

A way to account for the functional nature of the data is to base the test
statistics directly on the unscaled and fully functional observations, that is,
to define analogues of the test statistics in Theorem 3.1 with the matrices
A@DA (M) (in R>2) and AW1,...,0)A (D1, ...,0,) (in REU-Dx@=Dy
Since, to the best of our knowledge, there is no result available on the distribu-
tion of |A(D1, ..., 04)A (D1, ..., Dy)ll, we shall only consider the trace norm for
which we can get explicit formulas. Hence, for model (M.1) we propose a test
which rejects Hy at level « if

TFR = |A@DA )|, > g1-o[HEXp(A1, A2, .. )]
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Here, HExp(A{, A2,...) denotes a random variable which is distributed as
Y i=1 i Ei, where the E; are i.i.d. Exp(1) variables. If A; = 0 for i > k, then this is
a so-called hypoexponential distribution, whose distribution function is explicitly
known; see, for example, Ross (2010), Section 5.2.4. For models (M.2) and (M.3)
we propose the test which rejects H at level « if

q
(32)  TF™R = AW, ..., 9)A B, ... 9| > G1-a [Z Eki|,
k=1

where By i HExp(A1, A2, ...). Lemma B.2 provides the justification of (3.2).

In practice, we will approx1mate HExp(i1, A2,...) by HExp(Al,Az, .. Ak)
with eigenvalues A; of T' and some fixed k to obtain critical values. (See Sec-
tion D.) Since the sample covariance has only a finite number of nonzero eigen-
values, we can either use all of them or chose the smallest kK > 1 such that
tr(T) — (il 4+ -+ Ak) < ¢ for some small ¢. Other details, including the rate
of the approximatlon of HExp(A, A2, ...) by HExp(Al, )\.2, .. Ak) are presented
in Section D.

3.3. Relation to MANOVA and functional ANOVA. A possible strategy for our
testing problem is to embed it into the ANOVA framework as it was sketched in
the Introduction. If the period is d, we can think of the data as coming from d
groups, and the objective is to test if all groups have the same mean. ANOVA can
be applied to models (M.1) and (M.2), but it is particularly suitable for model (M.3)
where we impose no structural assumptions on the periodic component. As in the
previous sections, we can either adopt a multivariate setting, where we consider
projections onto specific directions, or a fully functional approach.

The likelihood ratio statistic in the multivariate setting is the classical MANOVA
test based on Wilk’s lambda [see Mardia, Kent and Bibby (1979)], which is given
as the ratio of the determinants of the empirical covariance under g in the numer-
ator and of the empirical covariance under H 4 in the denominator. Such an object
is not easy to extend to the fully functional setting. If, however, we work with a
fixed X (later it can be replaced by an estimator), then the LR statistic takes the
form

vay _ | G- s—lv ¥
(3.3) T _an(Yk—Y) >Ny, -Y),
k=1
where Y = % S Yu—1)at+k, | <k <d,and Y is the grand mean. Translating

this, with the same line of argumentation as in Section 3.2, into the fully functional
setting we obtain

1E
(3.4) T == nlVe = Y7,
k=1
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where Y and Y are defined analogously. This formally coincides with the func-
tional ANOVA test statistics considered in Cuevas, Febrero and Fraiman (2004)
assuming a balanced design.

The following important result shows that the test statistics (3.3) and (3.4) are
equivalent to TYTR2 and T¥TR2, respectively.

PROPOSITION 3.1. It holds that T"™V = 2T"™R2 qnd TFAV = 2TF TRz,

Proposition 3.1 is proven in Section B. We stress that the equalities in this result
are of an algebraic nature, so they hold for any process (Y;: ¢t € Z). The limit-
ing distribution of T¥TR2 with general stationary noise will follow from the the-
ory developed in Section 4. Hence, we obtain the asymptotic null distribution of
the functional ANOVA statistics T2V for stationary FTSs. This is formulated as
Corollary 4.1. The result is of independent interest, as it relaxes the independence
assumption in the functional ANOVA methodology.

4. Dependent non-Gaussian noise. In this section, we derive extensions of
the testing procedures proposed in Section 3 to the setting of a general stationary
noise sequence (Z;); we drop the assumptions of Gaussianity and independence.
We require that (Z;) be a mean zero stationary sequence in H, which satisfies the
following dependence assumption.

ASSUMPTION 4.1 (L"—m-approximability). The sequence (Z;: t € Z) can be
represented as Z; = f (6, 8;—1, 8:—2, - ..), where the §;’s are i.i.d. elements taking
values in some measurable space S and f is a measurable function f : S*° — H.
Moreover, if 84 , 6/2, ... are independent copies of 31, §2, ... defined on the same
measurable space S, then for

Zt(m) = f(S,, 8[_1, 81_2, ey 5[_m+1, 8;_m, ;_m_], .. .),
we have
o0
“.1) S (E|Zwm — 2|V < o0
m=1

In the context of functional time series, the above assumption was introduced
by Hoérmann and Kokoszka (2010), and used in many subsequent papers includ-
ing Hérmann, Horvath and Reeder (2013), Horvéth, Kokoszka and Rice (2014),
Zhang (2016), among many others. Similar conditions were used earlier by Wu
(2005) and Shao and Wu (2007), to name representative publications. Of special
note is the work of Lin and Liu (2009) who derive a test for the presence of a hid-
den periodicity (unknown d) for a scalar time series whose stationary component
admits a Bernoulli shift representation used in Assumption 4.1. In the following,
we will use this assumption with » = 2. The asymptotic theory could most likely be
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developed under different weak dependence assumptions. The advantage of using
Assumption 4.1 is that it has been verified for many functional time series models,
and a number of asymptotic results exist, which we can use as components of the
proofs.

Denote by Cp, = E(Z, ® Zp) the lag h autocovariance operator. If H is the
space of square integrable functions, Cj, is a kernel operator, Cj, : L? — L2, which
maps a function f to the function Cy(f)(u) = [ E[Zy(u)Zo(s)]f(s)ds. If As-
sumption 4.1 holds with » = 2, then

(4.2) Y lChlls < oo,
heZ

where || - ||s denotes the Hilbert—Schmidt norm. As shown in Hérmann, Kidzinski
and Hallin (2015), this ensures the existence of the spectral density operator:

Fy = Z Che_lhe.
heZ

This operator was defined in Panaretos and Tavakoli (2013a) (with an additional
scaling factor %). It plays a crucial role in frequency domain analysis of func-
tional time series. We will see in Theorem 4.1 below that the spectral density
operator is the asymptotic covariance operator of the discrete Fourier transform
Df, (0), and hence it will enter the construction of our test statistics in a simi-
lar way as I' = Var(Z;) does in the case of independent noise. We recall hereby
the definition of a complex-valued functional Gaussian random variable with
mean u, variance operator F(v) = E[(X — w){(v, X — )] and relation operator
Cw)=E[(X —w){v,X —u)]. Then Z = Zo +1Z with Zy, Z; € H is complex
Gaussian Ny (u, F, C) if

Zo Y no\ 1 (Re(F+C) —Im(F-C)
Z HxH\\pu1) 2 \Im(F+C) Re(F-C) )"
where u = o+ i1 = E(Zo 4+ iZ1) = n. When the relation operator is null, we

will write Z ~ CN (0, F). Theorem 4.1 follows from Theorem 5 in Cerovecki
and Hormann (2017).

THEOREM 4.1. If (Z;) is an L? — m—approximable time series with values in
a separable Hilbert space H, then for any 6 € [—m, ]

D%0) L CN (0, Fo).
Furthermore:

(1) Var(Df, (0)) converges in weak operator topology to Fy.
(i1) The components of (D ,%, 0),D ,{, (0")) are asymptotically independent when-
ever 0 +60"£0and 0 — 0 #0.
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Using Theorem 4.1, which is applicable to both functional and multivariate
data, we are now ready to explain how to construct tests when Assumption 2.1
is dropped and replaced by L? — m-approximability. These tests, justified in Sec-
tion C, have asymptotic (rather than exact) size .

Independent noise: The tests of Section 3 remain unchanged for general i.i.d.
noise with second order moments.

Projection based approach: If we project the functional data onto a ba-
sis (v1,...,vp), then the resulting multivariate time series Y, inherits L%>-m-
approximability. Let Fy denote the spectral density matrix of this process. As-
suming that the F; are of full rank, we need to replace the matrix

AW, ..., 00X AW, ...,%), L=lorl=gq
in the definition of the multivariate tests by
H®,...,90H (V1,..., ),

where the columns of H' (91, ..., %) are given by

[Re(F, > D@1), ... Fy *D@y). Im(F, > D@1), ... F, > D@0)].

The critical values remain the same as in Section 3.

Fully functional approach: In contrast to the multivariate setting the fully func-
tional test statistics remain unchanged, but the critical values need to be adapted
according to the following result.

PROPOSITION 4.1. If (Y;) is L>—m—approximable then for any frequencies
O<wi<w<---<wy<m,
14
d (=]
|[A(wr, ..., 00 A (01, ..., 00|, — Z Ex,
k=1

where By, ind. HExp(A1(wi), A2(@k), - . .), and A¢(wy) are the eigenvalues of F, .

In practice, we do not know the spectral densities which are necessary for our
tests. In Section D, we show how to construct their estimators.

We conclude this section with a corollary to Proposition 4.1. This result is new
and interesting in itself. It broadly extends the applicability of functional ANOVA
by revealing its asymptotic distribution when the underlying data are weakly de-
pendent.

COROLLARY 4.1. Under the assumptions of Proposition 4.1, the functional
ANOVA test statistic satisfies

1 a2
EZnnYk—Yn = =3 &,
k=1 k=1

where By ind. HExp (A1 (%), A2(Dk), ...), and L¢(Vy) are the eigenvalues of Fy, .

IS
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5. Consistency of the tests. In this section, we state consistency results for
the tests developed in the previous sections. The proofs are presented in Sec-
tion C. We focus on the general model (M.3) with the noise (Z;) satisfying As-
sumption 4.1 with r = 2, but we also consider the simpler tests and alternatives
introduced in Section 2. We assume throughout that Assumption 2.2 holds.

To state the consistency results, we decompose the DFT of the functional obser-
vations as follows:

(5.1) D}, (0) = DY(0) + D§(0) = /nD} (0) + D5 (9),

where Dy (0), D (6) and DI%,(Q) are the DFT’s of (Yy,...,Yn), (wy,..., wy)
and (Z1, ..., Zy), respectively.

PROPOSITION 5.1. Assume model (M.3) and that the noise (Z;) is L*-m-
approximable. Then ifZ?:l ID¥ (9 )||I> > 0, we have that TF™2 — oo with prob-

ability 1. Moreover, if | DY} @D 1> > 0, we have that TF™1 — oo with probability
1 (N — 00).

Observe that
q ) 14 , d
MDY@ =5 lwel? =: 5 MSSi,.
Jj=1 2t=1 2

Explicit forms for || D} (1) |12 and Z?:] 1Dy () |12 when specialized to the alter-
natives considered in models (M.1), (M.2) and (M.3) are summarized in Table 1.
We infer that if (Z;) satisfies Assumption 4.1 with » = 2, then the functional tests
based on T¥™®2 (or equivalently on T¥2V) are consistent under the alternatives in
models (M.1), (M.2) and (M.3). The test based on T¥T®1 is consistent for model
(M.1). It remains consistent for model (M.2) provided oz% + ,3]2 > 0, and it is con-
sistent for model (M.3) if ||D§1”(191)||2 > 0.

Consistency for the multivariate tests can be stated similarly. Consider the rep-
resentation (3.1) of the projections.

TABLE 1
Explicit forms for || D} (1) 12 and
231':1 DY (15‘j)||2 when specialized to the
alternatives in models (M.1), (M.2) and (M.3)

Model  [IDY@DI*>  Xi_, IDY@)I?
(M.1) 40 q0?
M.2) d@i+phH 4 @ +8D)

(M.3) IDY @)1 4MSSg;q
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PROPOSITION 5.2. Consider model (M.3) such that the noise is L*—m-
approximable. Let DY (0) = ﬁ Zflzl w;e 10, IfZ?Zl | DY (15‘j)||2 > 0, we have

that TY®V2 — oo and T2 — oo with probability 1. If | D¥ (91)[|* > 0, we have
that T"EV1 — oo and T — oo with probability 1 (N — 00).

As before, we can specialize the result to models (M.1) and (M.2). Similar con-
ditions as for the functional case are needed.

In Section E, we will present some results on local consistency, that is, we con-
sider the case where the periodic signal shrinks to zero with growing sample size.
This study gives some insight to the question in which situations a particular test
can be recommended. In this context, we also refer to a numerical study in Sec-
tion 8.

6. Application to pollution data. We analyze measurements of PM10 (par-
ticulate matter) and NO (nitrogen monoxide) in Graz, Austria, collected during one
cold season, between October 1, 2015, and March 15, 2016. The measurement unit
for both pollutants is g /m>. Due to the geographic location of Graz in a basin and
unfavorable meteorological conditions (temperature inversion), the EU air quality
standards are often not met during the winter months. The measurement station we
consider is in the city center (Graz-Mitte). Observations are available in 30 minute
resolution. The data were preprocessed in order to account for a few missing val-
ues. To improve the stability of our L? based methodology, we follow Stadlober,
Hormann and Pfeiler (2008) and base our investigations on the square-root trans-
formed data. The resulting discrete sample has been transformed into functional
data objects with the £da package in R using nine B-spline basis functions of
order four.

Our preliminary analysis, referred to in the Introduction, was based on standard
ANOVA for daily averages, not taking into account the dependence of the data.
Viewing them as projections onto v(x) = 1, we can apply our tests T™ V1 and
TM™EV2 (or equivalently TRt and T™"™®2 since p = 1) adjusted for dependence as
explained in Section 4. The spectral density of the daily averages is obtained as
explained in Section D. The corresponding p-values are given in Tables 2 and 3
in the rows tagged v(u) = 1. While there is still no indication of a weekly period
in the PM10 data, the test TMEV2 is rejecting Ho for daily NO-averages at a 5%
significance level.

Next, we conduct a periodicity analysis using our projection based and fully
functional (FF) tests. For the projections, we use the first p PCA basis curves
(p €{1,2,3,5}). We adjust the procedures for dependence, as explained in Sec-
tion 4. The spectral density and the covariance operator (the latter is needed to
compute principal components) are estimated as described in Section D. The re-
sults are presented in Tables 2 and 3. It can be seen that the fully functional
ANOVA procedures do give strong evidence of a weekly pattern for PM10 and
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TABLE 2
The p-values for PM10 data. In parentheses, the percentage of variance explained by the first p
principal components on which the curves are projected

TMEV1 TMTR]_ TMEVZ TMTRZ TFTR]_ TFTRZ
FF 0.081 0.026
vu) =1 0.466 0.466 0.261 0.261
p=1(71%) 0.397 0.397 0.216 0.216
p="2(82%) 0.027 0.031 0.004 0.003
p =3 (88%) 0.031 0.030 0.010 0.005
p =15 (96%) <1073 <1073 <1073 <1073

NO. When p > 3, all multivariate tests also give strong evidence for a weekly
period. It is likely that the periodic component is mainly concentrated in the sec-
ond (PM10) or third (NO) principal component. In contrast to the ANOVA not
taking into account dependence of the NO data (see the Introduction), we now ob-
serve some significant weekly period also for the daily averages. In general, the
p-values suggest that we are facing one of the alternatives described by model
(M.2) or (M.3).

We extend this illustrating example by fitting a functional regression model to
the PM10 curves:

PM,(u)=/bo(u,v)PM,,l(v)dv—i—/b](u,v)NO,(v)dv—i—s,(u).

The kernel functions are estimated using B-spline expansions; see, for example,
Ramsay, Hooker and Graves (2009). We analyze the residual curves &;(u). The
p-values are summarized in Table 4. At 5% nominal level, none of our tests
yields significant evidence that there remains a weekly periodicity in the residual
curves.

TABLE 3
The p-values for NO data. In parentheses, the percentage of variance explained by the first p
principal components on which the curves are projected

TMEVL TMTRy TMEV TMTR2 TFTRy TFTR2
FF 0.007 <1073
V) =1 0.161 0.161 0.016 0.016
p=1(68%) 0.115 0.115 0.009 0.009
p=2(81%) 0.331 0.331 0.029 0.017
p =3 (87%) <1073 <1073 <1073 <1073

p=5(97%) <1073 <1073 <1073 <1073
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TABLE 4

The p-values for residuals of regression PM10 (independent variables) onto first lag values and NO
time series

TMEV]_ TMTR]_ TMEVz TMTRz TFTR]_ TFTRZ

FF 0.215 0.127

p=1 0.160 0.160 0.076 0.076

p=2 0.277 0.316 0.200 0.272

p=3 0.379 0.389 0.348 0.512

p=>5 0.673 0.674 0.678 0.740

7. Assessment based on simulated data. Our goal is to assess empirical re-
jection rates of our tests in realistic finite sample settings. For this purpose, we
consider the functional time series of PM10, preprocessed as explained in Sec-
tion 6. We remove the weekday mean curves wy, 1 < k <7, (from every Monday
curve, we remove Monday’s mean Wy, etc.). We then generate series of functional
data by bootstrapping (with replacement) the times series of these residuals. The
resulting i.i.d. data are denoted &;,t =1, ..., M. Next, we generate dependent er-
rors by setting

Zi=¢r+arg—i+ - +ase_s, t=6,....M,

where a; = o* are scalar coefficients. We chose M = 215 and 425 so that the
length of the time series, N, is 210 and 420. We consider ¢ = 0.3 and o = 0.6.
For the projection based tests, we project on the first p functional principal com-
ponents, where p € {1,2,3,5}. Then we run our tests with the procedures ad-
justed for dependence as explained in Section 4. The empirical size, Table 5, is
close to nominal level for the fully functional tests and the projection based tests
when p = 1,2, 3. The projection based tests with p =5 are not well calibrated
if N =215, but improve considerably if we increase the sample size to N = 420
(last two rows in Table 5). The general tendency is that empirical rejection rates
are slightly too big for o = 0.3 and slightly too small for o = 0.6. This observa-
tion remains true if we increase the sample size and suggests that estimation of
the spectral density may need further tuning. We have experimented with other
simulation setups, not reported here. For larger values of p, the fully functional
tests seem more reliable than the multivariate tests in terms of their empirical size.
This is most likely explained by the fact that the fully functional methods are not
very sensitive to the effect of estimation errors for small eigenvalues. The distribu-
tions of HExp(A1, A2, ...) and HExp()Aq, ):2, ...) are typically close because they
mainly depend on a few large eigenvalues for which the relative estimation error
is small. For the multivariate tests, eigenvalues enter as reciprocals. If Ay is close
to Az, it does not necessarily mean that 1/A; and 1/ A are close, if the eigenvalues
are small.



TABLE 5
Empirical size (in %) at the nominal level a of 5% and 10% for dependent time series with sample size N = 210, o = 0.3 (top rows) and o = 0.6 (bottom
rows). Results are based on 5,000 Monte Carlo simulation runs. The last two rows show the rates for p =5 and N = 420

a=5% oa=10%
TMEVI TMTRl TMEVz TMTRz TFTRl TFTR2 TMEVl TMTRl TMEVZ TMTRZ TFTR]_ TFTRZ

FF 6.3 5.5 11.9 10.2

4.2 3.6 8.6 7.8
p=1 6.2 6.2 5.1 5.1 11.9 11.9 10.1 10.1
4.3 4.3 4.3 4.3 8.9 8.9 8.8 8.8
p=2 6.0 6.2 5.4 5.2 12.2 12.2 10.0 9.9
5.1 4.9 4.6 4.8 9.5 9.5 9.3 9.2
p=3 5.8 5.9 5.3 5.3 11.8 11.7 9.7 9.4
4.6 5.0 4.6 4.8 9.9 9.7 9.5 9.6
p=>5 9.6 10.1 8.2 8.6 16.9 17.4 14.7 14.9
7.9 8.7 9.1 9.3 144 14.6 15.0 159
p=>5 7.6 7.8 6.0 6.3 13.5 14.0 11.8 11.5
5.9 6.2 6.1 5.8 10.7 10.6 114 11.3

SI1d NI ALIDIAOIYdd 404 ONILSHL
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To see how well the tests can detect a realistic alternative, we use the same data
generating process as above and periodically add the weekday means wy, ... W7 to
the stationary noise (Z;). We thus get the series V; = w(;) 4+ Z; where (1) =¢ mod 7
with the convention that wo = wy. This construction entails that we are in the
setting of Model (M.3), and hence, in view of Theorem 3.1, we expect the multi-
frequency and trace based tests to be most powerful. This is confirmed in Table 6
where we show empirical rejection rates. In this example, MSSq;; = % ZZ:1 |wy —
@]~ 0.1 and E|| Zx||> ~ 3.1. Given the relatively small signal-to-noise ratio, we
can see that overall the tests perform very well in finite samples.

The rejection rates reported in this section are based on a specific example and
a specific estimator of the covariance structure, the same one as used in Section 6.
To gain insights into the asymptotic rejection rates, we perform in Section 8 a
numerical study which does not use a specific estimator, but assumes a known
covariance structure. This approach allows us to isolate the effect of estimation
from the intrinsic properties of the tests.

8. Local asymptotic power. A power study must necessarily involve a larger
number of data generating processes (DGPs) which satisfy the various alternatives
considered in this paper. We consider here 18 DGPs, indexed by the period d =
7,31 and i, j =1, 2, 3, which have the general form

‘ 9 . 9
8.1) Yt<u>=s/’d)(2w;§”vk<u))+Zzt,kvk<u>, i.j=12.3.

The vy, v2, ..., vg are orthonormal basis functions. We note right away that the
results do not depend on what specific form the vy take, as long as they are or-
thonormal. The s,(i’d) is a real d-periodic signal with Zle s,(i’d) =0 and l/flgj )
are real coefficients. The exact specifications are given below. The variables
Zt = (2415 21,25 - - - » 21.9) are i.i.d. Gaussian vectors with zero mean and covariance
diag(1,271,272,273,...,27%). Then (Y;) follows the functional model (M.2)
with w(u) = w¥ () = 22:1 w,gj)vk(u). Our assumptions imply that the vy are
the functional principal components of Y;. We consider periods of length d =7
and d = 31. For the periodic signal, we consider the following variants s,(i’d) for
1<t<d:

st(l’d) =cos(2rwt/d);
sCP =M1 <t<2(d—1)/3) —21{Qd = 1)/3+1 <t <d};

_ iid.
S;(3’d) =v — where v, = N, D).



TABLE 6
Empirical power (in %) when testing at nominal level o of 5%. We choose ¢ = 0.6. Results are based on 5000 Monte Carlo simulation runs

N =210 N =420
TMEV] TMTR; TMEV, TMTR, TFTRy TFTR, TMEV] TMTRy TMEV, TMTR, TFTRy TFTR,
FF 91.0 100 100 100
p=1 25.5 25.5 77.7 77.7 51.1 51.1 98.6 98.6
p=2 84.2 84.9 100 100 99.3 99.3 100 100
p=3 96.1 97.0 100 100 99.9 100 100 100
p=>5 100 100 100 100 100 100 100 100

SI1d NI ALIDIAOIYdd 404 ONILSHL
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These functions are periodically extended to 7 > 1. We consider the following
parameters ¢ = (wl(j), e 1//9(J))’:

v x(1,0,0,0,0,...,0);
v @ oc(1,2712,271 2732 278,
v® x(0,0,0,1,0,...,0) .

The vectors ¥ /) determine w(u) and are scaled such that the mean square sum of
the signal MSS;; = 1. Under parametrization v (¥ @), we have w(u) varying
in direction of the first (fourth) principal component, while under ¥ @ we take into
account all principal components. The DGP is determined by the pair (¥, s) =
W), 5Dy,

We study the local asymptotic power functions defined by

. . X
LP(x|¥,s)= ngn@P(TN > §0.95 ‘ DGP is (Vf, ms)),
where Ty stands for one of the test statistics we derived, and gg.95 is its (asymp-
totic) 95th quantile under the null. The scaling is such that in any setup the to-
tal variation of the signal Zivzl |lwe || = x2. We use a superscript to indicate
which statistic is used, for example, L PMEV2, [ PFTR1 etc, It can be easily seen
that if the covariance operator I" is known, then due to our Gaussian setting,
X

P(Ty > go.95 | DGPis (¢, Ws)) does not depend on N for any of our tests.
Since we let N — oo, we can use a Slutzky argument and compute L P (x|¥, s)
directly with the true I'. It is not obvious how to obtain closed analytic forms for
LP(x|¥,s), and hence we compute them numerically by Monte-Carlo simulation

based on 5000 replications.

1. Comparing TMV2 and TY R : eigenvalue vs. trace based test statistic.

We project data onto the space spanned by vy, ..., vs, which guarantees that
at least 95% of variance are explained. In Figure 3, the asymptotic local power
curves L PMEV2 (x|¢® s@Dy and L PMTR2 (x| @ | 52D with d =7 and d = 31
are presented. We have done the same exercise with ¥ and ¥ and obtained
very similar results.

2. Comparing TYEV1 and T™ V2 : test for sinusoidal vs. test for general periodic
pattern.

We project again onto vy, ..., vs. In Figure 4, the asymptotic local power curves
LPYY1 (x| @ 5) and L P72 (x| @, s) are shown with s = 5?7 (left panel),
s = s@3D (middle panel) and s = sG7 (right panel). We see that the LR-test
for the simpler model (M.1) can significantly outperform the LR-test for model

(M.2) even if sl(z’d) is not sinusoidal. However, the conclusion is very different

if s is more erratic. When s = s,(3’7), then T™EV2 becomes a lot more powerful

than TMEV1, Simulations not reported here show that the above described effects
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FIG. 4. Local power curves LPEVi(x[¢@ s) (EV1) and LPYEV2(x|y @ s) (EV2) with
s=s&7 (left panel), s = s@3D (middle panel) and s = sG7D (right panel), with the realization of
37D 1<t <7)=(~0.24,0.42, —1.69,0.37,0.07, 1.12, —0.05).

become stronger the larger we choose the period d. This finding is supported by
Proposition E.1, which provides a theoretical result on local consistency.

3. Comparing TV and T¥™ 1 : projection based method vs. fully functional
method.

Now the objective is to compare the projection based methods with the fully
functional ones. By fixing s = s(1:7), we focus on the simple model (M.1). The
local power curves L PFTR: (x|yD 5Dy and L PMEVL (x |y @, s(-7)) for values
p=1,2,3and p=5andi =1,2,3 are shown in Figure 5. We see that the fully
functional test performs well in all settings. Not surprisingly, the better the basis
onto which we project describes w(u), the better the projection based method be-
comes. For all DGPs (¢ @, s(:7), i = 1,2, 3, there is one projection based test
that outperforms the functional one. The disadvantage of the projection method is,
however, its sensitivity with respect to the chosen basis. For example, while for
DGP (¢ (D, s(1.D) the test with p = 1 is performing best, it is the least powerful
for DGPs (¢, s(tD) and (¢ @, s(1.7).

6
L
~

08
L

2
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W

02
L

FIG. 5. Local power curves LPFTR1 (x|¢(i), sODY and L PMEVL (XWI([), sy for values
p=1,2,3and p=>5andi =1 (left panel), i =2 (middle panel) and i = 3 (right panel).
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9. Summary. We have proposed several tests for the existence of a known
period in functional time series. They fall into two broad categories, which we
refer to as multivariate and fully functional approaches. The multivariate tests use
projections on fixed or data-driven basis systems and the Gaussian likelihood ratio.
The fully functional tests use L2 norms. Our multivariate tests, in general, have the
expected power advantage for multivariate time series for which other tests exist.
Allowing general weak dependence of errors is also new even for multivariate
data. For functional data, all tests are new. In what follows, we summarize the
main conclusions of our work:

e Generally, the functional approach is a more adequate and safer option. The
multivariate approach can be more powerful, but it is sensitive to the choice of
the subspace on which the data are projected.

e If the signal is close to sinusoidal, then the simple single frequency test is
more powerful, otherwise the opposite is true. The effect becomes stronger with
length of the period. This empirical finding is theoretically confirmed in Sec-
tion E of the Supplementary Material.

e For the multivariate tests, we have seen that the eigenvalue statistics can have a
considerable power advantage over the traditionally used trace based statistics.
Theoretically, we have shown that TYEV: and T™®V2 can be justified by a LR
procedure when the periodic signal is proportional to a single function w(u).
There exists an easy algorithm to compute critical values.

If no prior knowledge on the periodic component is available, we recommend us-
ing the ANOVA based approach or to base the decision on more than one test.
Simultaneous acceptance or simultaneous rejection by several tests will lend con-
fidence in the conclusion.

SUPPLEMENTARY MATERIAL

Supplemental material of ““Testing for periodicity in functional time series”
(DOLI: 10.1214/17-A0S1645SUPP; .pdf). In Section A, we show how to apply our
tests when Assumption 2.2 is not fulfilled. In Sections B and C, we prove the main
theoretical results of this paper. In Section D, we discuss the estimation of the co-
variance and the spectral density matrix (operator) and we show their consistency
also under the alternative. We also explain a data-driven manner to select the band-
width for spectral smoothing. Finally, we study the rate of the approximation of the
distribution HExp(A1, A2, ...) by HEXp()A\ Lyoees ik). In Section E, we do a theo-
retically study for the local consistency under several alternatives. In Section F, we
show that in typical situations (like when using PCA) the projection-based tests
remain consistent if the basis is chosen in a data-driven way.
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