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THE LANDSCAPE OF EMPIRICAL RISK FOR
NONCONVEX LOSSES

BY SONG MEI1!, YU BAI? AND ANDREA MONTANARI?
Stanford University

Most high-dimensional estimation methods propose to minimize a cost
function (empirical risk) that is a sum of losses associated to each data point
(each example). In this paper, we focus on the case of nonconvex losses. Clas-
sical empirical process theory implies uniform convergence of the empirical
(or sample) risk to the population risk. While under additional assumptions,
uniform convergence implies consistency of the resulting M-estimator, it does
not ensure that the latter can be computed efficiently.

In order to capture the complexity of computing M-estimators, we study
the landscape of the empirical risk, namely its stationary points and their
properties. We establish uniform convergence of the gradient and Hessian
of the empirical risk to their population counterparts, as soon as the number
of samples becomes larger than the number of unknown parameters (modulo
logarithmic factors). Consequently, good properties of the population risk can
be carried to the empirical risk, and we are able to establish one-to-one corre-
spondence of their stationary points. We demonstrate that in several problems
such as nonconvex binary classification, robust regression and Gaussian mix-
ture model, this result implies a complete characterization of the landscape of
the empirical risk, and of the convergence properties of descent algorithms.

We extend our analysis to the very high-dimensional setting in which
the number of parameters exceeds the number of samples, and provides a
characterization of the empirical risk landscape under a nearly information-
theoretically minimal condition. Namely, if the number of samples exceeds
the sparsity of the parameters vector (modulo logarithmic factors), then a
suitable uniform convergence result holds. We apply this result to nonconvex
binary classification and robust regression in very high-dimension.

1. Introduction. M-estimation is arguably the most popular approach to
high-dimensional estimation. Given data-points {z;, z>, ..., Z,}, Z; € RY, we es-
timate a parameter vector # € R? via

(1.1) 0, = arg min R.(0),

n,p
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~ 1<
(1.2) R,(0) = ;Zz(o;zi).
i=1

Here, ¢ : R” x R? — R is a loss function, and ©y,p is a constraint set. Prominent
examples of this general framework include maximum likelihood (ML) estimation
[14] and empirical risk minimization [44].

Once the objective (1.1) is formed, it remains to define a computationally ef-
ficient scheme to approximate it. Gradient descent is the most frequently applied
idea. Assuming for the moment ®, , = R?, this takes the form

(1.3) 0,(k+1)=0,(k) —hVR,(0,K)).

While a large number of variants and refinements have been developed over the
years (projected gradient, accelerated gradient [32], stochastic gradient [39], dis-
tributed gradient [42] and so on), these share many of the strengths and weaknesses
of the elementary iteration (1.3).

If gradient descent is adopted, the only freedom is in the choice of the loss
function £(-; -). Convexity has been a major guiding principle in this respect. If
the function £(-; z) : R? — R is convex, then the empirical risk ﬁn(-) is convex
as well, and hence gradient descent is globally convergent to an M-estimator (the
latter is unique under strict convexity). Also, strong convexity of R, (-) can be used
to prove optimal statistical guarantees for the M-estimator 6,,. This line of thought
can be traced back as far as Fisher’s argument for the asymptotic efficiency of max-
imum likelihood estimators [14, 15], and originated many beautiful contributions.
In recent years, a flourishing line of research addresses the very high-dimensional
regime p >> n, by leveraging on suitable restricted strong convexity assumptions
[5,7,8,31].

Despite these successes, many problems of practical interest call for nonconvex
loss functions. Let us briefly mention a few examples of nonconvex M-estimators
that are often preferred by practitioners to their convex counterparts. We will revisit
these examples in Section 4.

In binary linear classification, we are given n pairs z; = (y1,X1),...,2Zy =
(Y, Xn) with y; € {0, 1}, x; € R?, and would like to learn a model of the form
PY; =1|X; =x) = o ({fo, X)) with 0 € R4 a parameter vector and o : R — [0, 1]
a threshold function. The nonlinear square loss £(8; y,x) = (y — o ({0, X)))2 is
commonly used in practice

- 1 )
(1.4) Ra(0)=—3 (i —o((0,x))".
i=1
Several empirical studies [9, 34, 45] demonstrate superior robustness and classi-
fication accuracy of nonconvex losses in contrast to convex losses (e.g., hinge or

logistic loss). The same loss function is commonly used used in neural-network
models [22].
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A similar scenario arises in robust regression. In this case, we are given n pairs
z1 = (V1,X1),...,2Z, = (Y, X)) With y; € R, x; € R4, and we assume the linear
model y; = (Ao, X;) + &;, where the noise terms ¢; are i.i.d. with mean zero. Since
Huber’s seminal work [18], M-estimators are the method of choice for this prob-
lem:

-~ 1
(1.5) Ra(®)=—3  p(yi = (0.xi).

Robustness naturally suggests to investigate the use of a nonconvex function p :
R — R, either bounded or increasing slowly at infinity.

Finally, missing data problems famously lead to nonconvex optimization for-
mulations. Consider for instance a mixture of Gaussian problems in which we are
given data points z1,...,Z, € RY, z; ~iiq. Zﬁzl paN(@,,17%4) (for the sake of
simplicity we assume identity covariance and known proportions). The maximum-
likelihood problem requires to minimize*

(1.6) R,(0)= ——Zlog(z Pa®a (i —0a)),
izt \a=1
with respect to the cluster centers @ = (01, ..., 80;) € R?*k. Other examples in-

clude low-rank matrix completion [19], phase retrieval [41], tensor estimation
problems [30] and so on.

M-estimation with nonconvex loss functions £(-; z) : R? — R is far less un-
derstood than in the convex case. Empirical process theory guarantees uniform
convergence of the sample risk ﬁn(-) to the population risk R(f) = E[ﬁn 0] [6].
However, this does not provide a computationally practical scheme, since gradient
descent can get stuck in stationary points that are not global minimizers.

In this paper, we present several general results on nonconvex M-estimation
and apply them to develop new analysis in each of the three problems mentioned
above. We next overview our main results and the paper’s organization, referring
to Section 2 for a discussion of related work.

Uniform convergence of gradient and Hessian. We prove that, under technical
conditions on the loss function £(-; -), supy ||V§n (@) — VR(O)|2 < /plogn)/n
and supy ||V2ﬁn 6) — VZR(19)||Op < J/p(ogn)/n (we use < to hide constant fac-
tors). We refer to Section 3.1 for formal statements.

These results complement the classical analysis that implies uniform conver-
gence of the risk itself, but allow us to control the behavior of stationary points.
Note that they guarantee uniform convergence of the gradient and Hessian pro-
vided n, p — oo with p(log p)/n — 0. Apart from logarithmic factors, this is the
optimal condition.

4Here and below, bq(x) = exp{—llxll% /2}/ (2n)d/ 2 denotes the d-dimensional standard Gaussian
density.
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(In this paper, we will refer to the asymptotics n, p — oo with n roughly of
the same order as p as high-dimensional regime,’ to contrast it with the low-
dimensional analysis for n > p. We will refer to the asymptotics n < p under
sparsity assumptions as a very high-dimensional regime.)

Topology of the empirical risk. As an immediate consequence of the previous
result, the structure of the empirical risk function 6 ﬁn (@) is in many cases
surprisingly simple. Recall that a Morse function is a twice differentiable function
whose stationary points are non-degenerate (i.e., have an invertible Hessian). In
particular, stationary points are isolated, and have a well defined index. Assume
that the population risk R(@) is strongly Morse [i.e., at any stationary point 6, all
the eigenvalues of the Hessian are bounded away from zero |Ai(V2R(0))| > 4].
Then, for n 2 plog p, the stationary points of the empirical risk R, (0) are in one-
to-one correspondence with those of the population risk and have the same index
(minima correspond to minima, saddles to saddles, and so on). Weaker conditions
ensure this correspondence for local minima alone.

Very high-dimensional regime. We then extend the above picture to the case in
which the number of parameters p exceeds the number of samples n, under the
assumption that the true parameter vector 6 is so-sparse. This setting is relevant
to a large number of applications, ranging from genomics [35] to signal processing
[12]. In order to promote sparse estimates, we study the following ¢;-regularized
nonconvex problem (cf. Section 3.3):

minimize R,(0) + 2101l
(1.7) )
subject to 10]2 <r.

We introduce a generalized gradient linearity condition on the loss function £(-, -)
and prove that—under this condition—the above problem has a unique local min-
imum for n 2 solog p. Again this is a nearly optimal scaling since no consistent
estimation is possible when n < sp.

Applications. Given a particular M-estimation problem with a suitable statistical
model, we combine the above results with an analysis of the population risk R (@)
to derive precise characterizations of the empirical risk. In Section 4, we demon-
strate that this program can be carried out by studying the three problems outlined
below:

1. Binary linear classification. We prove that, for® n > dlogd, the empirical
risk has a unique local minimum, that is also the global minimum. Further, gradient
descent converges exponentially to this minimizer: ||én(k) — énllz <C ||é(0) -
énllz(l — h/C)¥, and enjoys nearly optimal estimation error guarantees: ||én —

5The specific asymptotics n, p — oo with n/p converging to a constant is also known as “Kol-
mogorov asymptotics” [40].
ORecall that, in this case, the number of parameters p is equal to the ambient dimension d.
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0oll2 < C+/(dlogn)/n. If the true parameter 0 is so-sparse, for n > sologd, the
£1-regularized empirical risk has a unique local minimum that is also the global
minimum. The minimizer enjoys nearly optimal estimation error guarantees: ||é n—
8oll> < C/TsoTogm/n.

2. Robust regression. We establish similar results for the robust regression
model, under technical assumptions on the loss function p : R — R and on the dis-
tribution of the noise ¢;. Namely, we prove that the empirical risk has a unique local
minimum, that can be found efficiently via gradient descent, provided n = dlogd.
If the true parameter 6 is so-sparse, for n 2> sologd, the £1-regularized empirical
risk has a unique local minimum.

3. Mixture of Gaussians. We consider the special case of two Gaussians with
equal proportions, that is, k = 2 with p; = p» = 1/2. We prove that, for n 2
dlogd, the empirical risk has two global minima that are related by exchange of
the two Gaussian components (91, ég) and (éz, 51), connected via saddle points.
The trust region algorithm converges to one of these two minima when initialized
at random. Also the two minima are within nearly optimal statistical errors from
the true centers.

1.1. Notations. We use normal font for scalars (e.g., a, b, c, . ..) and boldface
for vectors (x,w,...). We will typically reserve capital letters for random vari-
ables (and capital bold for random vectors). Given u, v € R™, their standard scalar
product is denoted by (u, v) = >, u;v;. The £, norm of a vector is—as usual—
indicated by ||x||,. The m x m identity matrix is denoted by Ly .

Given a matrix M € R™*™ we denote by ; (M), i € {1, ..., m} its eigenvalues
in decreasing order, and by ||M||op = max{A; (M), —A,, (M)} its operator norm. Fi-
nally, we shall occasionally consider third-order tensors T € R”*"™*™ Tn this case,
the operator (or injective) norm is defined as ||'T||op = max{[(T, x®3)|:x]l2 =1},
where (T, X®3) = Zi’j’k Tijrxixjxg.

We let B‘qi(a, p)={xe RY: ||x — all; < p} be the £, ball in R? with center a
and radius p. We will often omit the dimension superscript d when clear from the
context, the subscript ¢ when ¢ = 2 and the center a when a = 0. In particular,
B(p) is the Euclidean ball of radius p. For any set D C R?, we let 3D be the
boundary of the set.

We will generally use upper case letters for random variables and lower case for
deterministic values (unless the latter are matrices).

2. Related literature. While developing a theory on nonconvex M-estimators
is an outstanding challenge, several important facts are by now well understood
thanks to a stream of beautiful works. We will provide a necessarily incomplete
summary in the next paragraphs.

Uniform convergence of the empirical risk. Let R(0) = ER,(0) denote the pop-
ulation risk. Under mild conditions on the loss function £ and on the sample size,
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it is known that with high probability

@.1) sup |R,(0) — R(O)| <&y,

0€0,
for some small &, — 0 [6, 43]. This immediately implies guarantees for the M-
estimator @ in £-loss (or prediction error). Under additional conditions on the pop-
ulation risk R(#), bounds in estimation error can be derived as well.

For general nonconvex losses, uniform convergence results of the form (2.1)
do not preclude the existence of multiple local minima of the sample risk R.(0).
Hence, this theory does not provide—by itself—computationally practical meth-
ods to compute 9.

Algorithmic convergence to the “statistical neighborhood.” In general, gradi-
ent descent and other local optimization procedures are expected to converge to
local minima of the empirical risk ﬁn (0). In several cases, it is proved that every

. Aloc .. S . . .
local minimizer @  is “statistically good.” More precisely, the estimation error

(e.g., the £> error ||é?loc — 0pll2) is within a constant from the minimax rate for
the problem at hand. Also, gradient descent converges to such a neighborhood of
the true @g within a small number of iterations. Results of this type have been
proved, among others, for linear regression with noisy covariates [24], generalized
linear models with nonconvex regularizers [25], robust regression [26] and sparse
regression [47].

While these results are very important, they are not completely satisfactory. For
instance, one natural question is whether the statistical error might be improved
by finding a better local minimum. If, for instance, the estimation error could be
improved by a factor 2 by finding a better local minimum, it would be worth in
many applications to restart gradient descent at multiple initializations. Also, since
convergence to a fixed point is not guaranteed, these approaches come without a
clear stopping criterion. Finally, these proofs make use of the restricted strong
convexity (RSC) assumption introduced [25, 31], but do not provide any general
tool to establish this condition. In contrast, we prove uniform convergence results
that can be used to ensure a condition similar to RSC.

To the best of our knowledge, the only proof of unique local minimum of the
regularized empirical risk is obtained in a recent paper by Po-Ling Loh [23]. This
work assumes the linear regression model y; = (@, x;) + ¢;, and establishes unique-
ness for penalized regression with a certain class of bounded regularizers. This
result is comparable to our Theorem 8 (see Section 4.4) which uses £ regulariza-
tion instead. Note that, in [23], the sample size is required to scale quadratically in
the sparsity: n 2> sg. Our proof technique is substantially different from the one of
[23], and we only require n = sglogd.

Hybrid optimization methods. It is often difficult to ensure global convergence
to a minimizer of the sample risk ﬁn(-) or even to a statistical neighborhood of
the true parameters. Several papers develop two-stage procedures to overcome this
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problem. The first stage constructs a smart initialization 9(0) that is within a certain
large neighborhood of the true parameters. Spectral methods are often used to
implement this step. In the second stage, the estimate is refined by gradient descent
(or another local procedure) initialized at é(O). This general approach was studied
in a number of problems including matrix completion [19], phase retrieval [10]
and tensor decomposition [3].

In some cases, the local optimization stage is only proved to converge to a sta-
tistical neighborhood of 0, and hence this style of analysis shares the shortcom-
ings emphasized in the previous paragraph. In others, it is proven to converge to a
single point. Further, in practice, the smart initialization is often not needed, and
descent algorithms converge from random initialization as well. Finally, as men-
tioned above, these analyses are typically carried on in a case-by-case manner.

3. Uniform convergence results. In this section, we develop our key tools
that are uniform convergence results on the gradient and Hessian of the empirical
risk. We also establish some of the direct implications of our results. Through-
out, the data consists of the i.i.d. random variables {Z,...,Z,}. We will use
{z1,...,2,} if we want to refer to the corresponding realization. The empiri-
cal risk is defined by equation (1.2) and the corresponding population risk is
R(0) = Eﬁn () =EL(0; Z). The true parameter vector @ satisfies the condition
VR(0o) =E[VL(@y; Z)] =0.

We consider two regimes, a high-dimensional regime in which the number of
parameters p is allowed to diverge roughly in proportion with the number of sam-
ples n, and a very high-dimensional regime in which the true parameters’ vector
09 is sparse and the number of parameters p can be much larger than n. We treat
these two cases separately because the theory is simpler and more general in the
first regime.

3.1. High-dimensional regime. In order to avoid technical complications, we
will limit optimization to a bounded set, that is, we will let ®, , =BP(r) = {0 €
RP?,|10]l2 < r} to be the Euclidean ball in p dimensions.

We begin by stating our assumptions. Assumptions 1 and 2 below quantify the
amount of statistical noise in the gradient and Hessian of the loss function.

ASSUMPTION 1 (Gradient statistical noise). The gradient of the loss is 72-
sub-Gaussian. Namely, for any A € R? and 6 € B (r),

. . T2|Ixl3
(3.1) E{exp((A, V€(0;Z) —E[VL®;Z)])} <exp — )

ASSUMPTION 2 (Hessian statistical noise). The Hessian of the loss, evaluated
on a unit vector, is T2-sub-exponential. Namely, for any A € B (1) and 6 € B”(r),

(3.2) Zro= (N, V2UO; Z)A),
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(3.3) E{exp(—zlz;hg — EZkyol)} <2.
T

Our third assumption requires the Hessian of the loss to be a Lipschitz function
of the vector of parameters 6.

ASSUMPTION 3 (Hessian regularity). The Hessian of the population risk
is bounded at one point. Namely, there exists §, € BP(r) and H such that
IVZR@.)lop < H.

Further, the Hessian of the loss function is Lipschitz continuous with integrable
Lipschitz constant. Namely, there exists J, (potentially diverging polynomially in
p) such that

IV2£(81:2) — V2E(02;2) [lop

(3.4) J(z) = sup ,
016,87 (r) 101 — 6212

(3.5) E{J(Z)} < J..

Further, there exists a constant ¢, such that H < 72 peh, Jy < 73 peh.

REMARK 1. The constant J, serves as a third derivative control of the loss
function, and controls the discretization error in proving the uniform convergence
of the Hessian. The sample size will depend on H and J, logarithmically, which
is why we assume H and J, to grow at most polynomially in dimension p.

REMARK 2. Note that V¢ has the same units’ as 1/r, and V2¢ has the same
units as 1/ r2. Thus, T has the same units as 1/, H has the same units as 72 and
J, has the same units as 7. This is the reason why we bound H and J in the form
as in Assumption 3. In this way, (v - 7) and ¢, are dimensionless.

Discrete loss functions (e.g., the 0—1 loss) are common within the statistical
learning literature, but do not satisfy the above assumption because the gradient
and Hessian are not defined everywhere. Note however that these can be well ap-
proximated by differentiable losses, with little—if any—practical difference.

We are now in position to state our uniform convergence result.

THEOREM 1. Under Assumptions 1, 2 and 3 stated above, there exists a uni-
versal constant Cq, such that letting C = Cy - (cp V log(rt/8) V 1), the following
hold:

7By this, we mean that the two quantities behave in the same way under a rescaling of the param-
eters 6.
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(a) The sample gradient converges uniformly to the population gradient in Eu-
clidean norm. Namely, if n > Cplog p, we have

_ Cpl
(3.6) IP’( sup |VR,(0) — VR®)|, < r‘/w> >1—5.
0eBP (r) n

(b) The sample Hessian converges uniformly to the population Hessian in op-
erator norm. Namely, if n > Cplog p, we have

_ Cpl
(3.7) IP’( sup HVZR,,(O)—V2R(0)H0p§rz‘/ﬂ> >1-6.
6eBP(r) n

3.2. Topology of the empirical risk. Theorem 1 immediately implies that the
structure of stationary points of the sample risk R, () must reflect that of the popu-
lation risk. In order to formalize this intuition, we will discuss its implications for a
class of functions that we will call strongly Morse function. We will then consider
a broader set of functions known as strict saddle.

3.2.1. Strongly Morse functions. Given a differentiable function F : BY(r) —
R, we say that x in the interior of the ball BY(r) is critical (or stationary) if
VF(x)=0.

Recall that a twice differentiable function F : RY — R is said to be a Morse
function if all its critical points are nondegenerate, that is, have an invertible Hes-
sian. In other words, V F(x) = 0 implies 2i (V2F(x)) #0forallie{l,..., d}.
Morse functions behave well under differentiable reparametrizations, and hence
play a central role in differential topology: we refer to [17] for a readable introduc-
tion to this area, and to [13, 28, 29] for additional background. The Supplementary
Material [27] contains a brief introduction to the most important notions we use in
the proofs.

One key feature of a Morse function F is that, for any xo € R¢, there exists a
neighborhood B(xg, €) of x¢ such that, within B(xq, €), F(x) is qualitatively well
described by its second order Taylor expansion at Xg. In particular, if Xg is a critical
point of F', then there exists a small neighborhood of x( that does not contain any
other critical point:3 all critical points are isolated.

As a consequence, a morse function can only have a finite number of critical
points in a compact domain K C RY. If this was not the case, that is, if the set of
critical points S € K was infinite, it would have an accumulation point X, € K.

8Since F is twice differentiable, by Taylor expansion there exists 6(¢) [with §(¢) — 0 as ¢ — 0]
such that |[VF(x) — VF(xqg) — VZF(XQ)(X —xg)ll2 < |Ix — xg|l28(¢) for all x € B(xq, €). For x
a critical point, assume by contradiction that x is another critical point in B(xp, £). Then we have,
for Hy = V2 F (x0). v =x — Xq. [[Hovll2 < [[Vl|28(¢). But [Hov|3 = (v. HZv) > min; <4 |1; (Hg)|? -
||V||%, which gives a contradiction if we choose ¢ so that 82(8) <min;<¢ |A; (H0)|2.
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By continuity of the gradient, x, would be itself a critical point, and have infinitely
many other critical points in any neighborhood, thus leading to a contradiction.

The index of a nondegenerate critical point X of a twice differentiable func-
tion F is the number of negative eigenvalues of the Hessian V F(Xg): we will
denote this integer by Indy,(F). The Morse lemma characterizes completely the
behavior of F in a neighborhood of xo. Namely, if Indy, (F) = k, there exists dif-
ferentiable coordinatesg ¢1(X), ..., 9q(x) defined on B(xg, ¢) such that F(x) =
F(xp) + Zl | i (x)% — Z;j: d—ki1 i (x)2. In other words, all critical points with
the same index look alike, modulo differentiable changes of coordinates.

Our next definition provides a quantitative version of the notion of Morse func-
tions. We focus on the case in which F has a bounded domain (a Euclidean ball)
because this is the relevant setting for our applications.

DEFINITION 1. We say that a twice differentiable function F : BY(r) — R is
(g, n)-strongly Morse if |V F (X)||2 > ¢ for || x|l = r and, forany x € R, Ix|l2 < r,
the following holds:

The next theorem implies that if the population risk R(-) is strongly Morse, then
the empirical risk retains, with high probability, the same topological structure.

THEOREM 2. Under Assumptions 1,2 and 3, let n > 4Cplogn - ((t?/?) v
(14/772)), where C = C (12,8, r,cp) is as in the statement of Theorem 1. Then the
following happens with probability at least 1 — §.

If the populatton risk R : 0 — R(0) is (e, n)-strongly Morse in BP (r), then
the sample risk R, : 0 — R,(0) is (e/2,n/2)-strongly Morse in BP (r). Further

there is a one-to-one correspondence between the set of critical points of R(-),

~ ~(1 ~(k
C=1{00,....00) and the set of critical points of R,(-), C, = {0; ), 0( )}

U n

such that (letting 63,(1]) be the point in correspondence with Y| for any j € [k])

(a) The index of é,(:) coincides with the index of 0. (In particular, local min-
ima correspond to local minima, and saddles to saddles.)

(b) Ifwe further let L = suppegp(r) | V> R(8)llop, and assume n > 4Cplogn/n2
where n2 = (82/t%) A (? /T4 A (n*/(L%1?)), we have, for each j € {1, ...k},

Cpl
(3.9) 189 _ g0, < 2 [Cplogn,
n n

9This means that the map X — (91 (X),..., ©q(Xp)) is a diffeomorphism.



THE LANDSCAPE OF EMPIRICAL RISK 2757

3.2.2. Strict saddle functions. The strong Morse assumption imposes condi-
tions on all the eigenvalues of the Hessian V2R (#) at near-critical points, and im-
plies a detailed characterization of the empirical risk. In some applications, only
weaker properties can be established for the population risk. These can neverthe-
less be very useful and Theorem 1 can be used to transfer them to the empirical
risk. A useful general notion is the one of strict saddle functions, first introduced
in [16].

DEFINITION 2. We say that a twice differentiable function F : BY(r) > R is
(e, n)-strict saddle if ||V F (x)|2 > ¢ for ||x||> = r and, for any x € RY, |Ix|l> < 7,
the following holds:

(3.10) IVF®|,<e = |amin(VEFX)|> 7,

where Apin(M) = min; <4 A; (M) is the minimum eigenvalue of matrix M € Rdxd,

This definition is completely analogous to the one of strongly Morse functions:
the only difference is that we are only imposing a condition on the smallest eigen-
value of the Hessian. In particular, strongly Morse function is a subclass of strict
saddle functions.

In strict saddle functions, near critical points are either strongly convex, or have
significant negative direction of the Hessian (and hence can be escaped by op-
timization algorithms). Our definition might seem to impose weaker conditions
than the original one in [16], which additionally requires existence of local min-
ima close to convex points. However, Lemma 8 in the Supplementary Material
[27] implies that the two definitions are equivalent.

Notice that any local minimum of a strict saddle function is a non-degenerate
critical point. Hence, by the same argument in the previous section, local minima
are isolated, and there can be finitely many of them in any compact domain. Also,
since |V F(x)||2 > & on the boundary, all local minima are in the interior of B (r).

THEOREM 3. Under Assumptions 1,2 and 3, let n > 4Cplogn - ((t?/&?) v
(1:4/172)), where C = C(‘rz, 8,1, cy) is as in the statement of Theorem 1. Then the
following happens with probability at least 1 — §.

If the population risk R : 0 — R(0) is (e, n)-strict saddle in BP(r), then
the sample risk ﬁn 10— ﬁn(O) is (¢/2,n/2)-strict saddle in BP(r). Further,

there is a one-to-one correspondence between the set of local minima of R(-),

C=1{0W,....0®0 and the set of local minima of En(-), C, = {9;1), R éf,k)}

such that (letting é;j) be the local minimum in correspondence with 09, for any
j €lk]), foreach je{l,...,k},

(3.11) ”é(j)_o(j)“ <2_T /M'
n 2 = n n
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3.3. Very high-dimensional regime. In the very high-dimensional regime n <«
p, we will solve the ¢1-penalized risk minimization problem
minimize R, (0) + A [|0]/1,

(3.12)
subject to 102 <r.

We need some additional assumptions. It is fairly straightforward to check them
in specific cases; see, for example, Section 4.1. The first assumption is mainly
technical, and not overly restrictive: it requires the loss function to have almost
surely bounded gradient, in a suitable sense.

ASSUMPTION 4 (Gradient bounds). There exists a constant 7, such that Z-
almost surely, for all 8 € B (r),

(3.13) |Ve®:;Z)|, <T..

Our key structural assumption is stated next. It requires the gradient of the loss
function to depend on the parameters only through a linear function of @, possibly
dependent on the feature vector z. Note that 8 is regarded here as fixed, and hence
omitted from the arguments.

ASSUMPTION 5 (Generalized gradient linearity). There exist functions g :
R xR >R, (t,2) — g(t;z) and ¥ ‘R > RP, 7+ ¥ (z), such that

(3.14) (VE#;2),0 —00)=g((0 — 00, ¥ (2)); ).

In addition, g(¢; z) is L,-Lipschitz to its first argument, g(0;z) = 0, and ¥ (Z) is
mean-zero and t2-sub-Gaussian.

As an example, in the case of binary linear classification and robust regression,
the data is given as a pair z = (y, x), and there exists a function f(¢; z) such that
Ve@;z) = f((0 — 0p,x); z)X. Assumption 5 is satisfied with g(z;z) = tf(¢; z)
provided the latter is Lipschitz as a function of ¢ € R.

THEOREM 4. Under Assumptions 2, 3, 4 and 5 stated above, there exists a
constant C1 that depends on (r, 72, ch, 6), and a universal constant Cqo such that
letting Co = Cy - (cp V1log(rt/8) Vv 1), the following hold:

(a) The sample directional gradient converges uniformly to the population di-
rectional gradient, along the direction (0 — 0q). Namely, we have

VR,0)—VR@®),0—0 lcy1
]P( sup I{ @) @) 0| < (Tt Lo ]E Og(np))
0eBL (1)\ (0} 160 —0oll1 n

(3.15)

>1-4.



THE LANDSCAPE OF EMPIRICAL RISK 2759

(b) The sample restricted Hessian converges uniformly to the population re-
stricted Hessian in the set Bé’ (ryn Bg (so) for any so < p. Namely, as n >
Cosolog(np) we have

IP’( sup (v, (V2R.(8) — V2R(9))V)|
6<B5 (nNBY (s0),veBL (DNBY (s0)

/ 1
S'L'Z M)Zl_a
n

4. Applications.

4.1. Binary linear classification: High-dimensional regime. As mentioned in
the Introduction, in this case we are given n pairs z; = (y1,X1), ..., Zy = (Vn, Xn)
with y; € {0, 1}, x; € R4, whereby P(Y; = 11X; =x) = g ({f9, x)) (hence p =d
in this case). We estimate 6 by minimizing the nonlinear square loss (1.4), which
we copy here for the reader’s convenience:

n

_ - 1 ,
Ry(0) = — i —o((0,x))),
@ minimize p lzzl(y o ((0,%;)))

subject to 10> <r.

This can be regarded as a smooth version of the 0—1 loss.
We collect below the technical assumptions on this model.

ASSUMPTION 6 (Binary linear classification). (a) The activation z — o (2) is
three times differentiable with o’(z) > 0 for all z, and has bounded first, second
and third derivatives. Namely, for some constant L, > 0:

42) max{ || o |o” |oo: I0”" |} < Lo.

(b) The feature vector X has zero mean and is t2-sub-Gaussian, that is,

2 |A13

E[e?*X]<e 2 forall A e RY.
(c) The feature vector X spans all directions in R4, that is, E[XX"] > )4 2w
forsome 0 <y < 1.

Assumption 6(a) is satisfied by many classical activation functions, a prominent
example being the logistic (or sigmoid) function o (z) = (1 + =)~ 1.

Our main results on binary linear classification are summarized in the theorem
below.

THEOREM 5. Under Assumption 6, further assume ||0¢|2 < r/3. There exist
positive constants C1, Ca and hpax depending on parameters (L, 1, 72, y, ) and
the activation function o (-), but independent of n and d, such that, if n > Cid logd,
the following hold with probability at least 1 — §:
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® 0o =[1,0]
O = [0.816, —0.268

0
o
I

FI1G. 1. Binary linear classification: (a) Population risk for d = 2. (b) A realization of the empirical
risk for d =2 and n/d = 20.

(a) The empirical risk function 0 +— ﬁn (0) has a unique local minimizer in
B4 (0, r), that is, the global minimizer én

(b) Gradient descent with fixed step size hy = h < hmax converges expo-
nentially fast to the global minimizer, for any initialization 85 € B%(0, 2r/3):
10, (k) — 0nll2 < C1ll6s — 0, ll2(1 — h/C*.

(c) We have ||0,, — 0pll2 < Cas/(dlogn)/n.

The proof of this theorem can be found in Section E.1 in the Supplementary
Material [27], and is based on the following two-step strategy. First, we study
the population risk R(#), and establish its qualitative properties using analysis. In
particular, our results imply that R(@) is strongly Morse in the domain B% (0, r)
(but we prove that an even stronger characterization). Second, we use our uniform
convergence result (Theorem 1) to prove that the same properties carry over to the
sample risk R.(0). Figure 1 presents a small numerical example that illustrates
how the qualitative features of the population risk apply to the empirical risk as
well.

A few remarks are in order. First of all, the convergence rate of gradient descent
[at point (b)] is independent of the dimension d and number of samples n. In other
words, O (log(1/¢)) iterations are sufficient to converge within distance & from the
global minimizer. Classical theory of empirical risk minimization only concerns
the statistical properties of the optimum, but does not provide efficient algorithms.

Next, note that our condition on the sample size n is nearly optimal. Indeed, it
is information-theoretically impossible to estimate 6 from less than n < d binary
samples. Finally, the convergence rate at point (c) also nearly matches the optimal

(parametric) rate /d/n.

4.2. Binary linear classification: Very high-dimensional regime. As in the pre-
vious section, we are given n pairs z; = (y1,X1),...,Zn = (Yn,X,) With y; €
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{0,1}, x; € R4, and P(Y; = 11X; =x) = o ({#9, x)). However, 0 is assumed to
be sparse, and the number of samples n is allowed to be much smaller than the
ambient dimension d = p. We adopt again the nonlinear square loss (1.4), but
now use a £,-constrained £ -regularized risk minimization, as per equation (3.12),
which we rewrite here explicitly for the reader’s ease:

n

L 1 2
minimize - E (vi—o((0.%x:)))" + 1nll€1l1,
4.3) i3 l l '

subject to 0], <r.

The very high-dimensional regime d > n is of interest in many contexts. In
machine learning, the number of parameters p can increase when a large number
of additional features are added to the model (for instance, nonlinear functions of
an original set of features). In signal processing, 6 represents an unknown signal,
of which we measure noisy random linear projections (X;, 8o), i € [n], quantized
to one single bit. This scenario is relevant to group testing [4] and analog-to-digital
conversion [20, 21], and has been studied under the name of “one-bit compressed
sensing;” see [36] and references therein.

In the very high-dimensional regime, we need additional assumptions on the
distribution of X as well as the activation function o.

ASSUMPTION 7 (Fast-decaying activation). The activation function o satisfy
sup,crilo’(®)t], |o”(1)t]} < Cy for some absolute constant Cy .

ASSUMPTION 8 (Continuous and bounded features). The feature vector X has
a density p(-) in R?, that is, P(X € A) = [4 p(x) dx for all Borel sets A C R4, In
addition, the feature vector is bounded: | X|lco < M7, and [(X, 0¢/[|00ll2)] < Mz
almost surely, with 6g the ground truth parameter. Here, M is a dimensionless
constant greater than 1.

REMARK 3. Assumption 7 holds popular examples of activation functions,
such as the logistic o7 (z) = (1 +e~%)~! or probit op(z) = ®(2).

Also note that Assumption 8 requires |(X, 69)|/|00o]l2 < Mt to hold only when
00 is the fixed ground truth parameter and not uniformly over all sg-sparse vec-
tors. For unbounded sub-Gaussian feature vectors, this assumption does not hold
directly. However, for any dataset {X;} ; with X; independent v2-sub-Gaussian,
with high probability sup; ¢, {11 Xi [lco, [{Xi, 00/100l2)|} < Cy/log(nd)t. The next
theorem can then be supplemented by a truncation argument at level M =
C /log(nd), leading to the same conclusions with an additional log(nd) factor
in the error bound.

In the statement of the following theorem, for convenience, we will also as-
sume n < d'%, This is a technical assumption so that we can bound log(nd) <
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1011og(d). And since we are considering the very high-dimensional regime, it is
not meaningful to discuss n > d'%.

THEOREM 6. Under Assumptions 6, 7 and 8, further assume ||0¢llo < so,
10oll2 <r/2 and n < d'%0 Then there exist constants Cn, Cy, Cs and gg depend-
ingon (L, Cy, 1, 72, ¥, 8) and the activation function o (-), but independent of n,
d, so and M, such that as n > Cpsologd and X, > C; M /(logd)/n, the following
hold with probability at least 1 — §:

(a) Any stationary point of problem (4.3) is in Bg’(oo, Cs((M?sologd)/n +
sor2)1/2).,

(b) Aslong as n is large enough such that n > C,sg log2 d and C((M?s logd)/
n+ SO)\.%)l/ 2 < g, the problem has a unique local minimizer 9,1 which is also the
global minimizer.

As in the previous section, our proof makes a crucial use of the sparse uniform
convergence result, Theorem 4, together with an analysis of the population risk.

REMARK 4. Let us emphasize that Theorem 6 leaves open the existence of a
fast algorithm to find the global optimizer 8,,. However [33], Theorem 3, implies
that, by running k steps of projected gradient descent, we can find an estimate
0, (k) which has a subgradient of order O (1/k). While we expect this sequence to
converge to 9,,, we defer this question to future work.

Theorem 6 establishes a nearly optimal upper bound on the £, estimation er-
ror |0, — @g|l>. Indeed this error is within a logarithmic factor from the error
achieved by an oracle estimator that is given the exact support of 6g. For com-

parison, [36, 37] proves ||é£;P —0ol2 < (so/n)1/4(10g p/so)l/4 for a linear pro-
gramming formulation, under the more restrictive assumption of Gaussian feature
vectors X; ~ N(0, I;«4). This analysis was generalized in [1] to feature vectors
with i.i.d. entries, although with the same estimation error bound. The optimal
rate ||9ZVX —00ll2 < (so/n)log(p/so) was obtained only recently in [38], again for
standard Gaussian feature vectors.

Let us finally emphasize that the estimator defined here uses a bounded loss
function and is potentially more robust to outliers than other approaches that use a
convex loss (e.g., logistic loss).

4.3. Robust regression: High-dimensional regime. In robust regression, we are
given data z; = (y1,X1),...,Zy = (Vn, Xp) With y; € R, x; € R4, and we assume
the linear model y; = (Ao, X;) + &;, where the noise terms ¢; are i.i.d. with mean
zero. Also in this case we have p = d. We use the loss (1.5), which we copy here
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for the reader’s convenience:
1
minimize — Z p(yi —(0,x;)),
4.4) i
subject to 02 <r.

Classical choices for loss function ¢ +— p(¢) are the Huber loss [18] which is con-
vex with ppuber(f) = |¢| — const. for ¢ large enough, and Tukey’s bisquare loss,
which is bounded and defined as

1—(1— /1))’ for|r| <10,

45 1=
(4.5) PTukey () ) for |¢| > to.

It is common to define the associated score function as ¥ (¢) = p’(¢).
We next formulate our assumptions.

ASSUMPTION 9 (Robust regression). (a) The score function z — ¥ (z) is
twice differentiable and odd in z with ¥ (z) > 0 for all z > 0, and has bounded
zero, first and second derivatives. Namely, for some constant Ly > 0:

(4.6) max {1 lloos ¥/l oos [¥" 0o} = Ly-

(b) The noise ¢ has a symmetric distribution, that is, such that ¢ is distributed
as —e. Further, defining g(z) =E.{¢¥ (z 4+ ¢)} we have g(z) > 0 for all z > 0, as
well as g’(0) > 0.

(c) The feature vector X has zero mean and is 72-sub-Gaussian, that is,
2|A13
E[e®*X)] <e 7 forall A € RY.

(d) The feature vector X spans all directions in R4, that is, E[XX"] = Y 'l
for some 0 <y< 1.

Note that the condition g(z) = E.{¥/(z +¢)} > 0 for all z > 0 and g’(0) > 0
are quite mild, and holds—for instance—if the noise has a density that is strictly
positive for all ¢, and decreasing for ¢ > 0.

THEOREM 7. Under Assumption 9, further assume ||0¢l|l2 < r/3. Then there
exist positive constants C1, Ca and hyax depending on parameters (Ly,r, 72, v,
8), the loss function p(-), and the law of noise P, but independent of n and d, such
that as n > C1dlogd, the robust regression estimator satisfies the following with
probability at least 1 — §:

(a) The empirical risk function w +— R\n (0) has a unique local minimizer in
Bd(r), that is, the global minimizer 0,,.
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(b) Gradient descent with fixed step size hy = h < hmax converges expo-
nentlally fast to the global minimizer, for any initialization 05 € B*(0¢, 2r/3):
18, (k) — 8,112 < C1l6s — 0,21 —h/CDE.

(c) We have ||0,, —0oll2 < Cay/(dlogn)/n.

The proof follows the same two steps strategy as for the binary classification
problem. In particular, we obtain a precise characterization of the population risk,
which (in particular) is strongly Morse.

4.4. Robust regression: Very high-dimensional regime. As in the previous sec-
tion, we are given n pairs z| = (y1,X1),...,Zy = (Vn, X)) With y; € R, x; € RY,
and we assume the linear model y; = (09, X;) + &;, where the noise terms &; are
i.i.d. with mean zero. However, 0 is assumed to be sparse, while the number of
samples n is much smaller than the ambient dimension d = p. We adopt again the
loss (1.5), but now use a £,-constrained £;-regularized risk minimization, as per
equation (3.12), which we rewrite here explicitly for the reader’s ease:

minimize =Y pyi—(0,x:)+1.0001,
“4.7) Z l ’

subject to 102 <r.

Like the case of very high-dimensional binary classification, we also need con-
tinuous and bounded feature assumptions, that is, Assumption 8 and we need a fast
decaying assumption on ¢ = p’.

ASSUMPTION 10 (Fast-decaying score function). The score function v satis-
fies sup,cr{|¥ (1)t]} < Cy for some absolute constant Cy;.

THEOREM 8. Under Assumptions 6, 8 and 10, further assume ||0¢llo < so,
10oll2 <r/2,and n < d'0 Then there exist constants Cp, Cy, Cs and &g depend-
ingon (Ly,Cy,r, 72, y,8), the loss function p, and the law of noise P, but inde-
pendent of n, d, so and M, such that as n > Cysologd and X,, > C; M\/(logd)/n,
the following hold with probability at least 1 — &:

(a) Any stationary point of problem (4.7) is in Bg’(oo, Cs((M?sologd)/n +
SO)\‘Z)I/Z)

(b) Aslong as n is large enough such that n > Cysg log d and Cy((M?s logd)/
n—+ so)\z)l/2 < &9, the problem has a unique local minimizer 0,, which is also the
global minimizer.

The proof of this theorem is almost the same as the proof of Theorem 6. We will
omit the proof to avoid redundancies.
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FI1G. 2.  Gaussian mixture model: (a) Population risk for d = 1. (b) A realization of the empirical
risk for d =1, and n = 30.

4.5. Gaussian mixture model. In the applications considered so far, the pop-
ulation risk has a unique stationary point which is also the global minimum. We
used our uniform convergence theorems to prove that the empirical risk has the
same property, and hence can be optimized efficiently.

In order to illustrate our approach on an example with multiple local minima,
we consider clustering within a simple Gaussian mixture model. We are given data
points z1,...,z, € R4, with z; drawn from a mixture of two Gaussians, in equal
proportions, z; ~ (1/2)N(09.1, laxq) + (1/2)N(f¢.2, Lyxq). Define the separation
parameter D = ||6p2 — 6¢.1]]2/2. We want to estimate the centers 6 1, 892 by
solving the maximum likelihood problem [here 8 = (01, 0>) € R24]

n 2
(4.8) minimize  R,(0) = —% Zlog(z ba(zi — 0a)).

i=1 a=1

In this case, the population risk has at least two global minima related by the
symmetry under exchange of the two components: 8 = (09 1,6002) and §_ =
(00.2,600.1), as well as a saddle point @5 = ((0o.1 +60.2)/2, (69.1+800.2)/2). This is
a common phenomenon: symmetries lead to multiple minima of the risk function.
In a recent paper, Xu, Hsu and Maleki [46] prove that these are the only critical
points. A related analysis was carried out by Daskalakis, Tzamos, Christos and
Zampetakis [11] in order to study the behavior of the EM algorithm. See Figure 2
for an illustration.

THEOREM 9. Let R, (0) be the empirical risk for an equal-proportion mixture
of two Gaussians. Then there exist constants C1, Cy and C3 depending on (D, §)



2766 S. MEL Y. BAI AND A. MONTANARI

but independent of n and d, such that as n > C1dlogd, the following holds with
probability at least 1 — §:

(a) Inside B2 (05, Cy), the empirical risk has exactly two local minima é+, 0_
related by an exchange of the two classes.

(b) For any initialization éo € B2 (0, C»), the trust region algorithm will con-
verge to one of the local minima.

(c) The local minima satisfy

~ dlogn A dlogn
49) 1646402 <Csy/ ng, 16-—6_l><Cs,/ ng.

As in previous examples, we obtain a precise characterization of the population
risk, building on [46], and then transfer the result to empirical risk using our uni-
form convergence results. Our analysis implies—in particular—that the population
risk is strict saddle.

5. Numerical experiments. We carried out extensive numerical experiments
in order to verify how accurate is our theory. Sections 5.1 to 5.3 present simula-
tions for the nonconvex binary classification and robust regression models studied
in Section 4. Sections 5.4 present illustrations with real data. We will present sim-
ulations for the Gaussian mixture model (Section H.1) and binary classification
using the Australian credit dataset (Section H.2) in the Supplementary Material
[27].

5.1. Binary linear classification: High-dimensional regime. Figures 3(a),
3(b), 4(a), 4(b) report our results for the nonconvex binary classification model
of Section 4.1.

We consider i.i.d. predictors X; ~ N(0, I;x4), and generate labels Y; € {0, 1}
with P(Y; = 1|1X; = x) = o ({09, X)) where o (u) = oz () = (1 + e )~ is the
logistic activation. We perform gradient descent [cf. equation (1.3) to minimize
the empirical risk (1.4)], with a minor revision in practice: we will project the
points back into BY(r) if the iteration points fall out of the ball, with r = 3||¢]|2.
The step size is fixed to be h = 1.

In order to test the hypothesis that the landscape is simple (i.e., it has a unique
local minimum), we run projected gradient descent starting from multiple ran-
dom initializations 65 ~ N(0, I;x4/d). If the landscape is simple, we expect the
iterates 0, (k) to converge to the same global minimizer with no dependence on
the initialization. If the landscape is rough, projected gradient descent will con-
verge to different points depending on the initialization. Given a maximum num-
ber of iterations kmax, we define the following quantity, depending on the data
(Y, X) ={(Yi, X h<i<n,

5.1) Sy.x = y/ Tr(Varinit (B, (kmax) Y. X)),
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FI1G. 3. Binary linear classification, high dimensional: (a) Success rate versus n/(dlogd) for sev-
eral ambient dimensions d, with ||0gllo =3 (dashAed lines are empirical averages, continuous lines
are a smoothed version); (b) Estimation error E[||0,, — 0¢||2] versus n/d, for ||0gll» = 1.

where the variance is taken over the random initializations 6. In words, Sy x is
the spread of the limit points of projected gradient descent, for the instance (Y, X).
We then define the empirical success probability as

(5.2) Pouce =P(Sy x < &).

In Figure 3(a), we plot our results for the empirical success rate, for several
values of n, d. In this experiment, we take ||f¢||2 = 3. For each pair (n, d), we
generate 100 instances (Y;, X;) and run projected gradient descent from 10 ran-
dom initializations. We use kpax = 10* iterations and tolerance & = 102 though
results seem to be fairly insensitive to these parameters. For each dimension d,
the success rate goes rapidly from 0 to 1 as the number of samples n crosses a
threshold. We plot the success probability as function of the rescaled number of
samples n/(d logd). On this scale, curves for different dimension cross each other,
and become steeper as d increases. This is consistent with Theorem 5. This also
suggests a sharp phase transition at n, (d) which is roughly of order d logd. It is a
fascinating open question whether a sharp threshold actually exists.'”

Figure 3(b) illustrates the behavior of the estimation error ||§n — 6g||> achieved
by gradient descent. In all the following experiments, we will take ||@g|l2 = 1.
We plot the estimation error (averaged over 100 random instances) E[llén — 0921
versus n/d. Curves for different dimensions collapse, and are consistent with the
optimal rate ||§n — 0ol =O(/d/n).

Figure 4(a) shows the convergence of gradient descent for several values of n
and d, for fixed n/d = 20. Namely, we plot the distance from the global minimizer

10When convergence to a single global minimum fails, we observe that often projected gradient
actually convergence to the boundary of B9 (r).
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FIG. 4. Binary linear classification, high dimensional: (a) The convergence of the gradient descent
algorithm. Here |02 = 1, n/d = 20. The y-axis is on a log-scale; (b) Minimum number of iterations
needed to achieve average distance 1074 from the global optimizer.

as a function of the number of iterations k, estimated using 100 realizations (Y, X).
Since there is a small probability that gradient descent fails to find unique mini-
mizer, we average the distance from the global minimizer over the results between
the (0.05, 0.95) quantiles of these 100 instances. Convergence to the global mini-
mizer appears to be exponential as predicted by Theorem 5. Also, convergence is
fairly independent of the dimension for fixed n/d.

Finally, Figure 4(b) shows the number of iterations needed to achieve the ¢ =
10~ optimization error. We run 100 instances, and we plot the expected number of
iteration, by averaging the results between the (0.05, 0.95) quantiles of these 100
instances. When n/d is small, the landscape is not very smooth, and convergence
is slower. When n/d grows, the number of iterations decreases and converges to a
constant. This is also predicted by Theorem 5: the landscape of empirical risk will
be as smooth as the landscape of population risk, as n > Cdlogd.

5.2. Binary linear classification: Very high-dimensional regime. In Figures 5,
6(a), 6(b), we present our results on nonconvex binary linear classification in the
very high-dimensional regime. Data (Y;, X;) were generated as in the previous
section, with fg a vector k nonzero entries all of size 1/ JVk. We use proximal
gradient descent to solve problem (3.12) with r = 10.

In Figure 5, we use random initializations @5 ~ N(0, I;.4/d), and plot the em-
pirical standard deviation of the resulting iterates std(én(i ) = Tr(\’/;r(én(i)))l/ 2,
Note that the variance is taken over the random initializations, for a same realiza-
tion of the data (Y, X), and hence captures smoothness (or roughness) of the em-
pirical risk landscape. The standard deviation appears to converge exponentially
fast to 0, confirming that indeed proximal gradient is converging to the unique
local minimizer, as anticipated by Theorem 6.
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FIG. 5. Binary linear classification, very high dimensional. The standard deviation of each itera-

tion point with respect to random initialization.

In Figure 6(a), we plot the expected distance from the global minimizer 8, for
each iterates. Proximal gradient appears to converge exponentially fast for n >

klog*(d).

5.3. Robust linear regression. In Figures 7, 8(a), 8(b), we present simulations
for robust regression. We generated random covariates X; ~ N(0, I;x4) and re-
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FIG. 6. Binary linear classification, very high-dimensional regime: (a) The convergence of prox-
imal gradient descent. Here, ||0g|lo = 1, and n/(k logz(d)) =20, and », = 1/100 - ,/logZ(d)/n.

(b) Convergence of the statistical error.
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FIG. 7. Robust regression. The standard deviation of each iteration point with respect to random
initialization.

sponses Y; = (09, X;) + ¢;, where ||0g|l> = 1. Again, we used projected gradient
descent to solve the optimization problem (4.4) with » = 10. For the loss function,
we used Tukey’s loss (4.5) with 7y = 4.685.

In Figure 7, we plot the standard deviation of the iterates std(én i) =
Tr(\//a\r(én(i ))/% over random initializations 85 ~ N(0, 25174 /d). In this case
& ~N(0, 1). Again, this standard deviation converges exponentially fast to 0 sup-
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FI1G. 8. Robust regression: (a) The standard deviation of each iteration point with respect to random
initialization, for different proportion of contamination. (b) The robustness of the global minimum
between linear regression and Tukey regression.



THE LANDSCAPE OF EMPIRICAL RISK 2771

——Logistic Lasso
30+ —»—Nonconvex logistic Lasso|{
Overlap

0 500 1000 1500 2009 25(?0 3000 3500 4000 0 0.05 0.1 0.15 0.2
Number of iterations A
n

(a) (b)

FI1G. 9. Colon cancer data: (a) The standard deviation of each iteration point with respect to ran-
dom initialization, for different regularization parameter. (b) Number of nonzero elements of logistic
Lasso and nonconvex logistic Lasso.

porting the claim that proximal gradient descent converges to a unique global
minimum irrespective of the initialization.

In Figure 8(a), (b), we study the a contaminated model for the noise, namely
g ~ (1 —8)N(0, 1) + 8N(0, 02). In Figure 8(a), we plot the standard deviation of
the estimates obtained with random initializations 65 ~ N(0, 251;x4/d), for n =
480, d = 80. Convergence rate remains exponential even for large contamination
fraction. In Figure 8(b), we investigated the dependence of the estimation error on
the contamination fraction, and the scale of outliers. Tukey’s regression is fairly
insensitive to outliers, while the least squares regression deteriorates as expected.

5.4. Colon cancer data. In Figure 9(a), (b), we consider a gene-expression
dataset from [2]. The data set contains expression levels of of 2000 genes in 22
normal and 40 tumor colon tissues, hence n = 62 data points. Expression levels
are normalized as in [2] to have zero mean and unit standard deviation. We use the
expression levels to form feature vectors x; € R?, d = 2000 and encode the type
of tissue using a binary label y; = 1 (tumor) or y; = 0 (no tissue).

We fit a model of the form P(Y; = 1|X; =Xx) = o ((#p, X)) with o (1) = o (u)
the logistic function, by using the nonconvex approach (4.3) and proximal gradient.
We also used ¢;-regularized logistic regression, for comparison. Let us emphasize
here that our focus here is not on the accuracy of the predictive model, but rather on
showing that the nonconvex approach is a viable alternative to the more standard
regularized logistic regression.

In Figure 9(a), we plot the standard deviation of the estimate 0 n (1), over random
initializations @5 ~ N(0, I;«4/d). The standard deviation decreases exponentially
fast, suggesting that indeed the optimization problem has a unique local minimum.
In Figure 9(b), we compare the model selected by the nonconvex approach (4.3)
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to the one from ¢;-regularized logistic regression, and also plot the number of
overlaps of their selected variables. Note that most of the covariates selected by the
nonconvex regression method also appear in logistic regression. This suggests that
the model produced by the nonconvex approach is comparable to that produced by
£1-regularized logistic regression.

SUPPLEMENTARY MATERIAL

Supplement: Proofs and simulations (DOI: 10.1214/17-A0S1637SUPP;
.pdf). The supplement provides some technical background lemmas and gives all
the proofs of the theorems, and additional numerical simulations.
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