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BARYCENTRIC SUBSPACE ANALYSIS ON MANIFOLDS

BY XAVIER PENNEC1

Université Côte d’Azur and INRIA

This paper investigates the generalization of Principal Component Anal-
ysis (PCA) to Riemannian manifolds. We first propose a new and general
type of family of subspaces in manifolds that we call barycentric subspaces.
They are implicitly defined as the locus of points which are weighted means
of k+1 reference points. As this definition relies on points and not on tangent
vectors, it can also be extended to geodesic spaces which are not Riemannian.
For instance, in stratified spaces, it naturally allows principal subspaces that
span several strata, which is impossible in previous generalizations of PCA.
We show that barycentric subspaces locally define a submanifold of dimen-
sion k which generalizes geodesic subspaces.

Second, we rephrase PCA in Euclidean spaces as an optimization on flags
of linear subspaces (a hierarchy of properly embedded linear subspaces of
increasing dimension). We show that the Euclidean PCA minimizes the Ac-
cumulated Unexplained Variances by all the subspaces of the flag (AUV).
Barycentric subspaces are naturally nested, allowing the construction of hier-
archically nested subspaces. Optimizing the AUV criterion to optimally ap-
proximate data points with flags of affine spans in Riemannian manifolds
lead to a particularly appealing generalization of PCA on manifolds called
Barycentric Subspace Analysis (BSA).

1. Introduction. In a Euclidean space, the principal k-dimensional affine sub-
space of the Principal Component Analysis (PCA) procedure is equivalently de-
fined by minimizing the variance of the residuals (the projection of the data point
to the subspace) or by maximizing the explained variance within that affine sub-
space. This double interpretation is available through Pythagoras’ theorem, which
does not hold in more general manifolds. A second important observation is that
principal components of different orders are nested, enabling the forward or back-
ward construction of nested principal components.

Generalizing PCA to manifolds first requires the definition of the equivalent of
affine subspaces in manifolds. For the zero-dimensional subspace, an intrinsic gen-
eralization of the mean on manifolds naturally comes into mind: the Fréchet mean
is the set of global minima of the variance, as defined by Fréchet (1948) in general
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metric spaces. For simply connected Riemannian manifolds of nonpositive cur-
vature, the minimum is unique and is called the Riemannian center of mass. This
fact was already known by Cartan in the 1920s, but was not used for statistical pur-
poses. Karcher (1977) and Buser and Karcher (1981) first established conditions
on the support of the distribution to ensure the uniqueness of a local minimum
in general Riemannian manifolds. This is now generally called Karcher mean, al-
though there is a dispute on the naming [Karcher (2014)]. From a statistical point
of view, Bhattacharya and Patrangenaru (2003, 2005) have studied in depth the
asymptotic properties of the empirical Fréchet/Karcher means.

The one-dimensional component can naturally be a geodesic passing through
the mean point. Higher-order components are more difficult to define. The sim-
plest generalization is tangent PCA (tPCA), which amounts unfolding the whole
distribution in the tangent space at the mean, and computing the principal compo-
nents of the covariance matrix in the tangent space. The method is thus based on
the maximization of the explained variance, which is consistent with the entropy
maximization definition of a Gaussian on a manifold proposed by Pennec (2006).
tPCA is actually implicitly used in most statistical works on shape spaces and Rie-
mannian manifolds because of its simplicity and efficiency. However, if tPCA is
good for analyzing data which are sufficiently centered around a central value (uni-
modal or Gaussian-like data), it is often not sufficient for distributions which are
multimodal or supported on large compact subspaces (e.g., circles or spheres).

Instead of an analysis of the covariance matrix, Fletcher et al. (2004) proposed
the minimization of squared distances to subspaces which are totally geodesic at
a point, a procedure coined Principal Geodesic Analysis (PGA). These Geodesic
Subspaces (GS) are spanned by the geodesics going through a point with tangent
vector restricted to a linear subspace of the tangent space. However, the least-
squares procedure is computationally expensive, so that the authors approximated
it in practice with tPCA, which led to confusions between tPCA and PGA. A real
implementation of the original PGA procedure was only recently provided by
Sommer, Lauze and Nielsen (2014). PGA is allowing to build a flag (sequences of
embedded subspaces) of principal geodesic subspaces consistent with a forward
component analysis approach. Components are built iteratively from the mean
point by selecting the tangent direction that optimally reduces the square distance
of data points to the geodesic subspace. In this procedure, the mean always belongs
to geodesic subspaces even when it is outside of the distribution support.

To alleviate this problem, Huckemann and Ziezold (2006), and later Hucke-
mann, Hotz and Munk (2010), proposed to start at the first-order component di-
rectly with the geodesic best fitting the data, which is not necessarily going through
the mean. The second principal geodesic is chosen orthogonally to the first one,
and higher-order components are added orthogonally at the crossing point of the
first two components. The method was named Geodesic PCA (GPCA). Further re-
laxing the assumption that second and higher-order components should cross at a
single point, Sommer (2013) proposed a parallel transport of the second direction
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along the first principal geodesic to define the second coordinates, and iteratively
define higher-order coordinates through horizontal development along the previ-
ous modes.

These are all intrinsically forward methods that build successively larger ap-
proximation spaces for the data. A notable exception is the concept of Principal
Nested Spheres (PNS), proposed by Jung, Dryden and Marron (2012) in the con-
text of planar landmarks shape spaces. A backward analysis approach determines
a decreasing family of nested subspheres by slicing a higher dimensional sphere
with affine hyperplanes. In this process, the nested subspheres are not of radius
one, unless the hyperplanes passe through the origin. Damon and Marron (2013)
have recently generalized this approach to manifolds with the help of a “nested
sequence of relations”. However, up to now, such a sequence was only known for
spheres or Euclidean spaces.

We first propose in this paper new types of family of subspaces in manifolds:
barycentric subspaces generalize geodesic subspaces and can naturally be nested,
allowing the construction of inductive forward or backward nested subspaces. We
then rephrase PCA in Euclidean spaces as an optimization on flags of linear sub-
spaces (a hierarchy of properly embedded linear subspaces of increasing dimen-
sion). To that end, we propose an extension of the unexplained variance crite-
rion that generalizes nicely to flags of barycentric subspaces in Riemannian man-
ifolds. This leads to a particularly appealing generalization of PCA on manifolds:
Barycentric Subspace Analysis (BSA).

Paper organization. We recall in Section 2 the notions and notation needed
to define statistics on Riemannian manifolds, and we introduce the two running
example manifolds of this paper: n-dimensional spheres and hyperbolic spaces.
Exponential Barycentric Subspaces (EBS) are then defined in Section 3 as the lo-
cus of weighted exponential barycenters of k + 1 affinely independent reference
points. The closure of the EBS in the original manifold is called affine span [this
differs from the preliminary definition of Pennec (2015)]. Equations of the EBS
and affine span are exemplified on our running examples: the affine span of k + 1
affinely independent reference points is the great subsphere (resp., sub-hyperbola)
that contains the reference points. In fact, other tuple of points of that subspace
generates the same affine span, which is also a geodesic subspace. This coinci-
dence is due to the very high symmetry of the constant curvature spaces.

Section 4 defines the Karcher (resp., Fréchet) barycentric subspaces (KBS,
resp., FBS) as the local (resp., global) minima of the weighted squared distance to
the reference points. As the definitions relies on distances between points and not
on tangent vectors, they are also valid in more general non-Riemannian geodesic
spaces. For instance, in stratified spaces, barycentric subspaces may naturally span
several strata. For Riemannian manifolds, we show that our three definitions are
subsets of each other (except possibly at the cut locus of the reference points):



2714 X. PENNEC

the largest one, the EBS, is composed of the critical points of the weighted vari-
ance. It forms a cell complex according to the index of the critical points. Cells
of positive index gather local minima to form the KBS. We explicitly compute the
Hessian on our running spherical and hyperbolic examples. Numerical tests show
that the index can be arbitrary, thus subdividing the EBS into several regions for
both positively and negatively curved spaces. Thus, the KBS consistently covers
only a small portion of the affine span in general and is a less interesting definition
for subspace analysis purposes.

For affinely independent points, we show in Section 5 that the regular part of a
barycentric subspace is a stratified space which is locally a submanifold of dimen-
sion k. At the limit, points may coalesce along certain directions, defining nonlocal
jets2 instead of a regular k + 1-tuple. Restricted geodesic subspaces, which are de-
fined by k vectors tangent at a point, correspond to the limit of the affine span when
the k-tuple converges towards that jet.

Finally, we discuss in Section 6 the use of these barycentric subspaces to gener-
alize PCA on manifolds. Barycentric subspaces can be naturally nested by defining
an ordering of the reference points. Like for PGA, this enables the construction
of a forward nested sequence of subspaces which contains the Fréchet mean. In
addition, BSA also provides backward nested sequences which may not contain
the mean. However, the criterion on which these constructions are based can be
optimized for each subspace independently but not consistently for the whole se-
quence of subspaces. In order to obtain a global criterion, we rephrase PCA in
Euclidean spaces as an optimization on flags of linear subspaces (a hierarchies
of properly embedded linear subspaces of increasing dimension). To that end, we
propose an extension of the unexplained variance criterion [the Accumulated Un-
explained Variance (AUV) criterion] that generalizes nicely to flags of affine spans
in Riemannian manifolds. This results into a particularly appealing generalization
of PCA on manifolds that we call Barycentric Subspace Analysis (BSA).

2. Riemannian geometry. In statistics, directional data occupy a place of
choice [Dryden (2005), Huckemann and Ziezold (2006)]. Hyperbolic spaces are
also the simplest models of negatively curved spaces which model the space of
isotropic Gaussian parameters with the Fisher–Rao metric in information geome-
try [Costa, Santos and Strapasson (2015)]. As nonflat constant curvature spaces,
both spherical and hyperbolic spaces are now considered in manifold learning for
embedding data [Wilson et al. (2014)]. Thus, they are ideal examples to illustrate
the theory throughout this paper.

2p-jets are equivalent classes of functions up to order p. Thus, a p-jet specifies the Taylor ex-
pansion of a smooth function up to order p. Nonlocal jets, or multijets, generalize subspaces of the
tangent spaces to higher differential orders with multiple base points.
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2.1. Tools for computing on Riemannian manifolds. We consider a differen-
tial manifold M endowed with a smooth scalar product 〈 · | ·〉x called the Rie-
mannian metric on each tangent space TxM at point x of M. In a chart, the met-
ric is specified by the dot product of the tangent vector to the coordinate curves:
gij (x) = 〈∂i | ∂j 〉x . The Riemannian distance between two points is the infimum of
the length of the curves joining these points. Geodesics, which are critical points
of the energy functional, are parametrized by arc-length in addition to optimiz-
ing the length. We assume here that the manifold is geodesically complete, that
is, the definition domain of all geodesics can be extended to R. This means that
the manifold has no boundary nor any singular point that we can reach in a finite
time. As an important consequence, the Hopf–Rinow–De Rham theorem states
that there always exists at least one minimizing geodesic between any two points
of the manifold (i.e., whose length is the distance between the two points).

Normal coordinate system. From the theory of second-order differential equa-
tions, we know that there exists one and only one geodesic γ(x,v)(t) starting from
the point x with the tangent vector v ∈ TxM. The exponential map at point x maps
each tangent vector v ∈ TxM to the point of the manifold that is reached after a
unit time by the geodesic: expx(v) = γ(x,v)(1). The exponential map is locally one-
to-one around 0: we denote by −→

xy = logx(y) its inverse. The injectivity domain is
the maximal domain D(x) ⊂ TxM containing 0 where the exponential map is a
diffeomorphism. This is a connected star-shape domain limited by the tangential
cut locus ∂D(x) = C(x) ⊂ TxM [the set of vectors tv where the geodesic γ(x,v)(t)

ceases to be length minimizing]. The cut locus C(x) = expx(C(x)) ⊂M is the clo-
sure of the set of points where several minimizing geodesics starting from x meet.
The image of the domain D(x) by the exponential map covers all the manifold
except the cut locus, which has null measure. Provided with an orthonormal basis,
exp and log maps realize a normal coordinate system at each point x. Such an atlas
is the basis of programming on Riemannian manifolds as exemplified in Pennec,
Fillard and Ayache (2006).

Hessian of the squared Riemannian distance. On M \ C(y), the Riemannian
gradient ∇a = gab∂b of the squared distance d2

y (x) = dist2(x, y) with respect to
the fixed point y is ∇d2

y (x) = −2 logx(y). The Hessian operator (or double covari-
ant derivative) ∇2 is the covariant derivative of the gradient. In a normal coordi-
nate at the point x, the Christoffel symbols vanish at x so that the Hessian of the
square distance can be expressed with the standard differential Dx with respect
to the footpoint x: ∇2d2

y (x) = −2(Dx logx(y)). It can also be written in terms of
the differentials of the exponential map as ∇2d2

y (x) = (D expx |−→xy)
−1Dx expx |−→xy

to explicitly make the link with Jacobi fields. Following Brewin (2009), we com-
puted in Pennec (2017a) the Taylor expansion of this matrix in a normal coordinate
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system at x:

(1)
[
Dx logx(y)

]a
b = −δa

b + 1

3
Ra

cbd
−→
xyc−→xyd + 1

12
∇cR

a
dbe

−→
xyc−→xyd−→

xye + O
(
ε3)

.

Here, Ra
cbd(x) are the coefficients of the curvature tensor at x and Einstein sum-

mation convention implicitly sums upon each index that appear up and down in
the formula. Since we are in a normal coordinate system, the zeroth-order term
is the identity matrix, like in Euclidean spaces, and the first-order term vanishes.
The Riemannian curvature tensor appears in the second-order term and its covari-
ant derivative in the third-order term. Curvature is the leading term that makes
this matrix departing from the identity (the Euclidean case) and may lead to the
noninvertibility of the differential.

Moments of point distributions. Let {x0, . . . , xk} be a set of k + 1 points on
a Manifold provided with weights (λ0, . . . , λk) that do not sum to zero. We may
see these weighted points as the weighted sum of Diracs μ(x) = ∑

i λiδxi
(x). As

this distribution is not normalized and weights can be negative, it is generally not
a probability. It is also singular with respect to the Riemannian measure. Thus,
we have to take care in defining its moments as the Riemannian log and distance
functions are not smooth at the cut-locus.

DEFINITION 1 [(k +1)-pointed/punctured Riemannian manifold]. Let {x0, . . .

xk} ∈ Mk+1 be a set of k + 1 reference points in the n-dimensional Riemannian
manifold M and C(x0, . . . , xk) = ⋃k

i=0 C(xi) be the union of the cut loci of these
points. We call the object consisting of the smooth manifold M and the k + 1
reference points a (k + 1)-pointed manifold. Likewise, we call the submanifold
M∗(x0, . . . , xk) = M \ C(x0, . . . , xk) of the noncut points of the k + 1 reference
points a (k + 1)-punctured manifold.

On M∗(x0, . . . , xk), the distance to the points {x0, . . . , xk} is smooth. The Rie-
mannian log function −→

xxi = logx(xi) is also well defined for all the points of
M∗(x0, . . . , xk). Since the cut locus of each point is closed and has null measure,
the punctured manifold M∗(x0, . . . , xk) is open and dense in M, which means that
it is a submanifold of M. However, this submanifold is not necessarily connected.
For instance in the flat torus (S1)

n, the cut-locus of k + 1 ≤ n points divides the
torus into kn disconnected cells.

DEFINITION 2 [Weighted moments of a (k + 1)-pointed manifold]. Let
(λ0, . . . , λk) ∈ R

k+1 such that
∑

i λi 
= 0. We call λi = λi/(
∑k

j=0 λj ) the normal-
ized weights. The weighted pth-order moment of a (k + 1)-pointed Riemannian
manifold is the p-contravariant tensor

(2) Mp(x,λ) = ∑
i

λi
−→
xxi ⊗ −→

xxi ⊗ · · · ⊗ −→
xxi︸ ︷︷ ︸

p times

.
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The normalized pth-order moment is Mp(x,λ) = Mp(x,λ) =Mp(x,λ)/M0(λ).
Both tensors are smoothly defined on the punctured manifold M∗(x0, . . . , xk).

The 0th-order moment M0(λ) = ∑
i λi = 1Tλ is the mass. The pth-order mo-

ment is homogeneous of degree 1 in λ while the normalized pth-order moment is
naturally invariant by a change of scale of the weights. For a fixed weight λ, the
first-order moment M1(x, λ) = ∑

i λi
−→
xxi is a smooth vector field on the manifold

M∗(x0, . . . , xk) whose zeros will be the subject of our interest. The second and
higher-order moments are smooth (p,0) tensor fields that will be used in contrac-
tion with the Riemannian curvature tensor.

Affinely independent points on a manifold. In a Euclidean space, k + 1 points
are affinely independent if their affine combination generates a k dimensional sub-
space, or equivalently if none of the point belong to the affine span of the k others.
They define in that case a k-simplex. Extending these different definitions to mani-
folds lead to different notions. We chose a definition which rules out the singulari-
ties of constant curvature spaces and which guaranties the existence of barycentric
subspaces around reference point. In the sequel, we assume by default that the
k + 1 reference points of pointed manifolds are affinely independent (thus k ≤ n).
Except for a few examples, the study of singular configurations is left for a future
work.

DEFINITION 3 (Affinely independent points). A set of k + 1 points {x0, . . . ,

xk} is affinely independent if no point is in the cut-locus of another and if all the
sets of k vectors {logxi

(xj )}0≤j 
=i≤k ∈ Txi
Mk are linearly independent.

2.2. Example on the sphere Sn. We consider the unit sphere in dimension n ≥
1 embedded in R

n+1. The tangent space at x is the space of vectors orthogonal to
x: TxSn = {v ∈ R

n+1, vTx = 0} and the Riemannian metric is inherited from the
Euclidean metric of the embedding space. With these conventions, the Riemannian
distance is the arc-length d(x, y) = arccos(xTy) = θ ∈ [0, π]. Using the smooth
function f (θ) = θ/sin θ from ]−π;π [ to R, which is always greater than one, the
spherical exp and log maps are

expx(v) = cos
(‖v‖)

x + sin
(‖v‖)

v/‖v‖,(3)

logx(y) = f (θ)(y − cos θ x) with θ = arccos
(
xTy

)
.(4)

Hessian. The orthogonal projection v = (Id−xxT)w of a vector w ∈ R
n+1

onto the tangent space TxSn provides a chart around a point x ∈ Sn where we can
compute the gradient and Hessian of the squared Riemannian distance [detailed in
Pennec (2017a)]. Let u = (Id−xxT)y/sin θ = logx(y)/θ be the unit tangent vector
pointing from x to y, we obtain

(5) Hx(y) = ∇2d2
y (x) = 2uuT + 2f (θ) cos θ

(
Id−xxT − uuT)

.
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By construction, x is an eigenvector with eigenvalue 0. Then the vector u [or equiv-
alently logx(y) = θu] is an eigenvector with eigenvalue 1. To finish, every vector
which is orthogonal to these two vectors (i.e., orthogonal to the plane spanned by
0, x and y) has eigenvalue f (θ) cos θ = θ cot θ . This last eigenvalue is positive for
θ ∈ [0, π/2[, vanishes for θ = π/2 and becomes negative for θ ∈]π/2π [. We re-
trieve here the results of Buss and Fillmore (2001), Lemma 2, expressed in a more
general coordinate system.

Moments of a k + 1-pointed sphere. We denote a set of k + 1 point on
the sphere and the matrix of their coordinates by X = [x0, . . . , xk]. The cut
locus of xi is its antipodal point −xi so that the (k + 1)-punctured manifold
is M∗(x0, . . . , xk) = Sn \ −X. Using the invertible diagonal matrix F(X,x) =
Diag(f (arccos(xT

i x))), the first weighted moment is

(6) M1(x, λ) = ∑
i

λi
−→
xxi = (

Id−xxT)
XF(X,x)λ.

Affine independence of the reference points. Because no point is antipodal nor
identical to another, the plane generated by 0, xi and xj in the embedding space
is also generated by 0, xi and the tangent vector logxi

(xj ). This can be be seen
using a stereographic projection of pole −xi from Sn to Txi

Sn. Thus, 0, xi and the
k independent vectors logxi

(xj ) (j 
= i) generate the same linear subspace of di-
mension k+1 in the embedding space than the points {0, x0, . . . , xk}. We conclude
that k + 1 points on the sphere are affinely independent if and only if the matrix
X = [x0, . . . , xk] has rank k + 1.

2.3. Example on the hyperbolic space H
n. We now consider the hyperboloid

of equation −x2
0 + x2

1 , . . . , x2
n = −1 (x0 > 0) embedded in R

n+1 (n ≥ 2). Using
the notation x = (x0, x̂) and the indefinite nondegenerate symmetric bilinear form
〈 x | y〉∗ = xTJy = x̂Tŷ − x0y0 with J = diag(−1, Idn), the hyperbolic space H

n

can be seen as the pseudo-sphere ‖x‖2∗ = ‖x̂‖2 − x2
0 = −1 of radius −1 in the

Minkowski space R
1,n. A point can be parametrized by x = (

√
1 + ‖x̂‖2, x̂) for

x̂ ∈ R
n (Weierstrass coordinates). The restriction of the Minkowski pseudo-metric

of the embedding space R
1,n to the tangent space of TxH

n is positive definite. It
defines the natural Riemannian metric on the hyperbolic space. With these con-
ventions, geodesics are the trace of 2-planes passing through the origin and the
Riemannian distance is the arc-length d(x, y) = arccosh(−〈 x | y〉∗). Using the
smooth positive function f∗(θ) = θ/sinh(θ) from R to ]0,1], the hyperbolic exp
and log maps are

expx(v) = cosh
(‖v‖∗

)
x + sinh

(‖v‖∗
)
v/‖v‖∗(7)

logx(y) = f∗(θ)
(
y − cosh(θ)x

)
with θ = arccosh

(−〈 x | y〉∗)
.(8)
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Hessian. The orthogonal projection v = w + 〈 w | x〉∗x = (Id+xxTJ )w of a
vector w ∈ R

1,n onto the tangent space at TxH
n provides a chart around the point

x ∈ H
n where we can compute the gradient and Hessian of the hyperbolic squared

distance [detailed in Pennec (2017a)]. Let u = logx(y)/θ be the unit tangent vector
pointing from x to y, the Hessian is

(9) Hx(y) = ∇2d2
y (x) = 2J

(
uuT + θ coth θ

(
J + xxT − uuT))

J

By construction, x is an eigenvector with eigenvalue 0. The vector u [or equiv-
alently logx(y) = θu] is an eigenvector with eigenvalue 1. Every vector orthog-
onal to these two vectors (i.e., to the plane spanned by 0, x and y) has eigen-
value θ coth θ ≥ 1 (with equality only for θ = 0). Thus, the Hessian of the squared
distance is always positive definite. As a consequence, the squared distance is a
convex function and has a unique minimum. This was of course expected for a
negatively curved space [Bishop and O’Neill (1969)].

Moments of a k + 1-pointed hyperboloid. We now pick k + 1 points on
the hyperboloid whose matrix of coordinates is denoted by X = [x0, . . . , xk].
Since there is no cut-locus, the (k + 1)-punctured manifold is the manifold it-
self: M∗(x0, . . . , xk) = M =H

n. Using the invertible diagonal matrix F∗(X,x) =
Diag(f∗(arccosh(−〈 xi | x〉∗))), the first weighted moment is

(10) M1(x, λ) = ∑
i

λi logx(xi) = (
Id+xxTJ

)
XF∗(X,x)λ.

Affine independence. As for the sphere, the origin, the point xi and the k inde-
pendent vectors logxi

(xj ) ∈ Txi
H

n (j 
= i) generate the same k+1 dimensional lin-
ear subspace of the embedding Minkowski space R1,n than the points {x0, . . . , xk}.
Thus, k + 1 points on the hyperboloid are affinely independent if and only if the
matrix X has rank k + 1.

3. Exponential Barycentric Subspaces (EBS) and affine spans.

3.1. Affine subspaces in a Euclidean space. In Euclidean PCA, a zero- dimen-
sional space is a point, a one-dimensional space is a line and an affine subspace of
dimension k is generated by a point and k ≤ n linearly independent vectors. We
can also generate such a subspace by taking the affine hull of k + 1 affinely in-
dependent points: Aff(x0, . . . , xk) = {x = ∑

i λixi,with
∑k

i=0 λi = 1}. These two
definitions are equivalent in a Euclidean space, but turn out to have different gen-
eralizations in manifolds.

When there exists a vector of coefficients λ = (λ0, λ1, . . . , λk) ∈ R
k+1 (which

do not sum to zero) such that
∑k

i=0 λi(xi − x) = 0, then λ is called the barycen-
tric coordinates of the point x with respect to the k-simplex {x0, . . . , xk}. When
points are dependent, some extra care has to be taken to show that the affine span
is still well defined but with a lower dimensionality. Barycentric coordinates are
homogeneous of degree one.
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DEFINITION 4 [Projective space of barycentric coordinates (weights)]. Bary-
centric coordinates of k + 1 points live in the real projective space RP n = (Rk+1 \
{0})/R∗ from which we remove the codimension 1 subspace 1⊥ orthogonal to the
point 1 = (1 : 1 : · · ·1):

P∗
k = {

λ = (λ0 : λ1 : · · · : λk) ∈ RP n s.t. 1�λ 
= 0
}
.

Projective points are represented by lines through 0 in Figure 1. Standard rep-
resentations are given by the intersection of the lines with the “upper” unit sphere
Sk of Rk+1 with north pole 1/

√
k + 1 or by the affine k-plane of Rk+1 passing

through the point 1/(k + 1) and orthogonal to this vector. This last representation
give the normalized weight λi = λi/(

∑k
j=0 λj ): the vertices of the simplex have

homogeneous coordinates (1 : 0 : · · · : 0) · · · (0 : 0 : · · · : 1). To prevent weights to
sum up to zero, we have to remove the codimension 1 subspace 1⊥ orthogonal
to the projective point 1 = (1 : 1 : · · · : 1) (blue line in Figure 1). This excluded
subspace corresponds to the equator of the pole 1/

√
k + 1 for the sphere represen-

tation (points C and −C identified in Figure 1), and to the projective completion
(points at infinity) of the affine k-plane of normalized weights.

3.2. EBS and affine span in Riemannian manifolds.

DEFINITION 5 [Barycentric coordinates in a (k + 1)-pointed manifold].
A point x ∈ M∗(x0, . . . , xk) has barycentric coordinates λ ∈ P∗

k with respect to

FIG. 1. Projective weights for k = 1.
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k + 1 reference affinely independent points if

(11) M1(x, λ) =
k∑

i=0

λi
−→
xxi = 0.

Since the Riemannian log function −→
xxi = logx(xi) is multiply defined on the

cut locus of xi , this definition cannot be extended to the the union of all cut loci
C(x0, . . . , xk), which is why we restrict the definition to M∗(x0, . . . , xk).

DEFINITION 6 [Exponential Barycentric Subspace (EBS)]. The EBS of the
affinely independent points (x0, . . . , xk) ∈ Mk+1 is the locus of weighted expo-
nential barycenters of the reference points in M∗(x0, . . . , xk):

EBS(x0, . . . , xk) = {
x ∈ M∗(x0, . . . , xk) | ∃λ ∈ P∗

k :M1(x, λ) = 0
}
.

The reference points could be seen as landmarks in the manifold. This defini-
tion is fully symmetric wit respect to all of them, while one point is privileged
in geodesic subspaces. We could draw a link with archetypal analysis [Cutler and
Breiman (1994)] which searches for extreme data values such that all of the data
can be well represented as convex mixtures of the archetypes. However, extremal-
ity is not mandatory in our framework.

PROPOSITION 1 (Dual subspace of barycentric coordinates). The subspace
of barycentric coordinates 	(x) = {λ ∈ P∗

k | M1(x, λ) = 0} at point x ∈
M∗(x0, . . . , xk) is either void, a point, or a linear subspace of P∗

k .

We see that a point belongs to EBS(x0, . . . , xk) if and only if 	(x) 
= ∅. More-
over, any linear combination of weights that satisfy the equation is also a valid
weight so that 	(x) can only be a unique point (dimension 0) or a linear subspace
of P∗

k . The dimension of the dual space 	(x) is actually controlling the local di-
mension of the barycentric space, as we will see below.

The discontinuity of the Riemannian log on the cut locus of the reference points
may hide the continuity or discontinuities of the exponential barycentric subspace.
In order to ensure the completeness and potentially reconnect different compo-
nents, we consider the closure of this set.

DEFINITION 7 (Affine span of k + 1 affinely independent points). The affine
span is the closure of the EBS in M: Aff(x0, . . . , xk) = EBS(x0, . . . , xk). Because
we assumed that M is geodesically complete, this is equivalent to the metric com-
pletion of the EBS.
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3.3. Characterizations of the EBS. Let Z(x) = [−→xx0, . . . ,
−→
xxk] be the smooth

field of n×(k+1) matrices of vectors pointing from any point x ∈M∗(x0, . . . , xk)

to the reference points. We can rewrite the constraint
∑

i λi
−→
xxi = 0 in matrix form:

M1(x, λ) = Z(x)λ = 0, where λ is the k + 1 vector of homogeneous coordinates
λi .

THEOREM 1 (Characterization of the exponential barycentric subspace). Let
Z(x) = U(x) S(x) V (x)T be a singular decomposition of the n × (k + 1) matrix
field Z(x) = [−→xx0, . . . ,

−→
xxk] on M∗(x0, . . . , xk) with singular values {si(x)}0≤i≤k

sorted in decreasing order. EBS(x0, . . . , xk) is the zero level-set of the smallest sin-
gular value sk+1(x) and the dual subspace of valid barycentric weights is spanned
by the right singular vectors corresponding to the l vanishing singular values:
	(x) = Span(vk−l , . . . , vk) (it is void if l = 0).

PROOF. Since U and V are orthogonal matrices, Z(x)λ = 0 if and only if
at least one singular value (necessarily the smallest one sk) is null, and λ has to
live in the corresponding right-singular space: 	(x) = Ker(Z(x)). If we have only
one zero singular value (sk+1 = 0 and sk > 0), then λ is proportional to vk+1. If
l singular values vanish, then we have a higher-dimensional linear subspace of
solutions for λ. �

THEOREM 2. Let G(x) be the matrix expression of the Riemannian metric
in a local coordinate system and 
(x) = Z(x)TG(x)Z(x) be the smooth (k +
1) × (k + 1) matrix field on M∗(x0, . . . , xk) with components 
ij (x) = 〈 −→

xxi |−→
xxj 〉x and �(x) =M2(x,1) = ∑k

i=0
−→
xxi

−→
xxi

T = Z(x)Z(x)T be the (scaled) n × n

covariance matrix field of the reference points. EBS(x0, . . . , xk) is the zero level-
set of: det(
(x)), the minimal eigenvalue σ 2

k+1 of 
(x), the k + 1 eigenvalue (in
decreasing order) of the covariance �(x).

PROOF. The constraint M1(x, λ) = 0 is satisfied if and only if:

∥∥M1(x, λ)
∥∥2
x =

∥∥∥∥∑
i

λi
−→
xxi

∥∥∥∥2

x

= λT
(x)λ = 0.

As the function is homogeneous in λ, we can restrict to unit vectors. Adding this
constrains with a Lagrange multiplier to the cost function, we end-up with the
Lagrangian L(x, λ,α) = λT
(x)λ + α(λTλ − 1). The minimum with respect to
λ is obtained for the eigenvector μk+1(x) associated to the smallest eigenvalue
σk+1(x) of 
(x) (assuming that eigenvalues are sorted in decreasing order) and
we have ‖M1(x,μk+1(x))‖2

2 = σk+1(x), which is null if and only if the minimal
eigenvalue is zero. Thus, the barycentric subspace of k + 1 points is the locus of
rank deficient matrices 
(x):

EBS(x0, . . . , xk) = φ(−1)(0) where φ(x) = det
(

(x)

)
.
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One may want to relate the singular values of Z(x) to the eigenvalues of 
(x).
The later are the square of the singular values of G(x)1/2Z(x). However, the left
multiplication by the square root of the metric (a nonsingular but nonorthogo-
nal matrix) obviously changes the singular values in general except for vanish-
ing ones: the (right) kernels of G(x)1/2Z(x) and Z(x) are indeed the same. This
shows that the EBS is an affine notion rather than a metric one, contrarily to the
Fréchet/Karcher barycentric subspace.

To draw the link with the n × n covariance matrix of the reference points,
let us notice first that the definition does not assumes that the coordinate sys-
tem is orthonormal. Thus, the eigenvalues of the covariance matrix depend on
the chosen coordinate system, unless they vanish. In fact, only the joint eigen-
values of �(x) and G(x) really make sense, which is why this decomposition is
called the proper orthogonal decomposition (POD). Now, the singular values of
Z(x) = U(x)S(x)V (x)T are also the square root of the first k + 1 eigenvalues of
�(x) = U(x)S2(x)U(x)T, the remaining n − k − 1 eigenvalues being null. Simi-
larly, the singular values of G(x)1/2Z(x) are the square root of the first k + 1 joint
eigenvalues of �(x) and G(x). Thus, our barycentric subspace may also be char-
acterized as the zero level-set of the k + 1 eigenvalue (sorted in decreasing order)
of �, and this characterization is once again independent of the basis chosen. �

3.4. Spherical EBS and affine span. From equation (6), we identify the matrix:
Z(x) = (Id−xxT)XF(X,x). Finding points x and weights λ such that Z(x)λ = 0
is a classical matrix equation, except for the scaling matrix F(X,x) acting on
homogeneous projective weights, which is nonstationary and nonlinear in both X

and x. However, since F(X,x) = Diag(θi/ sin θi) is an invertible diagonal matrix,
we can introduce renormalized weights λ̃ = F(X,x)λ, which leaves us with the
equation (Id−xxT)Xλ̃ = 0. The solutions under the constraint ‖x‖ = 1 are given
by (xTXλ̃)x = Xλ̃ or more explicitly x = ±Xλ̃/‖Xλ̃‖ whenever Xλ̃ 
= 0. This
condition is ensured if Ker(X) = {0}. Thus, when the reference points are linearly
independent, the point x ∈ M∗(X) has to belong to the Euclidean span of the
reference vectors. Notice that for each barycentric coordinate we have two two
antipodal solution points. Conversely, any unit vector x = Xλ̃ of the Euclidean
span of X satisfies the equation (Id−xxT)Xλ̃ = (1 − ‖x‖2)Xλ̃ = 0, and is thus
a point of the EBS provided that it is not at the cut-locus of one of the reference
points. This shows that

(12) EBS(X) = Span{x0, . . . , xk} ∩ Sn \ X.

Using the renormalization principle, we can orthogonalize the reference points:
let X = USV T be a singular value decomposition of the matrix of reference vec-
tors. All the singular values si are positive since the reference vectors xi are as-
sumed to be linearly independent. Thus, μ = SV Tλ̃ = SV TF(X,x)λ is an invert-
ible change of coordinate, and we are left with solving (Id−xxT)Uμ = 0. By defi-
nition of the singular value decomposition, the Euclidean spans of X and U are the
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same, so that EBS(U) = Span{x0, . . . , xk} ∩ Sn \ −U . This shows that the expo-
nential barycentric subspace generated by the original points X = [x0, . . . , xk] and
the orthogonalized points U = [u0, . . . , uk] are the same, except at the cut locus of
all these points, but with different barycentric coordinates.

To obtain the affine span, we take the closure of the EBS, which incorporates
the cut locus of the reference points: Aff(X) = Span{x0, . . . , xk} ∩ Sn. Thus, for
spherical data as for Euclidean data, the affine span only depend on the reference
points through the point of the Grassmanian they define.

THEOREM 3 (Spherical affine span). The affine span Aff(X) of k + 1 linearly
independent reference unit points X = [x0, . . . , xk] on the n-dimensional sphere
Sn endowed with the canonical metric is the great subsphere of dimension k that
contains the reference points.

When the reference points are affinely dependent on the sphere, the matrix X

has one or more (say l) vanishing singular values. Any weight λ̃ ∈ Ker(X) is a
barycentric coordinate vector for any point x of the pointed sphere since the equa-
tion (Id−xxT)Xλ̃ = 0 is verified. Thus, the EBS is Sn \ −X and the affine span
is the full sphere. If we exclude the abnormal subspace of weights valid for all
points, we find that x should be in the span of the nonzero left singular vectors of
X, that is, in the subsphere of dimension of dimension rank(X) − 1 generated the
Euclidean span of the reference vectors. This can also be achieved by focusing of
the locus of points where Z(x) has two vanishing singular values. This more rea-
sonable result suggests adapting the EBS and affine span definitions for singular
point configurations.

Two points on a 2-sphere is an interesting example that can be explicitly worked
out. When the points are not antipodal, the rank of X = [x0, x1] is 2, and the gen-
erated affine span is the one-dimensional geodesic joining the two points. When
the reference points are antipodal, say north and south poles, X becomes rank one
and one easily sees that all points of the 2-sphere are on one geodesic joining the
poles with opposite log directions to the poles. This solution of the EBS defini-
tion correspond to the renormalized weight λ̃ = (1/2 : 1/2) ∈ Ker(X) of the kernel
of X. However, looking at the locus of points with two vanishing singular values
of Z(x) leads to restrict to the north and south poles only, which is a more natural
and expected result.

3.5. Hyperbolic EBS and affine span. The hyperbolic case closely follows the
spherical one. From equation (10), we get the expression of the matrix Z(x) =
(Id+xxTJ )XF∗(X,x). Solving for Z(x)λ = 0 can be done as previously by solv-
ing (Id+xxTJ )Xλ̃ = 0 with the renormalized weights λ̃ = F∗(X,x)λ. This equa-
tion rewrites 〈x|Xλ̃〉∗x = −Xλ̃, so that the solution has to be of the form Xλ̃ = 0
or x = αXλ̃. When the points are affinely independent, the first form is excluded
since Ker(X) = 0. In order to satisfy the constraint ‖x‖2∗ = −1 in the second form,
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we need to have α2 = −‖Xλ̃‖−2∗ > 0 and the first coordinate [Xλ̃]0 of Xλ̃ has to
be positive. This defines a cone in the space of renormalized weights from which

each line parametrizes a point x = sgn([Xλ̃]0)Xλ̃/

√
−‖Xλ̃‖2∗ of the Hyperbolic

EBS. Thus, Aff(X) is the k-dimensional hyperboloid generated by the intersection
of the Euclidean span of the reference vectors with the hyperboloid H

n. Since it is
complete, the completion does not add anything to the affine span:

(13) Aff(X) = EBS(X) = Span{x0, . . . , xk} ∩H
n.

As for spheres, we see that the hyperbolic affine span only depend on the reference
points through the point of the Grassmanian they define.

THEOREM 4 (Hyperbolic affine span). The affine span Aff(X) = EBS(X) of
k + 1 affinely independent reference points X = [x0, . . . , xk] on the n-dimensional
hyperboloid H

n endowed with the canonical Minkowski pseudo-metric of the em-
bedding space R1,n is the hyperboloid of dimension k generated by the intersection
of the hyperboloid with the hyperplane containing the reference points.

When the matrix X has one or more vanishing singular values (affine depen-
dance), all the points of the hyperboloid are solutions corresponding to weights
from Ker(X). Excluding these abnormal solutions and looking at the locus of
points where Z(x) has two vanishing singular values, we find that x should be
in the span of the nonzero left singular vectors of X, that is, in the sub-hyperboloid
of dimension rank(X) − 1 generated the Euclidean span of the reference vectors.

4. Fréchet/Karcher barycentric subspaces. The reformulation of the affine
span as the weighted mean of k + 1 points also suggests a definition using the
Fréchet or the Karcher mean, valid in general metric spaces.

DEFINITION 8 (Fréchet/Karcher barycentric subspaces of k + 1 points). Let
(M,dist) be a metric space of dimension n and (x0, . . . , xk) ∈ Mk+1 be k + 1 ≤
n + 1 distinct reference points. The (normalized) weighted variance at point x

with weight λ ∈P∗
k is: σ 2(x, λ) = 1

2
∑k

i=0 λi dist2(x, xi) = 1
2

∑k
i=0 λi dist2(x, xi)/

(
∑k

j=0 λj ). The Fréchet barycentric subspace of these points is the locus of
weighted Fréchet means of these points, that is, the set of absolute minima of
the weighted variance:

FBS(x0, . . . , xk) =
{
arg min

x∈Mσ 2(x, λ), λ ∈ P∗
k

}
.

The Karcher barycentric subspaces KBS(x0, . . . , xk) are defined similarly with lo-
cal minima instead of global ones.

In stratified metric spaces, for instance, the barycentric subspace spanned by
points belonging to different strata naturally maps over several strata. This is a
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significant improvement over geodesic subspaces used in PGA which can only be
defined within a regular strata. In the sequel, we only deal with the KBS/FBS of
affinely independent points in a Riemannian manifold.

4.1. Link between the different barycentric subspaces. In order to analyze the
relationship between the Fréchet, Karcher and Exponential barycentric subspaces,
we follow the seminal work of Karcher (1977). First, the locus of local minima
(i.e., Karcher mean) is a superset of the global minima (Fréchet mean). On the
punctured manifold M∗(x0, . . . , xk), the squared distance d2

xi
(x) = dist2(x, xi) is

smooth and its gradient is ∇d2
xi

(x) = −2 logx(xi). Thus, one recognizes that the
EBS equation

∑
i λi logx(xi) = 0 [equation (11)] defines nothing else than the crit-

ical points of the weighted variance:

FBS ∩ M∗ ⊂ KBS ∩M∗ ⊂ Aff ∩ M∗ = EBS .

Among the critical points with a nondegenerate Hessian, local minima are charac-
terized by a positive definite Hessian. When the Hessian is degenerate, we cannot
conclude on the local minimality without going to higher-order differentials. The
goal of this section is to subdivide the EBS into a cell complex according to the
index of the Hessian operator of the variance:

(14) H(x,λ) = ∇2σ 2(x, λ) = −
k∑

i=0

λiDx logx(xi).

Plugging the value of the Taylor expansion of the differential of the log of equa-
tion (1), we obtain the Taylor expansion:

(15)

[
H(x,λ)

]a
b = δa

b − 1

3
Ra

cbd(x)Mcd
2 (x, λ)

− 1

12
∇cR

a
dbe(x)Mcde

3 (x, λ) + O
(
ε4)

.

The key factor in this expression is the contraction of the Riemannian curvature
with the weighted covariance tensor of the reference points. This contraction is
an extension of the Ricci curvature tensor. Exactly as the Ricci curvature tensor
encodes how the volume of an isotropic geodesic ball in the manifold deviates
from the volume of the standard ball in a Euclidean space (through its metric trace,
the scalar curvature), the extended Ricci curvature encodes how the volume of
the geodesic ellipsoid −→

xyTM2(x, λ)(−1)−→xy ≤ ε deviates from the volume of the
standard Euclidean ellipsoid.

In locally symmetric affine spaces, the covariant derivative of the curvature is
identically zero, which simplifies the formula. In the limit of null curvature (e.g.,
for a locally Euclidean space like the torus), the Hessian matrix H(x,λ) converges
to the unit matrix and never vanishes. In general, Riemannian manifolds, equation
(15) only gives a qualitative behavior but does not provide guaranties as it is a
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series involving higher-order moments of the reference points. In order to obtain
hard bounds on the spectrum of H(x,λ), one has to investigate bounds on Jacobi
fields using Riemannian comparison theorems, as for the proof of uniqueness of
the Karcher and Fréchet means [see Karcher (1977), Kendall (1990), Le (2004),
Afsari (2011), Yang (2011)].

DEFINITION 9 (Degenerate, nondegenerate and positive points). An exponen-
tial barycenter x ∈ EBS(x0, . . . , xk) is degenerate (resp., nondegenerate or posi-
tive) if the Hessian matrix H(x,λ) is singular (resp., definite or positive definite)
for all λ in the the dual space of barycentric coordinates 	(x). The set of degener-
ate exponential barycenters is denoted by EBS0(x0, . . . , xk) [resp., nondegenerate
by EBS∗(x0, . . . , xk) and positive by EBS+(x0, . . . , xk)].

The definition of nondegenerate and positive points could be generalized to non-
critical points (outside the affine span) by considering for instance the right singu-
lar space of the smallest singular value of Z(x). However, this would depend on
the metric on the space of weights and a renormalization of the weights (such as
for spheres) can change the smallest nonzero singular value. Positive points are
obviously nondegenerate. In Euclidean spaces, all the points of an affine span are
positive and nondegenerate. In positively curved manifolds, we may have degen-
erate points and nonpositive points, as we will see with the sphere example. For
negatively curved spaces, the intuition that points of the EBS should all be pos-
itive like in Euclidean spaces is also wrong, as we sill see with the example of
hyperbolic spaces.

THEOREM 5 (Karcher barycentric subspace and positive span). EBS+(x0, . . . ,

xk) is the set of nondegenerate points of the Karcher barycentric subspace
KBS(x0, . . . , xk) on M∗(x0, . . . , xk). In other words, the KBS is the positive EBS
plus potentially some degenerate points of the affine span and some points of the
cut locus of the reference points.

4.2. Spherical KBS. In order to find the positive points of the EBS on the
sphere, we compute the Hessian of the normalized variance. Using equation (5)
and ui = logx(xi)/θi , we obtain the Hessian of σ 2(x, λ) = 1

2
∑k

i=0 λi dist2(x, xi):

H(x,λ) =
(∑

i

λiθi cot θi

)(
Id−xxT) + ∑

i

λi(1 − θi cot θi)uiu
T
i .

As expected, x is an eigenvector with eigenvalue 0 due to the projection on
the tangent space at x. Any vector w of the tangent space at x (thus orthog-
onal to x) which is orthogonal to the affine span (and thus to the vectors ui )
is an eigenvector with eigenvalue

∑
i λiθi cot θi . Since the Euclidean affine span

AffRn+1(X) has rank(X) ≤ k + 1 dimensions, this eigenvalue has multiplicity
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FIG. 2. Signature of the weighted Hessian matrix for different configurations of 3 reference points
(in black, antipodal point in red) on the 2-sphere: the locus of local minima (KBS) in brown does not
cover the whole sphere and can even be disconnected (first example).

n + 1 − rank(X) ≥ n − k when x ∈ Aff(X). The last Rank(X) − 1 eigenvalues
have associated eigenvectors within AffRn+1(X).

Buss and Fillmore (2001) have have shown that this Hessian matrix is positive
definite for positive weights when the points are within one hemisphere with at
least one nonzero weight point which is not on the equator. In contrast, we are
interested here in the positivity and definiteness of the Hessian H(x,λ) for the
positive and negative weights which live in dual space of barycentric coordinates
	(x). This is actually a nontrivial algebraic geometry problem. Simulation tests
with random reference points X show that the eigenvalues of H(x,λ(x)) can be
positive or negative at different points of the EBS. The number of positive eigen-
values (the index) of the Hessian is illustrated on Figure 2 for a few configurations
of 3 affinely independent reference points on the 2-sphere. This illustrates the sub-
division of the EBS on spheres in a cell complex based on the index of the critical
point: the positive points of the KBS do not in general cover the full subsphere
containing the reference points. It may even be disconnected, contrarily to the
affine span which consistently covers the whole subsphere. For subspace defini-
tion purposes, this suggests that the affine span might thus be the most interesting
definition. For affinely dependent points, the KBS/FBS behave similar to the EBS.
For instance, the weighted variance of X = [e1,−e1] on a 2-sphere is a function
of the latitude only. The points of a parallel at any specific latitude are global min-
ima of the weighted variance for a choice of λ = (α : 1 − α), α ∈ [0,1]. Thus, all
points of the sphere belong to the KBS, which is also the FBS and the affine span.
However, the Hessian matrix has one positive eigenvalue along meridians and one
zero eigenvalue along the parallels. This is a very nongeneric case.

4.3. Hyperbolic KBS/FBS. Let x = Xλ̃ be a point of the hyperbolic affine
span of X = [x0, . . . , xk]. The renormalized weights λ̃ are related to the original
weights through λ = F∗(X,x)−1λ̃ and satisfy ‖Xλ̃‖2∗ = −1 and sgn([Xλ̃]0) > 0.
The point x is a critical point of the (normalized) weighted variance. In order to
know if this is a local minimum (i.e., a point of the KBS), we compute the Hessian
of this weighted variance. Denoting ui = logx(xi)/θi with cosh θi = −〈 x | xi〉∗,
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FIG. 3. Signature of the weighted Hessian matrix for different configurations of 3 reference points
on the 2-hyperboloid: the locus of local minima (KBS) in brown does not cover the whole hyperboloid
and can be disconnected (last two examples).

and using the Hessian of the square distance derived in equation (10), we obtain
the following formula:

H(x,λ) = ∑
i

λiθi coth θi

(
J + JxxTJ

) + ∑
i

λi(1 − θi coth θi)Juiu
T
i J.

As expected, x is an eigenvector with eigenvalue 0 due to the projection on the
tangent space at x. Any vector w of the tangent space at x, which is orthogonal
to the affine span (and thus to the vectors ui ), is an eigenvector with eigenvalue∑

i λiθi coth θi = 1/(1Tλ̃) with multiplicity n+1− rank(X). The last Rank(X)−1
eigenvalues have associated eigenvectors within AffRn+1(X). Simulation tests with
random reference points X show these eigenvalues can be positive or negative at
different points of Aff(X). The index of the Hessian is illustrated on Figure 3 for
a few configuration of 3 affinely independent reference points on the 2-hyperbolic
space. Contrarily to the sphere, we observe only one or two positive eigenvalues
corresponding respectively to saddle points and local minima. This subdivision of
the hyperbolic affine span in a cell complex shows that the hyperbolic KBS is in
general a strict subset of the hyperbolic affine span. We conjecture that there is an
exception for reference points at infinity, for which the barycentric subspaces could
be generalized using Busemann functions [Busemann (1955)]: it is likely that the
FBS, KBS and the affine span are all equal in this case and cover the whole lower
dimensional hyperbola.

5. Properties of the barycentric subspaces. The EBS exists at each refer-
ence point xi with weight 1 for this point and zero for the others. Moreover,
when the points are affinely independent, the matrix Z(xi) has exactly one zero
singular value since column i is logxi

(xi) = 0 and all the other column vec-
tors are affinely independent. Finally, the weighted Hessian matrix boils down to
H(xi, λ) = −Dx logx(xi)|x=xi

= Id [see, e.g., equation (1)]. Thus, the reference
points are actually local minima of the weighted variance and the KBS exists by
continuity in their neighborhood.
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5.1. Barycentric simplex in a regular geodesic ball. We call the subset of the
FBS that has nonnegative weights a barycentric simplex. It contains all the refer-
ence points, the geodesics segments between the reference points, and of course
the Fréchet mean of the reference points. This is the generalization of a geodesic
segment for 2 points, a triangle for 3 points, etc. The (k − l)-faces of a k-simplex
are the simplices defined by the barycentric subspace of k − l + 1 points among
the k + 1. They are obtained by imposing the l remaining barycentric coordinates
to be zero. In parallel to this paper, Weyenberg (2015) has investigated barycen-
tric simplexes as extensions of principal subspaces in the negatively curved metric
spaces of trees under the name Locus of Fréchet mean (LFM), with very interesting
results.

THEOREM 6 (Barycentric simplex in a regular geodesic ball). Let κ be an
upper bound of sectional curvatures of M and inj(M) be the radius of injec-
tion (which can be infinite) of the Riemannian manifold. Let X = {x0, . . . , xk} ∈
M(k+1) be a set of k + 1 ≤ n affinely independent points included in a regular
geodesic ball B(x,ρ) with ρ < 1

2 min{inj(M), 1
2π/

√
κ} (π/

√
κ being infinite if

κ < 0). The barycentric simplex is the graph of a k-dimensional differentiable
function from the nonnegative quadrant of homogeneous coordinates (P∗

k )+ to
B(x,ρ) and is thus at most k-dimensional. The (k − l)-faces of the simplex are the
simplices defined by the barycentric subspace of k − l + 1 points among the k + 1
and include the reference points themselves as vertices and the geodesics joining
them as edges.

PROOF. The proof closely follows the one of Karcher (1977) for the unique-
ness of the Riemannian barycenter. The main argument is that μ(X,λ)(x) =∑

λiδxi
(x) is a probability distribution whose support is included in the strongly

convex geodesic ball B(x,ρ). The variance σ 2(x, λ) = 1
2

∑
i λid

2(x, xi) is strictly
convex on that ball and has a unique minimum xλ ∈ B(x,ρ), necessarily the
weighted Fréchet mean. This proof of the uniqueness of the weighted Fréchet
mean with nonnegative weights was actually already present in Buser and Karcher
(1981). We supplement the proof here by noting that since the Hessian H(xλ,λ) =∑

i λiHi(xλ) is the convex combination of positive matrices, it is positive definite
for all λ ∈ (P∗

k )+ in the positive quadrant. Thus the function xλ is differentiable
thanks to the implicit function theorem: Dλxλ = H(xλ,λ)(−1)Z(xλ). The rank of
this derivative is at most k since Z(xλ) = 0, which proves that the graph of the
function xλ describes at most a k dimensional subset in M. �

5.2. Barycentric simplexes and convex hulls. In a vector space, a point lies
in the convex hull of a simplex if and only if its barycentric coordinates are all
nonnegative (thus between 0 and 1 with the unit sum constraint). Consequently,
barycentric coordinates are often thought to be related to convex hulls. However,
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in a general Riemannian manifold, the situation is quite different. When there are
closed geodesics, the convex hull can reveal several disconnected components,
unless one restrict to convex subsets of the manifolds as shown by Groisser (2004).
In metric spaces with negative curvature (CAT spaces), Weyenberg (2015) displays
explicit examples of convex hulls of 3 points which are 3-dimensional rather than
2-dimensional as expected. In fact, the relationship between barycentric simplexes
and convex hulls cannot hold in general Riemannian manifolds if the barycentric
simplex is not totally geodesic at each point, which happens for constant curvature
spaces but not for general Riemannian manifolds.

5.3. Local dimension of the barycentric subspaces. Let x be a point of the
EBS with affinely independent reference points. The EBS equation Z(x)λ = 0 for
λ ∈ 	(x) is smooth in x and λ so that we can take a Taylor expansion: at the first
order, a variation of barycentric coordinates δλ induces a variation of position δx

which are linked through H(x,λ)δx − Z(x)δλ = 0. Thus, at regular points:

δx = H(x,λ)(−1)Z(x)δλ.

Let Z(x) = U(x)S(x)V (x)T be a singular value decomposition with singu-
lar values sorted in decreasing order. Since x belongs to the EBS, there is at
least one (say m ≥ 1) singular value that vanish and the dual space of barycen-
tric coordinates is 	(x) = Span(vk−m, . . . , vk). For a variation of weights δλ in
this subspace, there is no change of coordinates, while any variation of weights
in Span(v0, . . . , vk−m−1) induces a nonzero position variation. Thus, the tangent
space of the EBS restricts to the (k − m)-dimensional linear space generated by
{δx′

i = H(x,λ)(−1)ui}0≤i≤k−m. Here, we see that the Hessian matrix H(x,λ) en-
codes the distortion of the orthonormal frame field u1(x), . . . , uk(x) to match
the tangent space. Since the lower dimensional subspaces are included one the
larger ones, we have a stratification of our k-dimensional submanifold into k − 1,
k − 2, . . . ,0-dimensional subsets.

THEOREM 7 (Dimension of the exponential barycentric subspace at nondegen-
erate points). The nondegenerate exponential barycentric subspace EBS∗(x0,

. . . , xk) of k + 1 affinely independent points is a stratified space of dimension k

on M∗(x0, . . . , xk). On the m-dimensional strata, Z(x) has exactly k − m + 1
vanishing singular values.

At degenerate points, H(x,λ) is not invertible and vectors living in its ker-
nel are also authorized, which potentially raises the dimensionality of the tangent
space, even if they do not change the barycentric coordinates. These pathologies
do not appear in practice for the constant curvature spaces as we have seen with
spherical and hyperbolic spaces, and we conjecture that this is also not the case for
symmetric spaces.
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5.4. Stability of the affine span with respect to the metric power. The Fréchet
(resp., Karcher) mean can be further generalized by taking a power p of the metric
to define the p-variance σp(x) = 1

p

∑k
i=0 distp(x, xi). The global (resp., local)

minima of this p-variance defines the median for p = 1. This suggest to further
generalize barycentric subspaces by taking the locus of the minima of the weighted
p-variance σp(x,λ) = 1

p

∑k
i=0 λi distp(x, xi). In fact, it turns out that all these

“p-subspaces” are necessarily included in the affine span, which shows that this
notion is really central. To see that, we compute the gradient of the p-variance at
nonreference point of M∗(x0, . . . , xk):

∇xσ
p(x,λ) = −

k∑
i=0

λi distp−2(x, xi) logx(xi).

Critical points of the p-variance satisfy the equation
∑k

i=0 λ′
i logx(xi) = 0 for

the new weights λ′
i = λi distp−2(x, xi). Thus, they are still elements of the EBS

and changing the power of the metric just amounts to a reparametrization of the
barycentric weights.

5.5. Restricted geodesic submanifolds are limit of affine spans. We investi-
gate in this section what is happening when all the points {xi = expx0

(εwi)}1≤i≤k

are converging to x0 at first order along k independent vectors {wi}1≤i≤k . Here,
we fix w0 = 0 to simplify the derivations, but the proof can be easily extended
with a suitable change of coordinates provided that

∑k
i=0 wi = 0. In Euclidean

spaces, a point of the affine span y = ∑k
i=0 λixi may be written as the point

y = x + ε
∑k

i=1 λiwi of the “geodesic subspace” generated by the family of
vectors {wi}1≤i≤k . By analogy, we expect the exponential barycentric subspace
EBS(x0, expx0

(εw1), . . . , expx0
(εwk)) to converge towards the totally geodesic

subspace at x generated by the k independent vectors w1, . . . , ,wk of TxM:

GS(x,w1, . . . ,wk) =
{

expx

(
k∑

i=1

αiwi

)
∈M for α ∈ R

k

}
.

In fact, the above definition of the geodesic subspaces (which is the one im-
plicitly used in most of the works using PGA) is too large and may not define
a k-dimensional submanifold when there is a cut-locus. For instance, it is well
known that geodesics of a flat torus are either periodic or everywhere dense in
a flat torus submanifold depending on whether the components of the initial ve-
locity field have rational or irrational ratios. This means that the geodesic space
generated by a single vector for which all ratio of coordinates are irrational [e.g.,
w = (π,π2, . . . , πk)] is filling the full k-dimensional flat torus. Thus, all the 1-
dimensional geodesic subspaces that have irrational ratio of coordinates minimize
the distance to any set of data points in a flat torus of any dimension. In order
to have a more meaningful definition and to guaranty the dimensionality of the
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geodesic subspace, we need to restrict the definition to the points of the geodesics
that are distance minimizing.

DEFINITION 10 (Restricted geodesic submanifolds). Let x ∈M be a point of
a Riemannian manifold and let Wx = {∑k

i=1 αiwi,α ∈ R
k} be the k-dimensional

linear subspace of TxM generated a k-tuple {wi}1≤i≤k ∈ (TxM)k of independent
tangent vectors at x. We consider the geodesics starting at x with tangent vectors
in Wx , but up to the first cut-point of x only. This generates a submanifold of M
called the restricted geodesic submanifold GS∗(Wx):

GS∗(Wx) = GS∗(x,w1, . . . ,wk) = {
expx(w),w ∈ Wx ∩ D(x)

}
,

where D(x) ⊂ TxM is the injectivity domain.

It may not be immediately clear that the subspace we define that way is a sub-
manifold of M: since expx is a diffeomorphism from D(x) ⊂ TxM to M \ C(x)

whose differential has full rank, its restriction to the open star-shape subset
Wx ∩ D(x) of dimension k is a diffeomorphism from that subset to the restricted
geodesic subspace GS∗(Wx) which is thus an open submanifolds of dimension k

of M. This submanifold is generally not geodesically complete.

THEOREM 8 (Restricted geodesic subspaces are limit of affine spans). The re-
stricted geodesic submanifold GS∗(Wx0) = {expx0

(w),w ∈ Wx0 ∩ D(x0)} is the
limit of the EBS(x0, x1(ε), . . . , xk(ε)) when the points xi(ε) = expx0

(εwi) are
converging to x0 at first order in ε along the tangent vectors wi defining the
k-dimensional subspace Wx0 ⊂ Tx0M. These limit points are parametrized by
barycentric coordinates at infinity in the codimension 1 subspace 1⊥, the pro-
jective completion of P∗

k in RP k ; see Definition 4.

The proof is deferred to the Appendix because of its technicality. We conjecture
that the construction can be generalized using techniques from sub-Riemannian ge-
ometry to higher-order derivatives when the first-order derivative do not span a k-
dimensional subspace. This would mean that we could also see some nongeodesic
decomposition schemes as limit cases of barycentric subspaces, such as splines on
manifolds [Crouch and Leite (1995), Machado, Silva Leite and Krakowski (2010),
Gay-Balmaz et al. (2012)].

Example on spheres and hyperbolic spaces. In spheres (resp., hyperbolic
spaces), the restricted geodesic subspace GS∗(Wx) describes a great subsphere
(resp., a great hyperbola), except for the cut-locus of the base-point x in spheres.
Thus, points of GS∗(Wx) are also points of the affine span generated by k + 1
affinely independent reference points of this subspace. When all the reference
points xi = expx(εwi) coalesce to a single point x along the tangent vectors
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W = [w0, . . . ,wk] (with W1 = 0), we find that solutions of the EBS equation are
of the form y = x + W(ελ̃/1Tλ̃) + O(ε2), which describes the affine hyperplane
generated by x and W in the embedding Euclidean (resp., Minkowski) space. The
weights μ = ελ̃/1Tλ̃ converge to points at infinity (1Tμ = 0) of the affine k-plane
of normalized weights.

When reference points coalesce with an additional second-order acceleration
orthogonally to the subspace Wx , we conjecture that the affine span is not any more
a great subspheres but a smaller one. This would include principal nested spheres
(PNS) developed by Jung et al. (2010) and Jung, Dryden and Marron (2012) as
a limit case of barycentric subspaces. It would be interesting to derive a similar
procedure for hyperbolic spaces and to determine which types of subspaces could
be obtained by such limits for more general nonlocal and higher-order jets.

6. Barycentric subspace analysis. PCA can be viewed as the search for a
sequence of nested linear spaces that best approximate the data at each level. In
a Euclidean space, minimizing the variance of the residuals boils down to an in-
dependent optimization of orthogonal subspaces at each level of approximation,
thanks to the Pythagorean theorem. This enables building each subspace of the
sequence by adding (resp., subtracting) the optimal one-dimensional subspace it-
eratively in a forward (resp., backward) analysis. Of course, this property does not
scale up to manifolds, for which the orthogonality of subspaces is not even well
defined.

6.1. Flags of barycentric subspaces in manifolds. Damon and Marron (2013)
have argued that the nestedness of approximation spaces is one of the most im-
portant characteristics for generalizing PCA to more general spaces. Barycentric
subspaces can easily be nested, for instance by adding or removing one or several
points at a time, to obtain a family of embedded submanifolds which generalizes
flags of vector spaces.

A flag of a vector space V is a filtration of subspaces (an increasing sequence of
subspaces, where each subspace is a proper subspace of the next): {0} = V0 ⊂ V1 ⊂
V2 ⊂ · · · ⊂ Vk = V . Denoting di = dim(Vi) the dimension of the subspaces, we
have 0 = d0 < d1 < d2 < · · · < dk = n, where n is the dimension of V . Hence, we
must have k ≤ n. A flag is complete if di = i, otherwise it is a partial flag. Notice
that a linear subspace W of V is identified to the partial flag {0} ⊂ W ⊂ V . A flag
can be generated by adding the successive eigenspaces of an SPD matrix with
increasing eigenvalues. If all the eigenvalues have multiplicity one, the generated
flag is complete and one can parametrize it by the ordered set of eigenvectors. If
an eigenvalue has a larger multiplicity, then the corresponding eigenvectors might
be considered as exchangeable in this parametrization in the sense that we should
only consider the subspace generated by all the eigenvectors of that eigenvalue.
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In an n-dimensional manifold M, a strict ordering of n + 1 independent
points x0 ≺ x1 ≺ · · · ≺ xn defines a filtration of barycentric subspaces. For in-
stance: EBS(x0) = {x0} ⊂ · · · ⊂ EBS(x0, x1, xk) ⊂ · · · ⊂ EBS(x0, . . . , xn). The 0-
dimensional subspace is now a points in M instead of the null vector in flags
of vector spaces because we are in an affine setting. Grouping points together
in the addition/removal process generates a partial flag of barycentric subspaces.
Among the barycentric subspaces, the affine span seems to be the most interesting
definition. Indeed, when the manifold M∗(x0, . . . , xk) is connected, the EBS of
n+ 1 affinely independent points covers the full manifold M∗(x0, . . . , xk), and its
completion covers the original manifold: Aff(x0, . . . , xn) = M. With the Fréchet
or Karcher barycentric subspaces, we only generate a submanifold (the positive
span) that does not cover the whole manifold in general, even in negatively curved
spaces.

DEFINITION 11 (Flags of affine spans in manifolds). Let x0 � x1 � · · · � xk

be k+1 ≤ n+1 affinely independent-ordered points of M where two or more suc-
cessive points are either strictly ordered (xi ≺ xi+1) or exchangeable (xi ∼ xi+1).
For a strictly ordered set of points, we call the sequence of properly nested sub-
spaces FLi (x0 ≺ x1 ≺ · · · ≺ xk) = Aff(x0, . . . , xi) for 0 ≤ i ≤ k the flag of affine
spans FL(x0 ≺ x1 ≺ · · · ≺ xk). For a flag comprising exchangeable points, the dif-
ferent subspaces of the sequence are only generated at strict ordering signs or at the
end. A flag is said complete if it is strictly ordered with k = n. We call a flag of ex-
changeable points FL(x0 ∼ x1 ∼ · · · ∼ xk) a pure subspace because the sequence
is reduced to the unique subspace FLk(x0 ∼ x1 ∼ · · · ∼ xk) = Aff(x0, . . . , xk).

6.2. Forward and backward barycentric subspaces analysis. In Euclidean
PCA, the flag of linear subspaces can be built in a forward way, by computing
the best 0th-order approximation (the mean), then the best first-order approxima-
tion (the first mode), etc. It can also be built backward, by removing the direction
with the minimal residual from the current affine subspace. In a manifold, we can
use similar forward and backward analysis, but they have no reason to give the
same result.

With a forward analysis, we compute iteratively the flag of affine spans by
adding one point at a time keeping the previous ones fixed. The barycentric sub-
space Aff(x0) = {x0} minimizing the unexplained variance is a Karcher mean.
Adding a second point amounts to compute the geodesic passing through the mean
that best approximate the data. Adding a third point now differ from PGA, unless
the three points coalesce to a single one. With this procedure, the Fréchet mean
always belong to the barycentric subspace.

The backward analysis consists in iteratively removing one dimension. One
should theoretically start with a full set of points and chose which one to remove.
However, as all the sets of n+ 1 affinely independent points generate the full man-
ifold with the affine span, the optimization really begin with the set of n points
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x0, . . . , xn−1. We should afterward only test for which of the n points we should
remove. Since optimization is particularly inefficient in large dimensional spaces,
we may run a forward analysis until we reach the noise level of the data for a di-
mension k � n. In practice, the noise level is often unknown and a threshold at
5% of the data variance is sometimes chosen. More elaborate methods exist to de-
termine the intrinsic dimension of the data for manifold learning technique [Wang
and Marron (2008)]. Point positions may be optimized at each step to find the
optimal subspace and a backward sweep reorders the points at the end. With this
process, there is no reason for the Fréchet mean to belong to any of the barycentric
subspaces. For instance, if we have clusters, one expects the reference points to
localize within these clusters rather than at the Fréchet mean.

6.3. Approximating data using a pure subspace. Let Y = {ŷi}Ni=1 ∈ MN be N

data points and X = {x0, . . . , xk} be k + 1 affinely independent reference points.
We assume that each data point ŷi has almost surely one unique closest point
yi(X) on the barycentric subspace. This is the situation for Euclidean, hyperbolic
and spherical spaces, and this should hold more generally for all the points out-
side the focal set of the barycentric subspace. This allows us to write the residual
ri(X) = dist(ŷi , yi(X)) and to consider the minimization of the unexplained vari-
ance σ 2

out(X) = ∑
j r2

i (X). This optimization problem on Mk+1 can be achieved
by standard techniques of optimization on manifolds [see, e.g., Absil, Mahony and
Sepulchre (2008)]. However, it is not obvious that the canonical product Rieman-
nian metric is the right metric to use, especially close to coincident points. In this
case, one would like to consider switching to the space of (nonlocal) jets to guar-
anty the numerical stability of the solution. In practice, though, we may constraint
the distance between reference points to be larger than a threshold.

A second potential problem is the lack of identifiability: the minimum of the un-
explained variance may be reached by subspaces parametrized by several k-tuples
of points. This is the case for constant curvature spaces since every linearly inde-
pendent k-tuple of points in a given subspace parametrizes the same barycentric
subspace. In constant curvature spaces, this can be accounted for using a suitable
polar or QR matrix factorization [see, e.g., Pennec (2017b)]. In general manifolds,
we expect that the absence of symmetries will break the multiplicity of this rela-
tionship (at least locally) thanks to the curvature. However, it can lead to very badly
conditioned systems to solve from a numerical point of view for small curvatures.

A last problem is that the criterion we use here (the unexplained variance) is
only valid for a pure subspace of fixed dimension, and considering a different
dimension will lead in general to pure subspaces which cannot be described by a
common subset of reference points. Thus, the forward and backward optimization
of nested barycentric subspaces cannot lead to the simultaneous optimality of all
the subspaces of a flag in general manifolds.
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6.4. A criterion for hierarchies of subspaces: AUV on flags of affine spans. In
order to obtain consistency across dimensions, it is necessary to define a criterion
which depends on the whole flag of subspaces and not on each of the subspaces
independently. In PCA, one often plots the unexplained variance as a function of
the number of modes used to approximate the data. This curve should decrease
as fast as possible from the variance of the data (for 0 modes) to 0 (for n modes).
A standard way to quantify the decrease consists in summing the values at all steps,
giving the Accumulated Unexplained Variances (AUV), which is analogous to the
Area-Under-the-Curve (AUC) in Receiver Operating Characteristic (ROC) curves.

Given a strictly ordered flag of affine subspaces Fl(x0 ≺ x1 ≺ · · · ≺ xk), we thus
propose to optimize the AUV criterion:

AUV
(
Fl(x0 ≺ x1 ≺ · · · ≺ xk)

) =
k∑

i=0

σ 2
out

(
Fli (x0 ≺ x1 ≺ · · · ≺ xk)

)
instead of the unexplained variance at order k. We could of course consider a com-
plete flag but in practice it is often useful to stop at a dimension k much smaller
than the possibly very high dimension n. The criterion is extended to more gen-
eral partial flags by weighting the unexplained variance of each subspace by the
number of (exchangeable) points that are added at each step. With this global cri-
terion, the point xi influences all the subspaces of the flag that are larger than
Fli (x0 ≺ x1 ≺ · · · ≺ xk) but not the smaller subspaces. It turns out that optimizing
this criterion results in the usual PCA up to mode k in a Euclidean space.

THEOREM 9 (Euclidean PCA as an optimization in the flag space). Let Ŷ =
{ŷi}Ni=1 be a set of N data points in R

n. We denote as usual the mean by ȳ =
1
N

∑N
i=1 ŷi and the empirical covariance matrix by � = 1

N

∑N
i=1(ŷi − ȳ)(ŷi − ȳ)T.

Its spectral decomposition is denoted by � = ∑n
j=1 σ 2

j uju
T
j with the eigenvalues

sorted in decreasing order. We assume that the first k + 1 eigenvalues have multi-
plicity one, so that the order from σ1 to σk+1 is strict.

Then the partial flag of affine subspaces Fl(x0 ≺ x1 ≺ · · · ≺ xk) optimizing

AUV
(
Fl(x0 ≺ x1 ≺ · · · ≺ xk)

) =
k∑

i=0

σ 2
out

(
Fli (x0 ≺ x1 ≺ · · · ≺ xk)

)
is strictly ordered and can be parametrized by x0 = ȳ, xi = x0 + ui for 1 ≤ i ≤ k.
The parametrization by points is not unique but the flag of subspaces which is
generated is and is equal to the flag generated by the PCA modes up to mode k

included.

The proof is detailed in Pennec (2017b). The main idea is to parametrize the ma-
trix of reference vectors by the product of an orthogonal matrix Q with a positive
definite triangular superior matrix (QR decomposition). The key property of this
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Gram–Schmidt orthogonalization is the stability of the columns of Q when we add
or remove columns (i.e., reference points) in X, which allows to write the expres-
sion of the AUV explicitly. Critical points are found for columns of Q which are
eigenvectors of the data covariance matrix and the expression of the AUV shows
that we have to select them in the decreasing order of eigenvalues.

6.5. Sample-limited barycentric subspace inference on spheres. In several do-
mains, it has been proposed to limit the inference of the Fréchet mean to the data-
points only. In neuroimaging studies, for instance, the individual image minimizing
the sum of square deformation distance to other subject images has been argued
to be a good alternative to the mean template (a Fréchet mean in deformation and
intensity space) because it conserves the full definition and all the original charac-
teristics of a real subject image [Leporé et al. (2008)]. Beyond the Fréchet mean,
Feragen et al. (2013) proposed to define the first principal component mode as the
geodesic going through two of the data points which minimizes the unexplained
variance. The method named set statistics was aiming to accelerate the computa-
tion of statistics on tree spaces. Zhai (2016) further explored this idea under the
name of sample-limited geodesics in the context of PCA in phylogenetic tree space.
However, in both cases, extending the method to higher-order principal modes was
considered as a challenging research topic.

With barycentric subspaces, sample-limited statistics naturally extends to any
dimension by restricting the search to (flags of) affine spans that are parametrized
by data points. Moreover, the implementation boils down to a very simple enu-
meration problem. An important advantage for interpreting the modes of variation
is that reference points are never interpolated as they are by definition sampled
from the data. Thus, we may go back to additional information about the samples
like the disease characteristics in medical image image analysis. The main draw-
back is the combinatorial explosion of the computational complexity: the optimal
order-k flag of affine spans requires O(Nk+1) operations, where N is the number
of data points. In practice, the search can be done exhaustively for a small number
of reference points but an approximated optimum has to be sought for larger k

using a limited number of random tuples [Feragen et al. (2013)].
In this section, we consider the exhaustive sample-limited version of the For-

ward Barycentric Subspace (FBS) decomposition, the optimal k-dimensional Pure
Barycentric Subspace with backward ordering (k-PBS), and the Barycentric Sub-
space Analysis up to order k (k-BSA). In order to illustrate the differences, we
consider a first synthetic dataset where we draw 30 random points uniformly on
an equilateral triangle of side length π/2 on a 6-dimensional sphere. We add to
each point a (wrapped) Gaussian noise of standard deviation σ = 10◦. In this ex-
ample, original data live on a 2-sphere: the ideal flag of subspaces is a pure 2d
subspace spanning the first three coordinates. We illustrate in Figure 4 the differ-
ent reference points that are found for the different methods. We can see that all
methods end-up with different results, contrarily to the Euclidean case. The second
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FIG. 4. Left: Equi 30 simulated dataset. Data and reference points are projected from the 5-sphere
to the expected 2-sphere in 3d to allow visualization. For each method (FBS in blue, 1-PBS in green
and 1-BSA in red), the first reference point has a solid symbol. The 1d mode is the geodesic joining
this point to the second reference point. The third reference point of FBS and 2-BSA (on the lower
left part) is smaller. Middle: graph of the unexplained variance and AUV for the different methods on
the Equi 30 dataset. Right: Mount Tom Dinosaur trackway 1 data with the same color code. 1-BSA
(in red) and FBS (in blue) are superimposed.

observation is that the optimal pure subspace is not stable with the dimension: the
reference points of the 0-PBS (the sample-limited Fréchet mean represented by the
large blue solid diamond), the 1-PBS (in green) and the 2-PBS (identical to the red
points of the 2-BSA in red) are all different. BSA is more stable: the first refer-
ence points are the same from the 1-BSA to the 3-BSA. In terms of unexplained
variance, the 2-BSA is the best for two modes (since it is identical to the optimal
2-PBS) and reaches the actual noise level. It remains better than the 3-PBS and the
FBS with three modes in terms of AUV even without adding a fourth point.

As a second example, we take real data encoding the shape of three succes-
sive footprints of Mount Tom Dinosaur trackway 1 described in Small (1996),
page 181. For planar triangles, the shape space (quotient of the triad by similari-
ties) boils down to the sphere of radius 1/2. These data are displayed on the right
of Figure 4. In this example, the reference points of the 0-BSA to the 3-BSA are
stable and identical to the ones of the FBS. This is a behavior that we have ob-
served in most of our simulations when modes cannot be confused. This may not
hold anymore if reference points were optimized on the sphere rather than on the
data points only. The optimal 1-PBS (the best geodesic approximation) picks up
different reference points.

7. Discussion. We investigated in the paper several notions of subspaces in
manifolds generalizing the notion of affine span in a Euclidean space.
The Fréchet/Karcher/exponential barycentric subspaces are the nested locus
of weighted Fréchet/Karcher/exponential barycenters with positive or negative
weights summing up to 1. The affine spans is the metric completion of the largest
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one (the EBS). It may be a nonconnected manifold with boundaries. The complete-
ness of the affine span enables reconnecting part of the subspace that arrive from
different directions at the cut-locus of reference points if needed. It also ensures
that there exits a closest point on the submanifold for data projection purposes,
which is fundamental for dimension reduction purposes. The fact that modifying
the power of the metric does not change the affine span is an unexpected stability
result which suggests that the notion is quite central. Moreover, we have shown
that the affine span encompass principal geodesic subspaces as limit cases. It would
be interesting to show that we can obtain other types of subspaces like principal
nested subspheres with higher-order and nonlocal jets: some nongeodesic decom-
position schemes such as loxodromes and splines could probably also be seen as
limit cases of barycentric subspaces.

Future work will address barycentric subspaces in interesting nonconstant cur-
vatures spaces. For instance, Eltzner, Jung and Huckemann (2015) adaptively de-
forms the flat torus seen as a product of spheres into a unique sphere to allow
principal nested spheres (PNS) analysis. A quick look at the flat torus shows that
the the cut-locus of k + 1 ≤ n points in Sn

1 divides the torus into kn cells in which
the affine span is a k-dimensional linear subspace. The subspaces generated in
each cell are generally disconnected, but when points coalesce with each others
into a jet, the volume of all but one cells decrease and at the limit we recover a
single non-empty cell that contain a connected affine span. For a first-order jet, we
recover as expected the restricted geodesic subspace (here a linear subspace lim-
ited to the cut locus of the jet base-point), but higher-order jets may generate more
interesting curved subspaces that may better describe the data geometry.

The next practical step is obviously the implementation of generic algorithms
to optimize barycentric subspaces in general Riemannian manifolds. Example al-
gorithms include: finding a point with given barycentric coordinates (there might
be several so this has to be a local search); finding the closest point (and its coor-
dinates) on the barycentric subspace; optimizing the reference points to minimize
the residual error after projection of data points, etc. If such algorithms can be
designed relatively simply for simple specific manifolds as we have done here
for constant curvature spaces, the generalization to general manifolds requires a
study of the focal set of the barycentric subspaces or guarantying the correct be-
havior of algorithms. We conjecture that this is a stratified set of zero measure in
generic cases. Another difficulty is linked to the nonidentifiability of the subspace
parameters. For constant curvature spaces, the right parameter space is actually the
k-Grassmanian. In more general manifolds, the curvature and the interaction with
the cut-locus break the symmetry of the barycentric subspaces, but lead to a poor
numerical conditioning of the system good renormalization techniques need to be
designed to guaranty the numerical stability.

Finding the subspace that best explain the data is an optimization problem on
manifolds. This raises the question of which metric should be considered on the
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space of barycentric subspaces. In this paper, we mainly see this space as the con-
figuration space of k + 1 affinely independent points, with convergence to spaces
of jets (including nonlocal jets) when several points coalesce. Such a construction
was named Multispace by Olver (2001) in the context of symmetry-preserving nu-
merical approximations to differential invariants. It is likely that similar techniques
could be investigated to construct numerically stable implementations of barycen-
tric subspaces of higher-order parametrized by nonlocal jets, which are needed to
optimize safely. Conversely, barycentric subspaces could help shedding a new light
on the multispace construction for differential invariants.

Barycentric subspaces could probably be used to extend methods like the prob-
abilistic PCA of Tipping and Bishop (1999), generalized to PGA by Zhang and
Fletcher (2013). A first easy step in that direction is to replace the reference points
by reference distributions on the manifold and to look at the locus of weighted
expected means. Interestingly, this procedure soften the constraints that we had in
this paper about the cut locus. Thus, following Karcher (1977), reference distribu-
tions could be used in a mollifier smoothing approach to study the regularity of the
barycentric subspaces.

For applications where data live on Lie groups, generalizing barycentric sub-
spaces to more general non-Riemannian spaces like affine connection manifolds is
a particularly appealing extension. In computational anatomy, for instance, defor-
mations of shapes are lifted to a group of diffeomorphism for statistical purposes
[see, e.g., Lorenzi and Pennec (2013) and Lorenzi, Ayache and Pennec (2015)].
All Lie groups can be endowed with a bi-invariant symmetric Cartan–Schouten
connection for which geodesics are the left and right translation of one-parameter
subgroups. This provides the Lie group with an affine connection structure which
may be metric or not. When the group is the direct product of compact and Abelian
groups, it admits a bi-invariant metric for which the Cartan–Schouten connection
is the natural Levi–Civita connection. Other groups do not admit any bi-invariant
metric (this is the case for rigid transformations in more than 2 dimensions be-
cause of the semi-direct product), so that a Riemannian structure can only be left
or right invariant but not both. However the bi-invariant Cartan–Schouten connec-
tion continues to exists, and one can design bi-invariant means using exponential
barycenter as proposed by Pennec and Arsigny (2013). Thus, we may still de-
fine exponential barycentric subspaces and affine spans in these affine connection
spaces, the main difference being that the derivative of the log is not any more the
Hessian of a distance function. This might considerably complexify the analysis
of the generated subspaces.

The second topic of this paper concerns the generalization of PCA to man-
ifolds using Barycentric Subspace Analysis (BSA). Damon and Marron (2013)
argued that an interesting generalization of PCA should rely on “nested sequence
of relations”, like embedded linear subspaces in the Euclidean space or embedded
spheres in PNS. Barycentric subspaces can naturally be nested by adding or re-
moving points or equivalently by setting the corresponding barycentric coordinate
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to zero. Thus, we can easily generalize PCA to manifolds using a forward anal-
ysis by iteratively adding one or more points at a time. At the limit where points
coalesce at the first order, this amounts to build a flag of (restricted) principal
geodesic subspaces. Thus, it generalizes the Principal Geodesic Analysis (PGA) of
Fletcher et al. (2004) and Sommer, Lauze and Nielsen (2014) when starting with
a zeroth dimensional space (the Fréchet mean) and the Geodesic PCA (GPCA)
of Huckemann and Ziezold (2006) and Huckemann, Hotz and Munk (2010) when
starting directly with a first-order jet defining a geodesic. One can also design a
backward analysis by starting with a large subspace and iteratively removing one
or more points to define embedded subspaces.

However, the greedy optimization of these forward/backward methods gener-
ally leads to different solutions which are not optimal for all subspace jointly. The
key idea is to consider PCA as a joint optimization of the whole flag of subspaces
instead of each subspace independently. In a Euclidean space, we showed that the
Accumulated Unexplained Variances (AUV) with respect to all the subspaces of
the hierarchy (the area under the curve of unexplained variance) is a proper cri-
terion on the space of Euclidean flags. We proposed to extend this criterion to
barycentric subspaces in manifolds, where an ordering of the reference points nat-
urally defines a flag of nested barycentric subspaces. A similar idea could be used
with other iterative least-squares methods like partial least-squares (PLS) which
are also one-step at a time minimization methods.

APPENDIX: PROOF OF THEOREM 8

PROOF OF THEOREM 8. We first establish a useful formula exploiting the
symmetry of the geodesics from x to y /∈ C(x) with respect to time. Reverting
time along a geodesic, we have: γ(x,

−→
xy)(t) = γ(y,

−→
yx)(1 − t), which means in par-

ticular that γ̇(x,
−→
xy)(1) = −γ̇(y,

−→
yx)(0) = −−→

yx. Since γ(x,
−→
xy)(t) = expx(t

−→
xy), we ob-

tain −→
yx = −D expx |−→xy

−→
xy . Now, we also have (D expx |−→xy).D logx |y = Id because

expx(logx(y)) = y. Finally, D expx and D logx have full rank on M/C(x) since
there is no conjugate point before the cut-locus, so that we can multiply by their
inverse and we end up with

(16) ∀y /∈ C(x),
−→
xy = −D logx |y−→yx.

Let us first restrict to a convenient domain of M: we consider a open geodesic
ball B(x0, ζ ) of radius ζ centered at x0 and we exclude all the points of M which
cut locus intersect this ball, or equivalently the cut-locus of all the points of this
ball. We obtain an open domain Dζ (x0) = M \ C(B(x0, ζ )) in which logx(y) is
well defined and smooth for all x ∈ B(x0, ζ ) and all y ∈ Dζ (x0). Thanks to the
symmetry of the cut-locus, logy(x) is also well defined and smooth in the same
conditions and equation (16) can be rephrased:

(17) ∀x ∈ B(x0, ζ ), y ∈ Dζ (x0),
−→
xy = −D logx |y−→yx.
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Let ‖w‖∞ = maxi ‖wi‖x0 be the maximal length of the vectors wi . For ε <

ζ/‖w‖∞, we have ‖εwi‖x0 ≤ ε‖w‖∞ < ζ , so that all the points xi = expx0
(εwi)

belong to the open geodesic ball B(x0, ζ ). Thus, logx(xi) and logxi
(x) are well

defined and smooth for any x ∈ Dζ (x0), and we can write the Taylor expansion in
a normal coordinate system at x0using equation (17):

logx

(
xi(ε)

) = logx(x0) + εD logx |x0wi + O
(
ε2)

= D logx |x0

(
εwi − logx0

(x)
) + O

(
ε2)

.

Any point x ∈ Dζ (x0) can be defined by logx0
(x) = ∑k

j=1 αiwi + w⊥ with
〈 w⊥ | wi〉 = 0 and suitable constraints on the αi and w⊥. Replacing logx(x0) by
its value in the above formula, we get

logx

(
xi(ε)

) = D logx |x0

(
εwi −

k∑
j=1

αjwj − w⊥
)

+ O
(
ε2)

.

Since the matrix D logx |x0 is invertible, the EBS equation M1(x, λ) =∑k
i=0 λi

−→
xxi = 0 is equivalent to w⊥ + ∑k

j=1 αjwj − ε(
∑k

i=1 λiwi) = O(ε2). Pro-

jecting orthogonally to Wx0 , we get w⊥ = O(ε2): this means that any point of the
limit EBS has to be of the form x = expx0

(
∑k

j=1 αiwi). In other words, only points
of the restricted geodesic subspace GS∗(Wx0) can be solutions of the limit EBS
equation.

Now, for a point of GS∗(Wx0) to be a solution of the limit EBS equation, there
should exists barycentric coordinates λ such that

∑k
j=1(αj − ελi)wj = O(ε2).

Choosing λ = (ε − ∑
i αi : α1 : · · · : αk), we obtain the normalized barycentric

coordinates λi = αi/ε for 1 ≤ i ≤ k and λ0 = 1− (
∑

i αi)/ε that satisfy this condi-
tion. Thus, any point of GS∗(Wx0)∩Dζ (x0) is a solution of the limit EBS equation
with barycentric coordinates at infinity on P∗

k . Taking ζ sufficiently small, we can
include all the points of GS∗(Wx0). �
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SUPPLEMENTARY MATERIAL

Supplement A: Hessian of the Riemannian squared distance (DOI: 10.1214/
17-AOS1636SUPPA; .pdf). This supplementary material describes in more length
the notions of Riemannian geometry that are underlying the main paper and inves-
tigates the Hessian of the Riemannian square distance whose eigenvalues control
the local regularity of the barycentric subspaces. This is exemplified on the sphere
and the hyperbolic space.

Supplement B: PCA as an optimization on the flag manifold (DOI:
10.1214/17-AOS1636SUPPB; .pdf). This supplementary material details in length
the proof that the flag of linear subspaces found by PCA optimizes the Accumu-
lated Unexplained Variances (AUV) criterion in a Euclidean space.
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https://doi.org/10.1214/17-AOS1636SUPPB
https://doi.org/10.1214/17-AOS1636SUPPA


2744 X. PENNEC

REFERENCES

ABSIL, P.-A., MAHONY, R. and SEPULCHRE, R. (2008). Optimization Algorithms on Matrix Man-
ifolds. MR2364186

AFSARI, B. (2011). Riemannian Lp center of mass: Existence, uniqueness, and convexity. Proc.
Amer. Math. Soc. 139 655–673. MR2736346

BHATTACHARYA, R. and PATRANGENARU, V. (2003). Large sample theory of intrinsic and extrinsic
sample means on manifolds. I. Ann. Statist. 31 1–29. MR1962498

BHATTACHARYA, R. and PATRANGENARU, V. (2005). Large sample theory of intrinsic and extrinsic
sample means on manifolds. II. Ann. Statist. 33 1225–1259. MR2195634

BISHOP, R. L. and O’NEILL, B. (1969). Manifolds of negative curvature. Trans. Amer. Math. Soc.
145 1–49. MR251664

BREWIN, L. (2009). Riemann normal coordinate expansions using Cadabra. Classical Quantum
Gravity 26 175017. MR2534336

BUSEMANN, H. (1955). The Geometry of Geodesics. Academic Press, San Diego. MR0075623
BUSER, P. and KARCHER, H. (1981). Gromov’s Almost Flat Manifolds. Astérisque 81. Société

Mathématique de France, Paris. MR0619537
BUSS, S. R. and FILLMORE, J. P. (2001). Spherical averages and applications to spherical splines

and interpolation. ACM Trans. Graph. 20 95–126.
COSTA, S. I. R., SANTOS, S. A. and STRAPASSON, J. E. (2015). Fisher information distance:

A geometrical reading. Discrete Appl. Math. 197 59–69. MR3398961
CROUCH, P. and LEITE, F. S. (1995). The dynamic interpolation problem: On Riemannian mani-

folds, Lie groups, and symmetric spaces. J. Dyn. Control Syst. 1 177–202. MR1333770
CUTLER, A. and BREIMAN, L. (1994). Archetypal analysis. Technometrics 36 338–347.

MR1304898
DAMON, J. and MARRON, J. S. (2013). Backwards principal component analysis and principal

nested relations. J. Math. Imaging Vision 50 107–114. MR3233137
DRYDEN, I. L. (2005). Statistical analysis on high-dimensional spheres and shape spaces. Ann.

Statist. 33 1643–1665. MR2166558
ELTZNER, B., JUNG, S. and HUCKEMANN, S. (2015). Dimension reduction on polyspheres with ap-

plication to skeletal representations. In Geometric Science of Information (F. Nielsen and F. Bar-
baresco, eds.). Lecture Notes in Computer Science 9389 22–29. Springer, Cham. MR3442181

FERAGEN, A., OWEN, M., PETERSEN, J., WILLE, M. M. W., THOMSEN, L. H., DIRKSEN, A.
and DE BRUIJNE, M. (2013). Tree-space statistics and approximations for large-scale analysis
of anatomical trees. In International Conference on Information Processing in Medical Imaging
(IPMI 2013), Asilomar, CA, USA. Lecture Notes in Computer Science 7917 74–85. Springer,
Berlin.

FLETCHER, P. T., LU, C., PIZER, S. M. and JOSHI, S. (2004). Principal geodesic analysis for the
study of nonlinear statistics of shape. IEEE Trans. Med. Imag. 23 995–1005.

FRÉCHET, M. (1948). Les éléments aléatoires de nature quelconque dans un espace distancié. Ann.
Inst. H. Poincareé 10 215–310. MR27464

GAY-BALMAZ, F., HOLM, D., MEIER, D., RATIU, T. and VIALARD, F.-X. (2012). Invariant
higher-order variational problems. Comm. Math. Phys. 309 413–458. MR2864799

GROISSER, D. (2004). Newton’s method, zeroes of vector fields, and the Riemannian center of mass.
Adv. in Appl. Math. 33 95–135. MR2064359

HUCKEMANN, S., HOTZ, T. and MUNK, A. (2010). Intrinsic shape analysis: Geodesic PCA for
Riemannian manifolds modulo isometric Lie group actions. Statist. Sinica 20 1–58. MR2640651

HUCKEMANN, S. and ZIEZOLD, H. (2006). Principal component analysis for Riemannian man-
ifolds, with an application to triangular shape spaces. Adv. in Appl. Probab. 38 299–319.
MR2264946

http://www.ams.org/mathscinet-getitem?mr=2364186
http://www.ams.org/mathscinet-getitem?mr=2736346
http://www.ams.org/mathscinet-getitem?mr=1962498
http://www.ams.org/mathscinet-getitem?mr=2195634
http://www.ams.org/mathscinet-getitem?mr=251664
http://www.ams.org/mathscinet-getitem?mr=2534336
http://www.ams.org/mathscinet-getitem?mr=0075623
http://www.ams.org/mathscinet-getitem?mr=0619537
http://www.ams.org/mathscinet-getitem?mr=3398961
http://www.ams.org/mathscinet-getitem?mr=1333770
http://www.ams.org/mathscinet-getitem?mr=1304898
http://www.ams.org/mathscinet-getitem?mr=3233137
http://www.ams.org/mathscinet-getitem?mr=2166558
http://www.ams.org/mathscinet-getitem?mr=3442181
http://www.ams.org/mathscinet-getitem?mr=27464
http://www.ams.org/mathscinet-getitem?mr=2864799
http://www.ams.org/mathscinet-getitem?mr=2064359
http://www.ams.org/mathscinet-getitem?mr=2640651
http://www.ams.org/mathscinet-getitem?mr=2264946


BARYCENTRIC SUBSPACE ANALYSIS ON MANIFOLDS 2745

JUNG, S., DRYDEN, I. L. and MARRON, J. S. (2012). Analysis of principal nested spheres.
Biometrika 99 551–568. MR2966769

JUNG, S., LIU, X., MARRON, J. S. and PIZER, S. M. (2010). Generalized PCA via the backward
stepwise approach in image analysis. In Proc. of the Int. Symposium Brain, Body and Machine.
Advances in Intelligent and Soft Computing 83 111–123. Springer, Berlin.

KARCHER, H. (1977). Riemannian center of mass and mollifier smoothing. Comm. Pure Appl. Math.
30 509–541. MR442975

KARCHER, H. (2014). Riemannian center of mass and so called Karcher mean. Available at
arXiv:1407.2087.

KENDALL, W. S. (1990). Probability, convexity, and harmonic maps with small image. I. Uniqueness
and fine existence. Proc. Lond. Math. Soc. (3) 61 371–406. MR1063050

LE, H. (2004). Estimation of Riemannian barycentres. LMS J. Comput. Math. 7 193–200.
MR2085875

LEPORÉ, N., BRUN, C., CHOU, Y.-Y., LEE, A., BARYSHEVA, M., PENNEC, X., MCMAHON, K.,
MEREDITH, M., DE ZUBICARAY, G., WRIGHT, M., TOGA ARTHUR, W. and THOMPSON, P.
(2008). Best individual template selection from deformation tensor minimization. In Proc. of the
2008 IEEE Int. Symp. ISBI 2008, Paris, France 460–463.

LORENZI, M., AYACHE, N. and PENNEC, X. (2015). Regional flux analysis for discovering and
quantifying anatomical changes: An application to the brain morphometry in Alzheimer’s disease.
NeuroImage 115 224–234.

LORENZI, M. and PENNEC, X. (2013). Geodesics, parallel transport & one-parameter subgroups for
diffeomorphic image registration. Int. J. Comput. Vis. 105 111–127. MR3104013

MACHADO, L., SILVA LEITE, F. and KRAKOWSKI, K. (2010). Higher-order smoothing splines
versus least squares problems on Riemannian manifolds. J. Dyn. Control Syst. 16 121–148.
MR2580471

OLVER, P. J. (2001). Geometric foundations of numerical algorithms and symmetry. Appl. Algebra
Engrg. Comm. Comput. 11 417–436. MR1828189

PENNEC, X. (2006). Intrinsic statistics on Riemannian manifolds: Basic tools for geometric mea-
surements. J. Math. Imaging Vision 25 127–154. MR2254442

PENNEC, X. (2015). Barycentric subspaces and affine spans in manifolds. In Geometric Science of
Information. Lecture Notes in Computer Science 9389 12–21. Springer, Cham. MR3442180

PENNEC, X. (2018a). Supplement A to “Barycentric subspace analysis on manifolds.”
DOI:10.1214/17-AOS1636SUPPA.

PENNEC, X. (2018b). Supplement B to “Barycentric subspace analysis on manifolds.”
DOI:10.1214/17-AOS1636SUPPB.

PENNEC, X. and ARSIGNY, V. (2013). Exponential barycenters of the canonical Cartan connection
and invariant means on Lie groups. In Matrix information geometry 123–166. Springer, Heidel-
berg. MR2964451

PENNEC, X., FILLARD, P. and AYACHE, N. (2006). A Riemannian framework for tensor computing.
Int. J. Comput. Vis. 66 41–66.

SMALL, C. G. (1996). The Statistical Theory of Shapes. Springer, Berlin. MR1418639
SOMMER, S. (2013). Horizontal dimensionality reduction and iterated frame bundle development. In

Proceedings of the 1st International Conference Geometric Science of Information Held in Paris,
August 28–30, 2013 (GSI 2013) (F. Nielsen and F. Barbaresco, eds.). Lecture Notes in Computer
Science 8085 76–83. Springer, Heidelberg. MR3126126

SOMMER, S., LAUZE, F. and NIELSEN, M. (2014). Optimization over geodesics for exact principal
geodesic analysis. Adv. Comput. Math. 40 283–313. MR3194707

TIPPING, M. E. and BISHOP, C. M. (1999). Probabilistic principal component analysis. J. Roy.
Statist. Soc. Ser. B 61 611–622. MR1707864

WANG, X. and MARRON, J. S. (2008). A scale-based approach to finding effective dimensionality
in manifold learning. Electron. J. Stat. 2 127–148. MR2386090

http://www.ams.org/mathscinet-getitem?mr=2966769
http://www.ams.org/mathscinet-getitem?mr=442975
http://arxiv.org/abs/arXiv:1407.2087
http://www.ams.org/mathscinet-getitem?mr=1063050
http://www.ams.org/mathscinet-getitem?mr=2085875
http://www.ams.org/mathscinet-getitem?mr=3104013
http://www.ams.org/mathscinet-getitem?mr=2580471
http://www.ams.org/mathscinet-getitem?mr=1828189
http://www.ams.org/mathscinet-getitem?mr=2254442
http://www.ams.org/mathscinet-getitem?mr=3442180
https://doi.org/10.1214/17-AOS1636SUPPA
https://doi.org/10.1214/17-AOS1636SUPPB
http://www.ams.org/mathscinet-getitem?mr=2964451
http://www.ams.org/mathscinet-getitem?mr=1418639
http://www.ams.org/mathscinet-getitem?mr=3126126
http://www.ams.org/mathscinet-getitem?mr=3194707
http://www.ams.org/mathscinet-getitem?mr=1707864
http://www.ams.org/mathscinet-getitem?mr=2386090


2746 X. PENNEC

WEYENBERG, G. S. (2015). Statistics in the Billera–Holmes–Vogtmann treespace. Ph.D. thesis,
Univ. Kentucky. MR3450194

WILSON, R. C., HANCOCK, E. R., PEKALSKA, E. and DUIN, R. P. W. (2014). Spherical and
hyperbolic embeddings of data. IEEE Trans. Pattern Anal. Mach. Intell. 36 2255–2269.

YANG, L. (2011). Medians of probability measures in Riemannian manifolds and applications to
radar target detection. Ph.D. thesis, Poitier Univ.

ZHAI, H. (2016). Principal component analysis in phylogenetic tree space. Ph.D. thesis, Univ. North
Carolina at Chapel Hill, Ann Arbor, MI. MR3542232

ZHANG, M. and FLETCHER, P. T. (2013). Probabilistic principal geodesic analysis. In Proceedings
of the 26th International Conference on Neural Information Processing Systems (NIPS’13) 1
1178–1186.

UNIVERSITÉ CÔTE D’AZUR

INRIA, SOPHIA ANTIPOLIS MÉDITERRANNÉE

ASCLEPIOS TEAM

2004 ROUTE DES LUCIOLES BP 93
F-06902 SOPHIA ANTIPOLIS CEDEX

FRANCE

E-MAIL: xavier.pennec@inria.fr

http://www.ams.org/mathscinet-getitem?mr=3450194
http://www.ams.org/mathscinet-getitem?mr=3542232
mailto:xavier.pennec@inria.fr

	Introduction
	Paper organization

	Riemannian geometry
	Tools for computing on Riemannian manifolds
	Normal coordinate system
	Hessian of the squared Riemannian distance
	Moments of point distributions
	Afﬁnely independent points on a manifold

	Example on the sphere Sn
	Hessian
	Moments of a k+1-pointed sphere
	Afﬁne independence of the reference points

	Example on the hyperbolic space Hn
	Hessian
	Moments of a k+1-pointed hyperboloid
	Afﬁne independence


	Exponential Barycentric Subspaces (EBS) and afﬁne spans
	Afﬁne subspaces in a Euclidean space
	EBS and afﬁne span in Riemannian manifolds
	Characterizations of the EBS
	Spherical EBS and afﬁne span
	Hyperbolic EBS and afﬁne span

	Fréchet/Karcher barycentric subspaces
	Link between the different barycentric subspaces
	Spherical KBS
	Hyperbolic KBS/FBS

	Properties of the barycentric subspaces
	Barycentric simplex in a regular geodesic ball
	Barycentric simplexes and convex hulls
	Local dimension of the barycentric subspaces
	Stability of the afﬁne span with respect to the metric power
	Restricted geodesic submanifolds are limit of afﬁne spans
	Example on spheres and hyperbolic spaces


	Barycentric subspace analysis
	Flags of barycentric subspaces in manifolds
	Forward and backward barycentric subspaces analysis
	Approximating data using a pure subspace
	A criterion for hierarchies of subspaces: AUV on ﬂags of afﬁne spans
	Sample-limited barycentric subspace inference on spheres

	Discussion
	Appendix: Proof of Theorem 8
	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

