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DEBIASING THE LASSO: OPTIMAL SAMPLE SIZE FOR
GAUSSIAN DESIGNS

BY ADEL JAVANMARD1 AND ANDREA MONTANARI2

University of Southern California and Stanford University

Performing statistical inference in high-dimensional models is challeng-
ing because of the lack of precise information on the distribution of high-
dimensional regularized estimators.

Here, we consider linear regression in the high-dimensional regime p � n

and the Lasso estimator: we would like to perform inference on the parameter
vector θ∗ ∈ R

p . Important progress has been achieved in computing confi-
dence intervals and p-values for single coordinates θ∗

i , i ∈ {1, . . . , p}. A key
role in these new inferential methods is played by a certain debiased estima-
tor θ̂d. Earlier work establishes that, under suitable assumptions on the design
matrix, the coordinates of θ̂d are asymptotically Gaussian provided the true
parameters vector θ∗ is s0-sparse with s0 = o(

√
n/ logp).

The condition s0 = o(
√

n/ logp) is considerably stronger than the one
for consistent estimation, namely s0 = o(n/ logp). In this paper, we consider
Gaussian designs with known or unknown population covariance. When the
covariance is known, we prove that the debiased estimator is asymptotically
Gaussian under the nearly optimal condition s0 = o(n/(logp)2).

The same conclusion holds if the population covariance is unknown but
can be estimated sufficiently well. For intermediate regimes, we describe the
trade-off between sparsity in the coefficients θ∗, and sparsity in the inverse
covariance of the design. We further discuss several applications of our results
beyond high-dimensional inference. In particular, we propose a thresholded
Lasso estimator that is minimax optimal up to a factor 1 + on(1) for i.i.d.
Gaussian designs.

1. Introduction.

1.1. Background. Consider a random design model where we are given n i.i.d.
pairs (y1, x1), (y2, x2), . . . , (yn, xn) with yi ∈ R, and xi ∈ R

p . The response vari-
able yi is a linear function of xi , contaminated by noise wi independent of xi

yi = 〈
θ∗, xi

〉+ wi, wi ∼ N
(
0, σ 2).(1)
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Here, θ∗ ∈ R
p is a vector of parameters to be estimated and 〈·, ·〉 is the standard

scalar product.
In matrix form, letting y = (y1, . . . , yn)

T and denoting by X the matrix with
rows xT

1 , . . . , xT
n , we have

y = Xθ∗ + w, w ∼ N
(
0, σ 2In×n

)
.(2)

We are interested in the high-dimensional regime wherein the number of pa-
rameters p exceeds the sample size n. Over the last 20 years, impressive progress
has been made in developing and understanding highly effective estimators in this
regime [8, 10, 14]. A prominent approach is the Lasso [18, 53] defined through the
following convex optimization problem:

θ̂ Lasso(y,X;λ) ≡ arg max
θ∈Rp

{
1

2n
‖y − Xθ‖2

2 + λ‖θ‖1

}
.(3)

[We will omit the arguments of θ̂ Lasso(y,X;λ) whenever clear from the context.]
A far less understood question is how to perform statistical inference in the high-

dimensional setting, for instance computing confidence intervals and p-values for
quantities of interest. Progress in this direction was achieved only over the last
couple of years. In particular, several papers [9, 38, 39, 54, 59] develop meth-
ods to compute confidence intervals for single coordinates of the parameters vec-
tor θ∗. More precisely, these methods compute intervals Ji(α) depending on y,X,
of nearly minimal size, with the coverage guarantee

P
(
θ∗
i ∈ Ji(α)

) ≥ 1 − α − on(1).(4)

The on(1) term is explicitly characterized, and vanishes along sequence of in-
stances of increasing dimensions under suitable condition on the design matrix X.

The fundamental idea developed in [38, 39, 54, 59] is to construct a debiased
(or de-sparsified) estimator that takes the form

θ̂d = θ̂ Lasso + 1

n
MXT(y − Xθ̂ Lasso),(5)

where M ∈ R
p×p is a matrix that is a function of X, but not of y. While the con-

struction of M varies across different papers, the basic intuition is that M should
be a good estimate of the precision matrix � = �−1, where � = E{x1x

T
1 } is the

population covariance.
Assume θ∗ is s0-sparse, that is, it has only s0 nonzero entries. The key result

that allows the construction of confidence intervals in [39, 54, 59] is the follow-
ing (holding under suitable conditions on the design matrix). If M is “sufficiently
close” to �, and the sparsity level is

s0 �
√

n

logp
,(6)

then θ̂d
i is approximately Gaussian with mean θ∗

i and variance of order σ 2/n.
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The condition (6) comes as a surprise, and is somewhat disappointing. Indeed,
consistent estimation using—for instance—the Lasso can be achieved under the
much weaker condition s0 � n/ logp. More specifically, in this regime, with high
probability [8, 10, 14, 56, 58]

∥∥θ̂ Lasso − θ∗∥∥2
2 ≤ Cs0σ

2

n
logp.(7)

This naturally leads to the following question:

Does the debiased estimator have a Gaussian limit under the weaker condition s0 �
n/ logp?

Let us emphasize that the key technical challenge here does not lie in the fact
that M is not a good estimate of the precision matrix �. Of course, if M is not
close to �, then θ̂d will not have a Gaussian limit. However, earlier proofs [39,
54, 59] cannot establish the Gaussian limit for s0 �

√
n/ logp, even if � is known

and we set M = �. Even the idealized case where the columns of X are known
to be independent and identically distributed (i.e., � = I) is only understood in
the asymptotic limit s0, n,p → ∞ with s0/p, n/p having constant limits in (0,1)

[38].
In order to describe the challenge, let us set M = �, and recall the common step

of the proofs in [39, 54, 59]. Using the definitions (2), (5), we get

√
n
(
θ̂d − θ∗) = √

n
(
θ̂ Lasso − θ∗)+ 1√

n
�XT(Xθ∗ + w − Xθ̂ Lasso)

= 1√
n
�XTw + √

n(��̂ − I)
(
θ∗ − θ̂ Lasso),(8)

where �̂ = XTX/n ∈ R
p×p is the empirical design covariance. Since w ∼

N(0, σ 2In), it is easy to see that vector �XTw/
√

n has Gaussian entries of variance
of order one. In order for θ̂d to be approximately Gaussian, we need the second
term (which can be interpreted as a bias) to vanish. Earlier papers [39, 54, 59]
address this by a simple �1–�∞ bound. Namely (denoting by |Q|∞ the maximum
absolute value of any entry of matrix Q),∥∥√n(��̂ − I)

(
θ∗ − θ̂ Lasso)∥∥∞ ≤ √

n|��̂ − I|∞
∥∥θ∗ − θ̂ Lasso∥∥

1

≤ √
n × C

√
logp

n
× Cs0σ

√
logp

n

≤ C2σ
s0 logp√

n
,

(9)

where the bound |��̂ − I|∞ ≤ C
√

(logp)/n follows from standard concentration
arguments, and the bound on ‖θ∗ − θ̂ Lasso‖1 is order-optimal and is proved, for
instance, in [8, 10].
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This simple argument implies that the debiased estimator is approximately
Gaussian if the upper bound in equation (9) is negligible, that is, if s0 =
o(

√
n/ logp). We see therefore that this requirement is not imposed as to con-

trol the error in estimating �. It instead follows from the simple �1–�∞ bound
even if � is known.

1.2. Main results. The above exposition should clarify that the �1 −�∞ bound
is quite conservative. Considering the ith entry in the bias vector bias = (��̂ −
I)(θ∗ − θ̂ Lasso), the �1–�∞ bound controls it as |biasi | ≤ ‖(��̂ − I)i,·‖∞‖θ∗ −
θ̂ Lasso‖1. This bound would be accurate only if the signs of the entries (θ∗

j − θ̂ Lasso
j )

were aligned to the signs (��̂ − I)i,j , j ∈ {1, . . . , p}. While intuitively this is quite
unlikely, it is difficult to formalize this intuition. Note that in a random design
setting, the terms (��̂ − I)i,· and θ∗ − θ̂ Lasso are highly dependent: θ̂ Lasso is a
deterministic function of the random pair (X,w), while (��̂−I) = (�XXT/n−I)
is a function of X.

Our main result overcomes this technical hurdle via a careful analysis of such
dependencies. We follow a leave-one-out proof technique. Roughly speaking, in
order to understand the distribution of the ith coordinate of the debiased estimator
θ̂d
i , we consider a modified problem in which column i is removed from the de-

sign matrix X. We then study the consequences of adding back this column, and
bound the effect of this perturbation. An outline of this proof strategy is provided
in Section 6.1.

We state below a simplified version of our main result, referring to Theorem 3.8
below for a full statement, including technical conditions.

THEOREM 1.1 (Known covariance). Consider the linear model (2) where X

has independent Gaussian rows, with zero mean and covariance � = �−1. Assume
that � satisfies the technical conditions stated in Theorem 3.8. Define the debiased
estimator θ̂d via equation (5) with M = � and θ̂ Lasso = θ̂ Lasso(y,X;λ) with λ =
8σ

√
(logp)/n.

If n,p → ∞ with s0 = o(n/(logp)2), then we have
√

n
(
θ̂d − θ∗) = Z + oP (1), Z|X ∼ N

(
0, σ 2��̂�

)
.(10)

Here, oP (1) is a (random) vector satisfying ‖oP (1)‖∞ → 0 in probability as
n,p → ∞, and Z|X ∼ N(0, σ 2��̂�) means that the conditional distribution of
Z given X is centered Gaussian, with the stated covariance.

REMARK 1.2. The more complete statement of this result, Theorem 3.8
provides explicit nonasymptotic bounds on the error term oP (1), In particular,
‖oP (1)‖∞ turns out to be of order

√
s0/n(logp) with probability converging to

one as n,p → ∞.
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Theorem 1.1 raises an important question: Does the Gaussian limit hold even if
M is an imperfect estimate of �?

If the precision matrix � is sufficiently structured, then it can be reliably esti-
mated from the design matrix X. Both [59] and [54] assume that � is sparse, and
use the node-wise Lasso to construct an estimate �̂ [44]. They then set M = �̂.

We followed the same procedure, and hence generalized Theorem 1.1 to the
setting of unknown, sparse precision matrix. We state here a simplified version
of this result, deferring to Theorem 3.13 for a more technical statement including
nonasymptotic probability bounds.

THEOREM 1.3 (Unknown covariance). Consider the linear model (2) where
X has independent Gaussian rows with precision matrix �, satisfying the technical
conditions of Theorem 1.1 (stated in Theorem 3.8). Define the debiased estimator
θ̂d via equation (5) with θ̂ Lasso = θ̂ Lasso(y,X;λ), λ = 8σ

√
(logp)/n, and M = �̂

computed through node-wise Lasso (see Section 3.3).
Let s� the maximum number of nonzero entries in any row of �. If n,p → ∞

with s0 = o(n/(logp)2) and min(s�, s0) = o(
√

n/ logp), then we have√
n
(
θ̂d − θ∗) = Z + oP (1), Z|X ∼ N

(
0, σ 2��̂�

)
,(11)

where oP (1) is a (random) vector satisfying ‖oP (1)‖∞ → 0 in probability as
n,p → ∞.

REMARK 1.4. As mentioned above, this version of the debiased estimator can
be constructed entirely from data. The only unspecified steps are the choice of the
regularization parameter λ, and the estimation of the noise level σ . These can be
addressed as in [39, 54, 59] without changes in the sparsity condition. We will
further discuss these points below.

REMARK 1.5. The sparsity condition min(s0, s�) = o(
√

n/ logp) nicely il-
lustrates the practical improvement implied by our more refined analysis. If the
sparsity of the precision matrix is larger than the sparsity of θ∗, we recover the
condition s0 = o(

√
n/ logp) which is assumed in the results of [54, 59]. (Note that

[39] obtain the same condition without sparsity assumption on �.) In this regime,
our improved analysis does not bring any advantage, since the bottleneck is due to
the inaccurate estimation of �.

On the other hand, if the precision matrix is sparser, we obtain a much weaker
condition on the coefficients θ∗. In particular, if s� = o(

√
n/ logp), then the con-

dition on s0 is relaxed into a nearly optimal condition s0 = o(n/(logp)2).
It is instructive to compare this with the past progress in sparse estimation and

compressed sensing. In that context, earlier work based on incoherence conditions
[22, 23] implied accurate reconstruction from a number of random samples scal-
ing quadratically in the number of nonzero coefficients. Subsequent progress was
based on the restricted isometry property [14, 15], and established accurate recon-
struction from a linear number of measurements.
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1.3. Extensions and applications. In this section, we discuss a few directions
for extending this result along with potential applications.

Sample splitting. An alternative approach to avoid the �1–�∞ bound in equa-
tion (9) is to modify the definition of debiased estimator in equation (5), using
sample-splitting. Roughly speaking, we can split the same in two batches of size
n/2. One batch is then used to estimate θ̂ Lasso and the other batch for y and X

appearing in equation (5) (and possibly for computing M).
In the Supplementary Material [40], we discuss this method in greater detail.

This approach is subject to variations due to the random splitting, and does not
make use of part of half of the response variables. While it provides a viable alter-
native, it is not the focus of the present work.

Confidence intervals. Theorem 1.3 (and its formal version, Theorem 3.13) al-
lows the construction of confidence intervals using the same general procedure
as in [39, 54, 59]. Namely, we construct the debiasing matrix M from the design
matrix X, and an estimate σ̂ of the noise variance. Then, for a significance level
α ∈ (0,1), we form the following confidence interval for parameter θi :

Ji(α) ≡ [
θ̂d
i − δ(α,n), θ̂d

i + δ(α,n)
]
,(12)

δ(α,n) ≡ 
−1(1 − α/2)
σ̂√
n

(
M�̂MT)1/2

i,i ,(13)

where 
(x) ≡ ∫ x
−∞ e−t2/2 dt/

√
2π is the Gaussian distribution. Section 3.3

presents a formal analysis of this procedure. A straightforward generalization also
allows to compute p-values for the null hypothesis H0,i : θ∗

i = 0.
Noise level and regularization. The construction of the confidence interval Ji(α)

in equations (12), (13) requires a suitable choice of the regularization parameter λ,
and an estimate of the noise level σ̂ . The same difficulty was present in [39, 54,
59]. The approaches used there (for instance, using the scaled Lasso [51]) can be
followed in the present case as well. Under the assumptions of Theorem 1.1, the
same proofs of [39] show that the additional error due to the choice of λ and σ̂ are
negligible.

Semi-supervised learning. In some applications, the precision matrix � can be
estimated more accurately thanks to additional information. For instance, in semi-
supervised learning, the statistician is given additional samples x1, x2, . . . , xN ∈
R

p with the same distribution as the {xi}1≤i≤n. For these “unlabeled” samples,
the response variable is unknown. There are indeed many applications in which
acquiring the response variable is much more challenging than capturing the co-
variates [16] and, therefore, N � n or even N � p. In this setting, we can estimate
� more accurately from {xi}1≤i≤N , then use this estimate to construct M .

Non-Gaussian designs. We expect that generalization of Theorem 1.1 and The-
orem 1.3 should hold for a broad class of random designs with independent
sub-Gaussian rows, although new proof ideas are required. The main technical
challenge in extending the present approach is to generalize the leave-one-out
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construction. As discussed in Section 6.1, when studying the effect of modifying
column i, we need to account for dependencies between columns. For Gaussian
designs, these dependencies are fully captured by the design covariance �.

Note that the Gaussian assumption holds in the context of estimating Gaussian
graphical models. This is itself a broad topic that attracted significant interest, since
the seminal work of [44]. Remarkably, recent contributions have shown the utility
of debiasing methods in this context [17, 32, 33].

1.4. Organization and contributions. The rest of the paper presents the fol-
lowing contributions:

1. Section 3. We state formally our Gaussian limit theorems, and use them to
construct valid confidence intervals, of nearly optimal size. In particular, our
results subsume (and improve) all previously known results on the debiased
estimator for Gaussian designs.

2. Section 4. We establish a minimax lower bound on the �∞ norm of the non-
Gaussian component in θ̂d. This implies that our Gaussian limit theorems can-
not be substantially improved.

3. Section 5. Apart from the construction of confidence intervals, our Gaussian
limit theorems have several fundamental implications. We discuss a a few ex-
amples that we consider particularly interesting. In particular, we construct a
thresholded Lasso estimator that is minimax optimal up to a factor (1 + on(1))

(an alternative approach to the same problem was recently proposed in [50]).

Section 2 discusses relations with earlier work in this area. Outlines of the proofs of
the main theorems are given in Section 6 with most of the technical work deferred
to the Supplementary Material [40].

2. Related work. A parallel line of research develops methods for perform-
ing valid inference after a low-dimensional model is selected for fitting high-
dimensional data [19, 31, 41, 52]. The resulting significance statements are typ-
ically conditional on the selected model. In contrast, here we are interested in
classical (unconditional) significance statements: the two approaches are broadly
complementary.

The focus of the present paper is assessing statistical significance, such as confi-
dence intervals, for single coordinates in the parameters vector θ∗ and more gener-
ally for small groups of coordinates. Other inference tasks are also interesting and
challenging in high dimension, and were the object of recent investigations [2, 3,
34–36]. In particular, [36] uses the idea of debiased estimator to construct an �∞
projection statistic for testing null hypothesis of form H0 : θ0 ∈ �0 versus alterna-
tive HA : θ0 /∈ �0, for a general set �0 ⊂R

p . This framework encompasses testing
whether the parameter lies in a convex cone, testing the signal strength, testing ar-
bitrary functionals of the parameter, and testing adaptive hypothesis, among many
other hypotheses.
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Sample splitting provides a general methodology for inference in high dimen-
sion [45, 55]. As mentioned above, sample splitting can also be used to define a
modified debiased estimator; see the Supplementary Material [40]. However, sam-
ple splitting techniques typically use only part of the data for inference, and are
therefore suboptimal. Also, the result depends on the random split of the data.

A method for inference without assumptions on the design matrix was devel-
oped in [43]. The resulting confidence intervals are typically quite conservative.

The debiasing method was developed independently from several points of view
[9, 38, 39, 54, 59]. The present authors were motivated by the AMP analysis of the
Lasso [4–6, 25], and by the Gaussian limits that this analysis implies. In particular,
[38] used those techniques to analyze standard Gaussian designs (i.e., the case
� = I) in the asymptotic limit n,p, s0 → ∞ with s0/p, n/p constant. In this limit,
the debiased estimator was proven to be asymptotically Gaussian provided s0 ≤
Cn/ log(p/s0) (for a universal constant C). This sparsity condition is even weaker
than the one of Theorem 1.1 (or Theorem 3.8), but the result of [38] only holds
asymptotically. Also [38] proved Gaussian convergence in a weaker sense than the
one established here, implying coverage of the constructed confidence intervals
only “on average” over the coordinates i ∈ {1, . . . , p}.

A nonasymptotic result under weaker sparsity conditions, and for designs with
dependent columns, was proved in [37]. However, this only establishes Gaussianity
of θ̂d

i for most of the coordinates i ∈ {1, . . . , p}. Here, we prove a significantly
stronger result holding uniformly over i ∈ {1, . . . , p}.

Most of the work on statistical inference in high-dimensional models has been
focused so far on linear regression. The debiasing method admits a natural exten-
sion to generalized linear models that was analyzed in [54]. Robustness to model
misspecification was studied in [11]. An R-package for inference in high dimen-
sion that uses the node-wise Lasso is available [20]. An R implementation of the
method [39] (which does not make sparsity assumptions on �) is also available.3

3. Main results: Gaussian limit theorems.

3.1. General notation. We use ei to refer to the ith standard basis element,
for example, e1 = (1,0, . . . ,0). For a vector v, supp(v) represents the positions of
nonzero entries of v. Further, sign(v) is the vector with entries sign(v)i = +1
if vi > 0, sign(v)i = −1 if vi < 0, and sign(v)i = 0 otherwise. For a matrix
M ∈ R

n×p and sets of indices I, J ⊆ {1, . . . , p}, we use MI,J to denote the sub-
matrix formed by rows in I and columns in J , and we write MJ to refer to the
submatrix formed by columns in J . Likewise, for a vector θ and a subset S, θS

is the restriction of θ to indices in S. For an integer p ≥ 1, we use the notation
[p] = {1, . . . , p} and the shorthand ∼i for the set [p]\i. We write ‖v‖p for the

3See http://web.stanford.edu/~montanar/sslasso/.

http://web.stanford.edu/~montanar/sslasso/
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standard �p norm of a vector v, that is, ‖v‖p = (
∑

i |vi |p)1/p and ‖v‖0 for the
number of nonzero entries of v. For a matrix A ∈ R

m×n, ‖A‖p denotes it �p op-
erator norm; in particular, ‖A‖∞ = max1≤i≤m

∑n
j=1 |Aij |. This is to be contrasted

with the maximum absolute value of any entry of A that, as mentioned above,
we denote by |A|∞ ≡ maxi≤m,j≤n |Aij |. For a matrix A, we denote its maximum
and minimum singular values by σmax(A) and σmin(A), respectively. If A is sym-
metric, λmax(A) and λmin(A) are its maximum and minimum eigenvalues. Finally,
for two functions f (n) and g(n), the notation f (n) � g(n) means that f “domi-
nates” g asymptotically, namely, for every fixed positive C, there exists n(C) such
that f (n) ≥ Cg(n) for n > n(C). We also use f (n) � g(n) to indicate that f is
“bounded” above by g asymptotically, that is, f (n) ≤ Cg(n) for some positive
constant C. The notation f (n) � g(n) and f (n) = o(g(n)) are defined analo-
gously, and we use oP (·) to indicate asymptotic behavior in probability as the
sample size n tends to infinity.

We will use c,C, . . . to denote generic constants that can vary from one position
to the other of the paper.

3.2. Preliminaries. This section includes some preliminary results that are re-
peatedly used in our proofs. We start by some well-known results about the Lasso
estimator. For the sake of simplicity, we will often use θ̂ = θ̂ (y,X;λ) instead of
θ̂ Lasso to denote the Lasso estimator.

We denote the rows of the design matrix X by x1, . . . , xn ∈ R
p and its columns

by x̃1, . . . , x̃p ∈ R
n. The empirical covariance of the design X is defined as �̂ ≡

(XTX)/n. The population covariance will be denoted by �, and we let � ≡ �−1

be the precision matrix.

DEFINITION 3.1. Given a symmetric matrix �̂ ∈R
p×p and a set S ⊆ [p], the

corresponding compatibility constant is defined as

φ2(�̂, S) ≡ min
{ |S|〈θ, �̂θ〉

‖θS‖2
1

: θ ∈ R
p,‖θSc‖1 ≤ 3‖θS‖1

}
.(14)

We say that �̂ ∈ R
p×p satisfies the compatibility condition for the set S ⊆ [p],

with constant φ if φ(�̂, S) ≥ φ. We say that it holds for the design matrix X, if it
holds for �̂ = XTX/n.

It is also useful to recall some notation for the restricted eigenvalue condition,
introduced by Bickel, Ritov and Tsybakov [8]. For an integer 0 < s0 < p and a
positive number L, define C(s0,L) ∈ R

p by the following cone constraints:

C(s0,L) ≡ {
θ ∈ R

p : ∃S ⊆ [p], |S| = s0,‖θSc‖1 ≤ L‖θS‖1
}
.(15)

In high dimension, the empirical covariance �̂ is singular. However, we can ask
for nonsingularity of �̂ for vectors in C(s0,L). Rudelson and Zhou [48] prove a re-
duction principle that bounds the restricted eigenvalues of the empirical covariance
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in terms of those of the population covariance. We will use their result specified to
the case of Gaussian matrices.

LEMMA 3.2 ([48], Theorem 16). Suppose that σmin(�) > Cmin > 0 and
σmax(�) < Cmax < ∞. Let X ∈ R

n×p have independent rows drawn from N(0,�).
Set 0 < δ < 1, 0 < s0 < p and L > 0. Define the following event:

Bδ(n, s0,L)

≡
{
X ∈ R

n×p : (1 − δ)
√

Cmin ≤ ‖Xv‖2√
n‖v‖2

≤ (1 + δ)
√

Cmax,

∀v ∈ C(s0,L) s.t. v �= 0
}
.

Then there exists a constant c1 = c1(L) such that, for sample size n ≥ c1s0 ×
log(p/s0), we have

P
(
Bδ(n, s0,L)

) ≥ 1 − 2e−δ2n.(16)

REMARK 3.3. Fix S ⊆ [p] with |S| = s0. Under the event Bδ(n, s0,3), we
have

φ2(�̂, S) ≥ min
θ∈C(s0,3)

s0〈θ, �̂θ〉
‖θS‖2

1

≥ min
θ∈C(s0,3)

〈θ, �̂θ〉
‖θS‖2

2

≥ (1 − δ)2Cmin,

where the second inequality follows from Cauchy–Schwarz inequality.

We next introduce the event

B̃(n,p) ≡
{
w ∈R

n : 1

n

∥∥XTw
∥∥∞ ≤ σ

√
6 logp

n

}
.(17)

On B̃(n,p), we can control the randomness due to the measurement noise. A well-
known union bound argument shows that B̃(n,p) has large probability (see, for
instance, [10]).

LEMMA 3.4 ([10], Lemma 6.2). Suppose that �̂ii ≤ 1 for i ∈ [p]. Then we
have

P
(
B̃(n,p)

) ≥ 1 − 2p−2.

The following lemma states that the Lasso estimator is sparse. Its proof is given
in the Supplementary Material [40].
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LEMMA 3.5. Consider the Lasso selector θ̂ with λ = κσ
√

logp/n, for a con-
stant κ ≥ 8. On the event B ≡ B̃(n,p) ∩Bδ(n, s0,3), the following holds:

|Ŝ| < C∗s0,(18)

with

C∗ ≡ 16Cmax

(1 − δ)2Cmin
.(19)

Our next lemma states a property of Gaussian design matrices which will be
used repeatedly in our analysis. Its proof is very short and is given here for the
reader’s convenience.

LEMMA 3.6. Let vi = X�ei . Then vi and X∼i are independent.

PROOF. Define u = �ei and fix j �= i. Recall that x̃� denotes the �th column
of X. We write vi = ∑p

�=1 x̃�u� and

E
(
vix̃

T
j

) =
p∑

�=1

u�E
(
x̃�x̃

T
j

) =
p∑

�=1

u���j In×n

=
p∑

�=1

��i��j In×n = (��)ij In×n = 0,

where the last step holds since i �= j . Since vi and x̃j are jointly Gaussian, this
implies that they are independent. �

We finally introduce some parameters that are used in stating our main theo-
rems. For an integer k and an invertible matrix A ∈ R

p×p , we define ρ(A, k) as
follows:

ρ(A, k) ≡ max
T ⊆[p],|T |≤k

∥∥A−1
T ,T

∥∥∞,(20)

where we adopt the convention A−1
T ,T = (AT,T )−1 and recall that ‖ · ‖∞ denotes

the �∞ operator norm (maximum �1 norm of the rows). It is clear that ρ(A, k) is
nondecreasing in k.

LEMMA 3.7. Assume an invertible matrix A. For every 1 ≤ k ≤ p, we have

ρ(A, k) ≤ min
(∥∥A−1∥∥∞,

√
k

σmin(A)

)
.(21)

Lemma 3.7 is proved in the Supplementary Material [40].
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3.3. Statement of main theorems. In our first theorem, we assume that the pre-
cision matrix � ≡ �−1 is available and we set M = �. We prove the correspond-
ing debiased estimator is asymptotically unbiased provided that n � s0(logp)2.

3.3.1. Known covariance.

THEOREM 3.8 (Known covariance). Consider the linear model (2) where X

has independent Gaussian rows, with zero mean and covariance � and θ∗ is s0-
sparse. Suppose that � satisfies the following conditions:

(i) For i ∈ [p], we have �ii ≤ 1.
(ii) We have σmin(�) > Cmin > 0 and σmax(�) < Cmax for some constants Cmin

and Cmax.
(iii) Define C0 ≡ (32Cmax/Cmin)+1. We have ρ(�,C0s0) ≤ ρ, for some constant

ρ > 0.

Let θ̂ be the Lasso estimator defined by (3) with λ = κσ
√

(logp)/n, for κ ∈
[8, κmax]. Further, let θ̂d be defined as per equation (5), with M = � ≡ �−1. Then
there exist constants c,C depending solely on Cmin,Cmax and κmax, such that, for
n ≥ max(25 logp, cs0 log(p/s0)) the following holds true:

√
n
(
θ̂d − θ∗) = Z + R, Z|X ∼ N

(
0, σ 2��̂�

)
,(22)

P

(
‖R‖∞ ≥ Cρσ

√
s0

n
logp

)
≤ 2pe−c∗n/s0 + pe−n/1000 + 6p−2,(23)

with c∗ ≡ Cmin/16.

The proof of this theorem is presented in Section 6.
This theorem states that if the sample size satisfies n = �(s0 logp), then the

maximum size of the “bias” Ri over i ∈ [p] is bounded by

‖R‖∞ = OP

(√
s0

n
logp

)
.

On the other hand, each entry of the “noise term” Zi has variance σ 2(��̂�)ii .
Applying Lemma 7.2 in [37], we have |��̂� − �|∞ = oP (1). Therefore,
mini∈[p](��̂�)ii ≥ minii �ii −oP (1) is of order one because �ii ≥ C−1

max. Hence,
|Ri | is much smaller than Zi for n � s0(logp)2. We summarize this observation
in the remark below.

REMARK 3.9 (Discussion of the assumptions on �). Assumption (i) sets the
normalization of the design matrix. Assumptions (ii) on the eigenvalues of � is
common in high-dimensional models. Further, note that by Assumption (ii) and
invoking Lemma (3.7), we have ρ(�,C0s0) ≤ √

C0s0/Cmin. Using this bound for
ρ in equation (23), we recover the bound ‖R‖∞ � s0 logp/

√
n which is estab-

lished in previous work [39, 54, 59]. Note that this bound on the bias does not
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require Assumption (iii) (namely, that ρ is a bounded constant). However, Theo-
rem 3.8 asserts that, if ρ is a constant [Assumption (iii)], we have a sharper bound
on the bias, namely ‖R‖∞ �

√
s0/n logp.

A large family of covariance matrices satisfy conditions of Theorem 3.8. Ex-
amples include block diagonal matrices where the size of blocks are bounded, and
circulant matrices, where �i,j = r |i−j |, for some r ∈ (0,1).

COROLLARY 3.10. Under the assumptions of Theorem 3.8, if s0 � n/

(logp)2, then θ̂d is normally distributed. More precisely, let σ̂ = σ̂ (y,X) be an
estimator of the noise level satisfying, for any ε > 0,

lim
n→∞ sup

θ∗∈Rp;‖θ∗‖0≤s0

P

(∣∣∣∣ σ̂σ − 1
∣∣∣∣ ≥ ε

)
= 0.(24)

If s0 � n/(logp)2 and p/n then, for all x ∈ R, we have the following almost
surely:

lim
n→∞ sup

θ0∈Rp;‖θ∗‖0≤s0

∣∣∣∣P{
√

n(θ̂d
i − θ∗

i )

σ̂ [��̂�T]1/2
i,i

≤ x

}
− 
(x)

∣∣∣∣ = 0.(25)

Proof of Corollary 3.10 is given in the Supplementary Material [40].
There are several proposals for a consistent estimator of σ . A nonexhaustive list

includes [3, 7, 21, 28–30, 47, 49, 51, 57]. For concreteness, we use the the scaled
Lasso [51] given by

{θ̂ , σ̂ } ≡ arg min
θ∈Rp,σ>0

{
1

2σn
‖Y − Xθ‖2

2 + σ

2
+ λ̄‖θ‖1

}
.(26)

The following proposition shows that the scaled Lasso estimate σ̂ satisfies the
consistency criterion (24).

LEMMA 3.11. Under the assumptions of Theorem 3.8, let σ̂ be the scaled
Lasso estimator of the noise level [see equation (26)], with λ̄ = 10

√
(2 logp)/n.

Then σ̂ satisfies equation (24).

We refer to our earlier work [39], Appendix C, for the proof of Lemma 3.11.
Armed with the distributional characterization of θ̂d, given by (25), we can con-

struct asymptotically valid confidence intervals for each parameter θ∗
i . Indeed, for

the confidence interval Ji(α) described by equations (12), (13), we have the fol-
lowing coverage guarantee:

lim
n→∞P

(
θ∗
i ∈ Ji(α)

) = 1 − α.(27)

Let us emphasize that the coverage probability is taken with respect to the ran-
dom noise vector w as well as the design matrix X. It would be interesting (and
important) to derive similar guarantees conditional on X.
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Furthermore, in the context of hypothesis testing, we can test the null hypothesis
H0,i : θ∗

i = 0 versus the alternative HA,i : θ∗
i �= 0. We construct the two sided p-

values

Pi = 2
(

1 − 


( √
n|θ̂d

i |
σ̂ (��̂�T)

1/2
i,i

))
.(28)

The decision rule follows immediately: we reject H0,i if Pi ≤ α.

REMARK 3.12. It is worth noting that the sample splitting approach, dis-
cussed in the Supplementary Material [40], does not require Assumption (iii) in
Theorem 3.8. However, as pointed in the Introduction, this approach suffers from
variability due to the random splitting and does not make use of half of the re-
sponse variables.

3.3.2. Unknown covariance. We next generalize our result to the case of un-
known covariance, where following [54, 59] we construct the debiasing matrix M

using node-wise Lasso on matrix X. For the reader’s convenience, we first describe
this construction.

For i ∈ [p], we define the vector γ̂i = (γ̂i,j )j∈[p]\i ∈R
p−1 by performing sparse

regression of the ith column of X against all the other columns. Formally,

γ̂i (̃λ) = arg min
γ∈Rp

{
1

2n
‖x̃i − X∼iγ ‖2

2 + λ̃‖γ ‖1

}
,(29)

where X∼i is the submatrix obtained by removing the ith column (and columns
indexed by [p] \ i). Also define

Ĉ =

⎡⎢⎢⎢⎣
1 −γ̂1,2 · · · −γ̂1,p

−γ̂2,1 1 · · · −γ̂2,p

...
...

. . .
...

−γ̂p,1 −γ̂p,2 · · · 1

⎤⎥⎥⎥⎦ ,(30)

and let

T̂ 2 = diag
(
τ̂ 2

1 , . . . , τ̂ 2
p

)
, τ̂ 2

i = 1

n
(x̃i − X∼i γ̂i)

Tx̃i .(31)

Finally, define M = M(̃λ) by

M = T̂ −2Ĉ.(32)

THEOREM 3.13 (Unknown covariance). Consider the linear model (2) where
X has independent Gaussian rows, with zero mean and covariance �. Suppose
that Assumptions (i), (ii), (iii) in Theorem 3.8 hold true for �. We further let s� be
the maximum sparsity of the rows of � ≡ �−1, that is,

s� ≡ max
i∈[p]

∣∣{j �= i,�i,j �= 0}∣∣.(33)
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Let θ̂ be the Lasso estimator defined by (3) with λ = κσ
√

(logp)/n, for κ ∈
[8, κmax] and let θ̂d be debiased estimator with M given by (32) and λ̃ =
K

√
logp/n (with K a suitably large universal constant).

Then there exist constants c,C depending solely on Cmin,Cmax, κmax,K such
that, for n ≥ c max(s0, s�) logp, the following holds true:

√
n
(
θ̂d − θ∗) = Z + R, Z|X ∼ N

(
0, σ 2M�̂MT),(34)

‖R‖∞ ≤ Cρσ

√
s0

n
logp + Cσ min(s0, s�)

logp√
n

,(35)

with probability at least 1 − 2pe−c∗n/s0 − pe−cn − 6p−2, for some constants
c∗, c′, c′′ > 0.

The proof of Theorem 3.13 is deferred to the Supplementary Material [40].
A result similar to Corollary 3.10 holds true for the case of unknown covariance.

The proof is completely analogous to the one of Corollary 3.10, and hence omitted.

COROLLARY 3.14. Let σ̂ = σ̂ (y,X) be an estimator of the noise level satis-
fying equation (24) for any ε > 0.

Under the assumptions of Theorem 3.13, if min(s0, s�) � √
n/ logp and s0 �

n/(ρ(logp)2), then for all x ∈ R we have

lim
n→∞ sup

θ0∈Rp;‖θ∗‖0≤s0

∣∣∣∣P{
√

n(θ̂d
i − θ∗

i )

σ̂ [M�̂MT]1/2
i,i

≤ x

}
− 
(x)

∣∣∣∣ = 0,(36)

where M is given by equation (32).

Using the above distributional characterization, we can construct confidence
intervals for the individual model parameters θ∗

i as in (12), (13) with M given
by (32) and σ̂ given by the scaled Lasso as per (26). As mentioned above, the
resulting coverage probability includes expectation with respect to both the noise
and the random design; cf. equation (27). For the hypothesis testing task, two sided
p-values can be built similar to (28), where we replace ��̂� with M�̂MT.

4. Minimax lower bound on the residual R. In case that the design covari-
ance matrix is unknown, Theorem 3.13 establishes the following high probability
bound on the residual term R:

‖R‖∞ ≤ Cρσ

√
s0

n
logp + Cσ min(s0, s�)

logp√
n

.(37)

For sparse precision matrices, such that s� � √
n/(logp), the residual term ‖R‖∞

vanishes asymptotically under the near optimal condition s0 � n/(logp)2. The
question we will study in this section is whether such condition on s� is necessary.
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To answer this question, we develop a lower bound for ‖R‖∞ based on a mini-
max theorem for the estimation of coefficient θ1. This also clarifies the connection
between our results and the ones of [13], whose general approach we build on here.

Before presenting our results, we need to introduce some notation and defini-
tions.

Consider the linear model (2) and define parameters of the form γ = (θ,�,σ 2),
which consists of the signal θ , precision matrix � = �−1 and the noise standard
deviation σ .

For α ∈ (0,1) and a given parameter space �, denote by Iα(�) the set of all
(1 − α)-confidence intervals for θ1 over the entire space �,

Iα(�) ≡
{
Jα(y,X) : inf

γ∈�
Pγ

(
θ1 ∈ Jα(y,X)

) ≥ 1 − α
}
,(38)

where Pγ is the induced probability distribution on (y,X) for random Gaussian
design X and noise realization w, given the fixed signal θ . Here, and below we
focus on the first coordinate θ1 without loss of generality. For a given interval
Jα(y,X) ∈ Iα(�), we let �(Jα(y,X)) be the length of interval Jα(y,X) and denote
by �(Jα(·),�) the maximum expected length over a parameter space �,

�
(
Jα(·),�) = sup

γ∈�

Eγ

{
�
(
Jα(y,X)

)}
,(39)

with Eγ expectation with respect to Pγ . We further define the minimax rate for the
expected length of confidence intervals over � as follows:

�∗
α(�) = inf

Jα(·)∈Iα(�)
�
(
Jα(·),�).(40)

We next define parameter space �(s0, s�,ρ) as follows. Applying Lemma 3.7, we
strengthen Condition (iii) as ‖�‖∞ ≤ ρ and write

�(s0, s�,ρ) ≡
{
γ = (

θ,�,σ 2) : ‖θ‖0 ≤ s0, σ
2 ∈ (0, c],

(
�−1)

ii ≤ 1,
1

Cmax
< σmin(�) ≤ σmax(�) <

1

Cmin
,(41)

‖�‖∞ ≤ ρ, max
i∈[p]

∣∣{j �= i,�i,j �= 0}∣∣ ≤ s�

}
.

Quantities c, Cmin and Cmax ≥ 1 are constant which do not effect the minimax rate
and, therefore, we have not made them explicit in our notation �(s0, s�,ρ).

PROPOSITION 4.1. Consider a debiased estimator of form (5) with M being
a function of X and θ̂ the Lasso estimator at regularization parameter λ. Further,
let R = √

n(M�̂ − I)(θ̂ − θ∗) be the bias term and Q = diag(M�̂MT) be the
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variance term. Suppose that there exist a choice of M and λ such that

lim
n→∞P

(
sup

{‖R‖∞ : (θ∗,�,σ 2) ∈ �(s0, s�,ρ)
} ≤ �n

) = 1,(42)

lim
n→∞P

(
sup

{‖Q‖∞ : (θ∗,�,σ 2) ∈ �(s0, s�,ρ)
} ≤ C

) = 1,(43)

for some known �n and for some known constant C. Then we have

�∗
α

(
�(s0, s�,ρ)

)
� (1 + �n)√

n
.(44)

Note that since Q is a function of only X, the arguments θ∗ and σ 2 in equa-
tion (43) are superfluous. To establish the above upper bound, we construct a con-
fidence interval J d

α using a debiased estimator, such that J d
α ∈ I(�(s0, s�,ρ)). We

refer to the Supplementary Material [40] for the proof of Proposition 4.1.
The next proposition provides a lower bound on �∗

α(�(s0, s�,ρ)).

PROPOSITION 4.2. Suppose that α ∈ (0,1/2) and s0 � min(pη, n/ logp) for
some constant 0 ≤ η < 1/2. Further, assume ρ ≥ 1.02. The minimax expected
length for (1 − α)-confidence intervals of θ1 over �(s0, s�,ρ) satisfies

�∗
α

(
�(s0, s�,ρ)

)
� 1√

n
+ min

(
s0

logp

n
, s�

logp

n
,ρ

√
logp

n

)
.(45)

Proposition 4.2 generalizes the result of [13], Theorem 2, which shows that
without the sparsity constraint on � and the constraint ‖�‖∞ ≤ ρ, the minimax
rate for expected confidence interval length is lower bounded as �∗

α(�(s0,p)) ≥
(1/

√
n + s0 logp/n). Proposition 4.2 provides a more refined lower bound that

takes into account the sparsity structure of the precision matrix. We refer to the
Supplementary Material [40] for its proof.

By comparing the upper and lower bounds on �∗
α(�(s0, s�,ρ)), we conclude

that the condition min(s0, s�) logp � √
n is necessary for having ‖R‖∞ ≤ �n →

0. If this is not the case, then �n � min(s0, s�) logp/
√

n.
In particular, in order to get �n = o(1) at a nearly optimal condition s0 �

n/(logp)2, we need the precision matrix to be sparse with s� �√
n/(logp).

REMARK 4.3. By using the bound (37) for �n in Proposition 4.1, we obtain
the following upper bound on �∗

α(�(s0, s�,ρ)):

�∗
α

(
�(s0, s�,ρ)

)
� 1√

n
+ ρ

√
s0

n
logp + min(s0, s�)

logp

n
.(46)

By comparing the above bound with the lower bound established in Proposi-
tion 4.2, we see that the proposed upper and lower bounds do not exactly match. It
is worth noting that we derive the lower bound on the parameter space �(s0, s�,ρ),
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while in deriving the upper bound (Theorem 3.13), we assume that ρ(�,C0s0) ≤
ρ, and by Lemma 3.7 this assumption is implied if ‖�‖∞ ≤ ρ. Therefore, the
upper bound is obtained for a larger class than �(s0, s�,ρ) and this might be a
contributing factor to the mismatch of the proposed upper and lower bounds on
�∗(�(s0, s�,ρ)).

5. Other applications. Our main results, Theorem 3.8 and Theorem 3.13 es-
tablish a Gaussian limit for the debiased Lasso estimator. While our main moti-
vation was the construction of confidence intervals for single coordinates of the
parameter vector, we want to emphasize that the Gaussian limit has other impor-
tant applications. We illustrate this point using three examples: (i) We establish a
characterization of the Lasso estimator in terms of a certain denoising problem.
(ii) We develop a new thresholded Lasso estimator and provide a tight character-
ization of its �2 risk. In the case of standard Gaussian designs, this approach is
minimax optimal up to a factor 1+on(1). (iii) We prove that the celebrated Stein’s
unbiased estimate of the prediction risk [27] is consistent in high dimension an
unbiased estimator, for standard Gaussian designs.

5.1. A probabilistic approximation result for the lasso. As a first consequence
of our main theorem, we obtain a precise approximation result for the Lasso es-
timator. In order to state this result, let η� : Rp → R

p be the proximal operator
defined by

η�(z) ≡ arg min
θ∈Rp

{
1

2

∥∥�1/2(θ − z)
∥∥2

2 + λ‖θ‖1

}
.(47)

Note that the minimizer is always unique because � is strictly positive definite.
In the case � = I, η� coincides with component-wise soft thresholding at level
λ. More generally, η�(·) can be viewed as a denoising operator associated to the
problem of estimating θ∗ from the noisy observation z = θ∗ + w̃, where w̃ has
covariance �. Our next theorem connects the Lasso to this denoising problem and
its proof is given in the Supplementary Material [40].

THEOREM 5.1. Consider the linear model (2) where X has independent
Gaussian rows, with zero mean and covariance �, satisfying the assumptions of
Theorem 3.8. Further assume the following condition:

(iv) Letting C∗ ≡ 32Cmax/Cmin, we assume ‖�T,T c‖∞ ≤ ρ̃ for some constant ρ̃

and all T ⊆ [p] satisfying |T | ≤ 2C∗s0.

Let θ̂ Lasso = θ̂ Lasso(y,X;λ) be the Lasso estimator with λ = κσ
√

(logp)/n, for
κ ∈ [8, κmax]. Then there exist constants c, C̃ (depending on Cmin, Cmax, ρ, ρ̃,
κmax), such that for n ≥ max(25 logp, cs0 log(p/s0)), the following holds true with
high probability:∥∥∥∥θ̂ Lasso − η�

(
θ∗ + 1

n
�XTw

)∥∥∥∥2

2
≤ C̃σ 2

(
s0 logp

n

)2
.(48)
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Under the hypothesis of this theorem, the Lasso �2 error is known to be bounded
as ‖θ̂ Lasso − θ∗‖2

2 ≤ C(s0 logp)/n [8]. Hence, Theorem 5.1 provides a character-
ization of the Lasso estimator that is one order of magnitude more accurate than
what available in the literature.

This characterization is particularly convenient if the population covariance has
a simple structure. For instance, we obtain the following immediate corollary that
characterizes the �2 error for standard designs. We defer its proof to the Supple-
mentary Material [40].

COROLLARY 5.2. Consider the linear model (2) where X has independent
Gaussian rows, with zero mean and covariance � = I. Let θ̂ Lasso = θ̂ Lasso(y,X;λ)

be the Lasso estimator with λ = κσ
√

(logp)/n, for a constant κ ≥ 8. Then, for
n ≥ max(25 logp, cs0 log(p/s0)), we have∥∥θ̂ Lasso − θ∗∥∥2

2

= ∑
i∈supp(θ∗)

EZ

{[
η
(
θ∗
i + n−1/2Zi;λ)− θ∗

i

]2}

+ OP

(
σ 2

√
s0 logp

n
∨ σ 2

(
s0 logp

n

)3/2)
,

where expectation is taken with respect to Zi ∼ N(0,1), and the OP (·) is uniform
for κ ∈ [8, κmax].

Let us emphasize that this is not an upper bound, but an equality up to higher
order terms. It provides a connection between the Lasso mean square error and the
mean square error of soft-thresholding denoising in the classical sequence model.
A similar connection was anticipated—for instance—in [24, 26]. An asymptotic
characterizations of the Lasso mean square error for standard Gaussian designs
was first obtained in [6]. However, in the present case we recover this as a corollary
of a result for general Gaussian designs, and in a nonasymptotic form.

5.2. Minimax optimal estimation. The analysis in the last section suggests that
it is possible to reduce the estimation error through a two step procedure. For the
sake of simplicity, we shall assume here that � is known. Our approach can be
extended to imperfectly known covariance by using Theorem 3.13, but we leave
this for future work. The suggested procedure is:

(i) Compute the Lasso estimator θ̂ Lasso = θ̂ Lasso(y,X;λ) with λ = 8σ ×√
(logp)/n.

(ii) Compute the debiased estimator θ̂d = θ̂ Lasso + n−1�XT(y − Xθ̂ Lasso).
(iii) Compute a new estimator θ̂ (2) by soft thresholding θ̂d component-wise,

namely

θ̂
(2)
i = η

(
θ̂d
i ; τi

)
, τi =

√
2σ 2�ii log(p/s0)

n
.(49)
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Here, η(x; τ) ≡ (|x| − τ)+ sign(x) is the scalar soft-thresholding function.

Let us emphasize that in the last step we soft-threshold at a level that is smaller
than the regularization used in the Lasso. Indeed, since �ii ≤ C−1

min, we have τi =
O(

√
log(p/s0)/n), while λ is of order

√
(logp)/n.

THEOREM 5.3. Consider the linear model (2) where X has independent
Gaussian rows, with zero mean and covariance �, satisfying the assumptions of
Theorem 3.8. Further assume s0 → ∞, s0/p → 0 and (s0(logp)3)/n → 0. Let
θ̂ (2) be the two-step estimator defined above. Then

∥∥θ̂ (2) − θ∗∥∥2
2 ≤ 2s0σ

2

n
log(p/s0)

(
1

s0

∑
i∈supp(θ∗)

�ii

)(
1 + oP (1)

)
.(50)

We refer to the Supplementary Material [40] for the proof of Theorem 5.3. Note
that, in the case � = I, the right-hand side of (50) is minimax optimal risk, up to
a factor going to one as n, s0,p → ∞ [50]. Candés and Su [50] recently proved
that SLOPE achieves the same guarantee for Gaussian designs with � = I. On
one hand, the approach of [50] has the advantage of being adaptive to unknown
sparsity level s0. On the other, Theorem 5.3 establishes this result as a special case
of a guarantee holding for more general Gaussian designs.

5.3. SURE estimate of the prediction error. Define the Lasso prediction error
as

R
(
y,X, θ∗) ≡ 1

n

∥∥X(
θ̂ Lasso − θ∗)∥∥2

2 + 1

n
‖w‖2

2.(51)

Notice that the first term is the standard prediction error, for given design matrix
X. The second term is the residual error that would be present even for the perfect
estimator θ̂ = θ∗. We include this contribution for mathematical convenience, but
it is just a fixed random variable, independent of the estimator.

The naive empirical estimate for the prediction error is

R̂(y,X) ≡ 1

n

∥∥y − Xθ̂ Lasso∥∥2
2.(52)

Of course, we expect the empirical risk to underestimate the actual risk. Stein’s
Unbiased Risk Estimate (SURE) provides a corrected estimate

R̂SURE(y,X) ≡ 1

n

∥∥y − Xθ̂ Lasso∥∥2
2 + 2σ 2

n

∥∥θ̂ Lasso∥∥
0.(53)

This approach has a rich history for which we can only provide a few pointers.
Donoho and Johnstone used SURE to develop an adaptive denoising procedure via
wavelet thresholding. From the perspective of linear regression, this corresponds
to X being proportional to an orthogonal matrix. Efron [27] developed a general
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formula for estimating the prediction error, based on Stein’s ideas, and clarified
the connection with classical model selection criteria such as Akaike’s information
criterion [1], and Mallows Cp [42]. Zou, Hastie and Tibshirani [60] showed that
the number of degrees of freedom (which enters Efron’s formula) coincides with
the number of nonzero parameters ‖θ̂ Lasso‖0. They also proved that R̂SURE(y,X)

is consistent in the classical low-dimensional regime n → ∞ with p fixed.
To the best of our knowledge, this is the first case in which R̂SURE(y,X) is

proved to be consistent in high dimension (although in a restricted setting, namely
for Gaussian designs).

THEOREM 5.4. Consider the linear model (2) where X has independent
Gaussian rows, with zero mean and identity covariance � = I. Let θ̂ Lasso =
θ̂ Lasso(y,X;λ) be the Lasso estimator with λ ≥ 9σ

√
(logp)/n. If n,p → ∞ with

s0 = o(n/(logp)2), then there exists εn → 0 as n → ∞, such that the following
holds with probability at least 1 − e−ct2 − on(1):

∣∣R̂SURE(y,X) − R
(
y,X, θ∗)∣∣ ≤ tσ 2

√
n

+ s0σ
2εn

n
.(54)

Proof of Theorem 5.4 is provided in the Supplementary Material [40]. Let us
emphasize a few important points:

• The error bound in equation (54) is of smaller order with respect to the correc-
tion in (53) which typically is of order s0σ

2/n.
• The SURE risk estimate R̂SURE(y,X) is perfectly well defined for arbitrary de-

sign covariance �.
• While our proof applies to standard designs, � = I, we expect the conclusion of

Theorem 5.4 to hold more generally. This is also confirmed by the simulations
discussed below.

In Figure 1, we present the results of a numerical simulation with p = 5000,
n = 1800. We choose a subset S ⊆ [p] of size s0 = |S| = 100 uniformly at random
and set θ∗

0,i = 0.1 if i ∈ S and θ∗
0,i = 0, otherwise. The design matrix X has i.i.d.

random rows xi ∼ N(0,�) with �ij = r |i−j |. We set r = 0.1 to illustrate a case of
low correlation between predictors and r = 0.9 for a case of high correlation. In
our simulations, we replace the noise level σ appearing in equation (53) with an
estimate σ̂ , obtained as follows. We first run scaled Lasso and then perform least
square after model selection to mitigate the estimation bias. More precisely, we
use the R-package scalreg with the default value for the regularization parameter
in the scaled Lasso cost function. This selects a model Ŝ. We then perform least
square on Ŝ to obtain an estimate θ̂LS. The noise variance is computed as σ̂ =
‖y − Xθ̂LS‖2/

√
n.

The agreement between R̂SURE(y,X) and R(y,X, θ∗) is excellent.
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FIG. 1. Lasso prediction error R(y,X, θ∗), empirical prediction error R̂(y,X) and SURE estima-
tor R̂SURE curves versus λ for the simulation setting described in Section 5.3.

Let us mention that [3] also studied estimators similar to R̂SURE(y,X), and
related ideas were developed in [46] on the basis of nonrigorous but insightful sta-
tistical mechanics techniques. Other approaches to the risk estimation (e.g., [12])
are based on sample-splitting, which has complementary shortcomings.

6. Proof of Theorem 3.8 (known covariance).

6.1. Outline of the proof. Fix arbitrary integer i ∈ [p]. In our analysis, we fo-
cus on the ith coordinate θ∗

i , and then discuss how the argument can be adjusted
to apply to all the coordinates simultaneously. Our argument relies on a perturba-
tion analysis. We let θ̂p be the Lasso estimator when one forces θ̂

p
i = θ∗

i . With a
slight abuse of notation, we use the representation θ = (θi, θ∼i).4 Adopting this
convention, we have θ̂p = (θ∗

i , θ̂
p
∼i) where

θ̂
p
∼i = arg min

θ
Ly,X

(
θ∗
i , θ

)
.(55)

Throughout, we make the convention that Ly,X(θ∗
i , θ) ≡ Ly,X((θ∗

i , θ)).
We observe that θ̂

p
∼i can be written as a Lasso estimator. Specifically, by defini-

tion of Lasso cost function we have

Ly,X(θ∗
i , θ) = 1

2n

∥∥y − x̃iθ
∗
i − X∼iθ

∥∥2
2 + λ

∣∣θ∗
i

∣∣+ λ‖θ‖1.

Letting ỹ ≡ y − x̃iθ
∗
i = w + X∼iθ

∗∼i , we obtain

θ̂
p
∼i = arg min

θ
Lỹ,X∼i

(θ).(56)

4Or without loss of generality, one can assume i = 1.
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Let vi = X�ei and expand θ̂d
i − θ∗

i as follows:

√
n
(
θ̂d
i − θ∗

i

) ≡ √
nθ̂i + 1√

n
eT
i �XT(y − Xθ̂) − √

nθ∗
i

= √
nθ̂i + vT

i√
n

[
w + x̃i

(
θ∗
i − θ̂i

)+ X∼i

(
θ∗∼i − θ̂∼i

)]− √
nθ∗

i(57)

= √
n

(
1 − 1

n
〈vi, x̃i〉

)(
θ̂i − θ∗

i

)+ vT
i√
n

[
w + X∼i

(
θ∗∼i − θ̂∼i

)]
.

We decompose the above expression into the following terms:

Zi ≡ vT
i w√
n

,

R
(1)
i ≡ √

n

(
1 − 〈vi, x̃i〉

n

)(
θ̂i − θ∗

i

)
,

R
(2)
i ≡ vT

i√
n
X∼i

(
θ∗∼i − θ̂

p
∼i

)
,

R
(3)
i ≡ vT

i√
n
X∼i

(
θ̂

p
∼i − θ̂∼i

)
.

(58)

The bulk of the proof consists in treating each of the terms above separately. Term
Zi gives the Gaussian component Z in equation (22). For bounding R

(2)
i , note that

θ̂
p
∼i is a deterministic function of (ỹ,X∼i) [and thus a deterministic function of

(w,X∼i)] by equation (56). Further, vi is independent of X∼i , as per Lemma 3.6,
and independent of noise w. Hence, vi is independent of X∼i(θ

∗∼i − θ̂
p
∼i ).

Bounding R
(3)
i relies on a perturbation analysis showing that the solutions of

Lasso θ̂ and its perturbed form θ̂p, are close to each other. Here is where Con-
dition (iii) in the theorem statement comes into picture. The perturbation bound
‖θ̂p

∼i − θ̂∼i‖2 depends on the correlation of xi with other columns xj , with j ∈ T ,
where T = supp(θ̂

p
∼i − θ∗). For Gaussian designs, we have

x̃i = XT (�T,T )−1�T,i + �
1/2
i|T z,

with z ∼ N(0, In) independent of XT and the Schur complement �i|T ≡ �i,i −
�i,T (�T,T )−1�T,i . It can be shown that ‖�i,T (�T,T )−1‖1 ≤ ρ.

6.2. Technical steps. Let Z = (Zi)1≤i≤p . We rewrite Z as

Z = 1√
n
�XTw.

Since w ∼ N(0, σ 2I) is independent of X, we get

Z|X ∼ N
(
0, σ 2��̂�

)
.
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Let R(1) = (R
(1)
i )

p
i=1, R(2) = (R

(2)
i )

p
i=1, R(3) = (R

(3)
i )

p
i=1 ∈ R

p . In the follow-
ing, we provide a detailed analysis to control the terms R(1), R(2), R(3).

• Bounding term R(1): Recalling the definition vi = X�ei , we write

R
(1)
i = √

n

(
1 − 1

n
eT
i �XTXei

)(
θ̂i − θ∗

i

)
.

Therefore, ∥∥R(1)
∥∥∞ ≤ √

n|I − ��̂|∞
∥∥θ̂ − θ∗∥∥

2.

For A > 0, let Gn = Gn(A) be the event that

Gn(A) ≡
{
X ∈ R

n×p : |��̂ − I|∞ ≤ A

√
logp

n

}
.(59)

Using the result of [39], Lemma 23, for n ≥ (A2Cmin)/(4e2Cmax) logp, we have

P
(
X ∈ Gn(A)

) ≥ 1 − 2p−c, c = A2Cmin

24e2Cmax
− 2.

By choosing A ≡ 10e
√

Cmax/Cmin we get c ≥ 2. Therefore, provided that n ≥
25 logp,

P
(
X ∈ Gn(A)

) ≥ 1 − 2p−2.(60)

In addition, on the event B ≡ Bδ(n, s0,3) ∩ B̃(n,p) we have [10]

∥∥θ̂ − θ∗∥∥
2 ≤

√
20

(1 − δ)2Cmin
λ
√

s0.

Combining the above bounds, we obtain that on event Gn(A) ∩B,∥∥R(1)
∥∥∞ ≤ 5κAσ

(1 − δ)2Cmin

√
s0

n
logp.(61)

• Bounding term R(2): To lighten the notation, we define

ζi ≡ 1√
n
X∼i

(
θ∗∼i − θ̂

p
∼i

)
.(62)

As discussed, θ̂
p
∼i is a Lasso estimator with design matrix X∼i and response

vector ỹ = y − x̃iθ
∗
i , as per equation (56). We recall the following results on the

prediction error of the Lasso estimator, which bounds ‖ζi‖2.

PROPOSITION 6.1 ([10], Theorem 6.1). Let S ≡ supp(θ∗∼i). Then on the event
B̃(n,p), we have for λ ≥ 8σ

√
(logp)/n,

‖ζi‖2
2 ≤ 4λ2|S|

φ2(S, �̂∼i,∼i)
.



DEBIASING LASSO: OPTIMAL SAMPLE SIZE 2617

From the definition of the compatibility constant (cf. Definition 3.1), it is clear that
φ2(S, �̂∼i,∼i) ≥ φ2(S, �̂). Therefore, combining Proposition 6.1 and Remark 3.3,
we arrive at the following corollary.

COROLLARY 6.2. On the event B ≡ Bδ(n, s0,3) ∩ B̃(n,p), we have for λ ≥
8σ

√
(logp)/n,

‖ζi‖2
2 ≤ 4λ2s0

(1 − δ)2Cmin
.

Employing Corollary 6.2, we derive a tail bound on R
(2)
i .

For i ∈ [p], define the event

Ei ≡
{
‖ζi‖2

2 ≤ 4λ2s0

(1 − δ)2Cmin

}
.(63)

By Corollary 6.2, we have B ⊆ Ei for i ∈ [p]. Hence, for any value t > 0

P
(∥∥R(2)

∥∥∞ ≥ t;B) ≤ P

(
max
i∈[p]

∣∣vT
i ζi

∣∣ ≥ t;Ei

)
≤ p max

i∈[p]E
{
I
(∣∣vT

i ζi

∣∣ ≥ t
) · I(Ei)

}
≤ 2p max

i∈[p]E
(

exp
[
− t2

2�ii‖ζi‖2
2

]
· I(Ei)

)

≤ 2p exp
(
− c∗t2

s0λ2�ii

)
,

with c∗ ≡ (1−δ)2Cmin/8. In the third inequality, we applied Fubini’s theorem, and
first integrate w.r.t. vi and then w.r.t. ζi using the fact that vi and ζi are independent.
Note that vi ∼ N(0,�iiIn×n), and thus vT

i ζi |ζi ∼ N(0,�ii‖ζi‖2
2). Further, on the

event Ei , ‖ζi‖2
2 can be bounded as in equation (63).

Setting t ≡ κσ
√

3s0/(c∗Cminn) logp, we get

P

(∥∥R(2)
∥∥∞ ≥ κσ

√
3s0

c∗Cminn
logp;B

)
≤ 2p−2.(64)

• Bounding term R(3): In order to bound the last term, we first need to establish
the following main lemma that bounds the distance between Lasso estimator and
the solution of the perturbed problem. We refer to the Supplementary Material [40]
for the proof of Lemma 6.3.

LEMMA 6.3 (Perturbation bound). Suppose that �ii ≤ 1, for i ∈ [p]. Set λ =
8σ

√
(logp)/n and let B(Cδ) ≡ B̃(n,p)∩Bδ(n,Cδs0,3). The following holds true:

P
(∥∥θ̂∼i − θ̂

p
∼i

∥∥
2 ≥ C′λ;B(Cδ)

) ≤ 2 exp
(
−c∗n

s0

)
+ exp

(
− n

1000

)
,(65)
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where

C′ ≡ 24ρ(1 + δ)
√

Cmax

(1 − δ)2Cmin
, c∗ ≡ 1

8
(1 − δ)2Cmin,

Cδ ≡ 16Cmax

(1 − δ)2Cmin
+ 1.

We are now ready to bound term R(3):∣∣R(3)
i

∣∣ ≤ 1√
n

∥∥vT
i X∼i

∥∥∞
∥∥θ̂p

∼i − θ̂∼i

∥∥
1

≤
√

Cδs0

n

∥∥vT
i X∼i

∥∥∞
∥∥θ̂p

∼i − θ̂∼i

∥∥
2

≤ √
Cδs0n|��̂ − I|∞

∥∥θ̂p
∼i − θ̂∼i

∥∥
2,

where in the first inequality we used Lemma 3.5, which implies that ‖θ̂p
∼i −

θ∗∼i‖0 ≤ Cδs0, under B. Therefore, by Lemma 6.3 and definition (59) and since
B(Cδ) ⊆ B, we have

P

(∣∣R(3)
i

∣∣ ≥ C′′σ
√

s0

n
logp;Gn(A) ∩B(Cδ)

)
≤ 2 exp

(
−c∗n

s0

)
+ exp

(
− n

1000

)
,

with C′′ ≡ κ
√

(C∗ + 1)AC′. Hence, by union bound over the p coordinates, we
get

P

(∥∥R(3)
∥∥∞ ≥ C′′σ

√
s0

n
logp;Gn(A) ∩B(Cδ)

)
(66)

≤ 2p exp
(
−c∗n

s0

)
+ p exp

(
− n

1000

)
.

We are now in position to prove the claim of Theorem 3.8.
Using equations (57) and (58), we have

√
n(θ̂d − θ∗) = Z + R, where Z|X ∼

N(0, σ 2��̂�) and R = R(1) + R(2) + R(3). Combining equations (61), (64) and
(66), we get

P

(
‖R‖∞ ≥ C

√
s0

n
logp;Gn(A) ∩B(Cδ)

)
(67)

≤ 2p exp
(
−c∗n

s0

)
+ p exp

(
− n

1000

)
+ 2p−2,

where C is given by

C ≡ κσ

(
5A

(1 − δ)2Cmin
+
√

3

c∗Cmin
+√

CδAC′
)
.(68)
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Further, for n ≥ max(25 logp, c1Cδs0 log(p/s0)), we have

P
((
Gn(A) ∩B(Cδ)

)c) ≤ P
(
Gn(A)c

)+ P
(
B̃(n,p)c

)+ P
(
Bδ(n,Cδs0,3)c

)
(69)

≤ 2p−2 + 2p−2 + 2e−δ2n = 4p−2 + 2e−δ2n,

where we used bound (60), Lemma 3.2 and Lemma 3.4.
The result follows from equations (67) and (69), and setting δ = 1 − 1/

√
2.

SUPPLEMENTARY MATERIAL

Supplement to “Debiasing the Lasso: Optimal Sample Size for Gaus-
sian Designs” (DOI: 10.1214/17-AOS1630SUPP; .pdf). Due to space constraints,
proof of theorems and some of the technical details as well as additional numerical
studies are provided in the Supplementary Material [40].
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