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LOCAL ASYMPTOTIC NORMALITY PROPERTY
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HIGH-FREQUENCY OBSERVATIONS
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Local Asymptotic Normality (LAN) property for fractional Gaussian
noise under high-frequency observations is proved with nondiagonal rate ma-
trices depending on the parameter to be estimated. In contrast to the LAN
families in the literature, nondiagonal rate matrices are inevitable. As conse-
quences of the LAN property, a maximum likelihood sequence of estimators
is shown to be asymptotically efficient and the likelihood ratio test on the
Hurst parameter is shown to be an asymptotically uniformly most powerful
unbiased test for two-sided hypotheses.

1. Introduction. The theory of Local Asymptotic Normality (LAN) provides
a powerful framework under which we are able to discuss asymptotic optimal-
ity of estimators. When the LAN property holds true for a statistical experiment,
minimax theorems [13, 20] can be applied and a lower bound for the variance of
the estimators can be derived. Beyond the classical i.i.d. setting [14, 26], the LAN
property (or Local Asymptotic Mixed Normality property) has been proved for var-
ious statistical models including linear processes [25], ergodic Markov chains [24],
ergodic diffusions [11, 19], diffusions under high-frequency observations [12], dif-
fusions with observational noise [9, 10, 23] and several Lévy process models [4,
17, 18]. The LAN property for fractional Gaussian noise (fGn) was obtained in [6]
under the large sample observation scheme. In this setting, Maximum Likelihood
(ML) and Whittle sequences of estimators achieve optimality [7, 8, 21].

The statistical experiment of observing fGn under a high-frequency scheme has
not been well understood in the literature, despite that high-frequency data has
attracted much attention recently due to their increasing availability. At high fre-
quency, scaling effects from the variance and from the self-similarity of the fGn are
melting. The singularity of the joint estimation of diffusion coefficient and Hurst
parameter was already noticed in [2, 5, 15]. A weak LAN property with a singular
Fisher matrix was obtained in [16]. Due to this singularity, no minimax theorem
can be applied and in particular, it has been unclear whether the ML estimator
enjoys any kind of optimality property.
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In this paper, we prove that the statistical experiment in fact enjoys the LAN
property. To discuss the difference from [16], let us be more precise in the defini-
tion of the LAN property.

DEFINITION 1.1. Let � ⊂ R
d . A family of measures {P n

θ , θ ∈ �} is called
locally asymptotically normal (LAN) at θ0 ∈ � if there exist nondegenerate d × d

matrices ϕn(θ0) and I (θ0) such that for any u ∈ R
d , the likelihood ratio

Zn(u) = dP n
θ0+ϕn(θ0)u

dP n
θ0

admits the representation

(1) Zn(u) = exp
(〈

u, ζn(θ0)
〉− 1

2

〈
I (θ0)u,u

〉+ rn(θ0, u)

)
,

where

(2) ζn(θ0) → N
(
0, I (θ0)

)
, rn(θ0, u) → 0

in law under P n
θ0

.

This definition of the LAN property is equivalent to the one given in [14]. The
matrix ϕn(θ0) is often called the rate matrix. Remark that the nondegeneracy of
ϕn(θ0) and I (θ0) is essential in the following minimax theorem due to Hajek [13]
and Le Cam [20], which implies in particular the asymptotic efficiency of the ML
sequence of estimators in regular models; see, for example, Theorem II.12.1 and
Remark II.12.2 in [14].

THEOREM 1.1. Let the family of measures {P n
θ , θ ∈ �}, � ⊂ R

d , be LAN at
θ0 ∈ � for nondegenerate matrices ϕn(θ0) and I (θ0). Then, for any sequence of
estimators θ̂n,

lim inf
δ→∞ lim inf

n→∞ sup
|ϕn(θ0)

−1(θ−θ0)|≤δ

En
θ

[
l
(
ϕn(θ0)

−1(θ̂n − θ)
)]

≥
∫
Rd

l
(
I (θ0)

−1/2z
)
φ(z)dz

for any symmetric, nonnegative quasi-convex function l with

lim|z|→∞ e−ε|z|2 l(z) = 0

for all ε > 0, where φ is the density of the d-dimensional standard normal distri-
bution.
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For the fGn under high-frequency observations, we consider the estimation of
the parameters (H,σ) ∈ � = (0,1)× (0,∞), where H is the Hurst parameter and
σ is the diffusion coefficient. It was shown in [16] that the family of measures
{P n

(H,σ), (H,σ) ∈ �} satisfies both conditions (1) and (2) at any (H,σ) ∈ � for

ϕn(H,σ) =

⎛
⎜⎜⎝

1√
n log
n

0

0
1√
n

⎞
⎟⎟⎠ and I (H,σ) =

(
2 2/σ

2/σ 2/σ 2

)
,

where n is the sample size and 
n is the length of sampling intervals. Note that
I (H,σ) is singular. On the one hand, this result does not imply that the family is
LAN in the sense of Definition 1.1. On the second hand, Theorem 1.1 cannot be
applied with this result.

To the best of our knowledge, for any LAN family in the literature, it is always
possible to take a diagonal rate matrix up to a reparametrization. A typical example
is the LAN property for the i.i.d. setting where

ϕn(θ0) = 1√
n

Id .

Here, Id is the d × d identity matrix. However, both in Definition 1.1 and The-
orem 1.1, ϕn(θ0) is required only to be nondegenerate. In this paper, we prove
the LAN property for the statistical experiment of observing fGn under a high-
frequency scheme for a certain class of nondiagonal matrices ϕn(θ0) depending
on θ0. In particular, Theorem 1.1 can be applied. Nondiagonal rate matrices are
inevitable because the Fisher matrix is singular.

Basics for the fractional Brownian motion and the fGn are recalled in Section 2.
The statistical experiment under a high-frequency scheme is described and the
LAN property result is proved in Section 3. Efficient rates for the estimation of
H and σ are given in Section 4 giving the optimality of the ML sequence of esti-
mators and the asymptotically uniformly most powerful unbiased property for the
likelihood ratio test on the Hurst parameter for two-sided hypotheses.

2. Fractional Brownian motion and fractional Gaussian noise. Here, we
briefly review the basics of the fractional Brownian motion, fractional Gaussian
noise and their large sample theory. A centered Gaussian process BH is called a
fractional Brownian motion with Hurst parameter H if

E
[
BH

t BH
s

]= 1

2

(|t |2H + |s|2H − |t − s|2H )
for all t, s ∈R. Such a process exists and is continuous for any H ∈ (0,1) by Kol-
mogorov’s extension and continuity theorems. The process enjoys a self-similarity
property: for any 
 > 0 and t ∈ R,

BH
t+
 − BH

t ∼ 
HBH
1
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in law. The spectral density of regular increments, that is, the function fH charac-
terized by

E
[
BH

1
(
BH

k+1 − BH
k

)]= 1

2

(|k + 1|2H − 2|k|2H + |k − 1|2H )

= 1

2π

∫ π

−π
e
√−1kλfH (λ)dλ, k ∈ Z

is given by

fH (λ) = CH 2
(
1 − cos(λ)

)∑
k∈Z

|λ + 2kπ |−2H−1, CH = (2H + 1) sin(πH)

2π
.

For a fixed interval 
 > 0, assume we observe the increments

Xn = (
σBH


 ,σBH
2
 − σBH


 ,σBH
3
 − σBH

2
, . . . , σBH
n
 − σBH

(n−1)


)
,

where (H,σ) is unknown. The random vector Xn is called fractional Gaussian
noise (fGn). Denote by Tn(H) the covariance matrix of

Xn

σ
H
,

of which the distribution does not depend on σ and 
 by the self-similarity prop-
erty. The (i, j) element of Tn(H) is given by

1

2π

∫ π

−π
e
√−1(i−j)λfH (λ)dλ.

Let us suppose 
 = 1 for brevity. The log-likelihood of Xn is then given by

�n(H,σ) = −n

2
log(2π) − n logσ

− 1

2
log

∣∣Tn(H)
∣∣− 1

2σ 2

〈
Xn,Tn(H)−1Xn

〉
.

Let

An = √
n

{
1

nσ 2

〈
Xn,Tn(H)−1Xn

〉− 1
}
,

Bn = 1√
n

{
1

2
∂H log

∣∣Tn(H)
∣∣+ 1

2σ 2

〈
Xn, ∂H

{
Tn(H)−1}Xn

〉}
.

The score function is then given by

∇�n =
(
∂H�n

∂σ �n

)
=
( −Bn

√
n

An

√
nσ−1

)
.

Let P n
(H,σ) be the measure on R

n induced by Xn.



LAN PROPERTY FOR FGN UNDER HIGH-FREQUENCY OBSERVATIONS 2049

THEOREM 2.1. The family of measures {P n
(H,σ); (H,σ) ∈ (0,1) × (0,∞)} is

LAN at any (H,σ) ∈ (0,1) × (0,∞) with

ϕn(H,σ) =

⎛
⎜⎜⎝

1√
n

0

0
1√
n

⎞
⎟⎟⎠

and

I (H,σ) =

⎛
⎜⎜⎝

1

4π

∫ π

−π

∣∣∂H logfH (λ)
∣∣2 dλ

1

2πσ

∫ π

−π
∂H logfH (λ)dλ

1

2πσ

∫ π

−π
∂H logfH (λ)dλ

2

σ 2

⎞
⎟⎟⎠ .

In particular, (An,Bn) converges in law to a centered normal distribution with
covariance

(3) J (H) =

⎛
⎜⎜⎝

2 − 1

2π

∫ π

−π
∂H logfH (λ)dλ

− 1

2π

∫ π

−π
∂H logfH (λ)dλ

1

4π

∫ π

−π

∣∣∂H logfH (λ)
∣∣2 dλ

⎞
⎟⎟⎠ .

PROOF. See [6]. �

3. The LAN property in high-frequency observation. Let Xn be again the
observed fractional Gaussian noise

Xn = (
σBH


n
, σBH

2
n
− σBH


n
, σBH

3
n
− σBH

2
n
, . . . , σBH

n
n
− σBH

(n−1)
n

)
.

Here, we consider high-frequency asymptotics, which means 
n → 0 as n → ∞.
We suppose infn n
n > 0. The parameters to be estimated are still H ∈ (0,1) and
σ > 0. As before, the distribution of

1

σ
H
n

Xn

is stationary centered Gaussian and does not depend on σ and 
n by the self-
similarity property. Its covariance matrix is Tn(H) defined in the previous section.
Denote by �n(H,σ) the log-likelihood of Xn

�n(H,σ) = −n

2
log(2π) − nH log
n − n logσ

− 1

2
log

∣∣Tn(H)
∣∣− 1

2σ 2
2H
n

〈
Xn,Tn(H)−1Xn

〉
.

Let

An = √
n

{
1

nσ 2
2H
n

〈
Xn,Tn(H)−1Xn

〉− 1
}
,

Bn = 1√
n

{
1

2
∂H log

∣∣Tn(H)
∣∣+ 1

2σ 2
2H
n

〈
Xn, ∂H

{
Tn(H)−1}Xn

〉}
.
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We use the same notation as in the previous section because their distributions are
the same. In particular, we have that (An,Bn) → (A,B) in law under P n

(H,σ) for a
nondegenerate Gaussian random variable (A,B) whose covariance is given by (3).
In this setting, the score function is given by

(4) ∇�n =
(
∂H�n

∂σ �n

)
=
(
An

√
n log
n − Bn

√
n

An

√
nσ−1

)
.

From this expression, we clearly see that the leading terms of ∂H�n and ∂σ �n are
linearly dependent, which is exactly the reason why the Fisher matrix is singular
when considering diagonal rate matrices as in [16]. Now, we state the main result
of the paper.

THEOREM 3.1. Consider a sequence of matrices

ϕn = ϕn(H,σ) = 1√
n

(
αn ᾱn

βn β̄n

)

with the following properties:

1. n|ϕn| = αnβ̄n − ᾱnβn �= 0.
2. αn → α for some α ∈R.
3. ᾱn → ᾱ for some ᾱ ∈R.
4. γn := αn log
n + βnσ

−1 → γ for some γ ∈R.
5. γ̄n := ᾱn log
n + β̄nσ

−1 → γ̄ for some γ̄ ∈R.
6. αγ̄ − ᾱγ �= 0.

Then the family {P n
(H,σ); (H,σ) ∈ (0,1) × (0,∞)} is LAN at any (H,σ) for

ϕn(H,σ) defined previously and

(5) I (H,σ) =
(
γ −α

γ̄ −ᾱ

)
J (H)

(
γ γ̄

−α −ᾱ

)
,

where J (H) is defined by (3). The convergence of rn in (2) is uniform in u on
compact sets.

PROOF. Let θ0 = (H0, σ0)
∗, u ∈ R

2 and B̄(θ0, r) = {θ ∈ (0,1) × (0,∞);
|θ − θ0| ≤ r} for r > 0. By Taylor’s formula,

�n(θ0 + ϕnu) − �n(θ0) = 〈
ϕ∗

n∇�n(θ0), u
〉+ 1

2

〈
u,ϕ∗

n∇2�n(θ0)ϕnu
〉+ rn,

where

|rn| ≤ 1

6
|ϕnu||u|2 max

{∣∣ϕ∗
n∇3�n(θ)ϕn

∣∣; θ ∈ B̄
(
θ0, |ϕnu|)}.

Step 1. Let us show that ϕ∗
n∇�n(θ0) → N (0, I (θ0)). Note that

(6) ϕ∗
n∇�n =

(
Anγn − Bnαn

Anγ̄n − Bnᾱn

)
.



LAN PROPERTY FOR FGN UNDER HIGH-FREQUENCY OBSERVATIONS 2051

Therefore, it converges in law to(
Aγ − Bα

Aγ̄ − Bᾱ

)
=
(
γ −α

γ̄ −ᾱ

)(
A

B

)
,

which is Gaussian.
Step 2. Here, we compute

ϕ∗
n∇2�nϕn.

Let

Cn = 1

nσ 2
2H
n

〈
Xn,Tn(H)−1Xn

〉
,

Dn = 1

nσ 2
2H
n

〈
Xn, ∂H

{
Tn(H)−1}Xn

〉
,

En = 1

n

{
1

2
∂2
H log

∣∣Tn(H)
∣∣+ 1

2σ 2
2H
n

〈
Xn, ∂

2
H

{
Tn(H)−1}Xn

〉}
.

Note that

∂H log
∣∣Tn(H)

∣∣= −tr
(
∂H

{
Tn(H)−1}Tn(H)

)
and so,

∂2
H log

∣∣Tn(H)
∣∣

= −tr
(
∂2
H

{
Tn(H)−1}Tn(H)

)+ tr
(
Tn(H)−1∂HTn(H)Tn(H)−1∂HTn(H)

)
.

Then the (1,1) element of ∇2�nϕn is

αn(log
n∂HAn − ∂HBn) + βn

∂HAn

σ

= γn∂HAn − αn∂HBn

= γn

√
n(−2Cn log
n + Dn) − αn

√
n(En − Dn log
n)

and the (1,2) element is

αn

∂HAn

σ
+ βn

(
−An

σ 2 + ∂σAn

σ

)

= −2

√
n

σ
Cnγn +

√
n

σ
Dnαn − βn

An

σ 2 .

It follows then that the (1,1) element of ϕ∗
n∇2�nϕn is

−2Cnγ
2
n + 2Dnγnαn − α2

nEn − β2
n

An

σ 2
√

n
.
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From this, it is clear that the (2,2) element of ϕ∗
n∇2�nϕn is

−2Cnγ̄
2
n + 2Dnγ̄nᾱn − ᾱ2

nEn − β̄2
n

An

σ 2
√

n
.

Also it is already not difficult to see that the (1,2) element of ϕ∗
n∇2�nϕn is

−2Cnγnγ̄n + Dn(γ̄nαn + γnᾱn) − αnᾱnEn − βnβ̄n

An

σ 2
√

n
.

It is clear that nCn ∼ χ2(n) and so, Cn → 1. We already know An → A. By the
conditions of ϕn, βn = O(| log
n|) and β̄n = O(| log
n|). By the same argument
as the proof of Lemma 3.5 of [6], we have

Dn → − 1

2π

∫ π

−π
∂H logfH (λ)dλ = E[AB]

and

En → 1

4π

∫ π

−π

∣∣∂H logfH (λ)
∣∣2 dλ = E

[
B2].

Therefore,

(7)

−ϕ∗
n∇2�nϕn

→
(

2γ 2 − 2γαE[AB] + α2E
[
B2] 2γ γ̄ − (γ ᾱ + γ̄ α)E[AB] + αᾱE

[
B2]

2γ γ̄ − (γ ᾱ + γ̄ α)E[AB] + αᾱE
[
B2] 2γ̄ 2 − 2γ̄ ᾱE[AB] + ᾱ2E

[
B2]

)
.

This coincides with −I (H,σ) because E[A2] = 2.
Step 3. It remains to show rn → 0. From the computation in Step 2, we deduce

that the tensor −ϕ∗
n∇3�nϕn consists of the vectors

2∇Cnγ
2
n − 2γnαn∇Dn + α2

n∇En + β2
n

∇An

σ 2
√

n
,

2∇Cnγnγ̄n − (γnᾱn + γ̄nαn)∇Dn + αnᾱn∇En + βnβ̄n

∇An

σ 2
√

n
,

2∇Cnγ̄
2
n − 2γ̄nᾱn∇Dn + ᾱ2

n∇En + β̄2
n

∇An

σ 2
√

n
.

By the same argument as the proof of Lemma 3.7 of [6], we have that there exists
ε > 0 such that ∇Cn,∇Dn and ∇En are of Op(n1/2−ε| log
n|) uniformly in θ ∈
B̄(θ0, ε). On the other hand,

α2
n + ᾱ2

n → α2 + ᾱ2,

β2
n + β̄2

n

1 + σ 2| log
n|2 → α2 + ᾱ2,
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which implies that |ϕnu| = O(
√| log |
n|/n). Since infn n
n > 0 by the assump-

tion, we conclude that rn → 0 uniformly in u on compact sets. �

Several examples of rate matrices can be elicited:

1. A positive definite symmetric matrix for rate ϕn is

ϕn = 1√
n

⎛
⎝− 2

log
n

σ

σ −σ 2 log
n

⎞
⎠

= 1√
n

(
cosψn sinψn

− sinψn cosψn

)(
λ+

n 0
0 λ−

n

)(
cosψn − sinψn

sinψn cosψn

)
,

where

λ±
n = −1

2

(
2

log
n

+ σ 2 log
n ±
√

4

(log
n)2 + σ 4(log
n)2
)
,

tanψn = − 1

2σ

(
2

log
n

− σ 2 log
n −
√

4

(log
n)2 + σ 4(log
n)2
)
,

for which α = 0, ᾱ = σ , γ = −1 and γ̄ = 0. There seems no simpler positive
definite symmetric matrix satisfying the conditions of Theorem 3.1.

2. Let

ϕn = 1√
n

⎛
⎜⎜⎜⎝

σ log
n

1 + σ 2(log
n)2 −1

1

1 + σ 2(log
n)2 σ log
n

⎞
⎟⎟⎟⎠ ,

for which the conditions of Theorem 3.1 are satisfied with α = γ̄ = 0, ᾱ = −1 and
γ = σ−1. Note that

ϕ−1
n = √

n

(
λ+

n 0
0 λ−

n

)(
cosψn sinψn

− sinψn cosψn

)
,

where

λ+
n =

√
1 + σ 2(log
n)2, λ−

n = 1√
1 + σ 2(log
n)2

and

cosψn = σ log
n√
1 + σ 2(log
n)2

, sinψn = 1√
1 + σ 2(log
n)2

.

The above expression suggests that after the rotation of angle ψn depending on 
n

in a local parameter space, we have a familiar diagonal norming with, however,
unfamiliar rates

√
nλ±

n . Note also that by setting formally 
n = 1, we recover
Theorem 2.1.
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3. Another example is that

ϕn = 1√
n

(
1 1

σ(γ − log
n) σ(γ̄ − log
n)

)

for (γ, γ̄ ) with γ �= γ̄ , for which α = ᾱ = 1.
4. Two other examples of rate matrices will be used in the following section,

namely

(8) ϕn = 1√
n

(
1 0

−σ log
n 1

)
,

which gives α = 1, ᾱ = 0, γ = 0 and γ̄ = σ−1 and

(9) ϕn = 1√
n

⎛
⎝ 1

log
n

1

0 −σ log
n

⎞
⎠ ,

which gives α = 0, ᾱ = 1, γ = 1 and γ̄ = 0.

Remark that all the examples are nondiagonal rate matrix depending on the param-
eter σ .

4. Efficient rates of estimation and optimality of ML estimators.

4.1. The efficient estimation rate for H . As the rate matrix, let us take (8),
which gives α = 1, ᾱ = 0, γ = 0 and γ̄ = σ−1. It is worth mentioning that the
rate matrix is nondiagonal and depends on the parameter σ . By Theorem II.11.2
of [14], the LAN property implies that for any regular estimator (Ĥn, σ̂n),

lim inf
n→∞ En

(H,σ)

[
l

(
ϕ−1

n

(
Ĥn − H

σ̂n − σ

))]

≥ E

⎡
⎣l

⎛
⎝( E

[
B2] −E[AB]/σ

−E[AB]/σ 2/σ 2

)−1/2

N

⎞
⎠
⎤
⎦

for any loss function l satisfying the condition given in Theorem 1.1, where N ∼
N (0, I2). Note that the matrix in the right-hand side coincides with I (H,σ) in
Theorem 2.1. Since

ϕ−1
n = √

n

(
1 0

σ log
n 1

)
,

we obtain the asymptotic lower bound

lim inf
n→∞ nE(H,σ)

[
(Ĥn − H)2]≥ 2

2E[B2] − E[AB]2
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by taking l(x, y) = x2. This means that the efficient rate of estimation for H is
√

n

when both H and σ are unknown. Note that when σ is known, the efficient rate
for H is

√
n log
n, which follows from, say, [16]. Although the singular LAN

property of [16] seems to admit of a
√

n log
n-consistent estimator even when σ

is unknown, the above lower bound implies that such an estimator, if any, cannot be
regular. A possible relation to super-efficiency phenomena is remained as a topic
for future research.

4.2. The efficient estimation rate for σ . As the rate matrix, let us take (9),
which gives α = 0, ᾱ = 1, γ = 1 and γ̄ = 0. It is worth repeating that the rate
matrix is nondiagonal and depends on the parameter σ . Again by Theorem II.11.2
of [14], the LAN property implies that for any regular estimator (Ĥn, σ̂n),

lim inf
n→∞ En

(H,σ)

[
l

(
ϕ−1

n

(
Ĥn − H

σ̂n − σ

))]
≥ E

⎡
⎣l

⎛
⎝( 2 −E[AB]

−E[AB] E
[
B2]

)−1/2

N

⎞
⎠
⎤
⎦

for any loss function l satisfying the condition given in Theorem 1.1, where N ∼
N (0, I2). Since

ϕ−1
n = −

√
n

σ

⎛
⎝−σ log
n −1

0
1

log
n

⎞
⎠ ,

we obtain the asymptotic lower bound

lim inf
n→∞

n

σ 2| log
n|2 E(H,σ)

[
(σ̂n − σ)2]≥ 2

2E[B2] − E[AB]2

by taking l(x, y) = y2. This means that the efficient rate of estimation for σ is√
n/| log
n| when both H and σ are unknown. Note that when H is known, the

efficient rate for σ is
√

n, which follows from, say, [16]. Here applies a similar
remark to the end of the previous subsection.

4.3. ML estimators. We prove, in this section, that a ML sequence of estima-
tors (Ĥn, σ̂n) is asymptotically efficient in that the minimax bound in Theorem 1.1
is attained. By (4), it is given as a root of An = Bn = 0 if any. Therefore,

σ̂ 2
n = 1

n

2Ĥn
n

〈
Xn,Tn(Ĥn)

−1Xn

〉
,

∂H log
∣∣Tn(Ĥn)

∣∣+ n
〈Xn, ∂H {Tn(Ĥn)

−1}Xn〉
〈Xn,Tn(Ĥn)−1Xn〉

= 0.

The latter equation implies that, by the self-similarity property, the limit law of Ĥn

is the same as in the large sample case treated in Section 2. In particular, Ĥn −H =
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Op(n−1/2); see, for example, Dahlhaus [7]. On the other hand, the limit law of σ̂n

is different because
σ̂n − σ

σ
≈ log σ̂n − logσ ≈ −(Ĥn − H) log
n

as is easily seen. In particular, σ̂n − σ = Op(| log
n|n−1/2) and the joint law of(√
n(Ĥn − H),

√
n

log
n

(σ̂n − σ)

)

is degenerate to a one-dimensional distribution.

THEOREM 4.1. Let θ = (H,σ)∗ ∈ (0,1) × (0,∞) and ϕn = ϕn(H,σ) be a
sequence of matrices satisfying the conditions of Theorem 3.1. Let θ̂n = (Ĥn, σ̂n)

∗
be such a sequence that

ϕ∗
n∇�n(θ̂n) = op(1), θ̂n − θ = Op

(| log
n|kn−1/2)
for some k ∈ N. Then

ϕ−1
n (θ̂n − θ) → N

(
0, I (H,σ)−1)

in law under P n
(H,σ) and

lim
δ→∞ lim

n→∞ sup
|ϕ−1

n (τ−θ)|≤δ

En
τ

[
l
(
ϕ−1

n (θ̂n − τ)
)]= ∫

R2
l
(
I (H,σ)−1/2z

)
φ(z)dz

for any bounded continuous function l on R
2, where I (H,σ) is defined by (5).

PROOF. By Taylor’s formula,

ϕ∗
n∇�n(θ̂n) = ϕ∗

n∇�n(θ) + ϕ∗
n∇2�n(θ)(θ̂n − θ) + rn,

where

|rn| ≤ 1

2
|θ̂n − θ |∣∣ϕ−1

n (θ̂n − θ)
∣∣max

{∣∣ϕ∗
n∇3�n(θ)ϕn

∣∣; θ ∈ B̄
(
θ0, |θ̂n − θ |)}.

Since αnβ̄n − ᾱnβn → σ(αγ̄ − ᾱγ ), we have ‖ϕ−1
n ‖ = O(| log
n|n1/2). There-

fore, by the same argument as Step 3 in the proof of Theorem 3.1, we can show
that rn = op(1). Then, by (6) and (7), we have

ϕ−1
n (θ̂n − θ) ≈ −{ϕ∗

n∇2�nϕn

}−1
ϕ∗

n∇�n ≈ I (H,σ)−1
(
γ −α

γ̄ −ᾱ

)(
An

Bn

)
.(10)

From this expression, the first assertion of the theorem follows. Further, since

log
dP n

θ+ϕnu

dP n
θ

≈ 〈
ϕ∗

n∇�n,u
〉− 1

2

〈
u, I (H,σ)u

〉

≈
〈(

An

Bn

)
,

(
γ γ̄

−α −ᾱ

)
u

〉
− 1

2

〈
u, I (H,σ)u

〉(11)



LAN PROPERTY FOR FGN UNDER HIGH-FREQUENCY OBSERVATIONS 2057

uniformly in u on compact sets as we have seen in the proof of Theorem 3.1, the
joint law of (

ϕ−1
n (θ̂n − θ), log

dP n
θ+ϕnun

dP n
θ

)

under P n
θ converges to a normal distribution with covariance

E

[
I (H,σ)−1

(
γ −α

γ̄ −ᾱ

)(
A

B

)
(A,B)

(
γ γ̄

−α −ᾱ

)
u

]
= u

for any sequence un with limn→∞ un = u. Then, by Le Cam’s third lemma,

ϕ−1
n (θ̂n − θ) → N

(
u, I (H,σ)−1)

in law under P n
θ+ϕnun

, from which the second assertion follows. �

4.4. Hypothesis testing. By the standard argument, as a corollary of Theo-
rems 3.1 and 4.1, we have a limit theorem for the likelihood ratio test statistic �n

for the hypothesis testing θ = θ0 vs. θ �= θ0, that is,

−2 log�n ≈ −〈ϕ−1
n (θ̂n − θ0), ϕ

∗
n∇2�nϕϕ−1

n (θ̂n − θ0)
〉→ χ2(2)

under the null hypothesis, where θ̂n is the ML estimator. On the other hand, for
a composite null hypothesis, the usual argument fails due to the singularity of the
asymptotic Fisher matrix. Still, we have the following result.

THEOREM 4.2. Consider the hypothesis testing H = H0 vs. H �= H0 with σ

unknown. Let �n be the likelihood ratio statistic, that is,

− log�n = �n(θ̂n) − �n

((
H0, σ̃n(H0)

)∗)
,

where θ̂n is the ML estimator of θ = (H,σ)∗ and σ̃n(H0) is the ML estimator of σ

under the null hypothesis H = H0. Then

−2 log�n → χ2(1)

in law under the null hypothesis.

PROOF. Let ϕn be a sequence of matrices satisfying the conditions of Theo-
rem 3.1. Then, by (10) and 〈∇�n(θ̂n), (θ̂n − θ)〉 = 〈ϕ∗

n∇�n(θ̂n), ϕ
−1
n (θ̂n − θ)〉 ≈ 0,

2
(
�n(θ̂n) − �n(θ)

)
≈ 〈

ϕ−1
n (θ̂n − θ), I (H,σ)ϕ−1

n (θ̂n − θ)
〉

→
〈(

γ γ̄

−α −ᾱ

)−1

J (H)−1
(
A

B

)
, I (H,σ)

(
γ γ̄

−α −ᾱ

)−1

J (H)−1
(
A

B

)〉

= (A,B)J (H)−1
(
A

B

)
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and (A,B)∗ ∼ J (H)1/2N2, N2 ∼ N (0, I2). On the other hand,

1

n
∂2
σ �n = − 1

σ 2
√

n
(An + 2

√
nCn) → − 2

σ 2 ,
√

n
(
σ̃n(H)2 − σ 2)= σ 2An

and so,

2
(
�n

((
H, σ̃n(H)

)∗)− �n(θ)
)≈ 2

σ 2

∣∣√n
(
σ̃n(H) − σ

)∣∣2 → 1

2
A2.

Therefore,

−2 log�n = 2
(
�n(θ̂n) − �n(θ)

)− 2
(
�n

((
H, σ̃n(H)

)∗)− �n(θ)
)

→ (A,B)

{
J (H)−1 − 1

2

(
1 0
0 0

)}(
A

B

)

= N∗
2

{
I2 − 1

2
J (H)1/2

(
1 0
0 0

)
J (H)1/2

}
N2 ∼ χ2(1).

(12)

Here, we have used that the (1,1) element of J (H) is 2, and so∣∣∣∣I2 − 1

2
J (H)1/2

(
1 0
0 0

)
J (H)1/2

∣∣∣∣= 0,

tr
(
I2 − 1

2
J (H)1/2

(
1 0
0 0

)
J (H)1/2

)
= 1.

(13)

�

In order to argue asymptotic optimality of tests, it is conventional to compare
their asymptotic powers under local alternatives. For the LAN family with nondi-
agonal rate matrices, it is not trivial at a glance which rate matrix we should take
to define local alternatives. For our hypotheses H = H0 vs. H �= H0, it would be
natural to take (8) with unknown true value σ = σ0 under which(

H

σ

)
=
(
H0
σ0

)
+ ϕn

(
u1
u2

)
⇔

(
u1
u2

)
= √

n

(
H − H0

(H − H0)σ0 log
n + σ − σ0

)

so that the local null space is N := {(u1, u2)
∗|u1 = 0}. For other ϕn than (8), the

corresponding local null space depends on n and so, seems difficult to treat. For
ε ∈ (0,1), we say a test ψn is an asymptotically unbiased level ε test at σ0 if

lim sup
n→∞

Eθ0+ϕnu[ψn] ≤ min
{
ε, lim inf

n→∞ Eθ0+ϕnū[ψn]
}

for every u ∈N and ū ∈ N c, where θ0 = (H0, σ0)
∗. We say a test ψn is an asymp-

totically uniformly most powerful unbiased level ε test at σ0 if it is an asymptoti-
cally unbiased level ε test at σ0 and

lim inf
n→∞ Eθ0+ϕnū[ψn] ≥ lim sup

n→∞
Eθ0+ϕnū

[
ψ ′

n

]
for any ū ∈ N c and any other asymptotically unbiased level ε test ψ ′

n at σ0.
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THEOREM 4.3. Let �n be the likelihood ratio statistic of Theorem 4.2. The
test

ψn = 1{−2 log�n≥z2
ε/2}, 1 − �(zε/2) = ε/2

is an asymptotically uniformly most powerful unbiased level ε test at σ0 for any
σ0 > 0.

PROOF. By Theorem 2 of Choi et al. [3],

(14) lim sup
n→∞

Eθ0+ϕnū

[
ψ ′

n

]≤ P
(|N1 + √

κū1| ≥ zε/2
)

for any ū = (ū1, ū2)
∗ ∈ N c and any asymptotically unbiased level ε test ψ ′

n at σ0,
where N1 ∼ N (0,1) and κ is the effective information

κ = |I (H0, σ0)|
I (H0, σ0)2,2

= σ 2

2

∣∣∣∣∣
(

E
[
B2] −E[AB]/σ

−E[AB]/σ 2/σ 2

)∣∣∣∣∣= E
[
B2]− 1

2
E[AB]2.

Here, we have used that α = 1, ᾱ = 0, γ = 0 and γ̄ = σ−1 for (8). Actually, Choi
et al. [3] assumed the LAN property with a diagonal rate matrix; however, their
proof remains valid for nondiagonal cases as long as the local null space is of
the form N = {(u1, u2)

∗|u1 = 0}. On the other hand, by Theorem 4.2, the test
ψn is of asymptotic level ε. Further by (11), Le Cam’s third lemma implies that
(An,Bn)

∗ → N (μ(ū), J (H0)) under Pθ0+ϕnū, where

μ(ū) = J (H0)

(
γ γ̄

−α −ᾱ

)
ū = J (H0)

(
ū2σ

−1

−ū1

)

for any ū = (ū1, ū2)
∗ ∈ N c. Therefore, by the same computation as in (12), the

limit law of −2 log�n under Pθ0+ϕnū is

(
μ(ū) + J (H0)

1/2N2
)∗{

J (H0)
−1 − 1

2

(
1 0
0 0

)}(
μ(ū) + J (H0)

1/2N2
)

= κū2
1 + 2

√
κū1N + N2 = |N + √

κū1|2,
where N2 ∼ N (0, I2), N is the first element of QN2 and Q is an orthogonal matrix
with

Q∗
(

1 0
0 0

)
Q = I2 − 1

2
J (H)1/2

(
1 0
0 0

)
J (H)1/2.

Here, we have used (13), that

J (H) − 1

2
J (H)

(
1 0
0 0

)
J (H) =

(
0 0
0 κ

)

and that

x2 = (x, y)

(
1 0
0 0

)(
x

y

)
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for any (x, y)∗ ∈ R
2. This means that the upper bound of (14) is attained by ψn

and also that ψn is asymptotically unbiased. �

5. Concluding remarks. We have shown that the statistical experiment of the
fGn under high-frequency observations enjoys the LAN property. The idea is the
use of nondiagonal rate matrices. The self-similarity property is the key for this
analysis. Therefore, an extension to the case where σ is time-dependent is nontriv-
ial. On the other hand, extensions to more general self-similar stationary Gaussian
noises or stable Lévy noises under high-frequency observations are straightfor-
ward. For the latter, the singularity of the Fisher matrix was discussed in [1] and a
weak LAN property was shown in [22], which exactly corresponds to the result of
[16] for the fGn.
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