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This paper studies hypothesis testing and parameter estimation in the
context of the divide-and-conquer algorithm. In a unified likelihood-based
framework, we propose new test statistics and point estimators obtained by
aggregating various statistics from k subsamples of size n/k, where n is the
sample size. In both low dimensional and sparse high dimensional settings,
we address the important question of how large k can be, as n grows large,
such that the loss of efficiency due to the divide-and-conquer algorithm is
negligible. In other words, the resulting estimators have the same inferential
efficiencies and estimation rates as an oracle with access to the full sample.
Thorough numerical results are provided to back up the theory.

1. Introduction. In recent years, the field of statistics has developed apace in
response to the opportunities and challenges spawned from the “data revolution”,
which marked the dawn of an era characterized by the availability of enormous
datasets. An extensive toolkit of methodology is now in place for addressing a
wide range of high dimensional problems, whereby the number of unknown pa-
rameters, d , is much larger than the number of observations, n. However, many
modern datasets are instead characterized by n and d both large. The latter presents
intimidating practical challenges resulting from storage and computational limita-
tions, as well as numerous statistical challenges [Fan, Han and Liu (2014)]. It is
important that statistical methodology targeting modern application areas does not
lose sight of the practical burdens associated with manipulating such large scale
datasets. In this vein, incisive new algorithms have been developed for exploiting
modern computing architectures and recent advances in distributed computing.
These algorithms enjoy computational or communication efficiency and facilitate
data handling and storage, but come with a statistical overhead if inappropriately
tuned.

With increased mindfulness of the algorithmic difficulties associated with large
datasets, the statistical community has witnessed a surge in recent activity in the
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statistical analysis of various divide-and-conquer (DC) algorithms, which ran-
domly partition the n observations into k subsamples of size nk = n/k, con-
struct statistics based on each subsample, and aggregate them in a suitable way.
In splitting the dataset, a single, very large scale estimation or testing problem
with computational complexity O(γ (n)), for a given function γ (·) that depends
on the underlying problem, is transformed into k smaller problems with compu-
tational complexity O(γ (n/k)) on each machine. What gets lost in this process
are the interactions of split subsamples in each machine. They are not recoverable
without additional rounds of communication or without additional communica-
tion between the machines. Since every additional split of the dataset incurs some
efficiency loss, it is of significant practical interest to derive a theoretical upper
bound on the number of subsamples k that delivers the same asymptotic statistical
performance as the practically unavailable “oracle” procedure based on the full
sample.

We develop communication efficient generalizations of the Wald and Rao’s
score tests for the sparse high dimensional scheme, as well as communication
efficient estimators for the parameters of the sparse high dimensional and low di-
mensional linear and generalized linear models. In all cases, we give the upper
bound on k for preserving the statistical error of the analogous full sample proce-
dure. While hypothesis testing in a low dimensional context is straightforward, in
the sparse high dimensional setting, nuisance parameters introduce a nonnegligible
bias, causing classical low dimensional theory to break down. In our high dimen-
sional Wald construction, the phenomenon is remedied through a debiasing of the
estimator, which gives rise to a test statistic with tractable limiting distribution,
as documented in the k = 1 (no sample split) setting in Zhang and Zhang (2014)
and van de Geer et al. (2014). For the high dimensional analogue of Rao’s score
statistic, the incorporation of a correction factor increases the convergence rate of
higher order terms, thereby vanquishing the effect of the nuisance parameters. The
approach is introduced in the k = 1 setting in Ning and Liu (2017), where the test
statistic is shown to possess a tractable limit distribution. However, the computa-
tion complexity for the debiased estimators increases by an order of magnitude,
due to solving d high dimensional regularization problems. This motivates us to
appeal to the divide-and-conquer strategy.

We develop the theory and methodology for DC versions of these tests. In the
case of k = 1, each of the above test statistics can be decomposed into a dominant
term with tractable limit distribution and a negligible remainder term. The DC
extension requires delicate control of these remainder terms to ensure the error
accumulation remains sufficiently small so as not to materially contaminate the
leading term. We obtain an upper bound on the number of permitted subsamples,
k, subject to a statistical guarantee. More specifically, we find that the theoretical
upper bound on the number of subsamples guaranteeing the same inferential or
estimation efficiency as the whole-sample procedure is k = o((s logd)−1√n) in
the linear model, where s is the sparsity of the parameter vector. In the generalized
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linear model, the scaling is k = o(((s ∨ s1) logd)−1√n), where s1 is the sparsity
of the inverse information matrix.

For sparse high dimensional estimation problems, we use the same debias-
ing technique introduced in the high dimensional testing problems to obtain a
thresholded divide-and-conquer estimator that achieves the full sample minimax

rate. The appropriate scaling is found to be k = O(
√

n/(s2 logd)) for the esti-
mation of the sparse parameter vector in the high dimensional linear model and

k = O(
√

n/((s ∨ s1)2 logd)) for the high dimensional generalized linear model.
Moreover, we find that the loss incurred by the divide-and-conquer strategy, as
quantified by the distance between the DC estimator and the full sample estima-
tor, is negligible in comparison to the statistical error of the full sample estimator
provided that k is not too large. In the context of estimation, the optimal scaling
of k with n and d is also developed for the low dimensional linear and generalized
linear model. This theory is of independent interest. It also allows us to study a
refitted estimation procedure under a minimal signal strength assumption.

1.1. Related literature. A partial list of references covering DC algorithms
from a statistical perspective is Chen and Xie (2014), Zhang, Duchi and Wain-
wright (2015), Kleiner et al. (2014), Liu and Ihler (2014) and Zhao, Cheng and
Liu (2016). The closest works to ours are Zhang, Duchi and Wainwright (2015),
Lee et al. (2017) and Rosenblatt and Nadler (2016). Zhang, Duchi and Wainwright
(2015) consider the distributed estimator for kernel ridge regression. In the context
of d < n, Zhang, Duchi and Wainwright (2015) propose the distributed estimator
by averaging the kernel ridge regression estimators for each data split. They ob-
tain an explicit upper bound on the number of splits yielding the minimax optimal
rates for the mean squared error. However, it is not straightforward to general-
ize their estimator to the high dimensional setting. In an independent work, Lee
et al. (2017) propose the same debiasing approach of van de Geer et al. (2014)
to allow aggregation of local estimates on distributed data splits in the context of
sparse high dimensional linear and generalized linear models. Though using dif-
ferent techniques of proofs, the conclusions of Lee et al. (2017) in terms of the
optimal choice of tuning parameter scaling and the upper bound on the permissi-
ble number of sample splits is of the same order. Our work differs from theirs in
two aspects: (1) our work also contributes to the distributed testing in sparse high
dimensional models and (2) we propose a refitted distributed estimator which has
the oracle rate. Our results on hypothesis testing reveal a different phenomenon
to that found in estimation, as we observe through the different requirements on
the scaling of k. On the estimation side, our results also differ from those of Lee
et al. (2017) in that our additional refitting step allows us to achieve the oracle rate.
Rosenblatt and Nadler (2016) consider the distributed empirical risk minimization
for M-estimators. They require the dimension of the interest parameter to satisfy
the scaling condition d/n → κ ∈ (0,1), which rules out the d � n case. They
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quantify the accuracy loss over the full sample estimator in terms of the number of
splits.

1.2. Organization of the paper. The rest of the paper is organized as follows.
Section 2 collects notation and details of a generic likelihood-based framework.
Section 3 covers testing, providing high dimensional DC analogues of the Wald
test (Section 3.1) and Rao’s score test (Section 3.2), in each case deriving a
tractable limit distribution for the corresponding test statistic under standard as-
sumptions. Section 4 covers distributed estimation, proposing an aggregated esti-
mator of the unknown parameters of linear and generalized linear models in low
dimensional and sparse high dimensional scenarios, as well as a refitting proce-
dure that improves the estimation rate, with the same scaling, under a minimal
signal strength assumption. Section 5 provides numerical experiments to back up
the developed theory. In Section 6, we discuss our results together with remaining
future challenges. Proofs of our main results are collected in Section 7, while the
statement and proofs of a number of technical lemmas are deferred to the Supple-
mentary Material [Battey et al. (2018)].

2. Background and notation. We first collect the general notation, before
providing a formal statement of our statistical problems. More specialized notation
is introduced in context.

2.1. Generic notation. We adopt the common convention of using boldface
letters for vectors only, while regular font is used for both matrices and scalars.
| · | denotes both absolute value and cardinality of a set, with the context ensur-
ing no ambiguity. For x = (x1, . . . , xd)T ∈ R

d , and 1 ≤ q ≤ ∞, we define ‖x‖q =
(
∑d

j=1 |xj |q)1/q , ‖x‖0 = | supp(x)|, where supp(x) = {j : xj �= 0}. Write ‖x‖∞ =
max1≤j≤d |xj |, while for a matrix M = [Mjk], let ‖M‖max = maxj,k |Mjk|,
‖M‖1 = ∑

j,k |Mjk|. For any matrix M , we use M� to index the transposed �th row
of M and [M]� to index the �th column. The sub-Gaussian norm of a scalar ran-
dom variable X is defined as ‖X‖ψ2 = supq≥1 q−1/2(E|X|q)1/q . For a random vec-
tor X ∈ R

d , its sub-Gaussian norm is defined as ‖X‖ψ2 = supx∈Sd−1 ‖〈X,x〉‖ψ2 ,
where S

d−1 denotes the unit sphere in R
d . Let Id denote the d × d identity

matrix; when the dimension is clear from the context, we omit the subscript.
We also denote the Hadamard product of two matrices A and B as A ◦ B and
(A ◦ B)jk = AjkBjk for any j, k. {e1, . . . , ed} denotes the canonical basis for Rd .
For a vector v ∈ R

d and a set of indices S ⊆ {1, . . . , d}, vS is the vector of length
|S| whose components are {vj : j ∈ S}. Additionally, for a vector v with j th el-
ement vj , we use the notation v−j to denote the remaining vector when the j th
element is removed. With slight abuse of notation, we write v = (vj ,v−j ) when
we wish to emphasize the dependence of v on vj and v−j individually. The gradi-
ent of a function f (x) is denoted by ∇f (x), while ∇xf (x,y) denotes the gradient
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of f (x,y) with respect to x, and ∇2
xyf (x,y) denotes the matrix of cross partial

derivatives with respect to the elements of x and y. For a scalar η, we simply write
f ′(η) := ∇ηf (η) and f ′′(η) := ∇2

ηηf (η). For a random variable X and a sequence
of random variables, {Xn}, we write Xn � X when {Xn} converges weakly to X.
If X is a random variable with standard distribution, say FX , we simply write
Xn � FX . Given a, b ∈ R, let a ∨ b and a ∧ b denote the maximum and minimum
of a and b. We also make use of the notation an � bn (an � bn) if an is less than
(greater than) bn up to a constant, and an � bn if an is the same order as bn.

2.2. General likelihood-based framework. Let (XT
1 , Y1)

T , . . . , (XT
n , Yn)

T be
n i.i.d. copies of the random vector (XT , Y )T , whose realizations take val-
ues in R

d × Y . Write the collection of these n i.i.d. random couples as D =
{(XT

1 , Y1)
T , . . . , (XT

n , Yn)
T } with Y = (Y1, . . . , Yn)

T and X = (X1, . . . ,Xn)
T ∈

R
n×d . Conditional on Xi , we assume Yi is distributed as Fβ∗ for all i ∈ {1, . . . , n},

where Fβ∗ is a known distribution parameterized by a sparse d-dimensional vec-
tor β∗ and has a density or mass function fβ∗ . We thus define the negative log-
likelihood function, �n(β), as

(2.1) �n(β) = 1

n

n∑
i=1

�i(β) = −1

n

n∑
i=1

logfβ(Yi |Xi ).

We use J ∗ = J (β∗) to denote the information matrix and �∗ to denote (J ∗)−1,
where J (β) = E[∇2

ββ�n(β)].
For testing problems, our goal is to test H0 : β∗

v = βH
v for a specific fixed index

v ∈ {1, . . . , d}. We partition β∗ as β∗ = (β∗
v ,β∗T−v)

T ∈ R
d , where β∗−v ∈ R

d−1 is
a vector of nuisance parameters and β∗

v is the parameter of interest. To handle the
curse of dimensionality, we exploit a penalized M-estimator defined as

β̂
λ = argmin

β

{
�n(β) +Pλ(β)

}
,(2.2)

with Pλ(β) a sparsity inducing penalty function with a regularization parameter λ.
Examples of Pλ(β) include the convex �1 penalty, Pλ(β) = λ‖β‖1 = λ

∑d
j=1 |βj |

which, in the context of the linear model, gives rise to the Lasso estimator
[Tibshirani (1996)],

(2.3) β̂
λ

Lasso = argmin
β

{
1

2n
‖Y − Xβ‖2

2 + λ‖β‖1

}
.

Other penalties include folded concave penalties such as the smoothly clipped ab-
solute deviation (SCAD) penalty [Fan and Li (2001)] and minimax concave MCP
penalty [Zhang (2010)], which eliminate the estimation bias and attain the oracle
rates of convergence [Loh and Wainwright (2013), Wang, Liu and Zhang (2014)].
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The SCAD penalty is defined as

Pλ(β) =
d∑

j=1

pλ(βj ) where

pλ(t) =
∫ |t |

0

{
λ1(z ≤ λ) + aλ − z

a − 1
1(z > λ)

}
dz,

(2.4)

for a given parameter a > 0 and MCP penalty is given by

Pλ(β) =
d∑

j=1

pλ(βj ) where pλ(t) = λ

∫ |t |
0

(
1 − z

λb

)
+

dz,(2.5)

where b > 0 is a fixed parameter. The only requirement we have on Pλ(β) is that
it induces an estimator satisfying the following condition.

CONDITION 2.1. For any δ ∈ (0,1), if λ � √
log(d/δ)/n,

(2.6) P
(∥∥β̂λ − β∗∥∥

1 > Csn−1/2
√

log(d/δ)
) ≤ δ,

where s is the sparsity of β∗, i.e., s = ‖β∗‖0.

Condition 2.1 is crucial for the theory developed in Sections 3 and 4. Under
suitable conditions on the design matrix X, it holds for the Lasso, SCAD and
MCP. See Bühlmann and van de Geer (2011), Fan and Li (2001), Zhang (2010),
respectively, and Zhang and Zhang (2012).

The DC algorithm randomly and evenly partitions D into k disjoint subsets
D1, . . . ,Dk , so that D = ⋃k

j=1 Dj , Dj ∩ D� = ∅ for all j, � ∈ {1, . . . , k}, and
|D1| = |D2| = · · · = |Dk| = nk = n/k, where it is implicitly assumed that n can
be divided evenly. Let Ij ⊂ {1, . . . , n} be the index set corresponding to the ele-
ments of Dj . Then for an arbitrary n × d matrix A, A(j) = [Ai�]i∈Ij ,1≤�≤d . For
an arbitrary estimator τ̂ , we write τ̂ (Dj ) when the estimator is constructed based

only on Dj . Finally, we write �
(j)
nk (β) = ∑

i∈Ij
�i(β) to denote the negative log-

likelihood function based on Dj .
While the results of this paper hold in a general likelihood-based framework,

for simplicity we state conditions at the population level for the generalized linear
model (GLM) with a canonical link. A much more general set of statements appear
in the auxiliary lemmas upon which our main results are based. Under GLM with
the canonical link, the response follows the distribution,

(2.7) fn

(
Y ;X,β∗) =

n∏
i=1

f
(
Yi;η∗

i

) =
n∏

i=1

{
c(Yi) exp

[
Yiη

∗
i − b(η∗

i )

φ

]}
,
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where η∗
i = XT

i β∗. The negative log-likelihood corresponding to (2.7) is given, up
to an affine transformation, by

(2.8) �n(β) = 1

n

n∑
i=1

−YiX
T
i β + b

(
XT

i β
) = 1

n

n∑
i=1

−Yiηi + b(ηi) = 1

n

n∑
i=1

�i(β),

and the gradient and Hessian of �n(β) are respectively

∇�n(β) = −1

n
XT (

Y − μ(Xβ)
)

and ∇2�n(β) = 1

n
XT D(Xβ)X,

where μ(β) = (b′(η1), . . . , b
′(ηn))

T and D(β) = diag{b′′(η1), . . . , b
′′(ηn)}. In this

setting, J (β) = E[b′′(XT
1 β)X1X

T
1 ] and J ∗ = E[b′′(XT

1 β∗)X1X
T
1 ].

3. Divide-and-conquer hypothesis tests. In the context of the two classical
testing frameworks, the Wald and Rao’s score tests, our objective is to construct
a test statistic Sn with low communication cost and a tractable limiting distri-
bution F . From this statistic, we define a test of size α of the null hypothesis,
H0 : β∗

v = βH
v , against the alternative, H1 : β∗

v �= βH
v , as a partition of the sample

space described by

(3.1) T α
n =

{
0 if |Sn| ≤ F−1(1 − α/2),

1 if |Sn| > F−1(1 − α/2),

for a two-sided test.

3.1. Two divide-and-conquer Wald-type constructions. For the high dimen-
sional linear model, Zhang and Zhang (2014), van de Geer et al. (2014) and
Javanmard and Montanari (2014) propose methods for debiasing the Lasso estima-
tor with a view to constructing high dimensional analogues of Wald statistics and
confidence intervals for low dimensional coordinates. As pointed out by Zhang
and Zhang (2014), the debiased estimator does not impose the minimum signal
condition used in establishing oracle properties of regularized estimators [Fan and
Li (2001), Fan and Lv (2011), Loh and Wainwright (2015), Wang, Liu and Zhang
(2014), Zhang and Zhang (2012)], and hence has wider applicability than those
inferences based on the oracle properties. The method of van de Geer et al. (2014)
is appealing in that it accommodates a general penalized likelihood-based frame-
work, while the Javanmard and Montanari (2014) approach is appealing in that it
optimizes asymptotic variance and requires a weaker condition than van de Geer
et al. (2014) in the specific case of the linear model. We consider the DC analogues
of Javanmard and Montanari (2014) and van de Geer et al. (2014) in Sections 3.1.1
and 3.1.2, respectively.
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3.1.1. Lasso-based Wald test for the linear model. The linear model assumes

(3.2) Yi = XT
i β∗ + εi,

where {εi}ni=1 are i.i.d. with E(εi) = 0 and variance σ 2. For concreteness, we fo-
cus on a Lasso-based method, but our procedure is also valid when other pilot
estimators are used. We describe a modification of the bias correction method in-
troduced in Javanmard and Montanari (2014) as a means to testing hypotheses on
low dimensional coordinates of β∗ via pivotal test statistics.

On each subset Dj , we compute the debiased estimator of β∗ as in Javanmard
and Montanari (2014) as

(3.3) β̂
d
(Dj ) = β̂

λ

Lasso(Dj ) + 1

nk

M(j)(X(j))T (
Y (j) − X(j)β̂

λ

Lasso(Dj )
)
,

where the superscript d is used to indicate the debiased version of the estimator,
M(j) = (m(j)

1 , . . . ,m(j)
d )T and mv is the solution of

m(j)
v = argmin

m
mT �̂(j)m s.t.

∥∥�̂(j)m − ev

∥∥∞ ≤ ϑ1,∥∥X(j)m
∥∥∞ ≤ ϑ2.

(3.4)

The choice of tuning parameters ϑ1 and ϑ2 is discussed in Javanmard and Mon-
tanari (2014) and Zhao, Cheng and Liu (2016) and they suggest to choose ϑ1 �√

logd/n, ϑ2n
−1/2 = o(1). In the context of our DC procedure, ϑ1 and ϑ2 rely

on k and should be chosen as ϑ1 � √
k logd/n, ϑ2n

−1/2 = o(1), as quantified
in Theorem 3.3. Above, �̂(j) = nk

−1 ∑
i∈Ij

X
(j)
i X

(j)T
i is the sample covariance

based on Dj , whose population counterpart is � = E(X1X
T
1 ) and M(j) is its

regularized inverse. The second term in (3.3) is a bias correction term, while
σ 2m(j)T

v �̂(j)m(j)
v /nk is shown in Javanmard and Montanari (2014) to be the vari-

ance of the vth component of β̂
d
(Dj ). The parameter ϑ1, which tends to zero,

controls the bias of the debiased estimator (3.3) and the optimization in (3.4) min-
imizes the variance of the resulting estimator.

Solving d optimization problems in (3.4) increases an order of magnitude of
computation complexity even for k = 1. Thus, it is necessary to appeal to the
divide-and-conquer strategy to reduce the computation burden. This gives rise to
the question how large k can be in order to maintain the same statistical properties
as the whole sample one (k = 1).

Because our DC procedure gives rise to smaller samples, �̂ is singular. This
singularity does not pose a statistical problem but it does make the optimization
problem ill-posed. To overcome the singularity in �̂ and the resulting instabil-
ity of the algorithm, we propose a change of variables. More specifically, not-
ing that M(j) is not required explicitly, but rather the product M(j)(X(j))T , we
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propose

b(j)
v = argmin

b

b(j)T b(j)

nk

s.t.
∥∥∥∥X(j)T b(j)

nk

− ev

∥∥∥∥∞
≤ ϑ1,∥∥b(j)

∥∥∞ ≤ ϑ2,

(3.5)

from which we construct M(j)(X(j))T = BT , where B = (b1, . . . ,bd). The al-
gorithm in equation (3.5) is crucial to the success of our procedure in prac-
tice.

The following conditions on the data generating process and the tail behavior
of the design vectors are imposed in Javanmard and Montanari (2014). Both con-
ditions are used to derive the theoretical properties of the DC Wald test statistic

based on the aggregated debiased estimator, β
d = k−1 ∑k

j=1 β̂
d
(Dj ).

CONDITION 3.1. {(Yi,Xi )}ni=1 are i.i.d. and � satisfies 0 < Cmin ≤
λmin(�) ≤ λmax(�) ≤ Cmax.

CONDITION 3.2. The rows of X are sub-Gaussian with ‖Xi‖ψ2 ≤ κ ,
i = 1, . . . , n.

Note that under the two conditions above, there exists a constant κ1 > 0 such
that ‖X1�

−1/2‖ψ2 ≤ κ1. Without loss of generality, we set κ1 = κ . Our first main
theorem provides the relative scaling of the various tuning parameters involved in

the construction of β
d
.

THEOREM 3.3. Suppose Conditions 2.1, 3.1 and 3.2 are fulfilled. Suppose
E[ε4

1] < ∞ and choose ϑ1, ϑ2 and k such that ϑ1 � √
k logd/n, ϑ2n

−1/2 = o(1)

and k = o((s logd)−1√n). For any v ∈ {1, . . . , d}, we have

(3.6)
√

n
1

k

k∑
j=1

β̂d
v (Dj ) − β∗

v

Q̂
(j)
v

� N
(
0, σ 2),

where Q̂
(j)
v = (m(j)T

v �̂(j)m(j)
v )1/2.

Theorem 3.3 entertains the prospect of a divide-and-conquer Wald statistic of
the form

(3.7) Sn = √
n

1

k

k∑
j=1

β̂d
v (Dj ) − βH

v

σ(m(j)T
v �̂(j)m(j)

v )1/2

for β∗
v , where σ is an estimator for σ based on the k subsamples. On the left-hand

side of equation (3.7), we suppress the dependence on v to simplify notation. As
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an estimator for σ , a simple suggestion with the same computational complexity
is σ where

(3.8) σ 2 = 1

k

k∑
j=1

σ̂ 2(Dj ) and σ̂ 2(Dj ) = 1

nk

∑
i∈Ij

(
Y

(j)
i − X

(j)T
i β̂

λ

Lasso(Dj )
)2

.

One can use the refitted cross-validation procedure of Fan, Guo and Hao (2012) to
reduce the bias of the estimate. In Lemma 3.4, we show that with the scaling of
k and λ required for the weak convergence results of Theorem 3.3, consistency of
σ 2 is also achieved.

LEMMA 3.4. Suppose E[εi |Xi] = 0 for all i ∈ {1, . . . , n}. Then with λ �√
k logd/n and k = o(

√
n(s logd)−1), |σ 2 − σ 2| = oP(1).

With Lemma 3.4 and Theorem 3.3 at hand, we establish in Corollary 3.5 the
asymptotic distribution of Sn under the null hypothesis H0 : β∗

v = βH
v . This holds

for each component v ∈ {1, . . . , d}.
COROLLARY 3.5. Suppose Conditions 3.1 and 3.2 are fulfilled, E[ε4

1] < ∞,
and λ, ϑ1 and ϑ2 are chosen as λ � √

k logd/n, ϑ1 � √
k logd/n and ϑ2n

−1/2 =
o(1). Then provided k = o((s logd)−1√n), under H0 : β∗

v = βH
v , we have

(3.9) lim
n→∞

∣∣P(Sn ≤ t) − �(t)
∣∣ = 0,

where �(·) is the c.d.f. of a standard normal distribution.

3.1.2. Wald test in the likelihood-based framework. An alternative route to de-
biasing the Lasso estimator of β∗ is the one proposed in van de Geer et al. (2014).
Their so-called desparsified estimator of β∗ is more general than the debiased es-
timator of Javanmard and Montanari (2014) in that it accommodates generic esti-
mators of the form (2.2) as pilot estimators, but the latter optimizes the variance of
the resulting estimator. The desparsified estimator for subsample Dj is

β̂
d
(Dj ) = β̂

λ
(Dj ) − �̂(j)∇�(j)

nk

(
β̂

λ
(Dj )

)
,(3.10)

where �̂(j) is a regularized inverse of the Hessian matrix of second-order deriva-
tives of �

(j)
nk (β) at β̂

λ
(Dj ), denoted by Ĵ (j) = ∇2�

(j)
nk (β̂

λ
(Dj )). We will make this

explicit in due course. The estimator resembles the classical one-step estimator
[Bickel (1975)], but now in the high dimensional setting via regularized inverse
of the Hessian matrix Ĵ (j), which reduces to the empirical covariance of the de-
sign matrix in the case of the linear model. From equation (3.10), the aggregated

debiased estimator over the k subsamples is defined as β
d = k−1 ∑k

j=1 β̂
d
(Dj ).

We now use the nodewise Lasso [Meinshausen and Bühlmann (2006)] to ap-
proximately invert Ĵ (j) via L1-regularization. The basic idea is to find the reg-
ularized invert row by row via a penalized L1-regression, which is the same as
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regressing the variable Xv on X−v but expressed in the sample covariance form.
For each row v ∈ 1, . . . , d , consider the optimization

(3.11) κ̂v(Dj ) = argmin
κ∈Rd−1

(
Ĵ (j)

vv − 2Ĵ
(j)
v,−vκ + κT Ĵ

(j)
−v,−vκ + 2λv‖κ‖1

)
,

where Ĵ
(j)
v,−v denotes the vth row of Ĵ (j) without the (v, v)th diagonal element, and

Ĵ
(j)
−v,−v is the principal submatrix without the vth row and vth column. Introduce

(3.12) Ĉ(j) :=

⎛⎜⎜⎜⎝
1 −κ̂1,2(Dj ) . . . −κ̂1,d(Dj )

−κ̂2,1(Dj ) 1 . . . −κ̂2,d(Dj )
...

...
. . .

...

−κ̂d,1(Dj ) −κ̂d,2(Dj ) . . . 1

⎞⎟⎟⎟⎠
and �̂(j) = diag(τ̂1(Dj ), . . . , τ̂d(Dj )), where τ̂v(Dj )

2 = Ĵ
(j)
vv − Ĵ

(j)
v,−v κ̂v(Dj ). �̂(j)

in equation (3.10) is given by

(3.13) �̂(j) = (
�̂(j))−2

Ĉ(j),

and we define �̂
(j)
v as the transposed vth row of �̂(j).

Theorem 3.8 establishes the limit distribution of the term

(3.14) Sn = √
n

1

k

k∑
j=1

β̂d
v (Dj ) − βH

v√
�∗

vv

for any v ∈ {1, . . . , d} under the null hypothesis H0 : β∗
v = βH

v . This provides the
basis for the statistical testing based on divide and conquer. We need the follow-
ing condition. Recall that J ∗ = E[∇ββ�n(β

∗)] and consider the generalized linear
model (2.7).

CONDITION 3.6. (i) {(Yi,Xi )}ni=1 are i.i.d., 0 < Cmin ≤ λmin(�) ≤
λmax(�) ≤ Cmax, λmin(J

∗) ≥ Lmin > 0, ‖J ∗‖max < U1 < ∞. (ii) For some con-
stant M < ∞, max1≤i≤n |XT

i β∗| ≤ M and max1≤i≤n ‖Xi‖∞ ≤ M . (iii) There ex-
ist finite constants U2,U3 > 0 such that b′′(η) < U2 and b′′′(η) < U3 for all η ∈ R.

The same assumptions appear in van de Geer et al. (2014). In the case of the
Gaussian GLM, the condition on λmin(J

∗) reduces to the requirement that the
covariance of the design has a minimal eigenvalue bounded away from zero,
which is a standard assumption. We require ‖J ∗‖max < ∞ to control the esti-
mation error of different functionals of J ∗. The restriction in (ii) on the covari-
ates and the projection of the covariates are imposed for technical simplicity;
it can be extended to the case of exponential tails [see Fan and Song (2010)].
Note that Var(Yi) = φb′′(XT

i β∗) where φ is the dispersion parameter in (2.7), so
b′′(η) < U2 essentially implies an upper bound on the variance of the response. In
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fact, Lemma E.2 shows that b′′(η) < U2 can guarantee that the response is sub-
Gaussian. b′′′(η) < U3 is used to derive the Lipschitz property of b′′(XT

i β) with
respect to β as shown in Lemma E.5. We emphasize that no requirement in Con-
dition 3.6 is specific to the divide- and-conquer framework.

The assumption of bounded design in (ii) can be relaxed to the sub-Gaussian
design. However, the price to pay is that the allowable number of subsets k is
smaller than the bounded case, which means we need a larger sub-sample size.
To be more precise, the order of maximum k for the sub-Gaussian design has
an extra factor, which is a polynomial of

√
logd , compared to the order for the

bounded design. This logarithmic factor comes from different Lipschitz properties
of b′′(XT

i β) in the two designs, which is fully explained in Lemma E.5 in the
Supplementary Material [Battey et al. (2018)]. In the following theorems, we only
present results for the case of bounded design for technical simplicity.

In addition, recalling that �∗ = (J ∗)−1, where J ∗ := J (β∗) = E[∇2
ββ�n(β

∗)],
we impose Condition 3.7 on �∗ and its estimator �̂.

CONDITION 3.7. (i) min1≤v≤d �∗
vv > θmin > 0. (ii) max1≤i≤n ‖XT

i �∗‖∞ ≤
M . (iii) For v = 1, . . . , d , whenever λv � √

k logd/n in (3.11), we have

P
(∥∥�̂v − �∗

v

∥∥
1 ≥ Cs1

√
logd/n

) ≤ d−1,

where C is a constant and s1 is such that ‖�∗
v‖0 � s1 for all v ∈ {1, . . . , d}.

Part (i) of Corollary 3.7 ensures that the variances of each component of the
debiased estimator exist, guaranteeing the existence of the Wald statistic. Parts (ii)
and (iii) are imposed directly for technical simplicity. Results of this nature have
been established under a similar set of assumptions in van de Geer et al. (2014) and
Negahban et al. (2009) for convex penalties and in Wang, Liu and Zhang (2014)
and Loh and Wainwright (2015) for folded concave penalties.

As a step towards deriving the limit distribution of the proposed divide-and-
conquer Wald statistic in the GLM framework, we establish the asymptotic behav-
ior of the aggregated debiased estimator β

d
v for every given v ∈ [d].

THEOREM 3.8. Under Conditions 2.1, 3.6 and 3.7, with λ � √
k logd/n, we

have

(3.15) β
d
v − β∗

v = −1

k

k∑
j=1

�̂
(j)T
v ∇�(j)

nk

(
β∗) + oP

(
n−1/2)

for any k � d satisfying k = o(((s∨s1) logd)−1√n), where �̂
(j)
v is the transposed

vth row of �̂(j).
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The proof of Theorem 3.8 shows that for the Wald test procedure, the divide-
and-conquer estimator β

d
v is asymptotically as efficient as the full sample estimator

β̂v , that is,

lim
n→∞

Var(β
d
v)

Var(β̂d
v )

− 1 = 0.

A corollary of Theorem 3.8 provides the asymptotic distribution of the Wald
statistic in equation (3.14) under the null hypothesis.

COROLLARY 3.9. Let Sn be as in equation (3.14), with �∗
vv replaced with

an estimator �̃vv . Then under the conditions of Theorem 3.8 and H0 : β∗
v = βH

v ,
provided |�̃vv − �vv| = oP(1) under the scaling k = o(((s ∨ s1) logd)−1√n), we
have

lim
n→∞ sup

t∈R
∣∣P(Sn ≤ t) − �(t)

∣∣ = 0.

REMARK 3.10. Although Theorem 3.8 and Corollary 3.9 are stated only for
the GLM, their proofs are in fact an application of two more general results. Fur-
ther details are available in Lemmas E.7 and E.8 in the Supplementary Material
[Battey et al. (2018)].

We return to the issue of estimating �∗
vv in Section 4, where we introduce a

consistent estimator of �∗
vv that preserves the scaling of Theorem 3.8 and Corol-

lary 3.9.

3.2. Divide-and-conquer score test. In this section, we use ∇vf (β) and
∇−vf (β) to denote, respectively, the partial derivative of f with respect to βv

and the partial derivative vector of f with respect to β−v . ∇2
vvf (β), ∇2

v,−vf (β),
∇2−v,vf (β) and ∇2−v,−vf (β) are analogously defined.

In the low dimensional setting (where d is fixed), Rao’s score test of H0 :
β∗

v = βH
v against H1 : β∗

v �= βH
v is based on ∇v�n(β

H
v , β̃−v), where β̃−v is

a constrained maximum likelihood estimator of β∗−v , constructed as β̃−v =
argminβ−v

�n(β
H
v ,β−v) = argmaxβ−v

{−�n(β
H
v ,β−v)}. If H0 is false, imposing

the constraint postulated by H0 significantly violates the first-order conditions
from M-estimation with high probability; this is the principle underpinning the
classical score test. Under regularity conditions, it can be shown [e.g., Cox and
Hinkley (1974)] that

√
n
(∇v�n

(
βH

v , β̃−v

))
J

∗−1/2
v|−v � N(0,1),

where J ∗
v|−v is given by J ∗

v|−v = J ∗
v,v − J ∗

v,−vJ
∗−1−v,−vJ

∗−v,v , with J ∗
v,v , J ∗

v,−v ,
J ∗−v,−v and J ∗−v,v the partitions of the information matrix J ∗ = J (β∗),

(3.16) J (β) =
(

Jv,v J v,−v

J−v,v J−v,−v

)
=

(
E∇2

v,v�n(β) E∇2
v,−v�n(β)

E∇2−v,v�n(β) E∇2−v,−v�n(β)

)
.
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The problems associated with the use of the classical score statistic in the pres-
ence of a high dimensional nuisance parameter are brought to light by Ning and
Liu (2017), who propose a remedy via the decorrelated score. The problem stems
from the inversion of the matrix J ∗−v,−v in high dimensions. The decorrelated score
is defined as

(3.17) S
(
β∗

v ,β∗−v

) = ∇v�n

(
β∗

v ,β∗−v

) − w∗T ∇−v�n

(
β∗

v ,β∗−v

)
,

where w∗T = J ∗
v,−vJ

∗−1−v,−v . For a regularized estimator ŵ of w∗, to be defined
below, we consider the score estimator

(3.18) Ŝ
(
β∗

v , β̂
λ

−v

) = ∇v�n

(
β∗

v , β̂
λ

−v

) − ŵT ∇−v�n

(
β∗

v , β̂
λ

−v

)
.

Hence, provided w∗ is sufficiently sparse to avoid excessive noise accumulation,
we are able to achieve consistency of ŵ under the high dimensional setting, ul-
timately giving rise to a tractable limit distribution of a suitable rescaling of
Ŝ(β∗

v , β̂
λ

−v). Since β∗
v is restricted under the null hypothesis, H0 : β∗

v = βH
v , the

statistic in (3.18) is accessible once H0 is imposed. As Ning and Liu (2017) point
out, w∗ is the solution to

w∗ = argmin
w

E
[∇v�n

(
βH

v ,β∗−v

) − wT ∇−v�n

(
βH

v ,β∗−v

)]2

under H0 : β∗
v = βH

v .
Our divide-and-conquer score statistic under H0 : β∗

v = βH
v is

(3.19) S
(
βH

v

) = 1

k

k∑
j=1

Ŝ(j)(βH
v , β̂

λ

−v(Dj )
)
,

where

Ŝ(j)(βv, β̂
λ

−v(Dj )
) = ∇v�

(j)
nk

(
βv, β̂

λ

−v(Dj )
) − ŵ(Dj )

T ∇−v�
(j)
nk

(
βv, β̂

λ

−v(Dj )
)

and we estimate w∗ using the Dantzig selector of Candes and Tao (2007)

ŵ(Dj ) = argmin
w

‖w‖1, s.t.

∥∥∇2−v,v�
(j)
nk

(
β̂λ

v (Dj ), β̂
λ

−v(Dj )
) − wT ∇2−v,−v�

(j)
nk

(
β̂λ

v (Dj ), β̂
λ

−v(Dj )
)∥∥∞ ≤ μ.

THEOREM 3.11. Let Ĵv|−v be a consistent estimator of J ∗
v|−v and

S(j)(βH
v ,β∗−v

) = ∇v�
(j)
nk

(
βH

v ,β∗−v

) − w∗T ∇−v�
(j)
nk

(
βH

v ,β∗−v

)
.

Suppose ‖w∗‖1 � s1 and Conditions 2.1 and 3.6 are fulfilled. Then under H0 :
β∗

v = βH
v with λ � μ � √

k logd/n,

√
nS

(
βH

v

) = √
n

1

k

k∑
j=1

S(j)(βH
v ,β∗−v

) + oP(1) and

lim
n→∞ sup

t∈R
∣∣P(√

n · S(
βH

v

)
Ĵ

−1/2
v|−v ≤ t

) − �(t)
∣∣ = 0,
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for any k � d satisfying k = o(((s ∨ s1) logd)−1√n), where S(βH
v ) is defined in

equation (3.19).

REMARK 3.12. By the definition of w∗ and the block matrix inversion for-
mula for �∗ = (J ∗)−1, sparsity of w∗ is implied by sparsity of �∗ as assumed in
van de Geer et al. (2014) and Condition 3.7 of Section 3.1.2. In turn, ‖w∗‖0 � s1
implies ‖w∗‖1 � s1 provided that the elements of w∗ are bounded.

REMARK 3.13. Although Theorem 3.11 is stated in the penalized GLM set-
ting, the result holds more generally; further details are available in Lemma E.13
in the Supplementary Material [Battey et al. (2018)].

To maintain the same computational complexity, an estimator of the conditional
information needs to be constructed using a DC procedure. For this, we propose to
use

J v|−v = k−1
k∑

j=1

(∇2
v,v�

(j)
nk

(
β

d
v,β−v

) − wT ∇2−v,v�
(j)
nk

(
β

d
v,β−v

))
,

where the divide-and-conquer estimator β
d
v = k−1 ∑k

j=1 β̂d
v (Dj ), β−v = k−1 ×∑k

j=1 β̂
λ

−v(Dj ) and w = k−1 ∑k
j=1 ŵ(Dj ). Note that for certain v, the commu-

nication cost for calculating J v|−v is not high, since all the involved quantities

{∇2
v,v�

(j)
nk (β

d
v ,β−v)}kj=1, {∇2−v,v�

(j)
nk (β

d
v ,β−v)}kj=1 and {ŵ(Dj )}kj=1 are scalars, d-

dimensional vectors and d-dimensional vectors, respectively. The communication
cost is thus of order O(kd). We do not communicate the entire huge Hessian ma-
trix here.

LEMMA 3.14. Suppose ‖w∗‖1 = O(s1) and Conditions 2.1 and 3.6 are
fulfilled. Then for any k � d satisfying k = o(((s ∨ s1) logd)−1√n),
|J v|−v − J ∗

v|−v| = oP(1).

By Lemma 3.14, we show that J v|−v is consistent and can be applied to Theo-
rem 3.11.

4. Accuracy of distributed estimation. This section focuses on high dimen-
sional (d � n) divide-and-conquer estimators for linear and generalized linear
models. As explained below Theorem 3.8 in Section 3, the efficiency loss from the
divide-and-conquer process is asymptotically zero. This motivates us to consider

‖βd − β̂
d‖, the loss incurred by the divide-and-conquer strategy in comparison

with the practically unavailable full sample debiased estimator β̂
d
, where ‖ · ‖ is

certain norm. Indeed, it turns out that, for k not too large, β
d − β̂

d
appears only
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as a higher order term in the decomposition of β
d − β∗ and thus ‖βd − β̂

d‖ is

negligible compared to the statistical error, ‖β̂d − β∗‖. In other words, the divide-
and-conquer errors are statistically negligible.

Compared with calculating the full sample debiased Lasso estimator, our pro-
posed DC strategy enjoys computational advantages since it is highly parallel and
each subsample problem has a much smaller scale than the full sample problem
given a suitably large k. However, relative to just the full sample penalized M-
estimator (e.g., Lasso), distributed point estimation does not entail a computational
gain like distributed testing, since our distributed algorithm requires debiasing each
component of the Lasso estimator, and hence brings high expense of computation.
The bottleneck of computation of our DC procedure comes from the d extra de-
biasing steps. To mitigate this problem, we can actually debias each component
of β̂ in a parallel fashion. According to the optimization procedures (3.4) and
(3.11), debiasing one component of the Lasso estimator is entirely independent
of the debiasing of another component. Therefore, as long as each branch com-

puter in the cluster shares the sub-dataset Dj and the Lasso estimator β̂
(j)

, they
can work in parallel and collectively return to a central server all the components
of the debiased Lasso estimator. This parallelization reduces the time complexity
significantly.

When the minimum signal strength is sufficiently strong, thresholding β
d

achieves exact support recovery, motivating a refitting procedure based on the
low dimensional selected variables. As a means to understanding the theoretical
properties of this refitting procedure, as well as for independent interest, we de-
velop new theories and methodologies for the low dimensional (d < n) linear and
generalized linear models in Appendices A and B in the Supplementary Material
[Battey et al. (2018)], respectively. We show that simple averaging of low dimen-

sional OLS or GLM estimators (denoted uniformly as β̂
(j)

, without superscript
d as debiasing is not necessary) suffices to preserve the statistical error, that is,
achieving the same statistical accuracy as the estimator based on the full sam-
ple. This is because, in contrast to the high dimensional setting, parameters are

not penalized in the low dimensional case. With β the average of β̂
(j)

over the k

machines and β̂ the full sample counterpart (k = 1), we derive the rate of conver-
gence of ‖β − β̂‖2. Refitted estimation using only the selected covariates allows
us to eliminate the logd term in the statistical rate of convergence of the estimator
under high dimensional settings. We present theoretical results on the refitting es-
timation as corollaries to the low dimensional regression results in Appendices A
and B in the Supplementary Material [Battey et al. (2018)].

4.1. The high dimensional linear model. Recall that the high dimensional DC

estimator is β
d = k−1 ∑k

j=1 β̂
d
(Dj ), where β̂

d
(Dj ) for 1 ≤ j ≤ k is the debiased

estimator defined in (3.3). We also denote the debiased Lasso estimator using the
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entire dataset as β̂
d = β̂

d
(
⋃k

j=1 Dj ). The following lemma shows that not only is

β
d

asymptotically normal, it approximates the full sample estimator β̂
d

so well

that it has the same statistical error as β̂
d

provided the number of subsamples k is
not too large.

LEMMA 4.1. Consider the linear model (3.2). Under the Conditions 3.1
and 3.2, if λ, ϑ1 and ϑ2 are chosen as λ � √

k logd/n, ϑ1 � √
k logd/n and

ϑ2n
−1/2 = o(1), we have with probability 1 − c/d ,

(4.1)
∥∥βd − β̂

d∥∥∞ ≤ C
sk logd

n
and

∥∥βd − β∗∥∥∞ ≤ C

(√
logd

n
+ sk logd

n

)
.

REMARK 4.2. The term
√

logd/n in (4.1) is the estimation error of

‖β̂d − β∗‖∞, while the term (sk logd)/n is the rate of the distance between the
divide-and-conquer estimator and the full sample estimator. Lemma 4.1 does not
rely on any specific choice of k. However, in order for the aggregated estimator

β
d

to attain the same ‖ · ‖∞ norm estimation error as the full sample Lasso es-

timator, β̂Lasso, the required scaling is k = O(
√

n/(s2 logd)). This is a weaker
scaling requirement than that of Theorem 3.3 because the latter entails a guarantee
of asymptotic normality, which is a stronger result. It is for the same reason that
our estimation results only require O(·) scaling while those for testing require o(·)
scaling.

Rosenblatt and Nadler (2016) show that in the high dimensional regime where
d/nk → κ ∈ (0,1), the divide-and-conquer procedure suffers from first-order ac-
curacy loss. This seems a contradiction to our result, since our dimension is even
higher than their context, but we have no first-order accuracy loss while averag-
ing debiased estimators based on subsamples, as long as we have an appropriate
number of data splits. In fact, in the high dimensional sparse linear regression, the
intrinsic dimension is the sparsity s rather than d , which is regarded instead as
the ambient dimension. The sparsity assumption changes the original high dimen-
sional problem to be an intrinsically low dimensional one, and thus allows us to
escape from any first-order accuracy loss of the divide- and-conquer procedure.
Given s = o(nk), we can treat high dimensional sparse linear regression approxi-
mately as the classical linear regression setting where d = o(nk). Hence we expect
no first-order accuracy loss from the divide-and-conquer procedure here.

Although β
d

achieves the same rate as the Lasso estimator under the infinity
norm, it cannot achieve the minimax rate in �2 norm since it is not a sparse esti-

mator. To obtain an estimator with the �2 minimax rate, we sparsify β
d

by hard
thresholding. For any β ∈ R

d , define the hard thresholding operator Tν such that
the j th entry of Tν(β) is

(4.2)
[
Tν(β)

]
j = βj1

{|βj | ≥ ν
}

for 1 ≤ j ≤ d.



DISTRIBUTED TESTING AND ESTIMATION 1369

According to (4.1), if β∗
j = 0, we have |βd

j | ≤ C(
√

logd/n + sk logd/n)

with high probability. The following theorem characterizes the estimation error,

‖Tν(β
d
)−β∗‖2, and divide-and-conquer error, ‖Tν(β

d
)−Tν(β̂

d
)‖2, of the thresh-

olded estimator Tν(β
d
).

THEOREM 4.3. Under the linear model (3.2), suppose Conditions 3.1 and 3.2
are fulfilled and choose λ � √

k logd/n, ϑ1 � √
k logd/n and ϑ2n

−1/2 = o(1).
Take the parameter of the hard threshold operator in (4.2) as ν = C0

√
logd/n

for some sufficiently large constant C0. If the number of subsamples satisfies k =
O(

√
n/(s2 logd)), for large enough d and n, we have with probability 1 − c/d ,

∥∥Tν

(
β

d) − Tν

(
β̂

d)∥∥
2 ≤ C

s3/2k logd

n
,

∥∥Tν

(
β

d) − β∗∥∥∞ ≤ C

√
logd

n
and

∥∥Tν

(
β

d) − β∗∥∥
2 ≤ C

√
s logd

n
.

REMARK 4.4. In fact, in the proof of Theorem 4.3, we show that if the thresh-

olding parameter ν satisfies ν ≥ ‖βd −β∗‖∞, we have ‖Tν(β
d
)−β∗‖2 ≤ 2

√
2s ·ν;

it is for this reason that we choose ν � √
logd/n. Unfortunately, the constant is

difficult to choose in practice. In the following paragraphs, we propose a practical
method to select the tuning parameter ν.

Let (M(j)X(j)T )� denote the transposed �th row of M(j)X(j)T . Inspection of

the proof of Theorem 3.3 reveals that the leading term of
√

n‖βd −β∗‖∞ satisfies

T0 = max
1≤�≤d

1√
k

k∑
j=1

1√
nk

(
M(j)X(j)T )T

� ε(j).

Chernozhukov, Chetverikov and Kato (2013) propose the Gaussian multiplier
bootstrap to estimate the quantile of T0. Let {ξi}ni=1 be i.i.d. standard normal ran-
dom variable independent of {(Yi,Xi )}ni=1. Consider the statistic

W0 = max
1≤�≤d

1√
k

k∑
j=1

1√
nk

(
M(j)X(j)T )T

�

(̂
ε(j) ◦ ξ (j)),

where ε̂(j) ∈ R
nk is an estimator of ε(j) such that for any i ∈ Ij , ε̂

(j)
i = Y

(j)
i −

X
(j)
i β̂(Dj ), and ξ (j) is a subvector of {ξi}ni=1 with indices in Ij . Recall that “◦” de-

notes the Hadamard product. The α-quantile of W0 conditioning on {Yi,Xi}ni=1 is
defined as cW0(α) = inf{t | P(W0 ≤ t | Y ,X) ≥ α}. We estimate cW0(α) by Monte
Carlo, and thus choose ν0 = cW0(α)/

√
n. This choice ensures∥∥Tν0

(
β

d) − β∗∥∥
2 = OP(

√
s logd/n),

which coincides with the �2 convergence rate of the Lasso.
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REMARK 4.5. Lemma 4.1 and Theorem 4.3 show that if the number of
subsamples satisfies k = o(

√
n/(s2 logd)), ‖βd − β̂

d‖∞ = oP(
√

logd/n) and

‖Tν(β
d
) − Tν(β̂

d
)‖2 = oP(

√
s logd/n), and thus the error incurred by the divide-

and-conquer procedure is negligible compared to the statistical minimax rate. The

reason for this contraction phenomenon is that β
d

and β̂
d

share the same leading
term in their Taylor expansions around β∗. The difference between them is only
the difference of two remainder terms which has a smaller order than the lead-
ing term. We uncover a similar phenomenon in the low dimensional case covered
in Appendix A in the Supplementary Material [Battey et al. (2018)]. However,
in the low dimensional case, �2 norm consistency is automatic while the high di-
mensional case requires an additional thresholding step to guarantee sparsity and,
consequently, �2 norm consistency.

4.2. The high dimensional generalized linear model. We generalize the DC

estimation of the linear model to GLM. Recall that β̂
d
(Dj ) is the de-biased esti-

mator defined in (3.10) and the aggregated estimator is β
d = k−1 ∑k

j=1 β̂
d
(Dj ).

We still denote β̂
d = β̂

d
(
⋃k

j=1 Dj ). The next lemma bounds the error incurred by

splitting the sample and the statistical rate of convergence of β
d

in terms of the
infinity norm.

LEMMA 4.6. Consider the generalized linear model (2.7) with canonical link.
Under Conditions 2.1, 3.6 and 3.7, for β̂

λ
with λ � √

k logd/n, we have with
probability 1 − c/d , there exists a constant C > 0, such that∥∥βd − β̂

d∥∥∞ ≤ C
(s ∨ s1)k logd

n
,

∥∥βd − β∗∥∥∞ ≤ C

(√
logd

n
+ (s ∨ s1)k logd

n

)
.

REMARK 4.7. The term
√

logd/n in above is the estimation error of

‖β̂d − β∗‖∞, while the error term (s ∨ s1)k logd/n is attributable to the distance

between β
d

and β̂
d
.

Applying a similar thresholding step as in the linear model, we quantify the

�2-norm estimation error, ‖Tν(β
d
) − β∗‖2 and the distance between the divide-

and-conquer estimator and full sample estimator ‖Tν(β
d
) − Tν(β̂

d
)‖2.

THEOREM 4.8. For the GLM (2.7), under Conditions 2.1–3.7, choose λ �√
k logd/n and λv � √

k logd/n. Take the parameter of the hard threshold op-
erator in (4.2) as ν = C0

√
logd/n for some sufficiently large constant C0. If the
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number of subsamples satisfies k = O(
√

n/((s ∨ s1)2 logd)), for large enough d

and n, we have with probability 1 − c/d

∥∥Tν

(
β

d) − Tν

(
β̂

d)∥∥
2 ≤ C

(s ∨ s1)s
1/2k logd

n
,

∥∥Tν

(
β

d) − β∗∥∥∞ ≤ C

√
logd

n
and

∥∥Tν(β
d
) − β∗∥∥

2 ≤ C
√

s logd/n.

(4.3)

REMARK 4.9. As in the case of the linear model, Theorem 4.8 reveals that
the loss incurred by the divide-and-conquer procedure is negligible compared to

the statistical minimax estimation error provided k = o(
√

n/(s1 ∨ s)2s logd).

A similar proof strategy to that of Theorem 4.8 allows us to construct an estima-
tor of �∗

vv that achieves the required consistency with the scaling of Corollary 3.9.
Our estimator is �̃vv := [Tζ (�)]vv , where � = k−1 ∑k

j=1 �̂(j) and Tζ (·) is the
thresholding operator defined in equation (4.2) with ζ = C1

√
logd/n for some

sufficiently large constant C1.

COROLLARY 4.10. Under the conditions and scaling of Theorem 3.8,
|�̃vv − �∗

vv| = oP(1).

Substituting this estimator in Corollary 3.9 delivers a practically implementable
test statistic based on k = o(((s ∨ s1) logd)−1√n) subsamples.

REMARK 4.11. Notice that point estimation requires less stringent scaling of
k than hypothesis testing in both the linear and generalized linear models. This is
because the testing and estimation require different rates for the higher order term
� in the decomposition

√
n
(
β

d − β∗) = Z + �,

where Z is the leading term contributing to the asymptotic normality of√
n(β

d −β∗). For hypothesis testing, we need ‖�/
√

n‖∞ = oP (1/
√

n) to guaran-
tee the asymptotic normality. For estimation, we need ‖�/

√
n‖∞ = oP (

√
logd/n)

to match the minimax rate of ‖βd − β∗‖∞. Therefore, the number of splits k for
testing is more stringent by a factor of 1/

√
logd than in estimation.

5. Simulations. In this section, we illustrate and validate our theoretical find-
ings through simulations. For hypothesis testing, we use QQ plots to compare the
distribution of p-values for divide-and-conquer test statistics to their theoretical
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uniform distribution. We also investigate the estimated type I error and power
of the divide-and-conquer tests. For estimation, we validate our claim in the be-
ginning of Section 4 that the loss incurred by the divide-and-conquer strategy is
negligible compared with the statistical error of the corresponding full sample es-
timator in the high dimensional case. Specifically, we compare the performance of
the divide-and-conquer thresholding estimator of Section 4.1 with the full sample
Lasso and the average Lasso over subsamples. An analogous empirical verifica-
tion of the theory is performed for the low dimensional case as well; we put it in
Appendices C and D of the Supplementary Material [Battey et al. (2018)].

5.1. Results on hypothesis testing. We explore the probability of rejection of
a null hypothesis of the form H0 : β∗

1 = 0 when data (Yi,Xi )
n
i=1 are generated

according to the linear model

Y i = XT
i β∗ + εi, εi ∼ N

(
0, σ 2

ε

)
,

where σ 2
ε = 1 and

β∗ = (
β∗

1 ,0, . . . ,0︸ ︷︷ ︸
d−s−1

,1, . . . ,1︸ ︷︷ ︸
s

)T
,

where d = 5000 and s = 3. In each Monte Carlo replication, we split the initial
sample of size n into k subsamples of size n/k. In particular, we choose n = 5000
and k ∈ {1,2,5,10,20,25,40,50,100,200,500}. The number of Monte Carlo
replications is 500. Using β̂Lasso as a preliminary estimator of β∗, we construct
Wald and Rao’s score test statistics as described in Sections 3.1.2 and 3.2, respec-
tively.

Panels (A) and (B) of Figure 1 are QQ plots of the p-values of the divide-
and-conquer Wald and score test statistics under the null hypothesis against the
theoretical quantiles of of the uniform [0,1] distribution for eight different values
of k. For both test constructions, the distributions of the p-values are close to uni-
form and remain so as we split the data set. When k ≥ 100, the distribution of the
corresponding p-values deviates from the uniform distribution visibly, as expected
from the theory developed in Sections 3.1.2 and 3.2. Panel (A) of Figure 2 shows
that, for both test constructions, when the number of splits k ≤ 50, the empirical
level of the test is close to both the nominal α = 0.05 level and the level of the full
sample oracle OLS estimator which knows the true support of β∗. On the other
hand, the type I error increases dramatically when k is larger than 50. This is con-
sistent with asymptotic normality of the test statistics we established when k is
controlled appropriately. Panel (B) of Figure 2 displays the power of the test for
two different signal strengths, β∗

1 = 0.05 and 0.06. We see that the power for the
Score and Wald tests improves when the signal strength goes from 0.05 to 0.06.
In addition, we find that the power is high regardless of how large k is. However,
Figure 2(A) shows that the Type I error is large when k is large, which makes the
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FIG. 1. QQ plots of the p-values of the Wald (A) and score (B) divide-and-conquer test statistics
against the theoretical quantiles of the uniform [0,1] distribution under the null hypothesis.

tests invalid. Therefore, these results illustrate that the Type I and II errors are con-
trollable when the number of splits k is relatively small. We also record the wall
time for computation for these k’s in Table 1. The wall time is computed by taking
the maximal time taken for each split and averaged over replications.

FIG. 2. (A) Estimated probabilities of type I error for the Wald and score tests as a function of k.
(B) Estimated power with signal strength 0.05 and 0.06 for the Wald, and score tests as a function
of k.
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TABLE 1
Computation time for the divide-and-conquer testing and estimation, where k = 1 corresponds to

the nonsplitting case and k > 1 corresponds to the distributed case

k 1 2 5 10 20 25 50 100 200

Score test (s) 364.39 73.22 35.09 23.61 23.56 20.78 24.13 37.53 64.67
Wald test (s) 426.23 68.95 19.66 10.09 6.70 5.71 3.88 2.60 1.91

Tν(β
d
) (103 s) 61.50 30.00 7.92 6.58 4.48 2.94 2.64 2.11 1.66

Split Lasso (s) 89.18 32.02 34.57 6.47 4.87 4.16 2.56 1.92 2.64

5.2. Results on estimation. In this section, we turn our attention to experimen-
tal validation of our divide-and-conquer estimation theory, focusing first on the low
dimensional case and then on the high dimensional case.

5.2.1. The high dimensional linear model. We now consider the same setting
of Section 5.1 with n = 5000, d = 5000 and β∗

j = 10 for all j in the support of
β∗. In this context, we analyze the performance of the thresholded averaged de-
biased estimator of Section 4.1. Figure 3(A) depicts the average over 100 Monte
Carlo replications of ‖b − β∗‖2 for three different estimators: debiased divide and

conquer b = Tν(β
d
), the Lasso estimator based on the whole sample b = β̂Lasso

and the estimator obtained by naïvely averaging the Lasso estimators from the k

subsamples b = βLasso. The parameter ν is taken as ν = √
logd/n in the spec-

ification of Tν(β
d
). As expected, the performance of βLasso deteriorates sharply

as k increases. Tν(β
d
) outperforms β̂Lasso as long as k is not too large. This is

expected because, for sufficiently large signal strength, both β̂Lasso and Tν(β
d
)

FIG. 3. (A) Statistical error of the DC estimator, split Lasso and the full sample Lasso for
k ∈ {1,2,5,10,20,25,40,50,100,200} when n = 5000, d = 5000. (B) Euclidean norm difference
between the DC thresholded debiased estimator and its full sample analogue.
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recover the correct support, however, Tν(β
d
) is unbiased for those β∗

j in the sup-

port of β∗, while β̂Lasso is biased. Figure 3(B) shows the error incurred by the

divide-and-conquer procedure ‖Tν(β
d
) − Tν(β̂

d
)‖2 relative to the statistical error

of the full sample estimator, ‖Tν(β
d
) − β∗‖2, for four different scalings of k. We

observe that, with k � O(
√

n/s2 logd), the relative error incurred by the divide-
and-conquer procedure can hardly converge. This is consistent with Theorem 4.3.
Given the lower bound of statistical error of the full sample Lasso estimator β̂ ,
From Theorem 4.3, we derive that

E‖Tν(β
d
) − Tν(β̂

d
)‖2

2

E‖Tν(β̂
d
) − β∗‖2

2

≤ s2k2 logd

n
.

When k � O(
√

n/s2 logd), the right-hand side is an O(1) term. Therefore, the
line with inverted triangles in Figure 3(B) implies that the statistical error rate
we developed in Theorem 4.3 is tight. We also record the wall time for estimation
computation for these k’s in Table 1. The wall time is computed by taking the max-
imal time taken for each splits and averaged over replications. We notice that the
computation time decreases with k at first due to the parallel algorithm. However,
for the score test and split Lasso, the time becomes increasing when k is large;
this is because the computation time to aggregate results from different splits is no
longer negligible for very large k’s.

6. Discussion. With the advent of the data revolution comes the need to mod-
ernize the classical statistical tool kit. For very large scale datasets, distribution
of data across multiple machines is the only practical way to overcome storage
and computational limitations. It is thus essential to build aggregation procedures
for conducting inference based on the combined output of multiple machines. We
successfully achieve this objective, deriving divide-and-conquer analogues of the
Wald and score statistics and providing statistical guarantees on their performance
as the number of sample splits grows to infinity with the full sample size. Tractable
limit distributions of each DC test statistic are derived. These distributions are valid
as long as the number of subsamples, k, does not grow too quickly. In particular,
k = o(((s ∨ s1) logd)−1√n) is required in a general likelihood-based framework.
If k grows faster than ((s ∨s1) logd)−1√n, remainder terms become nonnegligible
and contaminate the tractable limit distribution of the leading term. When atten-
tion is restricted to the linear model, a faster growth rate of k = o((s logd)−1√n)

is allowed.
The divide-and-conquer strategy is also successfully applied to estimation of

regression parameters. We obtain the rate of the loss incurred by the divide-and-
conquer strategy. Based on this result, we derive an upper bound on the number
of subsamples for preserving the statistical error. For low dimensional models,
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simple averaging is shown to be effective in preserving the statistical error, so
long as k = O(n/d) for the linear model and k = O(

√
n/d) for the generalized

linear model. For high dimensional models, the debiased estimator used in the
Wald construction is also successfully employed, achieving the same statistical

error as the Lasso-based on the full sample, so long as k = O(
√

n/s2 logd).
Our contribution advances the understanding of distributed inference in the

presence of large scale and distributed data, but there is still a great deal of work to
be done in the area. We focus here on the fundamentals of hypothesis testing and
estimation in the divide-and-conquer setting. Beyond this, there is a whole tool
kit of statistical methodology designed for the single sample setting, whose split
sample asymptotic properties are yet to be understood.

7. Proofs. In this section, we present the proofs of the main theorems appear-
ing in Sections 3 and 4. The statements and proofs of several auxiliary lemmas
appear in the Supplementary Material [Battey et al. (2018)]. To simplify notation,
we take βH

v = 0 without loss of generality.

7.1. Proofs for Section 3.1. The proof of Theorem 3.3, relies on the follow-
ing lemma, which bounds the probability that optimization problems in (3.4) are
feasible.

LEMMA 7.1. Assume � = E(XiX
T
i ) satisfies Cmin < λmin(�) ≤ λmax(�) ≤

Cmax as well as ‖�−1/2X1‖ψ2 = κ , then we have

P

(
max

j=1,...,k

∥∥M(j)�̂(j) − I
∥∥

max ≤ a

√
logd

n

)
≥ 1 − 2kd−c2,

where c2 = a2Cmin
24e2κ4Cmax

− 2.

PROOF. The proof is an application of the union bound in Lemma 6.2 of
Javanmard and Montanari (2014). �

PROOF OF THEOREM 3.3. For 1 ≤ j ≤ k, let
√

nk(β̂
d
(Dj ) − β∗) = Z(j) +

�(j), where Z(j) = 1√
nk

M(j)X(j)T ε(j). From Theorem F.1, we know that as long

as m
(j)T
v �̂

(j)
m

(j)
v ≥ c > 0 holds uniformly for j = 1, . . . , d ,

� := √
n

1

k

k∑
j=1

�
(j)
v

Q̂(j)
= oP(1).

Then we define

V n := √
n

1

k

k∑
j=1

Z
(j)
v

Q̂(j)
=

k∑
j=1

∑
i∈Ij

ξ
(j)
iv where ξ

(j)
iv := m(j)T

v X
(j)
i ε

(j)
i

(nm(j)T
v �̂(j)m(j)

v )1/2
.
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We now establish the asymptotic normality of V n by verifying the requirements
of the Lindeberg–Feller central limit theorem [e.g., Kallenberg (1997), Theo-
rem 4.12]. By the fact that εi is independent of X for all i and E[εi] = 0,

E(ξiv) = E
(
E
(
ξ

(j)
iv |X)) = E

{
E
[
m(j)T

v X
(j)
i ε

(j)
i /

(
nm(j)T

v �̂(j)m(j)
v

)1/2|X]}
= E

{(
nm(j)T

v �̂(j)m(j)
v

)−1/2m(j)T
v X

(j)
i E

(
ε
(j)
i

)} = 0.

By independence of {εi}ni=1 and the definition of �̂(j), we also have

Var(V n|X) =
k∑

j=1

∑
i∈Ij

Var
(
ξ

(j)
iv |X)

= 1

n

k∑
j=1

(
m(j)T

v �̂(j)m(j)
v

)−1 ∑
i∈Ij

m(j)T
v X

(j)
i X

(j)T
i m(j)

v Var
(
ε
(j)
i |X)

= σ 2.

Therefore, we have

Var(V n) = E
(
Var(V n|X)

) + Var
(
E(V n|X)

) = σ 2.

It only remains to verify the Lindeberg condition, that is,

(7.1) lim
k→∞ lim

nk→∞
1

σ 2

k∑
j=1

∑
i∈Ij

E
[(

ξ
(j)
iv

)21
{∣∣ξ (j)

iv

∣∣ > εσ
}] = 0 ∀ε > 0,

whose verification is relegated to the Appendix E of the Supplementary Material
[Battey et al. (2018)]. Finally, we reach the conclusion by Slutsky’s theorem. �

PROOF OF COROLLARY 3.5. Let Fn := {m(j)T
v �̂

(j)
m

(j)
v ≥ c > 0, j =

1, . . . , k}, where n is the total sample size. According to Theorem 3.3, when Fn

holds, we have

lim
n→∞P(Sn ≤ t | X) − �(t) = 0.

From the proof of Lemma 13 in Javanmard and Montanari (2014),
limn→∞ P(Fn) = 1. For any t ∈ R and δ > 0, by applying dominating conver-
gence Theorem to 1{|P(Sn ≤ t | X) − �(t)| > δ and Fn holds}, we have

lim
n→∞P

(∣∣P(Sn ≤ t | X) − �(t)
∣∣ > δ

) = 0.

According to the dominate convergence theorem, since P(Sn ≤ t | X) ∈ [0,1], we
have

lim
n→∞P(Sn ≤ t) = lim

n→∞E
[
P(Sn ≤ t | X)

] = E

[
lim

n→∞P(Sn ≤ t | X)
]
= �(t).

Therefore, we complete the proof of the corollary. �
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The proofs of Theorem 3.8 and Corollary 3.9 are stated as an application of
Lemmas E.7 and E.8 in the Supplementary Material [Battey et al. (2018)], which
apply under a more general set of requirements. We present the proof of Theorem
3.8 below and defer Corollary 3.9 to Appendix E in the Supplementary Material.

PROOF OF THEOREM 3.8. We verify (A1)–(A4) of Lemma E.7. For (A1),
decompose the object of interest as

1

nk

∥∥X(j)�̂(j)
∥∥

max = 1

nk

∥∥X(j)(�̂(j) − �∗)∥∥
max + 1

nk

∥∥X(j)�∗∥∥
max = �1 + �2,

where �1 can be further decomposed and bounded by

1

nk

∥∥X(j)(�̂(j) − �∗)∥∥
max = 1

nk

max
1≤i≤n

max
1≤v≤d

[∣∣X(j)T
i

(
�̂

(j)
v − �∗

v

)∣∣]
≤ 1

nk

max
1≤i≤n

‖Xi‖∞ max
1≤v≤d

∥∥�̂(j)
v − �∗

v

∥∥
1.

We have

P(�1 > q/2) ≤ P

(
max

1≤v≤d

∥∥�̂(j)
v − �∗

v

∥∥
1 >

n

kM

q

2

)
< ψ

and by Condition 3.7, ψ = o(d−1) = o(k−1) for any q ≥ 2CMs1(k/n)3/2 ·√logd ,
a fortiori for q a constant. Since Xi is sub-Gaussian, a matching probability bound
can easily be obtained for �2, thus we obtain

P
(
n−1

k

∥∥X(j)�̂(j)
∥∥

max

) ≤ 2ψ

for ψ = o(k−1). (A2) and (A3) of Lemma E.7 are applications of Lemmas
E.3 and E.4, respectively. To establish (A4), observe that(

�̂
(j)T
v ∇2�(j)

nk

(
β̂

λ
(Dj )

) − ev

) = �1 + �2 + �3,

where �1 = (�̂
(j)
v − �∗

v)
T ∇2�

(j)
nk (β̂

λ
(Dj )), �2 = �∗T

v (∇2�
(j)
nk (β̂

λ
(Dj )) −

∇2�
(j)
nk (β∗)) and �3 = �∗T

v ∇2�
(j)
nk (β∗)−ev . We thus consider |��(β̂

λ
(Dj )−β∗)|

for � = 1,2,3,∣∣�2
(
β̂

λ
(Dj ) − β∗)∣∣

=
∣∣∣∣ 1

nk

∑
i∈Ij

�∗T
v XiX

T
i

(
β̂

λ
(Dj ) − β∗)[b′′(XT

i β̂
λ
(Dj )

) − b′′(XT
i β∗)]∣∣∣∣

≤ U3 max
1≤i≤n

∣∣�∗T
v Xi

∣∣ 1

nk

∥∥X(
β̂

λ
(Dj ) − β∗)∥∥2

2.

P(‖X(β̂
λ
(Dj ) − β∗)‖2

2 � n−1sk log(d/δ)) < δ by Lemma E.4, thus

P(|�2 · (β̂λ
(Dj ) − β∗)| > t) < δ for t � MU3n

−1sk log(d/δ). Invoking Hölder’s
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inequality, Hoeffding’s inequality and Condition 2.1, we also obtain, for t �
n−1sk log(d/δ),

P
(∣∣�3

(
β̂

λ
(Dj ) − β∗)∣∣ > t

)
≤ P

(∥∥∥∥�∗T
v

(
1

nk

∑
i∈Ij

b′′(XT
i β∗)XiX

T
i

)
− ev

∥∥∥∥
max

∥∥β̂λ
(Dj ) − β∗∥∥

1 > t

)
.

Therefore, P(|�2(β̂
λ
(Dj ) − β∗)| > t) < 2δ. Finally, with t � n−1(s ∨ s1)k ×

log(d/δ),

P
(∣∣�1

(
β̂

λ
(Dj ) − β∗)∣∣ > t

)
≤ P

(
1

nk

∥∥∥∥ ∑
i∈Ij

XT
i (�̂v − �v)b

′′(XT
i β̂

λ
(Dj )

)∥∥∥∥
2

∥∥X(j)T (
β̂

λ
(Dj ) − β∗)∥∥

2 > t

)
,

hence P(|�1(β̂
λ
(Dj ) − β∗)| > t) < 2δ. This follows because, by Lemma E.4,

P

(∥∥∥∥ 1

nk

X(j)(β̂λ
(Dj ) − β∗)∥∥∥∥

2
� n−1/2

√
sk log(d/δ)

)
< δ

and by Lemma C.4 of Ning and Liu (2017),

P

(∥∥∥∥ 1

nk

∑
i∈Ij

XT
i (�̂v − �v)b

′′(XT
i β̂

λ
(Dj )

)∥∥∥∥
2
� n−1/2

√
s1k log(d/δ)

)
< δ.

�

7.2. Proofs for theorems in Section 3.2. The proof of Theorem 3.11 relies on
several preliminary lemmas, collected in Appendix E in the Supplementary Mate-
rial [Battey et al. (2018)]. Without loss of generality, we set H0 : β∗

v = 0 to ease
notation.

PROOF OF THEOREM 3.11. Since S(0) = k−1 ∑k
j=1 Ŝ(j)(0, β̂

λ

−v(Dj )), and
(B1)–(B4) of Condition E.9 in the Supplementary Material [Battey et al. (2018)]
are fulfilled under Conditions 3.6 and 2.1 by Lemma E.10 (see Appendix E in
the Supplementary Material). The proof is now simply an application of Lemma
E.13 in the Supplementary Material with β∗

v = 0 under the restriction of the null
hypothesis. �

PROOF OF LEMMA 3.14. The proof is an application of Lemma E.16 in the
Supplementary Material [Battey et al. (2018)], noting that (B1)–(B5) of Condition
E.9 in the Supplementary Material are fulfilled under Conditions 3.6 and 2.1 by
Lemmas E.10 and E.11 in the Supplementary Material. �
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7.3. Proofs for theorems in Section 4. Recall from Section 2 that for an arbi-
trary matrix M , M� denotes the transposed �th row of M and [M]� denotes the
�th column of M .

PROOF OF THEOREM 4.3. By Lemma 4.1 and k = O(
√

n/(s2 logd)), there

exists a sufficiently large C0 such that for the event E := {‖βd − β∗‖∞ ≤
C0

√
logd/n}, we have P(E) ≥ 1 − c/d . We choose ν = C0

√
logd/n, which im-

plies that, under E , we have ν ≥ ‖βd − β∗‖∞.
Let S be the support of β∗. The derivations in the remainder of the proof hold

on the event E . Observe Tν(β
d

Sc ) = 0 as ‖βd

Sc‖∞ ≤ ν. For j ∈ S , if |β∗
j | ≥ 2ν,

we have |βd

j | ≥ |β∗
j | − ν ≥ ν, and thus |Tν(β

d
j ) − β∗

j | = |βd
j − β∗

j | ≤ ν. While if

|β∗
j | < 2ν, |Tν(β

d
j ) − β∗

j | ≤ |β∗
j | ∨ |βd

j − β∗
j | ≤ 2ν. Therefore, on the event E ,

∥∥Tν

(
β

d) − β∗∥∥
2 = ∥∥Tν

(
β

d

S
) − β∗

S
∥∥

2 ≤ 2
√

sν and∥∥Tν

(
β

d) − β∗∥∥∞ = ∥∥Tν

(
β

d

S
) − β∗

S
∥∥∞ ≤ 2ν.

The statement of the theorem follows because ν = C0
√

logd/n and P(E) ≥
1 − c/d . Following the same reasoning, on the event E ′ := E ∪ {‖β̂d − β∗‖∞ ≤
C0

√
logd/n} ∪ {‖β̂d − β

d‖∞ ≤ C0sklogd/n}, we have∥∥Tν

(
β

d) − Tν

(
β

d)∥∥
2 = ∥∥Tν

(
β

d

S
) − Tν

(
β̂

d

S
)∥∥

2

≤ ∥∥βd

S − β̂
d

S
∥∥

2 ≤ √
s
∥∥βd

S − β̂
d

S
∥∥∞ ≤ Cs3/2k logd/n.

As Lemma 4.1 also gives P(E ′) ≥ 1 − c/d , the proof is complete. �

PROOF OF COROLLARY 4.10. By an analogous proof strategy to that of The-

orem 4.8, |[Tζ (�)]vv − �∗
vv| = Op(

√
n−1 logd) = oP(1) under the conditions of

the Corollary provided k = o(((s ∨ s1) logd)−1√n). �
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SUPPLEMENTARY MATERIAL

Supplement to “Distributed testing and estimation under sparse high di-
mensional models” (DOI: 10.1214/17-AOS1587SUPP; .pdf). We put all techni-
cal lemmas, proofs and low dimensional results in the supplementary materials for
reference.

https://doi.org/10.1214/17-AOS1587SUPP
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