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GRADIENT-BASED STRUCTURAL CHANGE DETECTION FOR
NONSTATIONARY TIME SERIES M-ESTIMATION

BY WEICHI WU AND ZHOU ZHOU1

University College London and University of Toronto

We consider structural change testing for a wide class of time series M-
estimation with nonstationary predictors and errors. Flexible predictor-error
relationships, including exogenous, state-heteroscedastic and autoregressive
regressions and their mixtures, are allowed. New uniform Bahadur represen-
tations are established with nearly optimal approximation rates. A CUSUM-
type test statistic based on the gradient vectors of the regression is considered.
In this paper, a simple bootstrap method is proposed and is proved to be con-
sistent for M-estimation structural change detection under both abrupt and
smooth nonstationarity and temporal dependence. Our bootstrap procedure
is shown to have certain asymptotically optimal properties in terms of accu-
racy and power. A public health time series dataset is used to illustrate our
methodology, and asymmetry of structural changes in high and low quantiles
is found.

1. Introduction. Consider the following stochastic linear regression:

(1) yi = x′
iβ + ei,

where {xi}ni=1 and {ei}ni=1 are the p-dimensional predictor time series and error se-
ries, respectively. We estimate the unknown parameter vector β by an M-estimator
β̂n:

(2) β̂n = argmin
β

n∑
i=1

ρ
(
yi − x′

iβ
)
,

where ρ(·) is a convex loss function with left derivative ψ(·). By choosing different
loss functions ρ, (1) contains a wide class of frequently used regression models.
For instance, for a pre-specified τ ∈ (0,1), β̂n is the estimate of the τ th quantile
regression coefficient if we set ρ(x) = τx+ + (1−τ)(−x)+ with the left derivative
ψ(x) = τ − 1(x ≤ 0). Other important examples include expectile regression with
ρ(x) = |1(x ≤ 0) − α|x2, 0 < α < 1, robust Lq regression with ρ(x) = |x|q , 1 <

q < 2, the Huber’s estimate with ρ(x) = x21(|x| ≤ ς)/2 + (ς |x| − ς2/2)1(|x| >

ς), ς > 0 and the least squares estimate with ρ(x) = x2.
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The purpose of this paper is to provide a theoretical foundation as well as a
unified methodological tool for the inference of (1) with a wide class of nonsta-
tionary predictor and error processes. For brevity and clarity, we will focus on the
structural change detection problem for model (1) throughout this article. Vari-
ous other results such as confidence region construction and goodness-of-fit tests
can be easily established as corollaries of those provided in this paper. The most
significant contributions of the paper lie in the following two aspects. First, we in-
vestigate the behaviors of a wide class of stochastic M-estimators and their resid-
ual processes under a general nonlinear and nonstationary time series framework
with a very flexible modeling of the relationship between the regressors and er-
rors. On one hand, following [32], we allow the regressors {xi} and the errors
{ei} to experience both smooth and abrupt nonlinear changes in their marginal
distributions as well as dependence structures over time. Such nonlinear and non-
stationary modeling of the regressors and errors could be realistic and flexible in
many time series applications; see, for instance, the Hong Kong public health time
series analyzed in Section 5. On the other hand, by carefully choosing the filtra-
tion (information) that generates the predictor and error processes, we are able to
provide a unified treatment for a wide class of predictor-error relationships, in-
cluding exogenous, state-heteroscedastic and autoregressive regressions and their
mixtures. Here, “state-heteroscedasticity” refers to probabilistic dependence be-
tween the errors and covariates. Equivalently, it represents that, conditional on the
covariates, the distribution of the error at any fixed time changes with respect to
different levels of the covariates. Under the aforementioned settings, we are able
to establish a uniform Bahadur representation of the partial sample M-estimators
with nearly optimal approximation rates and derive the limiting behaviors of a
gradient-based structural change test. Our theoretical development depends heav-
ily on investigating the conditional empirical processes of M-estimators of de-
pendent and heteroscedastic data. In particular, both martingale and conditional
chaining techniques are used to investigate the maximum stochastic oscillations
of the conditional gradient processes. Then the maximum stochastic oscillations
of the unconditional empirical processes are recovered by certain integration tech-
niques. To our knowledge, this paper provides the first theoretical investigation
into general stochastic M-estimations under time series nonstationarity.

Second, we propose in this paper a unified bootstrap methodology, which is
consistent for structural change tests of a wide class of M-estimations under both
abruptly and smoothly time-varying temporal dynamics and predictor-error depen-
dence. To our knowledge, there have been no methodological results on structural
change tests for time series M-estimation with nonstationary covariates and errors
in the literature. For change point tests of the mean, [32] proposed a bootstrap
procedure which is robust to general forms of nonstationarity in the time series.
However, it is highly nontrivial to extend such bootstrap procedures to gradient
change point tests for M-estimations. In particular, a naive extension of [32] by
progressively convoluting the block gradient vectors and i.i.d. standard normals
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will not yield a consistent test. Specifically, note that the key to a successful boot-
strap is to mimic the behavior of the estimated gradient cumulative sum (CUSUM)
process

(3)

{ j∑
i=1

ψ(êi)xi

/√
n

}n

j=1

where êi = yi − x′
i β̂n

are the residuals of the M-estimation. The bootstrap in [32] mimics the latter pro-
cess by {∑j

i=1[
∑i+m

k=i ψ(êk)xk/
√

nm]Vi}n−m
j=1 where m is a user-chosen block size

and Vi ’s are standard normals that are independent of the the data. If the true er-
rors {ei} were known and the residuals in (3) are replaced by the true errors, then
it can be shown that the above bootstrap consistently mimics (3). However, due to
the nonnegligible differences between the true errors and the residuals, it is shown
that the limiting behaviors of (3) and the above bootstrap process differ, and hence
the bootstrap is inconsistent.

In this paper, we extend and modify the procedure in [32] and propose an easy-
to-implement bootstrap methodology by combining an extension of the Powell’s
sandwich estimates [24] and a progressive convolution of the block sums of the
estimated gradient vectors with i.i.d. standard normal auxiliary random variables.
The bootstrap is shown to be consistent for a wide class of M-estimation under
nonstationary temporal dependence and predictor-error dependence. The bootstrap
procedure enjoys the asymptotic optimal property that it approaches the covariance
structure of the target limiting Gaussian process no slower than the nearly optimal
approximation rate of the Bahadur representation in various important cases such
as the quantile regression. Meanwhile, we prove that our bootstrap can detect local
alternatives with the optimal 1/

√
n parametric rate. Furthermore, our simulation

studies indicate that the gradient-based method has a superior finite sample power
performance than regression-coefficient-based structural stability tests under time
series nonstationarity.

There is a large amount of work in testing structural stability of parameters
for general M-estimation and special cases such as least squares and quantile re-
gressions. It is impossible to gather a complete list here and we shall only men-
tion some representative works. For least squares regression, [9, 20] developed
CUSUM tests with i.i.d. normal errors. Ploberger and Kramer [21] extended such
tests to stationary and ergodic errors. [1] established Wald-type, LM, LR-like tests
based on partial-sample GMM estimators with strong mixing assumptions. These
test statistics are constructed through coefficients estimated by different portions
of data. There are also a class of tests which heavily depend on the residuals of
the least squares regression. For example, [6] obtained asymptotically distribution
free test statistics associate with i.i.d. errors; see also [7] for tests of multiple struc-
tural changes. Recently, [15] and [27] investigated structural change detection for
least squares regression when covariates and errors are nonstationary. For quantile
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regression, traditionally when dealing with stationary data, the regression coef-
ficient CUSUM test is shown to be asymptotically pivotal [26] and the gradient
CUSUM test is advocated over the regression coefficient test as it is asymptoti-
cally free of the densities of the errors [16, 26]. For general M-estimation, [25]
investigated the gradient-based change point tests for stationary predictors and er-
rors with predictor-error independence. We also refer to the recent review of [3]
for more discussions and references. A testing strategy that prevails throughout
most of the above mentioned papers is to pivotalize the test statistics. As a result,
functionals of some well investigated processes, such as the Brownian bridge, can
be used to approximate the large sample behaviors of the tests. However, due to
the nonstationarity of the predictors and errors considered in this paper, it is shown
that the gradient CUSUM process behaves complexly over time and it cannot be
pivotalized in general. As a result, in general, the classic testing procedures based
on the idea of pivotalization are not consistent for structural change tests under
non-stationarity. We also refer to [32] for a detailed discussion in the case of test-
ing structural changes in mean.

The rest of the paper is organized as follows. In Section 2, we will introduce
the nonstationary time series models for the predictors and errors with multiple
illustrative examples. A uniform Bahadur representation and related asymptotic
results are established for general M-estimation under nonstationarity and tem-
poral dependence. Section 3 proposes the structural change tests and the boot-
strap and investigates their asymptotic Type I error and power behaviors. In Sec-
tion 4, we perform Monte Carlo experiments to study the finite sample behaviors of
the gradient-based test. Section 5 contains an empirical illustration using a public
health time series. All technical proofs are relegated to the online Appendix.

2. M-estimation under time series nonstationarity. We first introduce some
notation. Define Xn ≥p Yn if P(Xn ≥ Yn) → 1 as n → ∞. Similarly define

“≤p .” For a p-dimensional vector v = (v1, . . . , vp)′, let |v| =
√∑p

i=1 v2
i . For

an m × n matrix A, define |A| = √
trace(AA′). For a random variable X, let

‖X‖q := (E|X|q)1/q be its Lq norm. For a semipositive definite matrix �, let
λ1(�) be its smallest eigenvalue. For a p-dimensional random vector v, let
‖v‖q = ‖|v|‖q . Write v ∈ Lq if ‖v‖q < ∞. For an m × n random matrix A, de-

fine ‖A‖q = ‖|A|‖q . Write ‖ · ‖ := ‖ · ‖2. Let Fi = (. . . , ηi−1, ηi) and F (j)
i =

(. . . , ηj−1, η
′
j , ηj+1, . . . , ηi) for j ≤ i, where ({ηi}∞i=−∞, {η′

j }∞j=−∞) are i.i.d. ran-

dom variables. Write F∗
i for F (0)

i . For x ∈ R, let �x� = max{k ∈ Z, k ≤ x},
and 
x� = min{k ∈ Z : k ≥ x}. Write N = � n

logn
� for short. Let “⇒” denote

the convergence in distribution. Throughout the paper, let χ ∈ (0,1) be a con-
stant which may vary from case to case, and M be a sufficiently large constant
which may vary from line to line. Let 1(·) be the usual indicator function. Let
ψ(u; ε) = |ψ(u + ε)| + |ψ(u − ε)|, where ψ(·) is the left derivative of ρ(·), the
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loss function of the corresponding M-estimator. For any function f (x), x ∈ R and
an open interval I , we write f (x) ∈ Cl(I ) if the lth derivative of f is continuous
on I . Write a ∨ b for max{a, b}, and a ∧ b for min{a, b}.

2.1. Nonstationary time series models. In order to model the complex tempo-
ral dynamics of the covariate and error processes, we introduce the following class
of piecewise locally stationary (PLS) time series [32].

DEFINITION 2.1. For k < ∞, we say that {ei}ni=1 is a PLS process gener-
ated by filtrations F1,i ,F2,i , . . . ,Fk,i with r breaks [PLS(r,F1,i ,F2,i , . . . ,Fk,i)]
if there exist constants 0 = b0 < b1 < · · · < br < br+1 = 1 and nonlinear filters
G0,G1, . . . ,Gr , such that

(4) ei = Gj(ti,F1,i , . . . ,Fk,i), if bj < ti ≤ bj+1,

where ti = i/n, Fl,i = {. . . , εl,0, εl,1, . . . , εl,i} for 1 ≤ l ≤ k. For each l, {εl,i}∞i=−∞
are i.i.d. r.v.’s. For l �= s, {εl,i}∞i=−∞ and {εs,i}∞i=−∞ are independent.

In Definition 2.1, the functions G0, . . . ,Gr and the break points b1, . . . , br are
unknown nuisance parameters. If Gj(t, ·) is a smooth function in t , then ei changes
smoothly on (bj , bj+1], j = 0, . . . , r . The smooth change is interrupted at break
points b1, . . . , br where the time series can experience abrupt changes in its data
generating mechanism. The PLS class is appropriate to describe stochastic tem-
poral systems which experience occasional structural breaks and otherwise evolve
smoothly over time. In this paper, we model both the covariate and error processes
as PLS series to capture their complexly time-varying behaviors. To quantify the
temporal dependence of PLS processes, we shall introduce the following depen-
dence measure.

DEFINITION 2.2. Consider the PLS(r,F1,i , . . . ,Fk,i) process {ei}∞i=−∞ de-
fined in (4). Assume max1≤i≤n ‖ei‖p < ∞ for some p > 0. Then we define
�p(G, l), the lth dependence measure for {ei}∞i=−∞ in Lp norm as

�p(G, l) := max
0≤j≤r

sup
bj<t≤bj+1

∥∥Gj(t,F1,l, . . . ,Fk,l) − Gj

(
t,F∗

1,l, . . . ,F∗
k,l

)∥∥
p.

Note that �p(G, l) = 0 for l < 0. If we view ei as the output of a physical
system which is driven by innovations {εs,i}∞i=−∞, s = 1, . . . , k, then �p(G, l)

measures the contribution of the innovations l steps ahead in generating the current
observation of the system, via replacing them with i.i.d. copies and measuring the
magnitude of change in the output of the system. The measure �p(G, l) for a
broad class of classic time series models can be calculated, for example, invertible
ARMA process, (G)arch models [8, 12] and threshold models [28]. We refer to
[32] for more details about PLS models and their dependence measures.
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Throughout this paper, we assume that

ei = Gk(i/n,Fi ,Gi)

if bk < i/n ≤ bk+1 with break points 0 = b0 < b1 < · · · < br < br+1 = 1. De-
fine w(i) = j if bj < i/n ≤ bj+1. We formulate the covariates as (where we fix
Hk,1 ≡ 1 below for the intercept)

(5) xi = Hk(i/n,Fi−1,Gi) := (
Hk,1(i/n,Fi−1,Gi), . . . ,Hk,p(i/n,Fi−1,Gi)

)′
for dk < i/n ≤ dk+1, where d0 = 0 < d1 < · · · < ds < ds+1 = 1 are break
points of {xi}. Here, the filtrations Gi and Fi are generated by (. . . , ηi−1, ηi) and
(. . . , εi−1, εi), respectively, where {ηi}∞i=−∞ and {εi}∞i=−∞ are independent. Ob-
serve that the errors {ei}ni=1 and the covariates {xi}ni=1 are allowed to be dependent
as they are generated by common filtrations {Gi}i∈Z and {Fi}i∈Z.

The above formulation of the error and covariate processes contains a wide
range of state-heteroscedastic, exogenous and autoregressive linear regression
models used in practice. The introduction of Fi−1 and Fi in the covariates and
errors is to accommodate autoregressive-type models where the covariates at time
i contain response information up to time i − 1. On the other hand, we introduce
filtrations Gi in the definitions of both ei and xi to accommodate any extra informa-
tion which could influence the covariates or errors. In particular, if the generating
mechanisms of {ei}ni=1 and xi are functionally independent of Gi and Fi−1, respec-
tively, then we obtain a purely exogenous model where the covariates and errors
are independent. Below we list two other frequently used subclasses of the above
formulation.

EXAMPLE 1. Consider the following heteroscedastic error model:

yi = x′
iβ + s(xi)ηi,

where s(·) is a piecewise smooth function, {ηi}ni=1 is PLS(r,Fi) and {xi}ni=1 is
PLS(s,Gi). Furthermore, the filtrations {Fi}i∈Z and {Gi}i∈Z are independent. Note
that ei = s(xi )ηi can be written as a PLS process generated by (Fi ,Gi). Lack of fit
tests in regression quantiles of the above heteroscedastic error model with {ηi}ni=1
i.i.d. are investigated in [16], among others.

EXAMPLE 2. Consider the following autoregressive model:

yi = x′
iβ + ei,

where xi = (yi−1, . . . , yi−p)′, β = (β1, . . . , βp)′, ∑p
j=1 βjz

j �= 1 for all |z| ≤ 1+c

with some constant c > 0 and {ei} is PLS(r,Fi). Note that xi is a PLS process
generated by Fi−1.
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2.2. Asymptotic theory for M-estimation. Consider model (1). In this paper,
we focus on robust loss functions in the sense that
(6)

∣∣ψ(x) − ψ(y)
∣∣ ≤ M1 + M2|x − y|

for all x, y ∈ R and some positive constants M1 and M2. It is easy to check that
the left derivatives of the loss functions of quantile, expectile, Lq for 1 < q < 2,
least squares and the Huber regressions all satisfy (6).

The asymptotic behavior of the M-estimator β̂n in (2) was investigated by nu-
merous researchers. Among them, for quantile regression with i.i.d. error, [5]
approximated

√
n(β̂n − β) by linear forms and [18] showed that the remaining

term of the approximation is of order Oa.s.(n
−1/4(log logn)3/4). Babu [4] obtained

asymptotic results for strong mixing errors. Portnoy [23] acquired asymptotic ap-
proximations of

√
n(β̂n − β) when the errors are “m-decomposable.” With phys-

ical dependence measures, [30] obtained Bahadur representation for models with
fixed design and stationary errors. As a first contribution of this paper, we obtain a
Bahadur representation with nearly optimal rate (except a multiplicative logarithm
factor) for model (1) with a wide class of PLS errors and regressors. The imposed
conditions are mild and can be checked easily; see Proposition 2.1 and below.

For q ≥ 0, j = 0,1, . . . , r , define for t ∈ (bj , bj+1],
�

(q)
j (t, x|Fk−1,Gk) = ∂q

∂xq
E

{
ψ

(
Gj(t,Fk,Gk) + x

)|Fk−1,Gk

}
,

κ̄j (t, x,xi) = ∂

∂x
E

(
ψ

(
Gj(t,Fi ,Gi) + x

)|xi

)
,

F
(q)
j (t, x|Fk−1,Gk) = ∂q

∂xq
E

{
1
(
Gj(t,Fk,Gk) ≤ x

)|Fk−1,Gk

}
,

F
(q)
j (t, x|xk) = ∂q

∂xq
E

{
1
(
Gj(t,Fk,Gk) ≤ x

)|xk

}
,

fj (t, x|Fk−1,Gk) = F
(1)
j (t, x|Fk−1,Gk), fj (t, x|xk) = F

(1)
j (t, x|xk).

Note that for integer q ≥ 0, f
(q)
j (t, x|Fk−1,Gk) = F

(q+1)
j (t, x|Fk−1,Gk). For τ th

quantile regression, F
(q)
j (t, x|Fk−1,Gk) = τ − �

(q)
j (t,−x|Fk−1,Gk). Also by (5),

κ̄j (t, x,xi) = E(�
(1)
j (t, x|Fi−1,Gi)|xi ). Omit the superscript q if q = 0. The fol-

lowing regularity conditions are needed for the covariate and error processes:

(S0) Assume that max0≤i≤r supbi<s<t≤bi+1
‖Gi(t,F0,G0)−Gi(s,F0,G0)

t−s
‖v ≤ M for

some constant v > 1. The dependence measure of ei in Lv norm, �v(G,k), satis-
fies �v(G,k) = O(χk). Assume v = 4(p + 1) ∨ 20 unless otherwise specified.

(S1) Define �̄(q)(x|xi ) = ∂q

∂xq E(ψ(ei + x)|xi ). We require that for all i =
1,2, . . . , n and any p-dimensional vector g,

E
(
ψ(ei)|xi

) = �̄(0|xi ) = 0 a.s.,
(7)

E
(
�̄

(
x′
iδ|xi

)
x′
ig

) = E
(
�̄(1)(0|xi )x′

iδx′
ig

) + O
(|δ|2)

and �̄(1)(x|xi ) > 0 a.s. for |x| ≤ ε for some ε > 0.
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Define

νi(δ) = E
{[

ψ
(
ei + |xi ||δ|) − ψ

(
ei − |xi ||δ|)]2|xi |2}

.

Assume that νi(t) is continuous at t = 0 and that, for 0 ≤ j ≤ r ,

sup
t∈(bj ,bj+1],x,y∈R

∣∣�j(t, x|F−1,G0) − �j(t, y|F−1,G0)
∣∣

(8)
≤ Cj,1|x − y| + Cj,2

∣∣x2 − y2∣∣ + Cj,3|x − y|2,
where Cj,1,Cj,2,Cj,3 ∈ L4 are (F−1,G0) measurable random variables. We also

require that for 0 ≤ j ≤ r , �(1)
j (t,0|F−1,G0) is stochastically Lipschitz continuous

for t ∈ (bj , bj+1], that is, ∃M < ∞, s.t. ∀t1, t2 ∈ (bj , bj+1], 0 ≤ j ≤ r ,

(9)
∥∥�(1)

j (t1,0|F−1,G0) − �
(1)
j (t2,0|F−1,G0)

∥∥ ≤ M|t1 − t2|.
(S2) For the covariates process, assume that �v(H, k) = O(χk) and

max1≤i≤n ‖xi‖5p+10 ≤ M . For all 0 ≤ k ≤ s and all t1, t2 ∈ (dk, dk+1], assume
that ‖Hk(t1,F−1,G0) − Hk(t2,F−1,G0)‖v ≤ M|t1 − t2| for v defined in (S0).

A few comments on the above regularity conditions are in order. Condition (S0)
[resp., (S2)] requires that the process ei (resp., xi ) to be short range dependent with
exponentially decaying dependence measures. Furthermore, (S0) [resp., (S2)] re-
quires that the data generating mechanisms of ei (resp., xi ) to be smooth between
adjacent break points by posting certain piecewise stochastically Lipschitz contin-
uous constraints. The assumption that v = 4(p + 1) ∨ 20 in (S0) guarantees that
the process {ψ(ei)xi}ni=1 is a stochastically Hölder continuous PLS process with
order higher than 1/4. We point out that when ψ(·) is bounded or light-tailed,
the moment requirements in (S0) and (S2) can be significantly relaxed. Our sim-
ulation results also show that our method works well under less restrictive mo-
ment conditions. However, for simplicity of presentation, we will omit the sepa-
rate discussions and use (S0) and (S2) throughout this paper. (S2) also implies that
max1≤i≤n |xi | = Op(n1/(5p+10)).

Assumption (S1) is necessary for the consistency of β̂n. Since ψ(·) is monotone,
by Cauchy’s inequality, the dominated convergence theorem and (6), the continu-
ity of νi(t) at t = 0 is satisfied whenever ei,1 ≤ i ≤ n have continuous distribu-
tion functions. (8) holds if supu |ψ(1)(u)| < ∞, thus it holds for least squares re-
gression. For quantile regression, (8) holds if max0≤j≤r supt∈(bj ,bj+1],x∈R |fj (t, x|
F−1,G0)| < ∞. In general, a sufficient condition for (8) is (6) with condition (A1)
below, which we show in Proposition A.3 of the Supplementary Material [29].

In addition, (9) in (S1) is required for the existence of quantity �(s); see equa-
tion (20) of the paper. A sufficient condition for (9) is similarly

max
0≤j≤r

sup
t∈(bj ,bj+1],x∈R

∫ ∥∥∥∥ ∂

∂t
f

(1)
j (t, x|F−1,G0)

∥∥∥∥∣∣ψ(x)
∣∣dx < ∞.
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Finally, (7) is implied by condition (10) in (A1), (S2) and (6).
For t ∈ (bj , bj+1], 0 ≤ j ≤ r , ε ∈ R, define

v
(q)
j (t, ε) =

∫ (
ψ(x; ε) + 1

)∥∥f (q)
j (t, x|F−1,G0)

∥∥
4 dx,

w
(q)
j (t, k, ε) =

∫ (
ψ(x; ε) + 1

)∥∥f (q)
j (t, x|Fk−1,Gk) − f

(q)
j

(
t, x|F∗

k−1,G∗
k

)∥∥
4 dx.

We need the following additional conditions for the Bahadur representations:

(A0) Let λa
n be the smallest eigenvalue of E{∑�an�

i=1 �̄(1)(0|xi )xix′
i/a} for any

a ∈ (0,1]. Assume that ∀s ∈ (0,1], lim infn→∞ λs
n/n > 0, and

lim infn→∞,s→0+,ns→∞ λs
n/n ∈ (0,+∞).

(A1) There exist constants ε0 and M such that for 0 ≤ q ≤ p + 1, k ∈N,

max
0≤j≤r

sup
t∈(bj ,bj+1],|ε|≤ε0

v
(q)
j (t, ε) ≤ M,(10)

max
0≤j≤r

sup
t∈(bj ,bj+1],|ε|≤ε0

w
(q)
j (t, k, ε) = O

(
χk).(11)

Furthermore, for quantile regression where ψ(x) = τ − 1(x ≤ 0), we assume the
following condition (A1∗) instead of (A1):

(A1∗) There exist some constant ε0 s.t. for 0 ≤ q ≤ p, k ∈ N, 0 ≤ j ≤ s,

sup
t∈(dj ,dj+1],|u|≤ε0

∥∥F (q)
δ(t)

(
t,Hj (t,Fk−1,Gk)

′u|Fk−1,Gk

)
(12)

− F
(q)
δ(t)

(
t,Hj

(
t,F∗

k−1,G∗
k

)′
u|F∗

k−1,G∗
k

)∥∥
4 = O

(
χk),

where δ(t) = l if bl < t ≤ bl+1, 0 ≤ l ≤ r .

By definition, the right-hand sides of (11) and (12) will be exactly 0 when
k < 0. Condition (A0) guarantees the consistency of {β̂j }nj=N where β̂j is the
M-estimation coefficient using (x1, y1), . . . , (xj , yj ). It is actually quite mild. By
condition (S1) and Weyl inequality, if there exists an ε > 0 such that

min
0≤k≤s

inf
t∈(dk,dk+1]

λ1
(
E

{
Hk(t,F−1,G0)H′

k(t,F−1,G0)
}) ≥ ε,

then (A0) is fulfilled. In other words, we only require that the matrices E{Hk(t,

F−1,G0)H′
k(t,F−1,G0)}, 0 ≤ k ≤ s, t ∈ (dk, dk+1] are not degenerate. For

(A1) and (A1∗), (10) requires the (differentiated) conditional densities f
(q)
j (t, x|

F−1,G0) to be sufficiently light-tailed with respect to x. Meanwhile, (11) and (12)
are short-range-dependent conditions for the processes {F (q)

j (t, x|Fk−1,Gk)}nk=1.
The following four examples show that conditions (A1) and (A1∗) can be verified
for a wide range of nonstationary time series M-estimation.
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EXAMPLE 3 (Quantile regression for PLS linear processes). Suppose we have
the following PLS linear time series:

(13) Gk(t,Fi ,Gi) =
∞∑

j=0

ak,j (t)εi−jhk(t,Gi−j ), bk < t ≤ bk+1,0 ≤ k ≤ r,

where {εi}i∈Z are i.i.d. mean 0 r.v.’s with E|ε0|4u < ∞ for some u > 1. In addition,
hk(t, ·) and aj,k(·) are piecewise (stochastically) Lipschitz continuous functions.

Without loss of generality, let ak,0(t) ≡ 1. Assume that supx∈R |f (l)
ε (x)| ≤ M < ∞

for 0 ≤ l ≤ p where fε(x) is the density function of ε0. Write w = u/(u − 1). We
have the following proposition.

PROPOSITION 2.1. Assume that (i) there exists an η > 0 such that |hk(t, ·)| ≥
η, (ii) for 0 ≤ k ≤ r , t ∈ (bk, bk+1], ‖hk(t,G0)‖4w ≤ C, ‖hk(t,Gi) − hk(t,

G∗
i )‖4w = O(χi), ak,j (t) = O(χj ) and (iii):

max
0≤j≤s

sup
t∈(dj ,dj+1]

∥∥Hk(t,F−1,G0)
∥∥

4u < ∞, �4(H, i) = O
(
χi).

Then (A1∗) holds.

As a side note, for PLS linear model (13), (S0) holds if we further assume

E|ε0|vu < ∞,

∞∑
j=0

(
max

0≤k≤r
sup

t∈(bk,bk+1]
∣∣ȧk,j (t)

∣∣) < ∞,

max
0≤k≤r

sup
t,s∈(bk,bk+1]

∥∥hk(t,G0) − hk(s,G0)
∥∥
vw ≤ M|t − s|.

EXAMPLE 4 (General M-estimation for PLS linear processes). Consider gen-
eral M-estimation with errors following (13). Write θγ (du) = (1 + |u|)γ du and
�γ = ∫

ψ4/3(x)θ−γ (dx). Then we have the following proposition.

PROPOSITION 2.2. Assume (i) for 0 ≤ k ≤ r , t ∈ (bk, bk+1], ‖hk(t,Gi) −
hk(t,G∗

i )‖8 = O(χi), hk(t,G0) ≥ η > 0 and that ak,j (t) = O(χj ), (ii) there ex-
ists a pair of positive numbers v1, v2, v−1

1 + v−1
2 = 1, such that ε0 ∈ Lv1(3γ∨4),

max0≤k≤r supbk<t≤bk+1
‖hk(t,G0)‖v2(3γ∨4) < ∞, (iii) there exists γ > 1 s.t. �γ <

∞ and (iv):

(14)
p+2∑
q=0

∫ (
f (q)

ε (u)
)4

θ3γ (du) < ∞,

p+2∑
q=0

∫ (
f (q)

ε (u)u
)4

θ3γ (du) < ∞,

where the second inequality of (14) can be removed if for 0 ≤ j ≤ r , bj < t ≤
bj+1, hj (t,G0) ≡ 1. Then we have that condition (A1) holds.
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EXAMPLE 5 (Quantile regression for PLS nonlinear processes). Suppose the
errors are generated from the following nonlinear system:

(15) Gk(t,Fi ,Gi) = Rk

(
t,Gk(t,Fi−1,Gi−1), εi, ηi

)
for bk < t ≤ bk+1, 0 ≤ k ≤ r . Assume that max0≤k≤r ‖Rk(t, x0, ε0, η0)‖v < ∞ for
some x0 where v is defined in (S0). Let

χ0 = max
0≤k≤r

sup
x �=y,t∈(bk,bk+1]

‖Rk(t, x, ε0, η0) − Rk(t, y, ε0, η0)‖v

|x − y| .

The above formulation offers natural extensions of many frequently used sta-
tionary nonlinear time series models, for example, (G)ARCH models [8, 12],
threshold models [28] and bilinear models, into the nonstationary realm. Write
F̄k(t, x, s, u) = P(Rk(t, s, εi, u) ≤ x). For quantile regression with errors follow-
ing (15), we have the following proposition.

PROPOSITION 2.3. Assume that:

(i) 0 < χ0 < 1,
(ii) max0≤k≤r supt∈(bk,bk+1] ‖M(Gk(t,F0,G0))‖v < ∞, where

M(x) = max
0≤k≤r

sup
t,s∈(bk,bk+1],t �=s

‖Rk(t, x, ε0, η0) − Rk(s, x, ε0, η0)‖v

|t − s| ,

(iii) for 0 ≤ q ≤ p,

max
0≤k≤r

sup
t∈(bk,bk+1],x,s∈R

∣∣∣∣ ∂q

∂xq

(
∂

∂s
+ ∂

∂x

)
F̄k(t, x, s, η0)

∣∣∣∣ ≤ M a.s.

Then (15) admits a unique solution for each integer k ∈ [0, r] and the associated
t ∈ (bk, bk+1]. Furthermore, assume �4(H, i) = O(χi). Then (S0), (A1∗) hold.

EXAMPLE 6 (General M-estimation for PLS nonlinear processes). Assume
that for t ∈ (bk, bk+1], 0 ≤ k ≤ r , and εi i.i.d. with density fε(x),

(16) Gk(t,Fi ,Gi) = νk

(
t,Gk(t,Fi−1,Gi−1), ηi

) + εi.

Consider general M-estimation with errors satisfying (16). Recall the definition of
�γ and θγ (du) in Example 4. We have the following proposition.

PROPOSITION 2.4. Assume (i) ‖νk(t, x, η0) − νk(t, y, η0)‖6γ∨8 ≤ χ0|x − y|
for some 0 < χ0 < 1 and for t ∈ (bk, bk+1], 0 ≤ k ≤ r ; (ii) there exists some x0
such that max0≤k≤r supt∈(bk,bk+1] ‖νk(t, x0, η0)‖6γ∨8 < ∞ and (iii) �γ < ∞ for
some γ > 1, and that

p+2∑
q=0

∫ (
f (q)

ε (u)
)4

θ3γ (du) < ∞.
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Then we have that condition (A1) holds and �6γ∨8(G, l) = O(χl
0) when errors

follow (16).

For the rest of the paper, we assume that for 1 ≤ i ≤ n,

νi(t) = O
(|t |η)

for some η > 0,

as it is satisfied by all quantile, expectile, least squares, the Huber and robust Lq

regressions. Without the assumption, via the same techniques used in this paper,
all the results can still be established but with more factors of logarithms involved.
Write d1,n = n−1/2 logn, d2,n = n−1/2(logn)2 for short.

LEMMA 2.1. Assume (S0)–(S2), (A0) and (A1) [or (A1∗) for quantile regres-
sion]. Then we have (i) |β̂n − β| ≤p d1,n, (ii) maxN≤j≤n |β̂j − β| ≤p d2,n.

Result (i) shows that β̂n is weakly consistent. Result (ii) establishes the uniform
consistency of β̂j estimated by different subsamples with at least N observations.
The consistency results are needed for the structural stability test in Section 3. The
following theorem establishes an important uniform Bahadur representation for a
wide class of nonstationary time series M-estimation.

THEOREM 2.1. Write �́(j) = E{∑j
i=1 κ̄w(i)(i/n,0,xi)xix′

i/n}. Assume that
max0≤j≤r supt∈(bj ,bj+1],x∈R |fj (t, x|F−1,G0)| < ∞. Then under assumptions
(S0)–(S2), (A0) and (A1) [or (A1∗) for quantile regression], we have (i):

√
n(β̂n − β) − (

�́(n)n1/2)−1
n∑

i=1

ψ(ei)xi

(17)

= Op

(√∑n
i=1 νi(d1,n)

n
logn + rn

)
,

and (ii):

max
N≤j≤n

∣∣∣∣∣√n(β̂j − β) − (
�́(j)n1/2)−1

j∑
i=1

ψ(ei)xi

∣∣∣∣∣
(18)

= Op

(√∑n
i=1 νi(d2,n)

n
logn + rn

)
.

The quantity rn equals zero if ψ(·) is continuous, otherwise rn = n
1

5p+10 −1/2.

REMARK 2.1 [The order of the quantity νi(δ)]. For quantile regression, if for
i = 1, . . . , n, the conditional densities satisfy

(19) max
0≤k≤r

sup
t∈(bk,bk+1],x∈R

∣∣fk(t, x|xi )
∣∣ ≤ M0 < ∞ a.s.,
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then we have νi(δ) = O(|δ|), which results in that
√∑n

i=1 νi(d2,n) = O(n1/4 ×
log2 n). As in the discussion of Example 1 of [30], for the Huber, L2 and expectile
regressions, there exists u such that for 1 ≤ i ≤ n, sup|δ|≤u ‖ψ ′(ei + |xi ||δ|)‖4 ≤
M < ∞. Hence νi(δ) = O(δ2), and consequently

√∑n
i=1 νi(d2,n) = O(log2 n).

For robust Lq regression, noting that νi(t) ≤ 2(ν+
i (t) + ν−

i (t)), where

ν+
i (δ) = E

{[
ψ

(
ei + |xi ||δ|) − ψ(ei)

]2|xi |2}
,

ν−
i (δ) = E

{[
ψ(ei) − ψ

(
ei − |xi ||δ|)]2|xi |2}

.

By Lemma 4 of [2], we have that for 3/2 < q < 2,

ν+
i (δ) ≤ 36δ2

E
(|xi |4|ei |2q−4)

.

Since 2q − 4 > −1, assuming (19), we get

E
(|ei |2q−4|xi

) = E

(∫
|y|2q−4fw(i)(i/n, y|xi) dy

)

≤ E

(
M0

∫ 1

0
|y|2q−4 dy +

∫ ∞
1

fw(i)(i/n, y|xi) dy

)
≤ M.

By applying similar arguments to ν−
i (δ), we have that νi(δ) = O(δ2). For 1 < q ≤

3/2, by Lemma 4 of [2], we obtain

ν+
i (δ) ≤ 36δ2

E
(|xi |4|ei |2q−41

(|ei | ≥ δ
)) + 24−2q |δ|2q−2

E
(|xi |2q1

(|ei | ≤ δ
))

.

For q = 3/2, by (19), we have E(|ei |2q−41(|ei | ≥ δ)|xi ) ≤ Mδ2q−3 log(|δ|−1) and
E(1(|ei | ≤ δ)|xi ) ≤ Mδ, which lead to that ν+

i (δ) = O(|δ|2q−1 log(|δ|−1)). By ap-
plying similar arguments to ν−

i (δ), we have νi(δ) = O(|δ|2q−1 log(|δ|−1)). Similar
but easier arguments show that νi(δ) = O(|δ|2q−1) for 1 < q < 3/2.

In Theorem 2.1(i) establishes a Bahadur representation of β̂n for nonstation-
ary time series M-estimation and (ii) establishes a uniform Bahadur representa-
tion of {β̂j ,N ≤ j ≤ n}. When L1 loss is applied, both results almost achieve
the optimal order n−1/4(log logn)3/4 except a factor of multiplicative logarithms.
For Huber, Lq,3/2 < q ≤ 2 and expectile regressions, according to Remark 2.1,
the approximation rates are log2 n and log3 n in (i) and (ii), respectively. The lat-
ter rates are again nearly optimal except a factor of multiplicative logarithms.
Observe that, due to the nonstationarity, the approximating processes depend on
{κ̄w(i)(i/n,0,xi),1 ≤ i ≤ n}, which are the conditional densities of the errors ei in
the scenario of quantile regression. [23] also provided a similar form of Bahadur
representation with nonstationary errors for quantile regression.

3. Structural stability tests. We are now ready to propose and investigate
change point tests for general nonstationary time series M-estimation.
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3.1. Test statistics. Consider a general nonparametric M-estimation model of
the form:

yi = x′
iβi + ei, i = 1,2, . . . , n.

We are interested in testing whether βi ’s remain constant over time. That is, we
test

H0 : β1 = β2 = · · · = βn = β ↔ HA : βi �= βj for some 1 ≤ i < j ≤ n

for some unknown β . Consider the following test statistic:

Tn = max
1≤j≤n

∣∣∣∣
∑j

i=1 ψ(êi,n)xi√
n

∣∣∣∣,
where êi,n = yi −x′

i β̂n are the residuals. The test statistic Tn is the CUSUM statistic
of the estimated gradient vectors of the regression. If H0 is violated, then Tn tends
to be large. In the following, we shall investigate the asymptotic null distribution
and power behavior of Tn in detail. Note that, under conditions (S0)–(S2), ψ(ei)xi

can be viewed as a realization from a PLS process with r1 break points c1, . . . , cr1 ,
namely, G̃v(i)(t,Fi ,Gi), where v(i) = k for ck < i/n ≤ ck+1. We set c0 = 0 and
cr1+1 = 1. Then ψ(ei)xi = G̃v(i)(i/n,Fi ,Gi). Here, r1 = |A ∪ B|, where A =
{b1, . . . , br} is the set of break points of the errors, and B = {d1, . . . , ds} is the
set of break points of the covariates. Here, | · | denotes the cardinality of a set.
The detailed mathematical form of G̃v(i)(t,Fi ,Gi) is complex which we treat as a
nuisance parameter. Define the long-run covariance matrices:

�2(t) =
∞∑

h=−∞
Cov

(
G̃k(t,F0,G0), G̃k(t,Fh,Gh)

)
, t ∈ (ck, ck+1],0 ≤ k ≤ r1.

Let �2(0) = limt↓0 �2(t). In order to investigate the limiting behavior of Tn, we
shall further introduce the following assumption:

(A2) The smallest eigenvalue of �2(t) is bounded away from 0 for t ∈ [0,1].
It is shown in Proposition A.2 in the Supplementary Material [29] that the depen-
dence of {ψ(ei)xi}ni=1 decays exponentially fast to 0. Meanwhile, condition (A2)
assures that the long run variance of ψ(ei)xi is not degenerate over time, which
is a mild requirement. We have the following proposition, which is useful in the
asymptotic study of the process {ψ(ei)xi}ni=1.

PROPOSITION 3.1. Let fk(t, x) be the density of Gk(t,F0,G0). Assume (A2),
(S0)–(S2) with v = 4(p + 1). Assume that (i) there exists a sufficiently small posi-
tive ι such that

sup
0≤k≤r,t∈(bk,bk+1]

∥∥ψ(
Gk(t,F0,G0)

)∥∥ 4(p+1)
p

+ι
≤ M < ∞,
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and (ii)
∫

ψ(x;1)| ∂
∂x

fk(t, x)|dx is finite for 0 ≤ k ≤ r, t ∈ (bk, bk+1]. Then on a
possibly richer probability space, there exists a p-dimensional zero-mean Gaus-
sian process U(t) with covariance function γ (t, s) = ∫ min(t,s)

0 �2(r) dr , such that

max
1≤j≤n

∣∣∣∣∣ 1√
n

j∑
i=1

ψ(ei)xi − U(j/n)

∣∣∣∣∣ = op

(
n−1/4 log2 n

)
.

Write �(t) = limn→∞E{∑�nt�
i=1 κ̄w(i)(i/n,0,xi)xix′

i}/n. Since xi is (Fi−1,Gi)

measurable, we have that

E

{�nt�∑
i=1

κ̄w(i)(i/n,0,xi)xix′
i

}
= E

{�nt�∑
i=1

�
(1)
w(i)(i/n,0|Fi−1,Gi)xix′

i

}
.

Without loss of generality, suppose that the covariates and the errors have the same
break points, that is, {b1, . . . , br} = {d1, . . . , ds}. Then by (9) in (S1), we have that
for s ∈ (bj , bj+1],

�(s) =
j−1∑
l=0

∫ bl+1

bl

E
{
�

(1)
l (t,0|F−1,G0)Hl(t,F−1,G0)Hl(t,F−1,G0)

′}dt

(20)
+

∫ s

bj

E
{
�

(1)
j (t,0|F−1,G0)Hj (t,F−1,G0)Hj (t,F−1,G0)

′}dt.

The following theorem establishes the limiting null distribution of Tn for nonsta-
tionary time series M-estimation.

THEOREM 3.1. Assume that max0≤j≤r supt∈(bj ,bj+1,]x∈R |fj (t, x|F−1,G0)| <
∞. Suppose (S0)–(S2), (A0)–(A2) and the conditions of Proposition 3.1 hold.
Then under the null hypothesis of no structural change, we have

Tn ⇒ sup
t∈(0,1]

∣∣G(t)
∣∣ := sup

t∈(0,1]
∣∣U(t) − �(t)�−1(1)U(1)

∣∣,(21)

where U(t) is defined in Proposition 3.1, and �(t) is defined in (20).

Theorem 3.1 establishes that Tn converges to the maximum of certain centered
Gaussian process. Two important observations should be made. First, the Gaussian
process U(t) is not pivotal and it has a complex covariance structure γ (t, s) =∫ min(t,s)

0 �2(r) dr . In particular, �2(s) can change both smoothly and abruptly on
[0,1], and hence it is inappropriate to perform Tn by checking quantile tables of
certain pivotal Gaussian processes (such as the Brownian bridge). Second, due to
the nonstationarity, �(t)�−1(1) no longer equals tIp as in the stationary case,
where Ip is the p × p identity matrix. In particular, the gradient CUSUM test
Tn is no longer asymptotically free of the density functions of {ei}ni=1 and the
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ratio �(t)�−1(1) should be estimated when performing the gradient CUSUM test
for nonstationary time series M-estimation. Consequently, the independent wild
bootstrap procedure in [16] will in general yield inconsistent testing results under
nonstationarity.

The following theorem studies the asymptotic power behavior of the test for
nonstationary time series M-estimation. For any bounded piecewise Lipschitz con-
tinuous p × 1 vector function g(·), write

�
(
s, g(·)) = lim

n→∞E

{�nt�∑
i=1

κ̄w(i)(i/n,0,xi)xix′
ig(i/n)/n

}
.

By the arguments of (20), �(s, g(·)) is well defined. Write

�
(
t, g(·)) = �

(
t, g(·)) − �(t)�(1)−1�

(
1, g(·)).

THEOREM 3.2. Consider the alternative model HA : βi = β + Lng(i/n),
where g(·) is a bounded nonconstant piecewise Lipschitz continuous p × 1 vector
function defined in [0,1]. Suppose that (S0)–(S2), (A0)–(A2) and the conditions
of Proposition 3.1 hold. Assume

max
0≤k≤r

sup
t∈(bk,bk+1],x∈R

∣∣f (j)
k (t, x|F−1,G0)

∣∣ < ∞

for 0 ≤ j ≤ 3. For quantile regression, assumes (A1∗) instead of (A1). Then we
have:

(i) if Ln = n−1/2,

Tn ⇒ sup
0<t≤1

∣∣G(t) +�
(
t, g(·))∣∣,

where G(t) is defined in Theorem 3.1.

(ii) If the deterministic sequence Ln satisfies Ln = o(1),
√∑n

i=1 νi(Ln)√
n

logn →
0,

√
nLn → ∞, then Tn →p ∞ at the rate

√
nLn.

Theorem 3.2 shows that the power of the test converges to 1 if
√

nLn → ∞,

Ln = o(1) and
√∑n

i=1 νi(Ln)√
n

logn → 0, which implies that our test can detect local

alternatives at the same rate n−1/2 as the classic stationary case.

3.2. The bootstrap. Theorem 3.1 reveals that the key to accurate tests under
nonstationarity is to consistently mimic the behaviors of the processes {�(t)} and
{U(t)}. A straightforward way to generate the limiting distribution in Theorem 3.1
is to directly estimate {�(t)} and {U(t)}, which involves the estimation of con-
ditional densities and long-run covariances �2(t) over time t , respectively. How-
ever, this approach is not operational in practice for the following two reasons.
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First, the estimation of the densities and the long-run covariance at a fixed time
t requires a total of four bandwidth parameters, which are difficult to choose in
practice and can cause inaccurate testing results for moderate samples. Second,
the nonparametric estimates of {�(t)} and �2(t) are inconsistent near the break
points of the PLS errors and covariates. Hence, it is unclear whether those plug-
in procedures asymptotically achieve the nominal size. In this section, we shall
propose a bootstrap procedure, which avoids directly estimating the densities and
long-run covariances while requiring only two tuning parameters. The proposed
bootstrap procedure combines the advantages of moving block bootstrap [19] and
subsampling [22] by progressively convoluting block partial sums of the estimated
gradient vectors and auxiliary standard normals in order to preserve the temporal
dependence structure and to mimic the pattern of the nonstationarity over time.
Furthermore, in our bootstrap, we make use of an extension of the “Powell Sand-
wich” [24] to optimally estimate {�(t)}. In the following, we shall discuss the
approximations of {�(t)} and {U(t)} separately.

Let cn be a bandwidth parameter. Define �̂cn(t) = λ̂cn(�nt�), where

(22) λ̂cn(j) =
j∑

i=1

(ψ(êi,n + cn) − ψ(êi,n − cn))xix′
i

2ncn

.

Note that for least squares regression, λ̂cn(j) in (22) equals
∑j

i=1 xix′
i/n which is

independent of cn. In addition, for quantile regression, we propose another smooth
estimator for {�(t)}t∈(0,1]. Define

(23) λ̂cn(j) =
j∑

i=1

K(êi,n/cn)xix′
i

ncn

,

where K(·) is a symmetric smooth kernel function with bounded second order
derivative, satisfying

∫
K(x)dx = 1,

∫
K(x)x2 dx ≤ M ,

∫
K2(x) dx ≤ M and∫

K ′2(x) dx ≤ M . The following theorem states that {�̂cn(t)}t∈(0,1] could be used
to approximate {�(t)}t∈(0,1] uniformly.

THEOREM 3.3. Assume (S0)–(S2), (A0) and (A1) with 0 ≤ q ≤ (3 ∨
(p + 1)) [or (A1∗) for quantile regression]. Further assume for 0 ≤ s ≤ 3,
max0≤k≤r supbk<t≤bk+1,x∈R |f (s)

k (t, x|F−1,G0)| < ∞. Then (i) assuming cn → 0,√∑n
i=1 νi(cn) logn

ncn
→ 0, nc2

n/ log2 n → ∞, we have

sup
t∈(0,1]

∣∣�̂cn(t) − �(t)
∣∣ = Op

((
√∑n

i=1 νi(cn) ∨ 1) logn

ncn

+ c2
n + n−1/2 logn

)
.

(ii) If smooth estimator (23) is used for quantile regression, assuming
max0≤j≤r supbj<t≤bj+1,x∈R ‖f (q)

j (t, x|Fi−1,Gi) − f
(q)
j (t, x|F∗

i−1,G∗
i )‖ = O(χi)
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for q = 0,1, cn log2 n → 0 and nc3
n/ log2 n → ∞, then we have

sup
t∈(0,1]

∣∣�̂cn(t) − �(t)
∣∣ = Op

(
n−1/2c−1/2

n + c2
n + log2 n

nc3
n

)
.

In fact, λ̂cn(j) is an extension of the “Powell’s Sandwich.” Furthermore, for
quantile regression, λ̂cn(j) can be viewed as a progressive local constant kernel es-
timation of integrated conditional densities. Theorem 3.3 shows that {�̂cn(t)}t∈(0,1]
are uniformly consistent estimators of {�(t)}t∈(0,1]. Elementary calculations show
that, even with PLS errors, the optimal bandwidth cn for Theorem 3.3 is almost of
the order of n−1/5 for quantile regression. Therefore, the convergence rate of The-
orem 3.3 is still almost at the order of n−2/5 except a factor of multiplicative loga-
rithms, where the order n−2/5 is the well-known optimal approximation rate of the
Powell’s sandwich estimates for i.i.d. data. Note that the nearly n−2/5 rate above is
faster than n−1/4 log2 n, which is the nearly optimal approximation rate of the Ba-
hadur representation in (18). For the Huber, expectile and Lq , q ∈ (3/2,2] regres-
sions, our method also achieves the almost optimal rate n−1/2 logn when cn sat-
isfies the stated bandwidth conditions and converges to zero no slower than n−1/4

and no faster than n−1/2. For L1.5, the convergence rate could achieve n−1/2 log2 n.
The remaining task for evaluating the critical values is to find a simple and data-

driven way to simulate the nonstationary Gaussian process U(t). The covariance
structure of U(t) could be quite complex. In particular, it does not necessarily have
stationary increments. We propose the following gradient-based process �̃m,n(t)

to bootstrap U(t):

�̃m,n(t) = ��nt�,m + (
nt − �nt�)(��nt�+1,m − ��nt�,m),

�i,m =
i∑

j=1

1√
m(n − m + 1)

(24)

×
(
�̂j,m − m

n
�̂n

)
Rj , i = 1, . . . , n − m + 1,

where �̂j,m = ∑j+m−1
r=j ψ(êr,n)xr , �̂n = �̂1,n and (Ri)

n
i=1 are i.i.d. standard nor-

mals independent of {Fi}∞i=−∞, {Gi}∞i=−∞. The consistency of {�̃m,n(t)} as an es-
timate of {U(t)} is provided by the following theorem.

THEOREM 3.4. Assume that max0≤j≤r supt∈(bj ,bj+1],x∈R |fj (t, x|F−1,G0)| <
∞ and the bandwidth m = m(n) satisfies m → ∞, m/n → 0. Suppose (S0)–
(S2), (A0)–(A2) and the conditions of Proposition 3.1 hold. Further assume
that there exists some constant ε0, such that for m and 1 ≤ j ≤ n − m + 1,
|∑j+m−1

r=j νr(δ)| ≤ M m
n

∑n
i=1 νi(δ) for all |δ| ≤ ε0. Then conditional on (Fn, Gn),

�̃m,n(t) ⇒ U(t) on C(0,1) with the uniform topology.
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By the proof of Theorem 3.4, for quantile regressions, if we further require√
n logn/m → ∞, then conditional on (Fn,Gn), the covariance function of

�̃m,n(t) converges uniformly to that of U(t) at the rate n−1/4 log3/2 n, which is
also of the same order of the nearly optimal approximation rate of the Bahadur
representation in (17). Therefore, Theorem 3.3 and Theorem 3.4 suggest that our
bootstrap approaches the covariance structure of the target limiting Gaussian pro-
cess no slower than the nearly optimal approximation rate of the Bahadur represen-
tation. We also note that for the Huber, Lq,3/2 ≤ q ≤ 2 and expectile regressions,
by Remark 2.1, the optimal Bahadur representation rate is almost of the order of

1√
n

except a fact of multiplicative of logarithms, which could not be archived by
Theorem 3.4. The reason is that the optimal approximation rate of the robust boot-
strap is of the order n−1/3; see [32].

In Theorem 3.2, we show that under HA, if Ln → 0,
√∑n

i=1 νi(Ln)√
n

logn → 0 and√
nLn → ∞, the test statistic goes to infinity at the rate

√
nLn. Proposition B.1 in

the Supplementary Material [29] further discusses the property of {�̂cn(t)}t∈(0,1]
and �̃m,n(t) under the local alternative hypotheses. Assumes that m log8 n

n
= o(1).

Then the divergence rate of Tn under the local alternatives in (ii) of Theorem 3.2 is√
nLn, which is faster than

√
m(Ln ∨ log2 n√

n
) logn, the fastest possible rate at which

�̃m,n(t) can go to infinity by Proposition B.1. Hence, Theorem 3.2 together with
Proposition B.1 shows that our bootstrap method has asymptotic power 1 under
the considered local alternatives in (ii) of Theorem 3.2. In particular, our bootstrap
can detect local alternatives with the optimal n−1/2 parametric rate.

REMARK 3.1. The limiting distribution of the test statistic, and hence the non-
local power, is hard to evaluate when Ln = 1 due to the time series nonstationarity
and the possibly nondifferentiable gradient function. When Ln � 1, [17] proposes
to replace êi with ẽi to deal with the nonlocal power issue, where êi is the residual
of the parametric linear regression under the null hypothesis, and ẽi is the residual
of a general nonparametric regression. We only consider very general form of al-
ternatives. Hence, [17] is not directly applicable. We leave the problem of nonlocal
power as a rewarding future work.

Combining Theorems 3.3 and 3.4, we have the following step-by-step imple-
mentation procedures for performing structural change tests for nonstationary time
series M-estimation.

ALGORITHM 3.1. (i) By Section 3.3, select appropriate m and cn.
(ii) Apply Theorem 3.3 to get λ̂cn(j), j = 1, . . . , n. Use Theorem 3.4 to generate

B (say 2000) conditional i.i.d. copies {�(r)
i,m}n−m+1

i=1 , r = 1, . . . ,B .

(iii) Calculate F
(r)
i = �

(r)
i,m − λ̂cn(i)λ̂

−1
cn

(n−m+ 1)�
(r)
n−m+1,m for r = 1, . . . ,B ,

i = m, . . . , n − m + 1.
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(iv) Let Fr = supm≤i≤n−m+1 |F (r)
i |. Let F(1) ≤ F(2) ≤ · · · ≤ F(B) be the order

statistics of Fr . Then F�(1−α)B� consistently estimates the level α critical value for
the gradient-based structural change test (21).

THEOREM 3.5. Under conditions of Theorem 3.3 and 3.4, Algorithm 3.1 gen-
erates consistent estimator of the level α critical value for the test (21).

In the Supplementary Material [29], we also extend our method to test structural
changes for multiple M-estimators simultaneously and discuss the applicability of
the method to dynamic models.

3.3. Bandwidth selection. To implement our testing procedure, one has to
choose the tuning parameters cn and m (except for least squares regression where
only m needs to be chosen). Due to the complex data structure, a robust bandwidth
selection method which does not depend on specific forms of the data generating
mechanisms is desired. To this end, for selecting proper m of Theorem 3.4, we ap-
ply the method of minimum volatility (MV) suggested by [32] to �̃m,n(t) in (24).
The procedures are quite similar except that we replace unknown ψ(ei)xi with
estimated ψ(êi,n)xi . Define

γ̂m(r/n, s/n) =
r∧s∑
i=1

(
�̂i,m − m

n
�̂n

)2/(
m(n − m + 1)

)
.

Calculate {γ̂mj
(r/n, r/n)}n−mj+1

r=1 for a grid of possible window sizes m1 ≤ · · · ≤
mM . Write

se
({

γ̂mj
(r/n, r/n)

}b
j=a

) =
(

1

b − a

b∑
j=a

(
γ̂mj

(r/n, r/n) − ¯̂γ (r/n, r/n)
)2

)1/2

,

where ¯̂γ (r/n, r/n) = 1
b−a+1

∑b
j=a γ̂mj

(r/n, r/n). Then we choose m = mj where

j = argmin4≤j≤3(max1≤r≤n−mM+1 se({γ̂mj+k
(r/n, r/n)}3

k=−3)). For more discus-
sions about the “MV” method, see [22]. We also apply the MV method to the
selection of the bandwidth cn. Our procedure of selecting cn is as follows:

(i) Choose suitable end points a1 < a2, such that the optimal cn ∈ I :=
[a1, a2].

(ii) Divide interval I into m̄, say m̄ = 99 pieces. Specifically, let h1 = a1,
h100 = a2, and hk′ = a1 + (k′ − 1)(a2 − a1)/99, 1 ≤ k′ ≤ 100.

(iii) For each hi , use it as a bandwidth to calculate the estimating quantity
{�̂hi

(tj )}nj=1. Let C(i) be the maximum of RHS process of (21) for t ∈ [ 1
n
,1]

obtained by replacing {U(t), t ∈ [ 1
n
,1]} with {∑�nt�

i=1
ψ(êi,n)xi√

n
, t ∈ [ 1

n
,1]} and re-

placing {�(t), t ∈ [ 1
n
,1]} with {�̂hi

(t), t ∈ [ 1
n
,1]}, respectively.
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(iv) Define D(s) = { 1
2k

∑s+k
j=s−k[C(j) − 1

2k+1
∑s+k

j=s−k C(j)]2}1/2 for some

k > 0. Let l be the minimizer of {D(s)}100−k
s=k+1. Then we select hl as our band-

width cn.

Since �(t) is a p × p matrix, directly applying the MV method for select-
ing cn will be time-consuming. Our proposed procedure is based on the fact that
U(t) is the limiting distribution of

∑�nt�
i=1

ψ(ei,n)xi√
n

. This motivates us to generate the

pseudo limiting distribution via replacing U(t) with
∑�nt�

i=1
ψ(êi,n)xi√

n
and choose the

bandwidth as the one which stabilizes the pseudo quantity mostly. The numeric
experiment shows that our bandwidth selection criteria work well under various
circumstances.

4. Simulation studies.

4.1. Type I error. In this section, we examine the performance of our method
for L2 (least squares) regression, the Huber regression with ς = 1.5, L1.5 regres-
sion and quantile regression with quantiles 0.5 and 0.8. Throughout our simula-
tions, the number of bootstrap samples B = 2000. For quantile regression, we also
compare our results with SQ method in [26]. The description of the SQ method for
τ th quantile regression is as follows.

Let X = (x1, . . . ,xn)
′. Define Hλ,n(β̂) = (XX′)−1/2 ∑�λn�

i=1 xiψτ (yi − x′
i β̂),

where ψτ (x) = τ − 1(x ≤ 0). Then the SQ test statistic is defined as

SQτ = sup
λ∈[0,1]

∥∥(
τ(1 − τ)

)−1/2[
Hλ,n(β̂) − λH1,n(β̂)

]∥∥∞.

The associated critical values for the SQτ test are in Table 1 of [26]. To esti-
mate {�(t), t ∈ (0,1]}, we choose bandwidth from 100 equally spaced points in a
certain range. In each iteration, we select the bandwidths by the MV method we
proposed in Section 3.3.

We consider the following heteroscedastic linear regression model:

(25) yi = 1 + xi + ei, ei = (1 + γ xi)(ϒi − ci)/2

for i = 1, . . . , n, γ = 0.1. In our simulations, xi are i.i.d. χ2(5)/5 and ci = F̃−1
i (0)

where F̃i(x) = E(ψ(ϒi − x)). Let filtration Fi = (ε−∞, . . . , εi) where {εs}∞s=−∞
are independent of {xi}ni=1. We shall consider the following models for {ϒi}∞i=−∞:

(I) Consider

ϒi = G(ti,Fi), G(t,Fi) = 0.75 cos(2πt)G(t,Fi−1) + εi,

where εi are i.i.d. N(0,1). This is a locally stationary model since its AR(1) coef-
ficient 0.75 cos(2πt) changes smoothly over (0,1].
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(II) Consider ϒi = G(ti,Fi), and

G(t,Fi) = G1(t,Fi)1(0 < t ≤ 0.8) + G2(t,Fi)1(0.8 < t ≤ 1),

where

G1(t,Fi) = 0.6 cos(2πt)G1(t,Fi−1) + εi,

G2(t,Fi) = (0.5 − t)G2(t,Fi−1) + εi

and εi ’s are i.i.d. N(0,1). This is a PLS model. The AR coefficient changes
smoothly before and after t = 0.8, with an abrupt change at t = 0.8.

(II′) Model II′ is the same as model II except we change the i.i.d. N(0,1) εi ’s
to i.i.d. student t distribution with 12 degrees of freedom [t (12)].

(II∗) Model II∗ is the same as model II′ except we set xi i.i.d. 1+(5/3)−1/2t (5).

Note that in Models I, II, II′ and II∗, the covariates are independent and identically
distributed. However, the errors are heteroscedastic with respect to the covariates.
Furthermore, the errors are PLS processes which exhibit smooth and (or) abrupt
changes in their data generating mechanisms over time.

We also consider the following nonstationary dynamic model III. Let {zi}i∈Z be
i.i.d. χ2(1) random variables, and

(III) yi = 0.3yi−1/(1 + zi−1) + ei/3, y0 ∼ N(0,1), where ei = G(ti,Fi) with

G(t,Fi) =
(

1 + 1

3
(t − 1)2

)
εi1(0 < t ≤ 0.5)

+ (
1 + 0.5 cos(2πt)

)
εi1(0.5 < t ≤ 1), εi’s i.i.d. N(0,1),

Finally, we consider the following scenario IV. Let ϒi be the PLS process
defined in Model II and ci be the corresponding quantity defined below (25).
Let {εi}i∈Z, {ηi}i∈Z, {εi}i∈Z be i.i.d. N(0,1)’s. Furthermore, {εi}i∈Z, {ηi}i∈Z and
{εi}i∈Z are independent of each other. Let υi = ηi+εi√

2
. Consider:

(IV) Let x1,i be the PLS process generated from G1(t,Gi) = ∑∞
j=0(0.5 −

0.5t)jυi−j , and x2,i be the PLS process generated from G2(t,Gi) = ∑∞
j=0(0.25 +

0.5t)j εi−j , where Gi = (. . . , εi, ηi). Let

yi = 1 + x1,i + x2,i + ei, ei =
√

1 + x1,i + x2,i(ϒi − ci)

4
.

Note that in Model IV both the covariates and errors are nonstationary time se-
ries. We examine our test with sample sizes 300 and 600 at two nominal levels
5% and 10%. We report the simulated type I errors in Tables 1–2 for our proposed
gradient-vector-based test (21). In Table 1, we present our simulation results for
the Huber regression, L1.5 regression and least squares regression, respectively.
Table 2 contains our simulation results for quantile regressions with τ = 0.5 and
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TABLE 1
Simulated type I error rates for Huber (ς = 1.5), L1.5 and L2 regression

Huber regression L1.5 regression Least squares regression

n = 300 n = 600 n = 300 n = 600 n = 300 n = 600

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

I 4.25 11.55 4.35 11 5.3 13.05 4.8 11.55 5.55 13.2 5.35 12.25
II 4.45 10.35 4.55 9.95 3.85 9.8 4.25 10.4 4.8 12.05 5.2 11.6
II′ 4.1 10.35 4.75 10.3 4.35 10.3 4.7 10.2 5.65 12.35 4.8 10.9
II∗ 4.05 9.95 5.2 10.75 3.7 9.25 4.2 10.05 4.9 11.7 4.2 10.65
III 4.3 10.55 4.95 10.85 4.3 10.85 4.65 10.3 3.95 10.6 4.45 10.15
IV 3.15 8.0 5.1 10.85 3.9 8.75 4.75 10.25 3.15 7.95 4.4 9.6

0.8, respectively. The simulated Type I errors are quite close to the nominal lev-
els. Meanwhile, our simulation results show that increasing the sample size from
300 to 600 in general significantly improves the performance of our test. In ad-
dition, for quantile regression, the test performs better when the quantile is less
extreme. The Monte Carlo experiments in Table 3 also show the inadequacy of the
SQ method when ei and (or) xi are nonstationary. For comparison purposes, we
also generated a stationary AR(0.5) model: yi = 0.5yi−1 + εi where εi ’s are i.i.d.
N(0,1). We find that the SQ method works well for this stationary AR(0.5) model,
which is consistent with the results reported in [26]. Meanwhile, simulation results
show that our method performs almost as well as SQ method under the stationary
scenario.

TABLE 2
Simulated type I error rates for quantile regressions, gradient-based test

0.5 quantile 0.8 quantile

n = 300 n = 600 n = 300 n = 600

5% 10% 5% 10% 5% 10% 5% 10%

Model I 4.8 14.05 4.1 10.9 4.8 13.45 4.55 10.75
Model II 4.05 11.35 4.25 11.1 4.95 12.55 4.35 9.95
Model II′ 4.7 12.05 4.25 10.6 5.6 12.3 4.65 10.9
Model II∗ 3.1 10.1 3.65 9.05 3.6 10.75 3.8 9.65
Model III 4.35 9.2 5.2 10.3 3.95 10.2 4.3 10.15
Model IV 4.0 8.55 4.25 9.45 3.65 10.1 4.5 10.2
AR(0.5) 4.05 9.2 4.95 10.85 4.2 9.25 5.55 10.25
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TABLE 3
Simulated type I error rates for quantile regressions, SQ method

0.5 quantile 0.8 quantile

n = 300 n = 600 n = 300 n = 600

5% 10% 5% 10% 5% 10% 5% 10%

I 15 24.8 15.65 24.85 11.3 19.1 14.9 24.2
II 5.55 10.55 5.55 11.45 5.15 10.8 6.55 12.7
II′ 5.7 10.25 6 10.8 5.2 10.8 6.05 12.2
II∗ 4.8 9.3 5.9 11.75 6.75 12.15 7.1 13.3
III 2.25 4.7 3.1 6.15 5.7 10.8 6.85 13.05
IV 9.15 18.75 9.5 19.65 9.05 17.9 9.9 20.2
AR(0.5) 5.4 10.45 4.65 10.1 3.85 7.55 4.85 9.45

4.2. Simulated power. We consider the alternative model that

yi = 1 + xi

(
1 + δ1

(
i ≥ �n/2�)) + ei, ei = (1 + γ xi)(ϒi − ci)/2,(26)

where ϒi follows model II, which is PLS. We shall simulate different jump sizes δ

to investigate the power performances of our testing procedures. The sample size
and significance level are 300 and 10% in our simulation. The left panel of Fig-
ure 1 examines the simulated powers for the Huber regression with ς = 1.5, L1.5
regression, L2 (least squares) regression and median qunatile regression. The re-
sults show that our testing procedure has decent power for general M-estimation
with moderate sample size. As expected, the regression with more robust loss func-
tion tends to have less power. The significance level is 10%. We also construct and
examine a regression-coefficient-based CUSUM test and find that it has a signifi-
cantly inferior power performance than the gradient-based test. See the right panel
of Figure 1. Additional empirical results show that under stationarity, our method
is a little less powerful than the SQ method in [26] when investigating quantile re-
gression but more powerful than the SCB method in [33] when investigating least
squares regression. The detailed results and explanations are relegated to Section 5
of the online Supplementary Material [29].

5. Data analysis. In this section, we apply our method to the Hong Kong cir-
culatory and respiratory data. It consists of daily measurements of pollutants and
daily hospital admissions in Hong Kong between January 1, 1994, and Decem-
ber 31, 1995. This dataset has been analyzed under i.i.d. assumptions in [13, 14]
and [10] among others. It has also been studied under locally stationary assump-
tions; see, for example, [33] and [31]. The aim of this data analysis is to capture
the relationship between the daily total number of hospital admissions of circu-
lation/respiration and the levels of pollutants such as sulphur dioxide (SO2) (in
micrograms per cubic metre), nitrogen dioxide (NO2) (in micrograms per cubic
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FIG. 1. Simulated power with ϒi following Model II for gradient-based method (left) and for co-
efficient-based method (right).

metre) and dust (in micrograms per cubic metre). By fitting time-varying linear
regression models, the results of [33] indicated the existence of change points in
the least squares regression coefficients between January 1, 1994, and December
31, 1995. By carefully observing the patterns of regression coefficients and their
simultaneous confidence band plotted in Figure 2 of their paper, it is difficult to
tell whether there is a change point in the mean regression relationship between
January 1, 1995, and December 31, 1995. To justify the necessity to use the PLS
formulation of the errors and covariates, we first perform the tests in [32] and [11]
for change points in the mean and autocovariances. The p-values for no change
point in mean for NO2, SO2 and dust are 0.5%, 5.15% and 0.025%, respectively.
For NO2 and dust, the p-values for no change points in lag-1 autocovariance are
9.9% and 8%, respectively, while the p-values for no change points in lag-2 au-
tocovariance are 4.7% and 3.3%, respectively. These results show strong evidence
that the data we considered are nonstationary. Thus, we consider the following
model:

yi = β0 +
3∑

l=1

βlxi,l + εi,

where yi is the daily number of hospital admissions, and {xi,1,1 ≤ i ≤ n} is the
level of SO2, {xi,2,1 ≤ i ≤ n} is the level of NO2, {xi,3,1 ≤ i ≤ n} is the level of
dust, and εi is a PLS noise. We test the null hypothesis that β := (β0, . . . , β3)

′ re-
mains constant from January 1, 1995, to December 31, 1995, for both least squares
regression and quantile regression. For quantile regression, we consider 7 differ-
ent quantiles 0.2,0.3,0.4,0.5,0.6,0.7,0.8. For the least squares regression, we
choose bandwidth m = 20. It turns out that the 90% critical value is 10,532.89,
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TABLE 4
Structural Change Test for 0.2,0.3,0.4,0.5,0.6,0.7,0.8 quantiles. The null hypothesis of no

structural change in the relationship between daily hospital admissions and pollutants levels is
rejected for 0.2,0.3,0.4 quantiles at 5% significance level, rejected for 0.5 quantile at 10%

significance level, and is not rejected for 0.6,0.7,0.8 quantiles

Quantile 0.2∗∗ 0.3∗∗ 0.4∗∗ 0.5∗ 0.6 0.7 0.8

Test statistics 61.27 79.74 85.53 81.84 74.52 78 70.27
m 13 12 7 12 12 12 17
h 0.84 0.67 0.16 0.36 0.26 0.16 0.27
90% 48.65 68.34 74.75 75.16 96.39 104.7 102.83
95% 53.83 78.23 85.33 82.92 112.42 120.74 115.41

SQ method 5.38 5.86 6.19 5.85 5.32 6.28 6.8

and 95% critical value is 11,973.6, while the test statistic is 10,464.35. Our result
shows that there is no evidence indicating that the relationship in mean between
hospital admissions and pollutants changed in the year of 1995 under the PLS
assumptions.

We also summarize the quantile regression results in Table 4.
Our results show that for mid and low quantiles there are structural changes in

the regression coefficients; while for high quantiles there are none. For 0.5 quan-
tile, our results show that the p-value is between 5% and 10%. This is a potentially
interesting finding which shows the influence of pollutants on low hospital admis-
sions has changed while there is no change in the relationship on the high end.
Consequently, it is appropriate to use a parametric model to fit the high quantile
regression while nonparametric dynamic models are more appropriate to model
the low quantiles. Such asymmetric behavior across different quantiles cannot be
identified by the hypothesis testing procedures in mean regression proposed in
[31]. The last line of the table lists the test statistics generated via SQ method. The
95% and 99% critical values of the SQ test are 1.569 and 1.795, respectively. By
Table 4, the SQ method strongly rejects the null hypothesis at all quantiles con-
sidered in this paper. This is likely due to the violation of the strict stationarity
assumptions in [26] for this data set, which makes SQ test overact to the spurious
patterns of change points in regression coefficients caused by the nonstationary
errors and covariates. As a result, it seems that the SQ method in [26] cannot de-
tect the asymmetric behavior across different quantiles and it yields too significant
testing results with too small p-values due to the nonstationarity of the errors and
covariates of the regression.
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SUPPLEMENTARY MATERIAL

Supplement to “Gradient-based structural change detection for nonsta-
tionary time series M-estimation” (DOI: 10.1214/17-AOS1582SUPP; .pdf). We
provide (a) detailed proofs of the theorems and lemmas, (b) theoretical investiga-
tion on parameter estimation under the alternative hypothesis, (c) the analysis of
dynamic models, (d) extension of our methodology to finitely many M-estimations
and (e) extra simulation results.
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