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A SMOOTH BLOCK BOOTSTRAP FOR QUANTILE
REGRESSION WITH TIME SERIES

BY KARL B. GREGORY1, SOUMENDRA N. LAHIRI2 AND
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University of South Carolina, North Carolina State University
and Iowa State University

Quantile regression allows for broad (conditional) characterizations of a
response distribution beyond conditional means and is of increasing interest
in economic and financial applications. Because quantile regression estima-
tors have complex limiting distributions, several bootstrap methods for the in-
dependent data setting have been proposed, many of which involve smoothing
steps to improve bootstrap approximations. Currently, no similar advances in
smoothed bootstraps exist for quantile regression with dependent data. To
this end, we establish a smooth tapered block bootstrap procedure for ap-
proximating the distribution of quantile regression estimators for time series.
This bootstrap involves two rounds of smoothing in resampling: individual
observations are resampled via kernel smoothing techniques and resampled
data blocks are smoothed by tapering. The smooth bootstrap results in perfor-
mance improvements over previous unsmoothed versions of the block boot-
strap as well as normal approximations based on Powell’s kernel variance
estimator, which are common in application. Our theoretical results correct
errors in proofs for earlier and simpler versions of the (unsmoothed) mov-
ing blocks bootstrap for quantile regression and broaden the validity of block
bootstraps for this problem under weak conditions. We illustrate the smooth
bootstrap through numerical studies and examples.

1. Introduction. For a stationary time sequence {(Yt ,Xt) : Yt ∈ R,

Xt ∈ R
d}t∈Z, we consider the linear quantile regression model

(1.1) Yt = X′
tβ0(θ) + εt (θ,Xt),

where εt ≡ εt (θ,Xt) is an error term having θ th quantile equal to zero conditional
on Xt [for some θ ∈ (0,1)]. Thus X′

tβ0(θ) is the θ th conditional quantile of Yt
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given Xt . For a set of observations (Y1,X1), . . . , (Yn,Xn), we consider the prob-
lem of estimating the sampling distribution of

√
n(β̂n − β0),

under time dependence, where β̂n is the quantile regression (QR) estimator of
β0 ≡ β0(θ) defined as

(1.2) β̂n ≡ arg min
β∈Rd

Sn(β), Sn(β) ≡ n−1
n∑

t=1

(
Yt − X′

tβ
)
signθ

(
Yt − X′

tβ
)
,

for θ ∈ (0,1) and

signθ (x) = θI (x > 0) − (1 − θ)I (x ≤ 0), x ∈R.

A challenge is that, under conditions of independence or weak dependence [8,
37], the distribution of

√
n(β̂n −β0) is known to converge to a normal limit with an

asymptotic covariance matrix depending intricately on a smooth population quan-
tity, namely the (conditional) density of the error terms in (1.1). This asymptotic
behavior resembles that of sample quantiles for independent data Z1, . . . ,Zn hav-
ing distribution function F with density f , where the limiting variance of the θ th
sample quantile is θ(1 − θ)/f 2(F−1(θ)) (cf. [31]). The appearance of the error
density in the asymptotic variance complicates normal approximations to the dis-
tribution of

√
n(β̂n − β0). Particularly for independent data, this has occasioned

ongoing research since the birth of QR ([21]) about covariance estimation as well
as resampling methods for the QR estimator β̂n.

For covariance estimation, Koenker [19] proposed an estimator of the reciprocal
of the error density based on inverting a rank test from Gutenbrunner et al. [12].
Powell [30] suggested plugging in a kernel estimate of the error density, which has
become a standard approach. Hasan and Koenker [14] and He [15] proposed other
plug-in methods. These estimators were originally developed under the assump-
tion of independent observations, though Kato [18] established the consistency of
Powell’s kernel estimator for weakly dependent observations. For approximating
the sampling distribution of QR estimators with independent data, several boot-
strap procedures have also been proposed. Parzen, Wei and Ying [28] suggested
using an asymptotically pivotal derivative of the QR criterion function to generate
resamples of β̂n −β0. Hahn [13] showed the validity of a residual bootstrap for the
QR estimator by treating this as a type of nonsmooth M-estimator considered by
Arcones and Giné [1]. Feng, He and Hu [7] developed a wild bootstrap to account
for heteroscedasticity in QR. As the limit law in quantile estimation involves a
smooth error density, bootstrap versions involving various types of smoothing have
also been considered for independent data. For L1 regression and sample quan-
tiles, De Angelis, Hall and Young [3, 4] showed advantages to bootstraps based
on kernel-smoothing. Buchinsky [2] applied “m-out-of-n” bootstrapping for QR,
using small m for seeming computational ease, but smoothing of the resamples
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was not considered. Horowitz [16] proposed bootstrapping a smoothed objective
function in QR.

All of the above resampling works in QR are intended for independent data,
and the time series scenario has received comparatively little consideration, par-
ticularly with regard to bootstrap smoothing. For weakly dependent data, Fitzen-
berger [8] studied the moving block bootstrap (MBB) of Künsch [22] and Liu
and Singh [26] for estimating the distribution of the QR estimator. Simulations
there indicate that the MBB does not improve greatly upon normal approxima-
tions, which is an issue related to the appearance of smooth densities in the limit
of

√
n(β̂n − β0). As a remedy, we investigate a smooth extended tapered block

bootstrap (SETBB) proposed by Gregory, Lahiri and Nordman [10]. For QR in
particular, the SETBB approach offers improvements by incorporating two rounds
of smoothing in resampling not present in the MBB: namely, smoothing of both
data blocks and individual observations. That is, this bootstrap involves block ta-
pering as a trademark of state-of-the-art block bootstraps for capturing time de-
pendence, as originally proposed in the tapered block bootstrap of Paparoditis and
Politis [27] and expanded by Shao [32] to the extended tapered block bootstrap
(ETBB). The SETBB also includes additional kernel smoothing in resampling,
analogously to techniques known to enhance the bootstrap for independent data
[3, 4]. In this case, smoothing is performed on each observation to recreate a re-
sampling distribution with smoothness properties that better mimic those of the
population marginal distribution.

To help frame findings here, we note that Gregory, Lahiri and Nordman [10]
originally considered the SETBB for time series estimators defined by differen-
tiable functionals that exclude QR. Arguably, QR is a more meaningful context
for the smooth bootstrap, where smoothing can provide greater methodological
benefit due to the nature of QR (i.e., the distribution of the QR estimator depend-
ing on unknown smooth quantities). However, the QR problem requires a different
bootstrap investigation. In establishing the SETBB for QR, technical complexities
arise due to differing layers of resampling (both block- and kernel-based) as well
as nonsmoothness issues with the QR criterion. To provide some contrast, Fitzen-
berger [8] considered a simpler block bootstrap (i.e., MBB) for QR, but the proof
given is considerably incorrect. The argument in [8] fails to properly recreate ob-
jective functions in the bootstrap world and then misses critical steps in verifying
bootstrap approximations. [For example, that proof (p. 274) defines an important
bootstrap expected value in terms of unconditional expectation “E” instead of boot-
strap expectation “E∗.” This confuses (conditional) bootstrap probability with (un-
conditional) data-generating probability, and the resulting argument misses rounds
of bootstrap approximation important for the QR problem. The motivation was
probably that expectations under “E” can be appropriately smooth with QR but
ordinary bootstrap expectations “E∗” are generally not, which is where analysis of
bootstrap approximations is needed; we describe these issues in Section 3.3.] As
resampling layers are even more intricate for the SETBB, developments here are
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not eased by past bootstrap work; the proof in [8] is in error and the theory of [10]
does not apply.

Our findings are broadly formulated to include both smooth and unsmoothed
versions of the block bootstrap for QR with time series, which validates the
SETBB and modified versions of the MBB and ETBB as special cases. Addition-
ally, the SETBB work of Gregory, Lahiri and Nordman [10] depended on Gaussian
kernels for smoothing and particular bandwith/block restrictions. The current re-
sults allow for both general kernels and bandwidth choices, covering a wider range
of bootstrap implementations.

Section 2 describes the SETBB method and its formulation for QR. Section 3
provides the main distributional results as well as regularity conditions, and Sec-
tion 4 discusses practical issues in implementation and computation (e.g., selection
of tuning parameters). Numerical studies in Section 5 demonstrate performance
improvements offered by the SETBB, and Section 6 illustrates the method for QR
with two data examples, one involving value at risk estimation. Section 7 offers
concluding remarks. Proofs of main results appear in Section 8 as well as in the
Supplementary Material [11].

2. Smooth extended tapered block bootstrap method.

2.1. Bootstrap empirical distributions. Note that the objective function (1.2),
which the QR estimator β̂n minimizes, may be reexpressed as

(2.1) Sn(β) ≡
∫

signθ

(
y − β ′x

)(
y − β ′x

)
dFn(y, x)

using the empirical distribution of the data

Fn = 1

n

n∑
t=1

δ(Yt ,Xt ).

Rather than recreating bootstrap replicates of the original time series as in the
MBB, the SETBB aims to reproduce bootstrap renditions F ∗

n of the empirical dis-
tribution Fn which can be subsequently applied to formulate bootstrap versions of
the QR estimator (cf. Section 2.2). For this, the SETBB combines smoothing of
data blocks and individual observations as follows.

For some choice of block size �, set b = �n/�	 and let I ∗
1 , . . . , I ∗

b de-
note a uniform random sample from the integers {1, . . . , n − � + 1}. The vari-
ables {I ∗

j }bj=1 denote the starting points of blocks of length �, for exam-
ple, (YI∗

j
,XI∗

j
), . . . , (YI∗

j +�−1,XI∗
j +�−1), from the original series (Y1,X1), . . . ,

(Yn,Xn). Following [27] and [32] for block tapering, define weights

(2.2) w�(t) := w

(
t − 0.5

�

)
, t ∈ R, � = 1,2, . . . ,
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based on a taper function w :R → [0,1], where w(x) is symmetric about x = 1/2,
positive in a neighborhood of x = 1/2, nondecreasing for x ∈ [0,1/2], and such
that w(x) = 0 for x /∈ [0,1]. Then the empirical weight π∗

t assigned to time point
t by the SETBB empirical distribution function F ∗

n is equal to

π∗
t = 1

b‖w�‖1

b∑
j=1

�∑
k=1

w�(k)I
(
I ∗
j = t − k + 1

)
,

where ‖w�‖1 = ∑�
k=1 |w�(k)| and I(·) is the indicator function. Hence, π∗

t rep-
resents an average weighting over random blocks j = 1, . . . , b, where the j th
weight contribution from {w�(k)/‖w�‖1}�k=1 depends on the position of time point
t among the indices (I ∗

j , . . . , I ∗
j +�−1) of the j th random block of length �. Inde-

pendently from the block selection, the data points (Y1,X1), . . . , (Yn,Xn) ∈ R
d+1

are also randomly perturbed by small amounts to induce additional smoothing. In
particular, let H ≡ Hn denote a (d +1)×(d +1) bandwidth matrix and let {Z∗

t }nt=1
represent i.i.d. random vectors in R

d+1 drawn from some common distribution
GZ with mean zero to define perturbed data as (Y ∗

t ,X∗′
t )′ = (Yt ,X

′
t )

′ + HZ∗
t ,

t = 1, . . . , n. If GZ had a kernel density g and H > 0, then each resample
(Y ∗

t ,X∗
t ) would be equivalent to a random selection from a multivariate kernel

gt,n(y, x) = [det(H)]−1g[H−1(y − Yt , x
′ − X′

t )
′], y ∈ R, x ∈ R

d . Finally, the
SETBB version of the empirical distribution is defined as

(2.3) F ∗
n =

n∑
t=1

π∗
t δ(Y ∗

t ,X∗
t ),

associating point masses {π∗
t }nt=1 to smoothed variables {(Y ∗

t ,X∗
t )}nt=1.

The role of the block tapering is analogous to tapering lag windows in spec-
tral density estimation. In particular, the MBB uses untapered data blocks, cor-
responding to a uniform weight function w(t) = I(t ∈ [0,1]). However, block
bootstraps using smooth tapers w(·) in (2.2), which are zero w(t) = 0 at t = 0
and 1 and thereby give less weights to time points near the ends of a data block,
are known to possess smaller-order bias properties in variance estimation (cf.
[22, 27]); technically, this involves a taper with a self-convolution w ∗ w(t) =∫ 1
−1 w(x + |t |)w(x) dx being twice differentiable at t = 0. The data perturbation

step added to the SETBB is intended to impart further smoothness features to the
resampling distribution in order to mimic similar features at the population dis-
tribution level. Hence, viewed in our framework, the original MBB approach of
Fitzenberger [8] for QR would correspond to two choices in the SETBB scheme:
Hn = 0 and w(t) = I(t ∈ [0,1]), involving no kernel smoothing for individual
observations and no taper smoothing for data blocks. A smooth block taper w

combined with no observational smoothing (Hn = 0) would reproduce the ex-
tended tapered block bootstrap (ETBB) approach of Shao [32], which has not been
considered for QR. Hence, the SETBB method here is general in its formulation
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of smoothing at observation/block levels and contains the MBB/ETBB as special
cases.

2.2. Bootstrap for time series quantile regression. The QR estimator β̂n

again minimizes a criterion Sn(β) ≡ ∫
(y − β ′x)signθ (y − β ′x)dFn(y, x) from

(1.2) or (2.1) based on the empirical distribution of the original data Fn =
n−1 ∑n

t=1 δ(Yt ,Xt ). The true parameter β0 under the model (1.1) (i.e., defining
some θ th conditional quantile) minimizes a population counterpart ESn(β) =∫
(y − β ′x)signθ (y − β ′x)dF (y, x) based on the true marginal distribution F of

{(Yt ,Xt)}nt=1. To estimate the sampling distribution of
√

n(β̂n − β0) for purposes
of testing or confidence region calibration, we require SETBB analogs β̂∗

n and β̃n

of β̂n and β0, respectively.
We define the bootstrap version β̂∗

n of β̂n as

β̂∗
n ≡ arg min

β∈Rd
S∗

n(β),

where the bootstrap criterion function

S∗
n(β) ≡

n∑
t=1

π∗
t

(
Y ∗

t − X∗′
t β

)
signθ

(
Y ∗

t − X∗′
t β

)

=
∫ (

y − β ′x
)
signθ

(
y − β ′x

)
dF ∗

n (y, x)

mimics Sn(β) using the SETBB distribution F ∗
n = ∑n

t=1 π∗
t δ(Y ∗

t ,X∗
t ) in place of

the original empirical distribution Fn. The bootstrap analog β̃n of β0 is defined as
β̃n ≡ arg minβ∈Rd E∗S∗

n(β), based on the bootstrap expected value

E∗S∗
n(β) = 1

n − � + 1

n−�+1∑
j=1

�∑
k=1

ω�(k)

‖ω�‖1
hj+k−1,n(β),

as the counterpart of ESn(β) defining β0 ≡ arg minβ∈Rd ESn(β), where above

ht,n(β) =
∫ (

Yt − X′
tβ + JβHz

)
signθ

(
Yt − X′

tβ + JβHz
)
dGZ(z)

for the smoothing bandwidth matrix H ≡ Hn and Jβ = (1,−β ′). The bootstrap
expectation E∗ and the consequent form of E∗S∗

n(β) are defined by the distribution
of random block positions and (independently) the random sample Z∗

1 , . . . ,Z∗
n ∈

R
d+1 of perturbations from GZ . When blocks are untapered and observations are

unsmoothed so that H = 0, it holds that ht,n(β) = (Yt − X′
tβ)signθ (Yt − X′

tβ),
and the bootstrap expectation E∗S∗

n(β) will closely resemble the original sample
criterion Sn(β) from (1.2).

Finally, the SETBB version of
√

n(β̂n − β0) is given by

m
1/2
�

√
n
(
β̂∗

n − β̃n

)
,
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where m� = ‖w�‖2
1/[�‖w�‖2

2] is a scalar adjustment for block tapering, using
‖w�‖1 = ∑�

k=1 |w�(k)| and ‖w�‖2
2 = ∑�

k=1 |w�(k)|2. This factor also appears in
the TBB/ETBB methods of [27] and [32], and is not an order adjustment as
m� → [∫ 1

0 w(x)dx]2/
∫ 1

0 w2(x) dx ∈ (0,∞) holds when � → ∞ as n → ∞.

3. Main results.

3.1. Assumptions and conditions. We next frame some general conditions for
establishing the validity of the SETBB method for QR. Under the model (1.1),
weak dependence of the regressor/error process {(Xt , εt )} is prescribed in terms
of strong mixing coefficients defined as α(k) = sup{|P(A ∩ B) − P(A)P (B)| :
A ∈ F0−∞,B ∈ F∞

k }, where P denotes process probability and F0−∞,F∞
k repre-

sent the σ -algebras generated by {(Xt , εt ) : t ≤ 0} and {(Xt , εt ) : t ≥ k}, respec-
tively; see [5]. Let ‖ · ‖ denote the Euclidean norm applied to either vectors or
matrices. We use the following conditions:

(C.1) {(Xt , εt )}t∈Z is a R
d × R-valued stationary process where Yt = X′

tβ + εt

and EX1signθ (ε1) = 0.
(C.2) The distribution of εt given Xt has a density f (ε) ≡ f (ε|Xt) (with respect

to the Lebesgue measure) such that:
(i) f (·|Xt) is continuous at 0 (a.s. P ).

(ii) For some a0 > 0 and some nonnegative Xt -measurable function CXt ,
it holds that

sup
|a|≤a0

f (ε + a|Xt) ≤ CXt

(
1 + |ε|) for each ε ∈ R

(a.s. P ) such that E[CXt + ‖Xt‖4+κ1CXt ] < ∞ for some κ1 > 0.
(iii) inf|ε|≤a0 f (ε|Xt) > a1 > 0 (a.s. P ) for some a0, a1 > 0.

(C.3) For some κ2 > 0, E‖Xt‖3+κ2 < ∞ and
∑∞

k=1[α(k)]δ̃/(2+δ̃) < ∞ hold for
δ̃ = min{κ1, κ2} for κ1 in (C.2).

(C.4) � ≡ ∑∞
k=−∞ Cov(X0signθ (ε0),Xtsignθ (εt )) and L ≡ EXtX

′
t f (0|Xt) are

positive definite.
(C.5) Vectors {(Yt ,X

′
t )

′ ∈ R
d+1}nt=1 are in general position (a.s. P ) for each n,

where we say generic vectors {at ∈ R
d+1}nt=1 are in general position if no

hyperplane in R
d+1 contains d + 2 points among a1, . . . , an.

(C.6) In the resampling, Z∗
1 , . . . ,Z∗

n are i.i.d. random vectors in R
d+1 with com-

mon distribution GZ and, for Z ∼ GZ , EZ = 0 and E‖Z‖4+δ̃ < ∞ hold for
δ̃ in (C.4). Also, for each n, resampling points {(Y ∗

t ,X∗′
t )′ ∈ R

d+1}nt=1 are
in general position with probability 1 (a.s. P ).

(C.7) The resampling block � satisfies �−1 + �/n → 0 as n → ∞ and the norm
hn ≡ ‖Hn‖ of bandwidth matrix in smoothing satisfies hn → 0.
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The conditions are similar to, but generally weaker than, those of Fitzenberger
[8]. In particular, the moment/mixing assumptions are milder and Condition (C.2)
also allows a broader variety of error distributions because the conditional densi-
ties f are not assumed to be bounded, supported on a compact interval, or to satisfy
Lipschitz conditions. Under Condition (C.2), the density f (·|Xt) near the origin
may be potentially unbounded in Xt , noting that L in (C.4) involves f (0|Xt) and
influences the distribution of the QR estimator (cf. Theorem 1). So, for example,
a simple conditional distribution εt |Xt ∼ N(0, σ 2X2

t ) with normally distributed
errors having a standard deviation proportional to the regressor Xt is allowable,
but is not admitted by assumptions in [8]. Unlike [8], we do not assume a com-
pact parameter space for QR inference. Additionally, the block length condition in
condition (C.7) is minimal (e.g., in contrast, �2/n = o(1) is required in [8]). Like-
wise, in the resample kernel smoothing, the bandwidth matrix is only required to
converge to zero as n → ∞. The choice hn = 0 is allowed, which means that our
assumptions admit the unsmoothed ETBB or MBB estimator (cf. Section 2.1). We
make no strict assumption about the distribution of the resample perturbations in
(C.6), other than that these have mean zero and a sufficient number of finite mo-
ments; this aspect also provides an extension over earlier SETBB results in [10],
in which normal perturbations were assumed/required. We also assume that boot-
strap samples {(Y ∗

t ,X∗′
t )′}nt=1 ⊂ R

d+1 are in general position if the original data
{(Yt ,X

′
t )

′}nt=1 ⊂ R
d+1 are [e.g., a continuous GZ in (C.6) is sufficient for this]. At

the expense of additional complexity, the assumption regarding the stationarity of
{(Xt , εt )}t∈Z could be weakened to ones of first- and/or second-order stationarity
of certain process quantities [e.g., {XtX

′
t }, {Xtsignθ (εt )}, {εtsignθ (εt )}].

3.2. Bootstrap distributional results. Under mild assumptions, Theorem 1
establishes asymptotic normality of the QR estimator β̂n ≡ arg minβ∈Rd Sn(β),
where Sn(β) denotes the QR objective function from (1.2). A consistency state-
ment is also included for completeness, which technically follows under weaker
conditions [e.g., (C.1), (C.2)(iii) and (C.3) with κ2 = δ̃ = 2].

THEOREM 1. Assume Conditions (C.1)–(C.5). Then, as n → ∞:

(i) β̂n
p−→ β0, where β0 is the unique minimizer of ESn(β), β ∈ R

d ;
(ii) for L,� defined in (C.4),

√
n(β̂n − β0)

d−→ N
(
0,L−1�L−1)

.

Hence, as mentioned in the Introduction (Section 1), a complication in approx-
imating the distribution of the QR estimator β̂n directly is that its limiting normal
distribution involves an unknown, smooth population density. In particular, from
Theorem 1(ii), note that the term L depends on the conditional density f (0) of an
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error variable evaluated at zero; see also Condition (C.2). This aspect again moti-
vates the SETBB method for approximating the sampling distribution of the QR
estimator β̂n.

The next result shows that the SETBB version m
1/2
�

√
n(β̂∗

n − β̃n), involving
a centering analog β̃n of the true parameter β0, successfully estimates the QR
distribution

√
n(β̂n − β0).

THEOREM 2. Assume Conditions (C.1)–(C.7). Then, as n → ∞:

(i) for the SETBB version m
1/2
�

√
n(β̂∗

n − β̃n) of
√

n(β̂n − β0),

sup
x∈Rd

∣∣P∗
(
m

1/2
�

√
n
(
β̂∗

n − β̃n

) ≤ x
) − P

(√
n(β̂n − β0) ≤ x

)∣∣ p−→ 0,

where P∗ denotes bootstrap probability;
(ii) for the SETBB version β̃n ≡ arg minβ∈Rd E∗S∗

n(β) of β0 ≡
arg minβ∈Rd ESn(β),

β̃n = β0 + Op

(
n−1/2 + hn

)
,

where hn ≡ ‖Hn‖ is the norm of the kernel bandwidth matrix;
(iii) for βn ≡ arg minβ∈Rd E[E∗S∗

n(β)],
√

n(β̃n − βn)
d−→ N

(
0,L−1�L−1)

.

From Theorem 2(i), the general SETBB method is consistent for the distribution
of the QR estimator under minimal assumptions on the resampling block length �,
smoothing bandwidth parameter H and the block taper function w from (2.2).
Again, the choice H = 0 is allowed in combination with either a smooth block
taper w or untapered blocks w(t) = I(t ∈ [0,1]), so that Theorem 2 also includes
the ETBB/MBB methods.

In Theorem 2(i), note that the centering β̃n ≡ arg minβ∈Rd E∗S∗
n(β) for the

SETBB rendition β̂∗
n ≡ arg minβ∈Rd S∗

n(β) of the QR estimator is not the origi-

nal QR estimator β̂n ≡ arg minβ∈Rd Sn(β). Recall β̃n imitates the true parameter
β0 ≡ arg minβ∈Rd ESn(β) in the bootstrap world where, under smooth resampling,
E∗S∗

n(β) aims to mimic smooth features of ESn(β) that the empirical criterion
Sn(β) generally does not [due to additional kernel-smoothing with bandwidth Hn

in E∗S∗
n(β)]. Consequently, the minimizers β̃n and β̂n of E∗S∗

n(β) and Sn(β),
respectively, have distinct behaviors as well as different focal points of conver-
gence given by βn ≡ arg minβ∈Rd E[E∗S∗

n(β)] and β0 ≡ arg minβ∈Rd ESn(β). The-

orem 2(ii)–(iii) outlines some relevant properties of the SETBB centering β̃n for
reference. Like the QR estimator β̂n, the SETBB centering β̃n is consistent for β0
but not at a guaranteed

√
n-rate; instead, the norm ‖Hn‖ of the kernel smooth-

ing bandwidth [which is general under Condition (C.7)] additionally impacts β̃n.
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This illustrates that, particularly under smoothing, bootstrap centering can dif-
fer dramatically from the original QR estimator β̂n. With unsmoothed resampling

Hn = 0, our proofs show that
√

n(β̃n − β̂n)
p−→ 0 holds so that, in this case, the

original QR estimator β̂n could be validly used to define bootstrap centering, as
done by [8] for the MBB. However, under kernel smoothing steps (Hn �= 0) for
the SETBB, the original QR estimator β̂n is generally inappropriate for bootstrap
centering and, if so used, general consistency of the SETBB method does not fol-
low (e.g., consider, under Theorems 1–2, that β̂n and β̃n will vary from the true
parameter β0 by different orders if

√
n‖Hn‖ → 0 fails to hold).

3.3. On proving the main results. In determining the limit distribution of β̂n,
the near derivative Dn(β) = n−1 ∑n

t=1 Xtsignθ (Yt − X′
tβ) of the QR objective

function Sn(β) is nonsmooth in β . [Technically, Sn(β) from (1.2) is also nons-
mooth but has left/right partial derivatives which asymptotically match Dn(β).]
However, the expectation function λn(β) ≡ EDn(β) = EX1signθ (Y1 − X′

1β) is
differentiable, at least at the true parameter β0. Hence, an argument for estab-
lishing the limit distribution of

√
n(β̂n − β0) involves an indirect expansion of

Dn(β̂n) combined with a distributional limit for
√

nDn(β0), rather than direct ex-
pansion of Dn(β̂n) around β0 as commonly encountered with smooth-parameter
estimating functions. Namely, under the mixing/moment conditions, the consis-
tency of the QR estimator β̂n for β0 may be shown along with a central limit

theorem for the sum Dn(β0), that is,
√

nDn(β0)
d−→ N(0,�) as n → ∞ where

EDn(β0) = λn(β0) = 0 holds. One can additionally establish a strong approxima-
tion result,

√
n
[{

Dn(β̂n) − λn(β̂n)
} − {

Dn(β0) − λn(β0)
}] p−→ 0,

and that the criterion Sn(β) at its minimizer β̂n has a near derivative Dn(β̂n) con-

verging to zero, that is,
√

nDn(β̂n)
p−→ 0. These aspects combine to yield

√
n
[
λn(β̂n) − λn(β0)

] = −√
nDn(β0) + op(1)

d−→ N(0,�).

Consequently, because λn(·) is differentiable at β0, with ∂λn(β0)/∂β = −L for all
n using the positive definite matrix L from Condition (C.4), the asymptotic nor-
mality of

√
n(β̂n − β0) in Theorem 1 can be established by Taylor expansion and

using β̂n
p−→ β0. This general strategy is well known [8]. For example, [17] es-

tablished asymptotic normality of maximum likelihood estimators based on i.i.d.
data, without assuming differentiability of log-likelihood functions. For indepen-
dent data, [29] established asymptotic normality of M-estimators based on nons-
mooth criterion functions having differentiable expectations; this includes the QR
estimator. For weakly dependent data, [37] considered median regression estima-
tors, following arguments of Huber to establish asymptotic normality.
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However, to establish the validity of the bootstrap, the counterpart arguments
for the QR estimator are more difficult to recreate in the bootstrap realm. Similarly
to the above, the proof of Theorem 2 is based on the SETBB version of Dn(β)

given by

(3.1) D∗
n(β) =

n∑
t=1

π∗
t X∗

t signθ

(
Y ∗

t − X∗′
t β

)
.

Compared to its counterpart λn(β) = EDn(β), the analog expectation in the boot-
strap world, say D̃n(β) ≡ E∗D∗

n(β) [i.e., the bootstrap rendition of λn(β)], may
not be sufficiently smooth at the bootstrap version β̃n ≡ arg minβ∈Rd E∗S∗

n(β) of

the true parameter β0 ≡ arg minβ∈Rd ESn(β). However, the expectation λ̃n(β) ≡
ED̃n(β) of this bootstrap expected value is differentiable at β̃n. Consequently, one
may establish two rounds of approximation for the SETBB estimator β̂∗

n and its
centering β̃n as

√
n
[{

D∗
n

(
β̂∗

n

) − D̃n

(
β̂∗

n

)} − {
D∗

n(β̃n) − D̃n(β̃n)
}] p∗−→ 0,

√
n
[{

D̃n

(
β̂∗

n

) − λ̃n

(
β̂∗

n

)} − {
D̃n(β̃n) − λ̃n(β̃n)

}] p∗−→ 0,

in order to pair a smooth quantity
√

n{λ̃n(β̂
∗
n) − λ̃n(β̃n)} to the difference√

n{D∗
n(β̂∗

n) − D∗
n(β̃n)}; above

p∗−→ loosely denotes convergence in bootstrap

probability conditional on the data. One may also show that m
1/2
�

√
nD∗

n(β̃n) at β̃n

mimics the normal limit of
√

nDn(β0) at β0 and that, analogously to
√

nDn(β̂n),
the bootstrap counterpart

√
nD∗

n(β̂∗
n) converges to zero. By a Taylor expansion of

m
1/2
�

√
n[λ̃n(β̂

∗
n) − λ̃n(β̃n)] around the bootstrap centering β̃n, one can then es-

tablish that the bootstrap limit of m
1/2
�

√
n(β̂∗

n − β̃n) matches the normal limit of√
n(β̂n − β0). Further details appear in Section 8. In contrast, the argument for the

(unsmooth) MBB in the seminal QR paper of [8] [p. 274 (IV)] incorrectly defines
the bootstrap expected version of D̃∗

n(β) as ED∗
n(β) (an unconditional expecta-

tion), and not as D̃n(β) ≡ E∗D∗
n(β) (a bootstrap expectation). As a consequence,

that argument misses the two rounds of bootstrap approximation explained above
for rigorously justifying the MBB, and mistakenly confounds bootstrap probability
with that of the original data-generating process.

4. Practical implementation.

4.1. Bandwidth and block size selection. As a tuning parameter, the SETBB
method requires a bandwidth matrix Hn associated with a distribution GZ for
defining resampling perturbations (Section 2.1). We prescribe a data-driven ap-
proach for selecting Hn, and in the numerical studies to follow we choose the
(d + 1)-dimensional standard Gaussian distribution for the kernel GZ . As resam-
pling here is connected to a kernel density estimate, a data-based choice of the
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bandwidth may be suggested via the following heuristic. Note the (conditional)
density appearing in the asymptotic variance of

√
n(β̂n − β0) owes to the error

terms in the model (1.1). Therefore, we choose a bandwidth appropriate for kernel
estimation of this density based on a kernel function g. Here, g denotes a selected
probability density (e.g., standard normal) for defining the perturbation distribution
GZ in resampling. Namely, we compute and use the fitted residuals êt = Yt −X′

t β̂n

from the model and, with the kernel g, apply a standard data-driven choice for
bandwidth—namely the [33] approach, which selects a bandwidth ĥn � n1/5. We
then set Hn = ĥnId+1, where Id+1 is the (d + 1) × (d + 1) identity matrix, and
this remains fixed during all bootstrap resampling. This approach performed well
in our simulation studies (Section 5).

In the SETBB method, we empirically choose a block length � using the non-
parametric plug-in (NPPI) approach developed in [25], which aims to minimize
the MSE of MBB or tapered block bootstrap (TBB) estimators. The block size,
once chosen, remains fixed for all bootstrap resamples. In particular, for estimat-
ing the variance ϕn of a real-valued smooth functional of a sample mean, the MSE
of the TBB estimator ϕ̂n(�), with block length �, admits an expansion

MSE
{
ϕ̂n(�)

} = v�n−1 + B2�−4 + o
(
�−4 + �n−1)

in terms of bias Bias{ϕ̂n(�)} = B�−2 +o(�−2) and variance Var{ϕ̂n(�)} = v�n−1 +
o(�n−1) depending on unknown process quantities B,v [27]. Minimizing this
MSE provides the form of an optimal block size

�opt
n = (

4B2/v
)1/5

n1/5.

The NPPI then produces an estimate �̂
opt
n of �

opt
n by plugging estimates B̂ and v̂ of

B and v into the above expression.
For a pilot block size �1, an estimate of B can be constructed as

B̂ = �2
1(4/3)

{
ϕ̂n(�1) − ϕ̂n(2�1)

}
,

for which EB̂ = B + o(1) holds. An estimate of v can be obtained using the
jackknife-after-bootstrap (JAB) described in [23]. This is a block jackknife pro-
cedure which sequentially removes m consecutive blocks of length �1 and com-
putes the bootstrap estimator on the remaining data. When computing ϕ̂n(�1) in B̂

above from Monte Carlo approximation (i.e., resampling �n/�1	 blocks of length
�1 to build block bootstrap versions of a sample-mean-based statistic), the re-
moval of m consecutive blocks of length �1 can be performed from the initial
block resamples by simply considering subsets of the �n/�1	 bootstrap block se-
lections for which none of the first m, second m, and so on, blocks were cho-
sen. The NPPI requires choices of �1 and m, for which we use �1 = nint(n1/5),
where nint(x) is the nearest integer to x, and m = �n1/3�2/3	, following [24];
see [25] for details. Finally, because the QR estimator β̂n is not a smooth func-
tion of a sample mean itself, we carry out our block selection by considering
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instead a vector
√

nDn(β0) of sample means having the asymptotic covariance
matrix � from (C.4). We then calculate the NPPI block size for the estima-
tor ϕ̂n(�) = tr{Cov∗(

√
nD̃∗

n(β̃n))} of tr(Cov(
√

nDn(β0)), based on
√

nD̃∗
n(β̃n)

in (3.1). The above block length selections are intended for the SETBB with a
smooth block taper (2.2); if blocks are untapered (e.g., MBB), then we instead es-
timate the block length �̂

opt
n = [2B̂2/v̂]1/3n1/3 with v̂ as above and a modification

B̂ = 2�1{ϕ̂n(�1) − ϕ̂n(2�1)}; see also [24].
Lastly, for the SETBB, we base our block tapering on the trapezoidal function

w(t) = (t/c)I(t ∈ [0, c]) + I(t ∈ [c,1 − c]) + {(1 − t)/c}I(t ∈ [1 − c,1]) with
c = 0.43 as in [27] and [32].

4.2. Computation. The SETBB method for QR may be implemented read-
ily with standard software packages. For example, after generating resampling
weights {π∗

t }nt=1 and perturbed data {(Y ∗
t ,X∗

t )}nt=1, the corresponding SETBB ver-
sion β̂∗

n of the QR estimator is easily obtained from the R package quantreg [20]
by

rq(perturbed.y ∼ perturbed.x, tau = theta,

weights = pi.star)

for a quantile θ of interest. The SETBB also requires one determination of the
bootstrap centering β̃n of β̂∗

n , found by minimizing E∗S∗
n(β). The latter function

often admits a smooth closed form. For instance, if Hn = hnId+1 with hn > 0 with
GZ as the Normal(0, Id+1) distribution, then E∗S∗

n(β) is expressed in terms of the
standard normal distribution � and density φ as

n∑
t=1

w̃t

n − � + 1

[(
Yt − X′

tβ
){

θ − �

(−Yt + X′
tβ√

δ(β)

)}
+ δ(β)φ

(
Yt − X′

tβ√
δ(β)

)]
,

for δ(β) = h2
n(1 + ‖β‖2) and defining w̃t as

∑t
k=1 ω�(k)/‖ω�‖1, 1 or∑n−t+1

k=1 ω�(k)/‖ω�‖1 in the cases t < �, � ≤ t ≤ n − � + 1, or t > n − � + 1,
respectively. The R function nlm, for example, can then be used to find β̃n using
the original QR estimator β̂n as a starting value. We use the above implementation
in our simulation studies and data examples in the following sections.

5. Simulation studies. We here examine the performance of the SETBB ap-
proach for (i) estimating the covariance matrix of

√
nβ̂n, (ii) estimating the cumu-

lative distribution of
√

n(β̂n − β0), and (iii) constructing confidence intervals for
individual quantile regression coefficients.

We simulated 500 data sets of size n = 100 according to Yt = X′
tβ + εt , with

Xt = (1, X̃′
t )

′, X̃t ∈ R
4 such that

X̃t = �1Xt−1 + �2Xt−2 + �Ut, Ut ∼ Normal(0, I4),

εt = φ1εt−1 + φ2εt−2 + Vt , Vt ∼ FV ,
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t = 1, . . . ,100, using independent sets {Vt } and {Ut } of i.i.d. random variables.
For innovations Vt of the error series, we chose FV to be (i) a Normal(0,1)

distribution, (ii) a centered/scaled Chi-square distribution with unit variance or
(iii) a t3 distribution scaled to have unit variance. Note that the error distribu-
tions satisfy (C.2) and the autogressive model has an exponential mixing rate.
Under these choices, X′

tβ is the conditional median of Yt given Xt . We set β =
(0,1,−1,1,−2)′ and considered values (φ1, φ2) equal to (0.7,0.1) or (0.8,0.1).
The matrices (�1,�2,�) were either (0.7I4,0.1I4, I4) or (0.8I4,0.1I4, I4), under
which {X̃t }nt=1 are four independent time series, or the matrices (�1,�2,�) were
chosen to respectively have (l′, l) entry equal to

(5.1) 0.41+|l′−l|, 0.11+|l′−l|(−1)|l′−l|, and 0.5|l′−l|, 1 ≤ l′, l ≤ 4,

under which {X̃t }nt=1 are realizations of a vector autoregressive time series.
To produce the SETBB distribution estimator, 2500 bootstrap resamples were

used for each data set, with choices �1 = 3 and m = 10 in the NPPI block size
selection from Section 4.1. The smoothing perturbations for the SETBB were gen-
erated from a Normal(0, Id+1) distribution, and the bandwidth matrix H was set to
H = ĥId+1 based on the Sheather–Jones selection ĥ for kernel density estimation
from the fitted residuals {ε̂t = Yt − X′

t β̂n}nt=1.
For comparison, we also included block bootstraps with various combinations

of smoothing in resampling based on the use of a smooth block taper w(t) (or not)
and/or the use of a data smoothing perturbation step (or not). That is, in addition
to the SETBB (i.e., smoothed data blocks and data perturbation), we considered
the moving block bootstrap (MBB) [i.e., unsmoothed data blocks w(t) = It∈[0,1]
and no data smoothing perturbation], a smooth moving block bootstrap (SMBB)
[i.e., unsmoothed data blocks w(t) = It∈[0,1] but with data perturbation as in the
SETBB] and the extended tapered block bootstrap (ETBB) [i.e., smoothed data
blocks w(t) and no data perturbation]. For comparison to the bootstrap methods,
Powell’s kernel estimator �̂

(PK)
n of L−1�L−1 = limn→∞ Cov(

√
nβ̂n) was also

computed and used for a normal approximation to the distribution of
√

n(β̂n −β0).
The estimator �̂

(PK)
n was obtained using the function summary.rq() from the

R package quantreg on the fitted model with the option se = "ker" and
otherwise default settings [20].

5.1. SETBB estimation of the covariance matrix of
√

nβ̂n. To compare per-
formance in covariance matrix (5 × 5) estimation, we evaluated the average es-
timation errors ‖Cov∗(

√
nβ̂∗

n) − Cov(
√

nβ̂n)‖2
F /25 for the four bootstrap meth-

ods over all simulated datasets, where ‖ · ‖F is the Frobenius norm, as well as
the average error ‖�̂(PK)

n − Cov(
√

nβ̂n)‖2
F /25 from Powell’s estimator. We re-

fer to these as mean squared errors (MSEs), where the true covariance matrix
Cov(

√
nβ̂n) of the QR estimator was approximated from 10,000 simulations. Ta-

ble 1 shows the ratios of bootstrap MSEs to the MSE of Powell’s kernel estimator
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TABLE 1
Ratios of bootstrap MSEs at data-adaptive bandwidth and block size choices to MSE of Powell’s

kernel estimator of Cov(
√

nβ̂n) over 500 simulated data sets

(�1,�2,�) = (0.7I4,0.1I4, I4) (�1,�2,�) = (0.8I4,0.1I4, I4)

(φ1,φ2) = (0.7,0.1) (φ1,φ2) = (0.8,0.1)

Normal Cent/scaled χ2
1 Scaled t3 Normal Cent/scaled χ2

1 Scaled t3

MBB 1.12 1.21 1.10 0.82 0.82 0.85
ETBB 0.95 0.93 0.97 0.83 0.82 0.88
SMBB 0.66 0.70 0.77 0.73 0.75 0.74
SETBB 0.64 0.71 0.74 0.76 0.77 0.76
P’s Ker 1.00 1.00 1.00 1.00 1.00 1.00

under the models with (�1,�2,�) = (0.7I4,0.1I4, I4), (φ1, φ2) = (0.7,0.1) and
(�1,�2,�) = (0.8I4,0.1I4, I4), (φ1, φ2) = (0.8,0.1). Under both settings, block
bootstraps with a smoothing pertubation (SETBB, SMBB) perform much bet-
ter than Powell’s estimator and their unsmoothed bootstrap counterparts (ETBB,
MBB). For (�1,�2,�) = (0.7I4,0.1I4, I4) and (φ1, φ2) = (0.7,0.1), the MBB
does not perform as well as Powell’s kernel, and the ETBB performs only slightly
better, but all bootstrap methods perform much better than Powell’s kernel when
the dependence is strengthened to (�1,�2,�) = (0.8I4,0.1I4, I4) and (φ1, φ2) =
(0.8,0.1). Hence, in QR, block bootstraps without data smoothing may not easily
perform better than direct kernel estimation techniques due to the smooth popula-
tion quantity (conditional error density) in the limiting variance of the QR estima-
tor; this supports findings in [8]. However, data smoothing steps introduced in the
SETBB method do consistently improve performance in variance estimation. We
remark that this performance is achieved under data-driven block size and band-
width selections.

Figure 1 depicts the behavior of the four bootstrap estimators of Cov(
√

nβ̂n)

across the block sizes � = 1, . . . ,30 under the model with Chi-square innovations
and with (�1,�2,�) = (0.7I4,0.1I4, I4) and (φ1, φ2) = (0.7,0.1). The vertical
bars in each panel depict the relative frequency of the NPPI block size selec-
tions. The horizontal dotted line in each panel is positioned at the MSE over the
500 simulated data sets under the NPPI-selected block sizes, and the horizontal
dashed line gives the MSE of Powell’s kernel estimator over the 500 simulated
data sets. We see that the data smoothing perturbation reduces the MSE of block
bootstraps across a wide range of block sizes, with additional improvements cre-
ated by smooth block tapering. The SETBB method exhibited the best results, and
the associated NPPI method also made good empirical block size selections.

Figure 2 depicts MSE results for estimating Cov(
√

nβ̂n) in the same format as
in Figure 1 under the model in which the covariate realizations {X̃t } come from the
vector autoregressive time series in (5.1) with Normal(0,1) innovations for gen-
erating the error series. We see that the SETBB under data-based block selection
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FIG. 1. MSE across block sizes and relative frequency of NPPI block size selections for
the MBB, SMBB, ETBB and SETBB under the centered and scaled Chi-square errors in the
(�1,�2,�) = (0.7I4,0.1I4, I4) and (φ1, φ2) = (0.7,0.1) model over 500 simulated data sets.
Dashed line shows MSE of Powell’s kernel and dotted line shows MSE of bootstrap method under
NPPI block size selections.

FIG. 2. MSE across block sizes and relative frequency of NPPI block size selections for the MBB,
SMBB, ETBB and SETBB under Normal(0,1) errors in the vector autoregressive covariates model in
(5.1) over 500 simulated data sets. Dashed line shows MSE of Powell’s kernel and dotted line shows
MSE of bootstrap method under NPPI block size selections.



1154 K. B. GREGORY, S. N. LAHIRI AND D. J. NORDMAN

estimates Cov(
√

nβ̂n) with a much lower MSE than its unsmooth counterpart and
Powell’s kernel estimator. Remarkably, the MBB with no smoothing/tapering per-
forms more poorly than Powell’s kernel over all block sizes. These results demon-
strate that the SETBB can accommodate a degree of multicollinearity among the
covariates.

5.2. SETBB estimation of the distribution function of
√

n(β̂n − β0). To as-
sess the performance of the SETBB for distribution estimation, we considered
the QR estimator β̂n1 of the first slope parameter β01, and for several x ∈ R val-
ues we computed the MSE of the bootstrap estimator P∗(m1/2

�

√
n(β̂∗

n1 − β̃n1) ≤
x) of P(

√
n(β̂n1 − β01) ≤ x) from the simulation runs; the true probabilities

P(
√

n(β̂n1 − β01) ≤ x) were approximated from 10,000 simulations. The results
under the scaled t3-distributed errors are displayed in Figure 3, in which the upper
three panels show the average cumulative distribution function estimators over 500
simulation runs across a range of x values in the left tail, middle region and right
tail of the distribution. The lower panels show the MSE. For comparison, Powell’s
kernel variance estimator was used for a normal approximation to the distribu-
tion of

√
n(β̂n1 − β01). The filled and unfilled squares and triangles are arbitrarily

positioned and serve only to label the curves.
We see from the lower panels that the MBB and ETBB are not competitive with

the normal approximation based on Powell’s estimator in the middle of the distri-
bution; in the tails, however, the normal approximation based on Powell’s estimator

FIG. 3. Upper panels: Average of bootstrap estimators P∗(m
1/2
�

√
n(β̂∗

n1 − β̃n1) ≤ x) of

P(
√

n(β̂n1 − β01) ≤ x) and of a normal approximation based on Powell’s kernel estimator
across a range of x values under the scaled t3 errors in the (�1,�2,�) = (0.7I4,0.1I4, I4),
(φ1, φ2) = (0.7,0.1) model; solid curve denotes true simulated distribution. Lower panels: MSE
achieved by bootstrap estimators and the normal approximation from Powell’s kernel.
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appears to be too lightly-tailed, whereas the MBB and ETBB distributions appear
to be less biased in the tails and have a similar MSE. Both the SMBB and SETBB
achieve lower MSEs in estimating the sampling distribution across nearly the entire
range of x, importantly achieving much lower MSEs in the tails of the distribution.
Additionally, when considering normal approximations to P(

√
n(β̂n1 − β01) ≤ x)

based on bootstrap estimators of Cov(
√

nβ̂n), all four bootstrap methods also turn
out to perform better than Powell’s kernel, with the SETBB performing better by
far; see the Supplementary Material [11] for further summaries.

5.3. Estimation performance under heteroscedastic error variances. We also
consider the performance of the SETBB for quantile regression when the error
variance is heteroscedastic. We thus define an error term

(5.2) εhet
t = εt

√
0.5 + 0.5X̃2

t1,

such that the variance of the error depends on the value of one of the covari-
ates, and we set Yt = X′

tβ + εhet
t , where {Xt }nt=1 and {εt }nt=1 are generated

with (�1,�2,�) = (0.7I4,0.1I4, I4) and (φ1, φ2) = (0.7,0.1) and Normal(0,1)

innovations. We see from Figure 4, which shows MSE results for estimating
Cov(

√
nβ̂n) in the same format as in Figures 1 and 2, that the SETBB still per-

forms well under this heteroscedastic model. Additional simulation results under
this type of heteroscedasticity are provided in the Supplementary Material [11].

FIG. 4. MSE across block sizes and relative frequency of NPPI block size selections for the MBB,
SMBB, ETBB and SETBB under the heteroscedastic errors from (5.2) constructed with Normal(0,1)

innovations in the (�1,�2,�) = (0.7I4,0.1I4, I4) and (φ1, φ2) = (0.7,0.1) model over 500 simu-
lated data sets. Dashed line shows MSE of Powell’s kernel and dotted line shows MSE of bootstrap
method under NPPI block size selections.



1156 K. B. GREGORY, S. N. LAHIRI AND D. J. NORDMAN

5.4. Coverage of confidence intervals based on the SETBB. As another assess-
ment of distribution estimation performce, we also study the coverage and average
width of confidence intervals based on quantiles of the MBB, ETBB, SMBB and
SETBB estimators of the distribution of

√
n(β̂nj − β0j ) for each of the quantile

regression coefficients β01 = 1, β02 = −1, β03 = 1, and β04 = 2 under each of the
model settings. The block size and bandwidth are chosen according to the data-
based procedures discussed in Section 4.1. For comparison, we include confidence
intervals from normal-approximations to the distribution of

√
n(β̂nj − β0j ) using

Powell’s kernel estimator of the variance. We also consider confidence intervals
constructed via the self-normalization procedure introduced by Zhou and Shao
(ZS) in [38] for making inference on parameters in a linear model with dependent
errors. For the latter procedure, a tuning parameter r must be selected by the user;
we choose r = 0.1,0.2 in accordance with the discussion in Section 3.1 of [38].

Table 2 displays the coverage results in the setting with Chi-square innovations
and with (�1,�2,�) = (0.7I4,0.1I4, I4) and (φ1, φ2) = (0.7,0.1). The coverage
of the unsmooth bootstrap methods is far below the nominal coverage of 95%,
but both the SMBB and SETBB achieve the nominal coverage for each of the
regression coefficients. We emphasize that this coverage is obtained under data-
based bandwidth and block-size choices. The coverage of the confidence intervals
based on the normal approximation with Powell’s kernel estimator of the vari-
ance plugged in lies rather below the nominal level. The coverage of the ZS confi-
dence intervals is quite close to nominal, although tending, perhaps, toward over-
coverage.

We point out that the average widths of the ZS confidence intervals are much
wider than those of the SMBB and SETBB confidence intervals, which suggests

TABLE 2
Coverage and (average width) of bootstrap-quantile 95% confidence intervals under data-based

choices of block and bandwidth as well as normal-approximation confidence intervals with Powell’s
kernel estimator and Zhou and Shao [38] confidence intervals with r = 0.1,0.2. Computed

over 500 simulated data sets from the model with Chi-square innovations and
(�1,�2,�) = (0.7I4,0.1I4, I4) and (φ1, φ2) = (0.7,0.1)

β0j MBB ETBB SMBB SETBB P’s Ker ZS (r = 0.1) ZS (r = 0.2)

1 0.76 0.78 0.95 0.94 0.87 0.97 0.96
(0.67) (0.67) (0.82) (0.81) (0.64) (1.30) (1.29)

−1 0.77 0.79 0.95 0.93 0.84 0.97 0.97
(0.67) (0.66) (0.81) (0.80) (0.64) (1.31) (1.33)

1 0.75 0.77 0.93 0.92 0.86 0.98 0.97
(0.66) (0.66) (0.81) (0.80) (0.64) (1.35) (1.34)

−2 0.80 0.84 0.95 0.94 0.89 0.99 0.97
(0.67) (0.67) (0.82) (0.81) (0.65) (1.36) (1.34)
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FIG. 5. Widths of confidence intervals from the method of [38] with r = 0.1 against those
of the SETBB under data-based block size and bandwidth choices for each quantile regres-
sion coefficient over 500 simulated data sets from the model with Chi-square errors and with
(�1,�2,�) = (0.7I4,0.1I4, I4) and (φ1, φ2) = (0.7,0.1).

that inference based on the ZS intervals would have low-power under these set-
tings. Figure 5 plots the widths of the ZS confidence intervals against those of the
SETBB confidence intervals over the 500 simulated datasets. The plot reveals a
tendency of the ZS procedure to produce very wide confidence intervals. In this
simulation, the ZS confidence intervals for (β01, β02, β03, β04) = (1,−1,1,−2)

included zero (committed Type II errors) for 19%, 19%, 23% and 2.0% of the
simulated data sets while those of the SETBB included zero for only 1%, 1%, 1%
and 0% percent of the data sets—while maintaining nominal coverage.

In total, the results for covariance matrix estimation and distribution function
estimation demonstrate clear advantages in combining block bootstrap methods
with data smoothing in resampling, as the bootstrap procedures using the data
perturbation performed much better than their unsmooth counterparts under all
settings considered. See the Supplementary Material [11] for further simulation
summaries.

6. Data examples.

6.1. Weekly gas and oil prices 2000–2005. Using weekly oil and gas price
data from the R package astsa from [34] over 2002–2005 (n = 260), we model
the 0.9 quantile of changes in the gas price conditional on the change in oil price.
The left-hand panel of Figure 6 displays the weekly data, and the right-hand panel
shows a scatterplot of the differenced gas price series against the differenced oil
price series. The solid line is the QR fit for the 0.9 conditional quantile. According
to the model, given a change in the oil prices, the change in the gas price in the
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FIG. 6. Weekly gas and oil prices from 2000–2005. Scatterplot of differenced series with θ = 0.9
QR fit and confidence intervals from Powell’s kernel and the SETBB overlaid.

same week will exceed the height of the solid line with a probability of at most 0.1.
Using the normal approximation based on Powell’s kernel estimate for the asymp-
totic variance of

√
n(β̂n − β0), we construct 95% confidence intervals around the

fitted line. We do the same using the estimated covariance matrix from the SETBB
at the data-adaptive bandwidth and block size choices, getting wider confidence
intervals for the position of the regression line.

6.2. Value at risk for Dow Jones Industrial Average. A common application
of quantile regression in time series is the estimation of the value at risk (VaR) of
a financial asset; see, for example, [6, 9] and [35]. The 100θ% VaR for a holding
period k is the value which the incurred loss will exceed with a probability of at
most 1 − θ if the asset is held for a period of length k. For example, if the 90%
one-day VaR of an asset is $1000, then there is at most a 10% chance of losing
$1000 or more if the asset is held for one day. The 100θ% VaR is thus the θ th
quantile of the loss distribution.

Regulators are interested in the VaR of assets held by financial institutions, and
traders often make decisions based on estimates of the future VaR based on present
and past data. To this end, QR may be used to fit, for example, an autogressive
model such as Yt = X′

tβ0 + εt (θ,Xt), where Yt is the loss in time period t , re-
gressors Xt = (1, Yt−1, . . . , Yt−p)′ are formulated in terms of past losses, and the
error εt (θ,Xt) has θ th quantile equal to zero. This model is a simple instance of
the CAViaR model proposed in [6]. After obtaining β̂n from QR based on n ob-
servations, the fitted value X′

n+1β̂n is typically applied as an approximate lower

100(1− θ)% prediction bound for the future loss Yn+1 value (i.e., X′
n+1β̂n is taken

as the 100θ% VaR for Yn+1), in light of the fact that P(Yn+1 ≥ X′
n+1β0) = 1 − θ

under the model and β̂n consistently estimates β0.
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Here, we consider the SETBB method for improving such one-step ahead VaR
estimates based on QR, which also illustrates potential extensions of the SETBB
approach (i.e., QR-based forecasting). In particular, for smaller samples, the boot-
strap may be applied to enhance the estimate X′

n+1β̂n as as an approximate lower
100(1 − θ)% prediction limit for the future loss Yn+1. Specifically, we use the
bootstrap to estimate the value an for which

P
(
Yn+1 ≥ X′

n+1β̂n + an

) = 1 − θ.

While an
p→ 0 holds as n → ∞ by the consistency of the QR estimator, the term

an may differ from zero in small samples due to errors associated with QR es-
timation in this problem (e.g., induced by using the same data for parameter es-
timation and one-step ahead prediction). We consequently approximate an from
the SETBB estimator for the distribution of prediction errors Yn+1 − X′

n+1β̂n =
εn+1 − X′

n+1(β̂n − β0). A SETBB rendition of εn+1 − X′
n+1(β̂n − β0) may

be constructed as ε∗
n+1 − X∗′

n+1(β̂
∗
n − β̃n), where, having defined perturbed ob-

servations {(Y ∗
t ,X∗′

t )′}nt=1 in the SETBB resampling steps for obtaining β̂∗
n =

arg minβ∈Rd S∗
n(β), the variables ε∗

n+1 and X∗
n+1 are drawn from resampling dis-

tributions for model errors and regressors, respectively, defined as

ε∗
n+1|

{(
Y ∗

t ,X∗
t

)}n
t=1 ∼ ∑n

t=1w̃t δY ∗
t −X∗′

t β̃n

X∗
n+1|

{(
Y ∗

t ,X∗
t

)}n
t=1 ∼ ∑n

t=1w̃t δ(1,Y ∗
t ,...,Y ∗

t−p+1)
′ .

Above w̃t ≡ E∗π∗
t = (n + � − 1)−1‖w�‖−1

1
∑n−�+1

j=1
∑�

k=1 w�(k)I (t = j + k − 1)

denotes a selection probability for observation t = 1, . . . , n under the SETBB
resampling distribution and the SETBB version β̃n of β0 is, as before, β̃n =
arg minβ∈Rd E∗S∗

n(β). From this, bootstrap versions of prediction errors ε∗
n+1 −

X∗′
n+1(β̂

∗
n − β̃n) may be approximated via Monte Carlo simulation through the fol-

lowing algorithm:

Input: Data {(Yt ,X
′
t )

′}nt=1, number of bootstrap replicates B , block length �, per-
turbation density GZ with bandwidth Hn.

1: Compute SETBB version β̃n of β0.
2: For all b = 1, . . . ,B , repeat 3-7:
3: Draw Z

∗(b)
1 , . . . ,Z

∗(b)
n independently from GZ .

4: Set (Y
∗(b)
t ,X

∗(b)′
t )′ = (Yt ,X

′
t )

′ + HnZ
∗(b)
t for t = 1, . . . , n.

5: Draw bootstrap weights π
∗(b)
1 , . . . , π

∗(b)
n .

6: Compute β̂
∗(b)
n = arg minβ∈Rd

∑n
t=1 π

∗(b)
t (Y

∗(b)
t − X

∗(b)′
t β)signθ (Y

∗(b)
t −

X
∗(b)′
t β)

7: Set ε
∗(b)
t = Y

∗(b)
t − X

∗(b)′
t β̃n for t = 1, . . . , n.
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As an estimator of an, the θ th quantile of the SETBB error distribution Y ∗
n+1 −

X∗′
n+1β̂

∗
n is then approximated as

ân = inf
a∈R

{
1

B

B∑
b=1

n∑
t=1

n∑
s=1

w̃t w̃sI
(
ε
∗(b)
t − X∗(b)′

s

(
β̂∗(b)

n − β̃n

) ≤ a
) ≥ θ

}
,

and the SETBB-calibrated one-step ahead 100θ% VaR [i.e., a SETBB (1−θ)100%
lower prediction bound for future loss Yn+1] is then given by X′

n+1β̂n + ân. We
may also consider finding a conditional calibrator bn of the VaR limit such that
P(Yn+1 ≥ X′

n+1β̂n + bn|Xn+1) = 1 − θ holds, given the immediate past Xn+1 =
(1, Yn, . . . , Yn−p) of loss observations. In which case, we set

b̂n = inf
b∈R

{
1

B

B∑
b=1

n∑
t=1

w̃tI
(
ε
∗(b)
t − X′

n+1
(
β̂∗(b)

n − β̃n

) ≤ b
) ≥ θ

}
,

(i.e., set X∗
n+1 = Xn+1 in creating bootstrap prediction errors) and define a condi-

tionally calibrated VaR limit as X′
n+1β̂n + b̂n using the SETBB.

For illustration, we consider predicting the 95% VaR for a one-day holding
period of an asset with the same composition as the Dow Jones Industrial Average
(DJIA) stock index, following [36]. We conduct a historical simulation in which
we choose a day in the past and use the foregoing 50, 100 and 200 days to fit
an AR(2) quantile regression model with which we predict the 0.95 quantile of
the conditional loss distribution on our chosen day [we set Yt = −100∗(logVt −
logVt−1), where Vt is the value of the DJIA stock index at time t]. We repeat
this for 1000 consecutive days beginning on April 11, 1996, and record whether
or not the loss exceeded the 0.95 prediction limit as given by (i) X′

n+1β̂n + b̂n,

(ii) X′
n+1β̂n + ân, and (iii) X′

n+1β̂n, considering SMBB and SETBB versions of ân

and b̂n. The NPPI method is used to select block size for each bootstrap and the
bandwidth is chosen as described in Section 4.1.

Table 3 records the proportion of the 1000 historical days for which the loss ex-
ceeded the 95% VaR limit under conditional/unconditional bootstrap calibrations
as well as with no bootstrap calibration. The standard prediction limit X′

n+1β̂n for
future loss Yn+1 was exceeded at the rates 0.09, 0.07 and 0.06 for the sample sizes
n = 50, 100 and 200. This exceedance rate approaches the nominal rate of 0.05 as
the sample size grows, suggesting that the model is not misspecified and that devi-
ations from the 0.05 nominal rate are due to finite-sample effects. In comparison,
the bootstrap-calibrated prediction limits performed better, with exceedance rates
much closer to the nominal 0.05 level for all of the sample sizes. In particular,
conditional prediction limits from the SETBB had excellent coverage rates: 0.06,
0.05 and 0.05 for the sizes n = 50, 100 and 200. This demonstrates the potential
usefulness of the SETBB method in QR-based forecasting problems in addition to
quantile parameter estimation.
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TABLE 3
Proportion of historical days out of 1000 where loss exceeded the 95%

VaR limit (lower 5% prediction bound) under conditional and
unconditional bootstrap calibrations under from SMBB/SETBB

methods, as well as without bootstrap calibration X′
n+1β̂n

X′
n+1β̂n + b̂n X′

n+1β̂n + ân X′
n+1β̂n

n = 50 SMBB 0.07 0.07 0.09
SETBB 0.06 0.06 0.09

n = 100 SMBB 0.06 0.06 0.07
SETBB 0.05 0.06 0.07

n = 200 SMBB 0.06 0.05 0.06
SETBB 0.05 0.05 0.06

7. Conclusions. Under mild conditions, we have established the consistency
of the smooth extended tapered block bootstrap (SETBB) for the sampling dis-
tribution of the quantile regression (QR) estimator with time series. Our results
also apply to unsmooth block bootstraps (i.e., the moving blocks bootstrap and
extended tapered block bootstrap) and extend their validity to QR under weaker
conditions than previously considered. Our simulation studies show that smooth-
ing steps in the SETBB remarkably improve estimation over unsmoothed bootstrap
counterparts. For the QR estimator, the SETBB also exhibited better performance
in distribution and variance estimation than Powell’s kernel method, and confi-
dence intervals for quantiles from the SETBB were shown to achieve the nominal
coverage while being narrower than intervals produced by the self-normalization
method of [38]—all under data-based choices of the block size and the bandwidth.
Our data examples also demonstrated the SETBB in practical applications.

8. Proofs of main results. We outline some details for proving the bootstrap
results of Section 3; the Supplementary Material [11] offers complete proofs. Lem-
mas 1–3 provide supporting technical results, where we state only the most rele-
vant parts of these lemmas for our purposes here; fuller versions appear in [11]. All
limits are taken as n → ∞. Lemma 1 first gives distributional and approximation
results for the QR estimator β̂n.

LEMMA 1. Assume Conditions (C.1)–(C.5) with �,L from (C.4).

(iii) For

Sn(β) = n−1
n∑

t=1

(
Yt − X′

tβ
)
signθ

(
Yt − X′

tβ
)
,

β̂n ≡ arg minβ∈Rd Sn(β) exists for all n ≥ 1 (a.s. P ) and β̂n
p−→ β0.
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(iv) Let Dn(β) = n−1 ∑n
t=1 Xtsignθ (Yt − X′

tβ) and λn(β) ≡ EDn(β) =
EX1signθ (Y1 − X′

1β), β ∈ R
d . There exists some d0 > 0 such that

sup
‖β−β0‖≤d0

‖Dn(β) − Dn(β0) − λn(β)‖
n−1/2 + ‖λn(β)‖

p−→ 0.

(v)
√

nDn(β̂n) = op(1).

(vi)
√

nDn(β0) − √
nλ(β̂n)

p−→ 0.
(vii) λn(β̂n) = −L(β̂n − β0) + op(‖β̂n − β0‖).
(viii)

√
n(β̂n − β0)

p−→ N(0,L−1�L−1).

For β ∈ R
d , recall the SETBB versions S∗

n(β) = ∑n
t=1 π∗

t (Y ∗
t − X∗′β) ×

signθ (Y
∗
t − X∗′β) and S̃n(β) ≡ E∗S∗

n(β) of Sn(β) and ESn(β). Additionally, for
the SETBB rendition D∗

n(β) = ∑n
t=1 π∗

t X∗
t signθ (Y

∗
t − X∗′β) from (3.1) of the

derivative-like criterion Dn(β) ≡ n−1 ∑n
t=1 Xtsignθ (Yt − X′β) (see Section 3.3),

define D̃n(β) ≡ E∗D∗
n(β). Lemma 2 next establishes distributional convergence

for quantities related to the bootstrap expectation D̃n(β), having parallels to re-
sults for Dn(β) in Lemma 1. Lemma 3 then provides distributional results, in the
bootstrap world, for the resampling version D∗

n(β) of Dn(β).

LEMMA 2. Assume Conditions (C.1)–(C.7) with δ̃ from (C.3):

(i) β̃n = arg minβ∈Rd S̃n(β) in probability for large n and β̃n
p−→ β0.

(ii) βn = arg minβ∈Rd ES̃n(β) exists for all large n, satisfies βn −→ β0, and

λ̃n(βn) = 0 holds for all large n where λ̃n(β) ≡ ED̃n(β).

(vi)
√

n‖D̃n(β̃n)‖ = op(1),
√

nD̃n(βn)
d−→ N(0,�),

√
nD̃n(βn) −√

n[λ̃n(β̃n) − λ̃n(βn)] p−→ 0 and
√

n(β̃n − βn)
d−→ N(0,L−1�L−1).

(vii) There exists some d1 > 0 such that

sup
‖β−β̃n‖≤d1

‖D̃n(β) − D̃n(β̃n) − [λ̃n(β) − λ̃n(β̃n)]‖
n−1/2 + ‖λ̃n(β) − λ̃n(β̃n)‖

p−→ 0.

(x) β̃n − β0 = Op(n−1/2 + hn) for hn = ‖Hn‖ → 0.

LEMMA 3. Assume Conditions (C.1)–(C.7). Let �d [·, ·] denote a metric on
distributions (the laws of random vectors) in R

d for some given d ≥ 1:

(i) �d [β̂∗
n,β0] p−→ 0 and �d [β̂∗

n, β̃n] p−→ 0.

(iii) �d [m1/2
� n1/2D∗

n(β̃n),W ] p−→ 0, where W denotes a normal N(0,�) ran-
dom vector with � from (C.3) and m� = ‖w�‖2

1/[�‖w�‖2
2].

(v) �1[√n‖D∗
n(β̂∗

n)‖,0] p−→ 0.
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(vi) There exists some d2 > 0 such that �1[�∗
n,0] p−→ 0 for

�∗
n ≡ sup

‖τ−β̃n‖≤d2

‖D∗
n(τ ) − D∗

n(β̃n) − [D̃n(τ ) − D̃n(β̃n)]‖
n−1/2 + ‖D̃n(τ ) − D̃n(β̃n)‖

.

PROOF OF THEOREMS 1–2. Theorem 1 follows from Lemma 1, while Theo-
rem 2(ii)–(iii) follows from Lemma 2. To show Theorem 2(i), for any subsequence
{nj } ⊂ {n}, choose a further subsequence {k ≡ nk} ⊂ {nj } where

β̂∗
k − β̃k

p∗−→ 0,(8.1)
√

kD∗
k

(
β̂∗

k

) p∗−→ 0,(8.2)

sup
‖τ−β̃k‖≤d2

‖D∗
k (τ ) − D∗

k (β̃k) − [D̃k(τ ) − D̃k(β̃k)]‖
k−1/2 + ‖D̃k(τ ) − D̃k(β̃k)‖

p∗−→ 0,(8.3)

m
1/2
� k1/2D∗

k (β̃k)
d∗−→ N(0,�),(8.4)

sup
‖β−β̃k‖≤d1

‖D̃k(β) − D̃k(β̃k) − [λ̃k(β) − λ̃k(β̃k)]‖
k−1/2 + ‖λ̃k(τ ) − λ̃k(β̃k)‖

−→ 0,(8.5)

hold (a.s. P ) by Lemma 3 and Lemma 2(vii). Above
p∗−→ and

d∗−→ denote con-
vergence in bootstrap probability P∗; fixed d2, d1 > 0 are from Lemma 3(vi) and
Lemma 2(vii); and λ̃n(β) ≡ ED̃n(β), β ∈ R

d , is from Lemma 2. In the following,
all convergence (a.s. P ) is along the subsequence k ≡ nk → ∞.

From (8.1) and the proof of Lemma 2(v), we have that

λ̃k

(
β̂∗

k

) − λ̃k(β̃k) + L
(
β̂∗

k − β̃k

) = −Gk

(
β̂∗

k − β̃k

) + op∗
(∥∥β̂∗

k − β̃k

∥∥)
= op∗

(∥∥β̂∗
k − β̃k

∥∥)
,

where L ≡ EXtX
′
t f (0|Xt) and Gn ≡ J1HnEZZ′H ′

nJ
′
1Ef (0|Xt) = o(1) [for Z ∼

GZ from (C.6) and diagonal (d + 1) × (d + 1) matrix J1 with entries (0,1′
d)] by

hn = ‖Hn‖ → 0. By this, (8.1) and (8.5), we have

(8.6)
√

k
[
D̃k

(
β̂∗

k

) − D̃k(β̃k)
] + L

√
k
(
β̂∗

k − β̃k

) = o(1) + op∗
(√

k
∥∥β̂∗

k − β̃k

∥∥)
.

By (8.1)–(8.3), it holds that
√

kD∗
k (β̃k) − √

k[D̃k(β̂
∗
k ) − D̃k(β̃k)] p∗−→ 0 directly

from the proof of [17], Theorem 3. By this and (8.6), we then have√
kD∗

k (β̃k) + L
√

k
(
β̂∗

k − β̃k

) = o(1) + op∗
(√

k‖β̂∗
k − β̃k‖)

.

As L is positive definite from (C.4) and m� = O(1), it now follows from (8.4) that√
k‖β̂∗

k − β̃k‖ = Op∗(1) and

m
1/2
�

√
k
(
β̂∗

k − β̃k

) = −L−1m
1/2
�

√
kD∗

k (β̃k) + op∗(1)
d−→ N

(
0,L−1�L−1)

.

As the subsequence {nj } was arbitrary, the proof is now complete by Pólya’s the-
orem and Theorem 1(ii). �
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SUPPLEMENTARY MATERIAL

Supplement to “A smooth block bootstrap for quantile regression with time
series” (DOI: 10.1214/17-AOS1580SUPP; .pdf). Details of proofs and additional
simulation results.
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