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ON THE SYSTEMATIC AND IDIOSYNCRATIC VOLATILITY WITH
LARGE PANEL HIGH-FREQUENCY DATA1

BY XIN-BING KONG

Nanjing Audit University

In this paper, we separate the integrated (spot) volatility of an individ-
ual Itô process into integrated (spot) systematic and idiosyncratic volatili-
ties, and estimate them by aggregation of local factor analysis (localization)
with large-dimensional high-frequency data. We show that, when both the
sampling frequency n and the dimensionality p go to infinity and p ≥ C

√
n

for some constant C, our estimators of High dimensional Itô process; com-
mon driving process; specific driving process, integrated High dimensional
Itô process, common driving process, specific driving process, systematic
and idiosyncratic volatilities are

√
n (n1/4 for spot estimates) consistent,

the best rate achieved in estimating the integrated (spot) volatility which is
readily identified even with univariate high-frequency data. However, when
Cn1/4 ≤ p < C

√
n, aggregation of n1/4-consistent local estimates of system-

atic and idiosyncratic volatilities results in p-consistent (not
√

n-consistent)
estimates of integrated systematic and idiosyncratic volatilities. Even more
interesting, when p < Cn1/4, the integrated estimate has the same conver-
gence rate as the spot estimate, both being p-consistent. This reveals a dis-
tinctive feature from aggregating local estimates in the low-dimensional high-
frequency data setting. We also present estimators of the integrated (spot)
idiosyncratic volatility matrices as well as their inverse matrices under some
sparsity assumption. We finally present a factor-based estimator of the inverse
of the spot volatility matrix. Numerical studies including the Monte Carlo ex-
periments and real data analysis justify the performance of our estimators.

1. Introduction. Itô processes are widely used in finance to model the price
dynamics of assets; see, for example, Barndorff-Nielsen and Shephard (2002),
Mykland and Zhang (2009) and the references therein. Since the integrated (spot)
volatility of an Itô process is an important characteristic in risk analysis, asset al-
location, and derivatives pricing (e.g., variance swap), statistical inference on it
becomes a hot topic recently; see, for example, Andersen et al. (2003), Kong, Liu
and Jing (2015), Chen and Xu (2014) and Jacod and Todorov (2014). Extensions
to the integrated volatility matrix of fixed dimension includes Barndorff-Nielsen
et al. (2008) and Christensen, Kinnebrock and Podolskij (2010). Inspired by the
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risk decomposition into a systematic part and an idiosyncratic part, in this pa-
per, we separate the volatility (integrated and spot) into systematic and specific
(idiosyncratic) volatilities. This would have potential applications in finance, for
example, estimates of the integrated systematic and idiosyncratic volatilities would
help to get a pricing decomposition for the variance swap. The estimates are also
important in risk management and portfolio analysis. It is well known in factor
analysis that the communality and the specific variance cannot be identified using
univariate observations or multivariate observations of fixed dimension. Therefore,
in this paper, we will estimate those two by using large panel high-frequency data,
that is, when both the dimensionality and the sample size are large enough, which
is a common feature in the modern data base.

Partly due to the development of data collection technology, we are now facing
vast portfolios. The large-dimensional Itô process becomes a natural tool to model
the prices of a large pool of assets with serial and cross-sectional dependence. Con-
sider the following large-dimensional Itô process defined on a filtered probability
space {�,F,Ft , P }:

(1.1)
Xit = Xi0 +

∫ t

0
μis ds

+
∫ t

0
σ 1

is dW 1
s + · · · +

∫ t

0
σ r

is dWr
s +
∫ t

0
σ ∗

is dW ∗
is , 1 ≤ i ≤ p,

where Xit stands for the log price trajectory of asset i, Xi0 is the initial value,
μi’s, σ l

i ’s (1 ≤ l ≤ r), σ ∗
i ’s are locally bounded adapted processes and W =

(W 1, . . . ,Wr)′ is a r-dimensional Brownian motion and W ∗ = (W ∗
1 , . . . ,W ∗

p)′ is a
p-dimensional Brownian motion with correlation matrix ρ∗. In matrix form, (1.1)
can be rewritten as

dXt = B t dt + σ t dW t + σ ∗
t dW ∗

t ,

where B t = (μ1t , . . . ,μpt )
′, Xt = (X1t , . . . ,Xpt )

′, σ ∗
t = diag(σ ∗

1t , . . . , σ
∗
pt ) and

σ t =

⎛
⎜⎜⎜⎜⎝

σ 1
1t · · · σ r

1t

σ 1
2t · · · σ r

2t
...

σ 1
pt · · · σ r

pt

⎞
⎟⎟⎟⎟⎠ .

For the reason of identifiability, we assume throughout the paper that corr(W ) = Ir .
We also assume that W and W ∗ are independent although they can be relaxed to
allow for weak dependence.

Model (1.1) assumes that the log price of each asset is driven by r common
Brownian motions and an asset-specific Brownian motion. In the simulation stud-
ies, Barndorff-Nielsen et al. (2008) and Fan, Li and Yu (2012) used similar versions
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of (1.1) to mimic the real log prices. Interestingly, Aït-Sahalia and Xiu (2017) and
Pelger (2016) recently specify Xt as

(1.2) Xt = �Y t + Zt ,

where � is a p × r constant factor loading matrix, Y is an r-dimensional unob-
servable common factor process and Z is a p-dimensional process representing the
idiosyncratic component. Both Z and Y are multivariate Itô processes. The strin-
gent condition of model (1.2) is the constancy of �. For example, if r = 1, then
the component volatility processes of �Y t are perfectly correlated, which is not
realistic. In contrast, model (1.1) even allows for independence among component
volatility processes of the systematic part.

Under model (1.1), the spot systematic and idiosyncratic volatility matrices are,
respectively,

�c
s = σ sσ

′
s and �e

s = σ ∗
sρ

∗σ ∗
s .

The integrated systematic and idiosyncratic volatilities for asset i are, respectively,

(1.3)
�c

ii =
∫ t

0
σ ′

isσ is ds =
∫ t

0
�c

ii(s) ds and

�e
ii =

∫ t

0
σ ∗2

is ds =
∫ t

0
�e

ii(s) ds,

where σ ′
is = (σ 1

is , . . . , σ
r
is), �c

ii(s) and �e
ii(s) are the ith diagonal entries of �c

s

and �e
s , respectively. The sum of these two is exactly the integrated volatility for

Xi .
There are many discrete analogies of model (1.1) popularly adopted in econo-

metrics. Ross (1976) introduced the arbitrage pricing theory (APT) model with
strict factor structure. Chamberlain and Rothschild (1983) extended the APT
model to an approximate factor model allowing for nonzero off-diagonal elements
in the residual covariance matrix. Motivated by them, we also impose a sparse
structure on ρ∗, which naturally renders a sparse structure of the integrated id-
iosyncratic volatility matrix

(1.4) �e = (�e
im

)
p×p =

(∫ T

0
σ ∗

isρ
∗
imσ ∗

ms ds

)
p×p

with ρ∗
im = ρ∗(i,m);

see Assumption 1 below.
The first estimator of large sparse covariation matrix using high-frequency data

dates back to Wang and Zou (2010) by using the universal thresholding technique.
Their estimator was later refined and extensively investigated by Tao, Wang and
Chen (2013) and Tao, Wang and Zhou (2013). Kim et al. (2015) introduced an
adaptive thresholding version of Wang and Zou’s (2010) estimator. The threshold-
ing and adaptive thresholding techniques dealing with i.i.d. data were invented, re-
spectively, by Bickel and Levina (2008) and Cai and Liu (2011). However, all these
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works imposed a sparsity assumption on the integrated volatility matrix, which is
rarely met for model (1.1). But rather their sparsity assumptions are especially
suited and well interpretable for the idiosyncratic volatility matrix; hence, in this
paper we assume instead that ρ∗ is sparse.

Related to the portfolio selection theory, it is of vital importance to estimate the
inverse of the spot volatility matrix, that is, the inverse of

(1.5) �s ≡ �c
s + �e

s .

In Fan, Li and Yu (2012), in principal, τ�s was used as a proxy of the covariance
matrix

∫ s+τ
s EFs�u du in a short future holding period (s, s + τ), and hence the

optimal allocation vector relies on the inverse of �s .
In this paper, we provide estimators for the integrated (spot) systematic and id-

iosyncratic volatilities for an individual Itô process. The convergence rate of our
estimators achieves

√
n (n1/4 for spot estimates) as in estimating the integrated

(spot) volatility if p ≥ C
√

n (p ≥ Cn1/4 for spot estimates) for some constant C.
We later present estimators of the integrated and spot idiosyncratic volatility matri-
ces as well as their inverse matrices. The estimators converge in the operator norm

at the rate of s0(p)( 1√
p

+
√

logp√
n

)1−q [or s0(p)( 1√
p

+
√

logp

n1/4 )1−q for spot estimates]
where s0(p) is a measure of sparsity and q is some constant in [0,1).

To deal with the time varying feature of the volatility processes, our basic tech-
nique is based on local factor analysis and then aggregate the local communalities
and specific variances to form integrated versions. Aggregation of local analysis
of high-frequency data is natural and indeed not new, and it arises frequently in
estimation of volatility functionals; see, for example, Mykland and Zhang (2009),
Jacod and Rosenbaum (2013), Jacod and Todorov (2014), Mykland, Shephard and
Shephard (2012) and Todorov and Tauchen (2012a, 2012b). However, the aggre-
gation of factor analysis for the large-dimensional Itô process is still unclear in
the high-frequency data literature. Indeed, the asymptotic results demonstrate that
while the spot estimators partly depend on 1

n1/4 , the integrated estimators partly

depend on a higher rate of 1√
n

, and that the convergence rate of all estimates relies

on 1√
p

due to the cross-section dependence of the large-dimensional idiosyncratic

driving Brownian motion W ∗. The most interesting feature of aggregation is the
joint dependence on p and n in estimating the individual systematic and idiosyn-
cratic volatilities. See Theorem 1 and Remark 1 below for details. This shows a
distinct scenario from the typical low-dimensional setting, where aggregation of
n1/4-consistent local estimates results in

√
n consistent global estimates.

We finally present a factor-based estimator of the inverse of the spot volatility
matrix which converges to the population counterpart with the rate of s0(p)( 1√

p
+

√
logp

n1/4 )1−q + 1√
p

+ 1/n1/4 + 1
n1/8p3/8 , where the term 1/n1/4 is due to the dis-

cretization error within a local window. The implication is that the discretization
error does matter, but it is under control in practice if the period length is short,
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and thus the estimated inverse of the spot matrix is still reliable. We failed in prov-
ing the consistency of the inverse of the factor-based thresholding estimator of
the integrated volatility matrix under the general model (1.1) and typical assump-
tions below. The major difficulty is that the sum of all estimates of spot systematic
volatility matrices has no spiked eigenvalues; see Remark 4 for more discussions.

Related to this work, there are some interesting reference papers. Aït-Sahalia
and Xiu (2016) constructed estimators of realized eigenvalues, eigenvectors and
principal components using high-frequency data. Our paper also needs the realized
instantaneous eigenvectors as an interim step to estimate the systematic volatilities
and factor scores. The difference is that, in their paper, they are interested in spec-
tral functionals of the multivariate Itô process of fixed dimension, but in our paper
we need p → ∞ and n → ∞ simultaneously. Aït-Sahalia and Xiu (2017) pro-
posed factor-based estimators of the integrated volatility matrices and proved the
asymptotic properties. But their theory is carried out under model (1.2) and the
constancy assumption ensures the rationale of global PCA in their paper. Contrast
to their paper, we developed the theory under the more general model (1.1) and
we used the local PCA technique adapted to the time varying volatilities. Besides,
we provided the asymptotics of the estimates for the individual integrated sys-
tematic and idiosyncratic volatilities, as well as that for the spot systematic and
idiosyncratic volatilities. Fan, Furger and Xiu (2016) constructed a factor-based
covariation matrix estimator of the large-dimensional Itô process driven by Brown-
ian motions using high-frequency data, but they assumed that the time-continuous
factor processes as well as the number of factor processes are observable as in
Fama–French’s factor model. In the present paper, we assume latent common fac-
tors and an unknown number of common driving Brownian motions. Bai (2003)
and Fan, Liao and Mincheva (2013) introduced novel approaches to do statistical
inferences on discrete approximate factor model in contrast to the continuous-time
counterpart (1.1). Moreover, our inference is based on high-frequency data due to
absence of long term stationarity of Xi’s and the time varying feature of volatil-
ity processes, instead of the discrete stationary panel data. Or mathematically, our
asymptotic regime is of the infill type with fixed time horizon while theirs let the
time horizon go to infinity and the time lag fixed. Interesting papers on large co-
variance matrix for discrete time models also include Li and Chen (2012).

The rest of the paper is arranged as follows. In Section 2, we give a heuristic
introduction to our approach. In Section 3, we give some technical assumptions.
We present our main results in Section 4. Section 5 is devoted to numerical studies,
including Monte Carlo simulations and real data analysis. Section 6 concludes. All
technical proofs are relegated in the Appendices A, B or Supplementary Materials
[Kong (2017)].

2. Methodology. In this section, we give a heuristic introduction of the
methodology. We first assume that r is known. We also assume that the data set
is discretely sampled from the large-dimensional Itô process, X = (X1, . . . ,Xp)′,
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with equal sampling frequency, �n = T/n, where T is a fixed time horizon and n

is the sample size. Mathematically, we will consider the asymptotic regime that
�n → 0. This sample scheme is also adopted in Fan, Furger and Xiu (2016),
Jacod and Rosenbaum (2013) and many references therein assuming absence of
microstructure noise. The data set sampled sparsely in minutes in the real data sec-
tion belongs to this class. We avoid using ultra-high frequency data simply for re-
ducing the bias caused by the microstructure noise. As demonstrated empirically in
Aït-Sahalia, Mykland and Zhang (2005) and Fan, Furger and Xiu (2016), sampling
in minutes leads to satisfactory results. For dense high frequency data with additive
noises, standard denoising techniques [e.g., the pre-averaging method in Jacod et
al. (2009)] are efficient. A hybrid of the aggregation of local factor analysis and
the pre-averaging technique is expected to work for the dense high-frequency data
scenario, but it requires more complicated technicalities and assumptions to guar-
antee the feasibility of local factor analysis (PCA). So, for simplicity, we choose
to start from the simple sparse sampling setting assuming noise free as in Jacod
and Rosenbaum (2013), Fan, Furger and Xiu (2016) and Aït-Sahalia and Xiu
(2016, 2017). More discussions can be found in Section 6.

Let Xitk be the observation of Xi at time tk with �n = tk − tk−1 and �n
jXi =

Xitj − Xitj−1 . Let δs = (�n

 s

�n
�+j

Xi)
j=1,...,kn

i=1,...,p /
√

�n ≡ (δs
ij )p×kn be a p × kn

matrix, where 
x� stands for the smallest integer no smaller than x. μs =
(μit
 s

�n
�+j

)
j=1,...,kn

i=1,...,p a p × kn matrix, F s = (�n

 s

�n
�+j

W l)
j=1,...,kn

l=1,...,r /
√

�n an r × kn

matrix, σ s = (σ l
is)

l=1,...,r
i=1,...,p a p × r matrix, σ ∗

s = diag{σ ∗
1s, . . . , σ

∗
ps} a p ×p matrix,

and

F ∗
s = (�n


 s
�n

�+j
W ∗

i

)j=1,...,kn

i=1,...,p /
√

�n ≡ (F ∗
s (1), . . . ,F ∗

s (kn)
)

a p × kn matrix. Then as kn�n shrinks to zero, we expect that

(2.1) δs ≈ μs

√
�n + σ sF s + σ ∗

sF
∗
s ≡ μs

√
�n + δ̄s .

Now the right-hand side of (2.1) has exactly the discrete approximate factor struc-
ture with μs

√
�n a negligible mean, σ s the factor loading matrix “fixed” in a block

of length kn�n but varies across blocks, F s the common factors, F ∗
s and σ ∗

s the
specific factors and their loadings.

Now within the local window (s, 
 s
�n

��n + kn�n), we do principal compo-

nent analysis for δ′
sδs

pkn
. Let V s = diag{v1

s , . . . , v
r
s } (vl

s ’s decreasing) and F̂ s =
(F̂ s(1), . . . , F̂ s(kn)) be, respectively, the diagonal matrix consisting of the eigen-

values and
√

kn times the eigenvector matrix of δ′
sδs

pkn
, with vl

s corresponding to the

eigenvector F̂
′
sl/

√
kn, the lth row of F̂ s/

√
kn. Ignoring the discritization error and

the drift term μs

√
�n, by Bai (2003) or Fan, Liao and Mincheva (2013), we have

(2.2) F̂ s(j) ≈ H sF s(j), σ̂ s ≡ δsF̂
′
s

kn

≈ σ sH
−1
s ,
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where H s = V −1
s F̂ sF

′
sσ

′
sσ s

pkn
. From (2.2), though F s and σ s = (σ 1s, . . . ,σps)

′ have

not identified themselves, their product is indeed identifiable and σ̂ sF̂ s ≈ σ sF s .
This motivates us to estimate the spot systematic and idiosyncratic volatilities,
respectively, by

(2.3)

�̂c
im(s, r) = σ̂ ′

is σ̂ms, �̂e
ii(s, r) = 1

kn

kn∑
j=1

(
δs
ij

)2 − �̂c
ii(s, r)

�̂e
im(s, r) = 1

kn

kn∑
j=1

(
δs
ij − σ̂ ′

isF̂ s(j)
)(

δs
mj − σ̂ ′

msF̂ s(j)
)
, i = m.

Before presenting the estimators of the integrated systematic and idiosyncratic
volatilities, we introduce some more notation. We separate the sampling time
points {0 = t0 < t1 < · · · < tn = T } into [ n

kn
] ([x] stands for the largest integer no

larger than x) nonoverlapping blocks with each block containing kn increments.
Throughout the paper, we assume that kn/

√
n is bounded from above and from

below. For simplicity, we denote μ(k−1)kn�n
, σ (k−1)kn�n , σ ∗

(k−1)kn�n
, F (k−1)kn�n ,

F̂ (k−1)kn�n , F ∗
(k−1)kn�n

, vl
(k−1)kn�n

, σ̂ t(k−1)kn
, H t(k−1)kn

and δ(k−1)kn�n by μk , σ k ,

σ ∗
k , F k , F̂ k , F ∗

k , vk
l , σ̂ k , H k and δk , respectively.

Then a natural way to estimate the integrated systematic and idiosyncratic (co)-
volatilities is to aggregate the local estimates as

(2.4)

�̂c
im(r) =

[n/kn]∑
k=1

kn�n�̂
c
im(t(k−1)kn, r),

�̂e
im(r) =

[n/kn]∑
k=1

kn�n�̂
e
im(t(k−1)kn, r),

where the notation A(r) emphasizes the dependence on r , and �̂c
im(t(k−1)kn, r) and

�̂e
im(t(k−1)kn, r) are, respectively, the imth entry of �̂

c

t(k−1)kn
(r) and �̂

e

t(k−1)kn
(r).

Next, we present the estimators of the integrated and spot idiosyncratic volatility
matrices under the following sparse condition.

ASSUMPTION 1. ρ∗ belongs to

Uq

(
s0(p)

)=
{
ρ∗;max

m

p∑
i=1

∣∣ρ∗
im

∣∣q ≤ s0(p)

}
,

where 0 ≤ q < 1, and s0(p) is some function of p.

For the m-dependent situation, s0(p) defined in Assumption 1 is bounded, but
for the general weakly dependent structure, s0(p) may go to infinity slowly. When
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q = 0, Assumption 1 means that each asset-specific factor is correlated to at most
s0(p) other asset specific factors. This is realistic in financial theory and empirical
studies; see, for example, Fan, Furger and Xiu (2016).

First, we estimate the spot covariations by (2.3). Then our thresholding estima-
tor of the spot idiosyncratic volatility matrix is

�̂
eT
s (r) ≡ (�̂eT

im (s, r)
)
p×p with �̂eT

im (s, r) =
{
gλ

(
�̂e

im(s, r)
)
, i = m,

�̂e
ii(s, r), i = m,

where gλ(z) is a class of thresholding functions satisfying (i) |gλ(z)| ≤ c|y| for
all z, y with |z − y| ≤ λ, and some c > 0; (ii) gλ(z) = 0 for |z| ≤ λ; (iii) |gλ(z) −
z| ≤ λ, for all z ∈ R.

These three conditions are satisfied by, for example, the hard thresholding func-
tion gλ(z) = zI (|z| > λ), the soft thresholding rule gλ(z) = sgn(z)(z − λ)+ and
the adaptive lasso rule gλ(z) = z(1 − |λ/z|η)+ with η ≥ 1.

Analogously, our thresholding estimator of the integrated idiosyncratic volatil-
ity is

�̂
eT

(r) ≡ (�̂eT
im (r)

)
p×p with �̂eT

im (r) =
{
gλ

(
�̂e

im(r)
)
, i = m,

�̂e
ii(r), i = m.

Finally, we consider estimating the inverse of �s . Our factor-based estimator is

�̂
−1
s (r), the inverse of �̂s(r), where

�̂s(r) = �̂
c

s(r) + �̂
eT
s (r) ≡ (�̂c

im(s, r)
)
p×p + �̂

eT
s (r).

Now we consider the situation when r is unknown. In this case, we simply
replace r by an estimated number r̂ . In this paper, we use the approach studied in
Kong (2017) by minimizing the penalized aggregated mean squared residual error,
that is, for some bounded rm,

r̂ = arg min
l≤rm

U
(
l, F̃

l)+ βlg(p,n) ≡ arg min
l≤rm

1

[n/kn]
[n/kn]∑
k=1

V
(
l, F̃

l

k

)+ βlg(p,n),

where F̃
l = (F̃

l

1, . . . , F̃
l

[n/kn]) with F̃
l

k = F̌
l

kδ
′
kδk ,

V
(
l, F̃

l

k

)= 1

pkn

tr
(
δk

(
Ikn − F̃

l′
k

(
F̃

l

kF̃
l′
k

)−1
F̃

l

k

)
δ′
k

)
,

β is a tuning parameter, and g(p,n) is a function depending on p and n satisfying

(
√

p ∧ √
kn)

2g(p,n) → ∞ and g(p,n) → 0 as p,n → ∞. Here, F̌
l

k is a l × kn

matrix whose j th row is
√

kn times the eigenvector of δ′
kδk corresponding to vk

j

for 1 ≤ j ≤ l. Theorem 3 in Kong (2017) shows that

(2.5) lim
p,n→∞P(r̂ = r) = 1.
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So our final estimators are �̂c
ii(r̂), �̂c

ii(s, r̂), �̂e
ii(r̂), �̂e

ii(s, r̂), �̂
eT

(r̂), �̂
eT
s (r̂),

and �̂
−1
s (r̂), the plug-in versions of �̂c

ii(r), �̂c
ii(s, r), �̂e

ii(r), �̂e
ii(s, r), �̂

eT
(r),

�̂
eT
s (r), and �̂

−1
s (r), respectively.

3. Setup assumptions. To establish the theoretical results, we need the fol-
lowing technical assumptions. The first assumption gives some regularity condi-
tions on the coefficient processes of the Itô processes. They are commonly used in
the literature; see, for example, Jacod and Todorov (2014), Jing et al. (2012), Jing,
Kong and Liu (2012), Kong, Liu and Jing (2015) for univariate models, and Wang
and Zou (2010), Fan, Li and Yu (2012), Tao, Wang and Zhou (2013) and Kim et al.
(2015) for large-dimensional Itô processes.

ASSUMPTION 2. We have a sequence Tn of stopping times increasing to in-
finity, a sequence an of bounded positive numbers, such that, for i = 1, . . . , p, l =
1, . . . , r ,

t < Tn ⇒ |Zt | ≤ an, for Z = μi, σ
l
i , σ

∗
i ; and for Z = σ l

i , σ
∗
i ,∣∣EFt∧Tn

(Z(t+s)∧Tn − Zt∧Tn)
∣∣+ EFt∧Tn

(Z(t+s)∧Tn − Zt∧Tn)
2 ≤ ans;∣∣σ l

i,t+s − σ l
i,t

∣∣2 + ∣∣σ ∗
i,t+s − σ ∗

i,t

∣∣2 ≤ ans
1−ε for ε > 0.

The last regularity condition holds when σ l
i ’s and σ ∗

i ’s follow the Brownian–
Itô process with locally bounded coefficient processes which can be checked by
Lévy’s continuity theorem. The next assumption gives the condition on the cross-
sectional dependence of the specific driving Brownian motions.

ASSUMPTION 3. kn/
√

n is bounded from above and from below, logp =
o(n1/2−ε) and

√
n

pδ′ = o(1) for some δ′ ≥ 1 and any ε > 0. 1
p

∑p
i=1
∑p

j=1 |ρ∗
ij | < M

for some M < ∞.

The intuition under Assumption 3 is that the specific factors are cross sectionally
weakly dependent. It includes the strict factor model as a special case. It is also
satisfied when the components of W ∗ are m-dependent or under some other mixing
conditions. Assumption 3 implies that

E

( p∑
i=1

F ∗
k (i,1)√

p

)2δ′

≤ C

(
1

p

∑
i

∑
j

∣∣ρ∗
ij

∣∣)δ′
< M

and

E

( p∑
i=1

(F ∗2
k (i,1) − 1)√

p

)2δ′

≤ C

(
1

p

∑
i

∑
j

(
ρ∗

ij

)2)δ′
< M,

for all k = 1, . . . , [n/kn].
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Next, the assumption is on the minimum eigenvalue of σ ′
tσ t

p
. It is a continuous-

time analogue of the factor loading condition imposed in Bai and Ng (2002) and
Fan, Liao and Mincheva (2013) for the discrete approximate factor model.

ASSUMPTION 4. There exists a sequence of stopping times Tn ↑ ∞ and con-
stants a∗

n > 0, so that

(3.1) inf
0≤t≤Tn

λmin

(
σ ′

tσ t

p

)
≥ a∗

n,

and for all t ∈ [0, T ], σ ′
tσ t

p
has distinct eigenvalues.

4. Main results. We first give the convergence rate of the estimators of the
systematic and idiosyncratic risks of an individual Itô process.

THEOREM 1. Suppose Assumptions 2–4 hold:

(4.1)

�̂c
ii(r̂) −

∫ T

0
σ ′

isσ is ds = Op

(
1

C2
pn

)
,

�̂c
ii(s, r) − �c

ii(s, r) = Op

(
1

p ∧ n1/4

)

and

(4.2)

�̂e
ii(r̂) −

∫ T

0

(
σ ∗

is

)2
ds = Op

(
1

C2
pn

)
,

�̂e
ii(s, r) − �e

ii(s, r) = Op

(
1

p ∧ n1/4

)
,

where Cpn = √
p ∧ n1/4.

REMARK 1. It is well known in low-dimensional high-frequency context that
aggregating n1/4-consistent estimates of spot volatilities results in a

√
n-consistent

estimate of the integrated volatility. An interesting distinctive property in large-
dimensional high-frequency data analysis demonstrated in Theorem 1 is that the
convergence rate after aggregation achieves p ∧ √

n compared with the p ∧ n1/4-
consistency rate of the spot estimates. If p ≥ C

√
n, aggregation yields the consis-

tency rate of
√

n in contrast to n1/4, the rate for the spot analogue, typical as in
the low-dimensional setting. However, if Cn1/4 ≤ p < C

√
n, aggregation results

in a rate of p while the rate of the spot estimates is n1/4. Even more surprisingly,
when p < Cn1/4, the integrated systematic or idiosyncratic volatility has the same
convergence rate as the local estimate, both being p-consistent.
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The next theorem gives a concentration-type inequality of the maximum of the
estimation errors of the residual covariations, which is crucial in proving Theo-
rem 3.

THEOREM 2. Suppose Assumptions 2–4 hold and maxm≤p
1√
p

∑p
i=1 |ρ∗

im| <

M , we have

(4.3)

P

(
max

1≤i,m≤p

∣∣�̂e
im(r) − �e

im(r)
∣∣> h

(√
logp

n1/2 + 1√
p

))

= O

(
n1/2

pδ′ + p
−δ′

2 + p1−δ′
n1−δ′/2

)

and

(4.4)

P

(
max

1≤i,m≤p

∣∣�̂e

im(s, r) − �e
im(s, r)

∣∣> h

(√
logp

n1/4 + 1√
p

))

= O

(
n1/2

pδ′ + p
−δ′

2 + p1−δ′
n1−δ′/2

)

for some constant h > 0.

REMARK 2. Theorem 2 demonstrates that the estimated idiosyncratic co-
volatilities are uniformly close to the realized ones. This makes identifying the
“signals” using estimated idiosyncratic covolatilities feasible. Similar to Remark 1,
aggregation leads to rate enhancement when n < Cp logp.

Theorem 3 below reveals the convergence rate of the thresholding estimator of
the sparse idiosyncratic volatility matrices.

THEOREM 3. Suppose Assumptions 1–4 hold, maxm≤p
1√
p

∑p
i=1 |ρ∗

im| < M ,

and λmax(ρ
∗) < c for some constant c > 0. We have

(4.5)
P
(

sup
ρ∗∈Uq (s0(p))

∥∥�̂eT
(r̂) − �e

∥∥≤ Cqs0(p)λ1−q
pn

)

= 1 − O
(
p−δ′√

n + p−δ′/2 + p1−δ′
n1−δ′/2)+ o(1)

and

(4.6)
P
(

sup
ρ∗∈Uq (s0(p))

∥∥�̂eT
(s, r̂) − �e(s)

∥∥≤ Cqs0(p)λ̃1−q
pn

)

= 1 − O
(
p−δ′√

n + p−δ′/2 + p1−δ′
n1−δ′/2)+ o(1),

for some constant Cq , where λpn = 1√
p

+
√

logp√
n

and λ̃pn = 1√
p

+
√

logp

n1/4 .
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REMARK 3. Theorem 3 demonstrates that the convergence rate of the thresh-
olding estimator of the sparse integrated idiosyncratic volatility matrix is of order

s0(p)λ
1−q
pn . If s0(p)λ

1−q
pn = o(1) and p−δ′√

n + p1−δ′
n1−δ′/2 = o(1), �̂

eT
(r̂) is a

consistent estimator in terms of the spectral norm. Compared with the threshold-
ing level used in Bickel and Levina (2008) and Cai and Liu (2011), the level used
in the present paper has an additional term 1√

p
. This comes from the estimation

error of the factor loadings and the factor scores. So in thresholding the realized
integrated idiosyncratic volatility matrix, an estimated “signal” could be identi-
fied only if it has a strength stronger than the combined estimation error caused
in estimating the latent residual process and in estimating the covariations of the
error processes. The o(1) term comes from the estimation of the number of com-
mon factors. Similar conclusions can be drawn on the estimated spot idiosyncratic
volatility matrix.

A straight corollary of Theorem 3 and the identity
(
�̂

eT
(r̂)
)−1 − (�e)−1 = (�̂eT

(r̂)
)−1(

�e − �̂
eT

(r̂)
)(

�e)−1

is the following.

COROLLARY 1. Under the conditions in Theorem 3, if s0(p)λ
1−q
pn = o(1),

p−δ′√
n + p1−δ′

n1−δ′/2 = o(1), inf0≤s≤T min1≤i≤p(σ ∗
is)

2 > c−1 and c−1 ≤
λmin(ρ

∗) ≤ λmax(ρ
∗) < c for some constant c > 0, we have

(4.7)
∥∥(�̂eT

(r̂)
)−1 − (�e)−1∥∥= Op

(
s0(p)λ1−q

pn

)
and

(4.8)
∥∥(�̂eT

(s, r̂)
)−1 − (�e(s)

)−1∥∥= Op

(
s0(p)λ̃1−q

pn

)
.

Now we give a result on the factor-based estimator of the inverse of the spot
volatility matrix.

THEOREM 4. Under the conditions in Corollary 1, we have

(4.9)
∥∥�̂−1

s (r̂) − �−1
s

∥∥= Op

(
λ̃1−q

pn s0(p) +
(

1√
p

+ n−1/4
)

+ 1

n1/8p3/8

)
.

REMARK 4. In Theorem 4, λ̃
1−q
pn s0(p) is due to the error accumulation in es-

timating the idiosyncratic volatility matrix, �e
s . The term 1√

p
+ 1

n1/8p3/8 is a result

of the cross-section dependence of the idiosyncratic factors, while the term n−1/4

comes from the discretization error. Therefore, as discussed in the Introduction, if

the holding period of certain portfolio is short, �̂
−1
s (r̂) serves as a good tool in
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portfolio allocation. The discretization error term does not appear in Fan, Liao and
Mincheva (2013) for the discrete approximate factor model and Aït-Sahalia and
Xiu (2017) for the continuous-time factor model since constant loadings are as-
sumed. As in all the factor-based precision matrix estimators, the proof of this the-
orem depends heavily on the Sherman–Morrison–Woodbury formula, which, how-
ever, does not carry through for the inverse of the factor-based integrated volatility

matrix via aggregation, �̂(r̂) ≡ �̂
c
(r̂) + �̂

eT
(r̂). To be clear, let

�̂ =√kn�n(σ̂ 1, . . . , σ̂ [n/kn])

and

�̃ =√kn�n

(
σ 1H

−1
1 , . . . ,σ [n/kn]H−1

[n/kn]
)
.

Then by definition, we have, in matrix form, �̂
c = �̂�̂

′
. Let �̃

c = �̃�̃
′

and

�̃ = �̃
c +�e. Then we have ‖�̂−1

(r̂)−�−1‖ ≤ ‖�̂−1
(r̂)− �̃

−1‖+‖�̃−1 −�−1‖.
To bound the first term, following the proof of Theorem 4, in (A.33), one wishes
λmin(�̃

′
�̃) ≥ Cp which is not true whenever p = [n/kn]r . So estimating the in-

verse of the integrated volatility matrix under model (1.1) via aggregating local
factor analysis seems infeasible, and we leave it as a future problem. Under model
(1.2), however, this becomes a simple and global PCA (a special case of local PCA
when kn = n) as in Aït-Sahalia and Xiu (2017) work since the discretization error
term in Theorem 4 is vanishing and local analysis becomes unnecessary.

5. Numerical studies.

5.1. Simulation studies. In this section, we conduct simulations to check the
performance of our estimators. We generate data from the stochastic volatility
models of the form (1.1) with r = 3. The instantaneous volatility processes, σ l

it ’s
are generated independently from the following square-root processes:(

σ l
it

)2 = bli

(
ali − (σ l

it

)2)
dt + σ 0

liσ
l
it dWσ

it , l = 1, . . . , r.

We set a1i = 0.5 + i/p, a2i = 0.75 + i/p, a3i = 0.6 + i/p, b1i = 0.03 + i/100p,
b2i = 0.05+ i/100p, b3i = 0.08+ i/100p, σ 0

1i = 0.15+ i/10p, σ 0
2i = σ 0

3i = 0.2+
i/10p. These parameters are similarly chosen as in Jacod and Todorov (2014) and
Kong, Liu and Jing (2015). The specific volatility process follows the stochastic
differential equation(

σ ∗
it

)2 = (0.08 + i/100p)
(
0.25 + i/p − (σ ∗

it

)2)
dt + (0.2 + i/10p)σ ∗

it dWσ∗
it .

The simulations are repeated for 2000 times. We set p = 100,200. As in Kong

(2017), km is set to be 6 and β = ζ̂ = U(6, F̃
6
), and the penalty function used in

determining r is g(p,n) = p+kn

pkn
log pkn

p+kn
.



1090 X.-B. KONG

We first consider the case when n = 1170 mimicking every-one-minute data set
of 3 days (3×390). We let kn = 30 ≈ √

1170, and hence the data set is split into 39
blocks. The simulation results are reported in the upper half of Table 1, which dis-
plays the averaged squared relative estimation errors of the Integrated Systematic
Volatility (EISV) and Idiosyncratic Volatility (EIIV) of the first simulated process,
and averaged absolute estimation error of the Thresholded Integrated Idiosyncratic
Volatility Matrix (ETIIVM). EIIVM stands for the averaged absolute estimation
error of the realized integrated volatility matrix without thresholding. In estimating
the integrated idiosyncratic volatility matrix, we set the thresholding parameter, h,
so that the averaged squared spectral norm of the estimation error stops trending
lower.

Next, we consider the case when n = 780 mimicking every 5-minute data set of
10 days (10 × 78). We let kn = 30 ≈ √

780, and hence the data set is split into 26
blocks. The simulation results are reported in the lower half of Table 1. From the ta-
ble, we observe that our estimators are quite close to the true parameters across the
board. The thresholding estimator of the integrated idiosyncratic volatility matrix
performs better than the one without thresholding. This is consistent to Theorem 3
and the well-known fact that the realized integrated idiosyncratic volatility matrix
works bad when p is large.

5.2. Real data analysis. In this section, we implement our estimators to a real
financial data set consisting of 99 heavily traded stocks included in S&P 500 index
in April 2013. We start from April 1st and remove the transaction prices within the
first 20 minutes of April 1st after the opening of the market in order to get rid of
the cross-month jump effect. In order to avoid the adverse effect of microstrcture
noise, we sparsely sample the data set. We choose to use n = 780 observations of
9-minute log returns. We set kn = 30 and estimate the number of r by using the

TABLE 1
Averaged squared relative estimation errors of the integrated systematic volatility (EISV) and

idiosyncratic volatility (EIIV) of the first simulated process, and averaged absolute estimation error
in spectral norm of the sparse integrated idiosyncratic volatility matrix. EIIVM stands for the
averaged absolute estimation error in spectral norm of the realized integrated volatility matrix

without thresholding, and EIIIVM for that of the thresholding estimator

EISV EIIV EIIVM ETIIVM

n = 1170 3 × 390

p = 100 0.0017 0.0075 0.1882 0.0671
p = 200 0.0019 0.0072 0.1887 0.0589

n = 780 10 × 78

p = 100 0.0029 0.0131 0.6749 0.2551
p = 200 0.0027 0.0086 0.6849 0.2377
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same settings as in Kong (2017) which results in r̂ = 5. The largest eigenvalue of
the factor-based estimated integrated idiosyncratic volatility matrix is 1.0e−004 ×
0.0025. To show robustness of the estimation over time, we remove the transaction
prices within the first 30 minutes of April 01 after the opening of the market and
calculate the estimators using n = 780 observations of 9-minute log returns. This
time, the largest eigenvalue of the factor-based estimated integrated idiosyncratic
volatility matrix is 1.0e−004 × 0.0020. Comparing these two cases, we see that
the estimated realized largest eigenvalues are quite close since the second data set
is only 10 minutes ahead of the first one.

In thresholding, we choose the tuning parameter as in Fan, Liao and Mincheva
(2013), that is, we choose h to be the smallest real number in a fine grid so that

�̂
eT

(r̂) is positive definite. The upper panels in Figure 1 display the minimum

eigenvalues of �̂
eT

(r̂) as a function of h. Left panel corresponds the first data set
and the right panel the second data set. Both panels show that the chosen h is
around 9 × 1.0e−005.

The lower panels in Figure 1 display the heat maps of the thresholding estimator
of the integrated idiosyncratic volatility matrix. From the figure, there is strong
evidence of sparsity structure. It also demonstrates that the specific factors are not
independent.

6. Conclusion and discussion. In this paper, we propose estimators of the
(integrated and spot) systematic and idiosyncratic volatilities and also estimators
of the sparse (integrated and spot) idiosyncratic volatility matrix and the inverse
of the spot volatility matrix. There are several interesting problems related to this
topic that are either undergoing or to be studied in the future:

• Testing for the bandedness of the integrated idiosyncratic volatility matrix is of
importance in econometrics. For discrete-time models, we refer to Qiu and Chen
(2012).

• There are some practical issues to be considered when using ultra-high fre-
quency data. How large is the bias caused by the asynchronicity and microstruc-
ture noise and how to get rid of it? There are many efficient noise smoothing
methods, like the two-time scale technique in Zhang, Mykland and Aït Sahalia
(2005) and the pre-averaging approach invented in Jacod et al. (2009). We con-
jecture that a hybrid of our estimation procedure and any noise smoothing tech-
nique would result in noise-robust estimators with a sacrificed convergence rate
(replace n in Theorems 1–4 to

√
n). We refer to Wang and Zou (2010), Tao,

Wang and Chen (2013) and Tao, Wang and Zhou (2013), Kim et al. (2015) for
large volatility matrix estimation with measurement errors (but without factor
structure).
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FIG. 1. Upper panels: the minimum eigenvalues of �̂
eT

(r̂) as a function of h; Lower Panels: heat
maps of the thresholding estimator of the integrated idiosyncratic volatility matrix; Left panels: the
first data set; Right panels: the second data set.

APPENDIX A: PROOF OF THE MAIN THEOREMS

In the proof, C stands for a generic constant that may take different values at
different appearances. Fk−1 = Ft(k−1)kn�n

. By the standard localization method, it
suffices to prove the results under the following strengthened assumption.

ASSUMPTION 5. For l = 1, . . . , r ,

(A.1)

max
1≤i≤p

sup
0≤t≤T

(∣∣σ l
it

∣∣+ ∣∣σ ∗
it | + |μit

∣∣)< C,

inf
0≤t≤T

λmin

(
σ ′

tσ t

p

)
≥ C−1
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and

(A.2)

inf
0≤t≤T

min
1≤l≤r−1

∣∣∣∣λl+1

(
σ ′

tσ t

p

)
− λl

(
σ ′

tσ t

p

)∣∣∣∣≥ C−1,

max
1≤i≤p

[Et(Zt+s − Zt)
2 + ∣∣Et(Zt+s − Zt)

∣∣≤ Cs, Z = σ l
i , σ

∗
i ,

∣∣σ l
i,t+s − σ l

i,t

∣∣2 + ∣∣σ ∗
i,t+s − σ ∗

i,t

∣∣2 ≤ Cs1−ε for ε > 0.

By (2.5), it is enough to prove the theorems by assuming that r ≤ rm is known.
We will assume this in the sequel.

Important decompositions. Let V k be r × r diagonal matrix of the r largest

eigenvalues of δ′
kδk

pkn
in decreasing order. Then we have 1

pkn
δ′
kδkF̂

′
k = F̂

′
kV k . By

this and the decomposition for δk , we soon have the following decomposition:

(A.3) F̂ k(j) − H kF k(j) = Ikj + IIkj + IIIkj + IVkj + Vkj ,

where

Ikj = V −1
k

1

kn

kn∑
l=1

F̂ k(l)
1

p

p∑
i=1

σ ∗2
ki

(
F ∗

k (i, l)F ∗
k (i, j) − E

[
F ∗

k (i, l)F ∗
k (i, j)

])

IIkj = V −1
k

1

kn

kn∑
l=1

F̂ k(l)
1

p

p∑
i=1

σ ∗2
ki E
[
F ∗

k (i, l)F ∗
k (i, j)

]

IIIkj = V −1
k

1

kn

kn∑
l=1

F̂ k(l)

(
1

p
F ′

k(l)σ
′
kσ

∗
kF

∗
k(j) + 1

p
F ∗′

k (l)σ ∗′
k σ kF k(j)

)

IVkj = V −1
k

1

kn

kn∑
l=1

F̂ k(l)
1

p

(
δ′
k(l) − δ

′
k(l)
)
δk(j)

Vkj = V −1
k

1

kn

kn∑
l=1

F̂ k(l)
1

p
δ
′
k(l)
(
δk(j) − δk(j)

)
,

and A(j) stands for the j th column of the matrix A, A(i, l) stands for the entry in
row i and column l of the matrix A, and σ ∗

ki = σ ∗
k(i, i). In matrix form,

(A.4)
F̂ k − H kF k = V −1

k F̂ k

pkn

(
(δk − δ̄k)

′δk + δ̄
′
k(δk − δ̄k)

+ F ∗′
k σ ∗′

k σ ∗
kF

∗
k + F ′

kσ
′
kσ

∗
kF

∗
k + F ∗′

k σ ∗
kσ kF k

)
.

Recall that σ̂ k = δkF̂
′
k/kn, then by the fact that F̂ kF̂

′
k/kn = Ir , we have

(A.5) σ̂ k = σ kH
−1
k + VIk + VIIk,
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where

VIk = 1

kn

σ k

(
F k − H−1

k F̂ k

)
F̂

′
k,

VIIk = 1

kn

(
δk − δk + σ ∗

kF
∗
k

)
F̂

′
k.

Then we soon have

(A.6) σ̂ ki = H−1′
k σ ki + VIki + VIIki,

where A′
ki always denotes the ith row of Ak = (Ak1, . . . ,Akl)

′, l = r, kn. Combin-
ing (A.3) and (A.6), we have

(A.7) σ̂ ′
kiF̂ k(j) = σ ′

kiF k(j) + Rk
ij ,

where

Rk
ij = σ ′

kiH
−1
k (Ikj + IIkj + IIIkj + IVkj + Vkj )

+ (VI′
ki + VII′

ki

)(
H kF k(j) + Ikj + IIkj + IIIkj + IVkj + Vkj

)
.

From (A.7), one easily gets

(A.8)

1

kn

kn∑
j=1

(
σ̂ ′

kiF̂ k(j)
)2

= 1

kn

kn∑
j=1

(
σ ′

kiF k(j)
)2 + 1

kn

kn∑
j=1

(
Rk

ij

)2 + 2

kn

kn∑
j=1

σ ′
kiF k(j)Rk

ij .

Before stating the proof of Theorem 1, we introduce some lemmas, of which
the proofs are given either in Appendix B or the supplement [Kong (2017)].

LEMMA 1. Let V 0
k and γ 0

k be the eigenvalue matrix and eigenvector matrix of

B0
k ≡ σ ′

kσ k

p
, respectively. Under Assumptions 2–4, if p = eo(k1−ε

n ) for any ε > 0, we
have for any M > 0 and some h > 0,

(A.9)
P

(∥∥V k − V 0
k

∥∥> h

(
1

p1/4 +
√

logp

k
1/2−ε
n

))

= O
(
p− δ′

2 ∨(−M)),

(A.10)
P

(∥∥∥∥H k − (V 0
k

)−1/2
γ 0′

k

(
σ ′

kσ k

p

)1/2∥∥∥∥> h

(
1

p1/4 +
√

logp

k1−ε
n

))

= O
(
p− δ′

2 ∨(−M)),
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and

(A.11) P

(∥∥H ′
kH k − Ir

∥∥> h

(
1

p1/4 +
√

logp

k1−ε
n

))
= O

(
p− δ′

2 ∨(−M)).

COROLLARY 2. If p−δ′
kn = o(1) and p = eo(k1−ε

n ), we have for some h′ > 0

(A.12)
P

(
max

k

(
‖V k‖ + ∥∥V −1

k

∥∥+ ‖H k‖ + ∥∥H−1
k

∥∥+ ‖F̂ k − H kF k‖√
kn

)
> h′

)

= O
(
p−δ′

kn

)= o(1).

LEMMA 2. Let d > 0 be an integer, under Assumptions 2–4, we have

max
1≤k≤[n/kn]

∥∥∥∥∥ 1

kn

kn∑
j=1

F k(j)F ′
k(j)

∥∥∥∥∥= Op(1),(A.13)

EFk−1

(∥∥V −1
k − (V 0

k

)−1∥∥+ ∥∥V k − V 0
k

∥∥
(A.14)

+∥∥H−1
k − (H 0

k

)−1∥∥+ ∥∥H k − H 0
k

∥∥)d ≤ C

(
1

Cpn

)d

,

EFk−1

(∥∥V −1
k

∥∥+ ‖V k‖ + ∥∥H−1
k ‖ + ‖H k

∥∥)d ≤ C,(A.15)

EFk−1

(
1

kn

kn∑
l=1

∥∥F̂ k(l) − H kF k(l)
∥∥2

)d

≤ C

C2d
pn

.(A.16)

Let

Rk
ij = Rk

ij (1) + Rk
ij (2),

where

Rk
ij (1) = σ ′

kiH
−1
k (Ikj + IIkj + IIIkj + IVkj + Vkj ) + (VI′

ki + VII′
ki

)
H kF k(j),

Rk
ij (2) = (VI′

ki + VII′
ki

)
(Ikj + IIkj + IIIkj + IVkj + Vkj ).

LEMMA 3. Under Assumptions 2–4, we have

[n/kn]∑
k=1

�n

kn∑
j=1

σ ′
kiF k(j)Rk

ij (1) = Op

(
1

C2
pn

)
,(A.17)

[n/kn]∑
k=1

�n

kn∑
j=1

σ ′
kiF k(j)Rk

ij (2) = Op

(
1

C2
pn

)
.(A.18)
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PROOF OF THEOREM 1. By the definition of Rk
ij , we have

(A.19)

(
Rk

ij

)2 ≤ C
(∥∥σ ′

kiH
−1
k

∥∥2∥∥F̂ k(j) − H kF k(j)
∥∥2

+ ∥∥H kF k(j)
∥∥2∥∥σ̂ ki − H−1′

k σ ki

∥∥2)
.

Then by Lemma 2, (S.2.46) in the supplement [Kong (2017)] and Corollary 2, we
have

[n/kn]∑
k=1

�n

kn∑
j=1

(
Rk

ij

)2 = Op

(
1

C2
pn

)
.

This together with Lemma 3, (A.8) and the fact that

[n/kn]∑
k=1

kn∑
j=1

(
σ ′

kiF k(j)
)2 =

∫ T

0
σ ′

isσ is ds + Op(
√

�n),

proves the first equation of (4.1). Again, by Lemma 2, (S.2.46) in the supplement
[Kong (2017)] and Corollary 2, plus (A.19), we have

1

kn

kn∑
j=1

(
Rk

ij

)2 = Op

(
1

C2
pn

)
.

Following the proof of Lemma 3 in the supplement [Kong (2017)], one easily gets

1

kn

kn∑
j=1

σ ′
kiF k(j)Rk

ij (1) = Op

(
1

p ∧ √
kn

)

and

1

kn

kn∑
j=1

σ ′
kiF k(j)Rk

ij (2) = Op

(
1

p ∧ √
kn

)
.

The above two equations and Assumption 2 prove the second equation of
(4.1). Notice that

∫ t
0 σ ′

isσ is ds + ∫ t
0 (σ ∗

is)
2 ds and σ ′

isσ is + (σ ∗
is)

2 are the in-
tegrated volatility and spot volatility of Xi , respectively. On the other hand,∑[n/kn]

k=1 �n

∑kn

j=1(δ
k
ij )

2 and 1
kn

∑kn

j=1(δ
s
ij )

2 are realized integrated and local vari-
ances, respectively. Then it is well known that they converge to the integrated
volatility and spot volatility at the rate of Op(

√
�n) and Op(�

1/4
n ), respectively.

This together with (4.1) proves (4.2). �

PROOF OF THEOREM 2. We first get a decomposition on �̂e
im−�e

im. By (A.7),
we have

(A.20) δk(i, j) − σ̂ ′
kiF̂ k(j) = δk(i, j) − δk(i, j) + σ ∗

kiF
∗
k (i, j) − Rk

ij .
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Then we further have(
δk(i, j) − σ̂ ′

kiF̂ k(j)
)(

δk(m, j) − σ̂ ′
kmF̂ k(j)

)
= σ ∗

kiF
∗
k (i, j)F ∗

k (m, j)σ ∗
km + (δk(i, j) − δk(i, j) − Rk

ij

)
× (δk(m, j) − δk(m, j) − Rk

mj

)
(A.21)

+ σ ∗
kiF

∗
k (i, j)

(
δk(m, j) − δk(m, j) − Rk

mj

)
+ σ ∗

kmF ∗
k (m, j)

(
δk(i, j) − δk(i, j) − Rk

ij

)
.

By the definition of �̂e
im and (A.21), it suffices to prove the following lemmas of

which the proofs are given in the supplement [Kong (2017)]. Lemmas 4 and 5 are
used, respectively, to prove (4.3) and (4.4). �

LEMMA 4. For some h > 0, we have under assumptions in Theorem 2,

(A.22)
P

(
max

i

[n/kn]∑
k=1

�n

kn∑
j=1

(
δk(i, j) − δk(i, j) − Rk

ij

)2
> h

(√
logp

kn

+ 1√
p

))

= O
(
p−δ′/2 + p−δ′

kn

)
and

(A.23)

P

(
max
i,m

∣∣∣∣∣
[n/kn]∑
k=1

�n

kn∑
j=1

σ ∗
kiF

∗
k (i, j)

(
δk(m, j) − δk(m, j) − Rk

mj

)∣∣∣∣∣
> h

(√
logp

kn

+ 1√
p

))

= O
(
p−δ′/2 + p−δ′

kn + p1−δ′
k2−δ′
n

)
.

LEMMA 5. For some h > 0, we have under assumptions in Theorem 2

(A.24)
P

(
max

i

1

kn

kn∑
j=1

(
δs(i, j) − δs(i, j) − Rs

ij

)2
> h

(√
logp√
kn

+ 1√
p

))

= O
(
p−δ′/2 + p−δ′

kn

)
and

(A.25)

P

(
max
i,m

∣∣∣∣∣ 1

kn

kn∑
j=1

σ ∗
isF

∗
s (i, j)

(
δs(m, j) − δs(m, j) − Rs

mj

)∣∣∣∣∣
> h

(√
logp√
kn

+ 1√
p

))

= O
(
p−δ′/2 + p−δ′

kn + p1−δ′
k2−δ′
n

)
,
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where Rs
ij is similarly defined as Rk

ij except for replacing the data starting point
t(k−1)kn by 
s/�n��n.

PROOF OF THEOREM 3. Let A = {max1≤i≤p max1≤m≤p |�̂e
im(r) − �e

im| ≤
h( 1√

p
+

√
logp
kn

)}. Then on A, we have by setting λ = λpn = h( 1√
p

+
√

logp
kn

), As-
sumption 5 and the property of gλ(z),

(A.26)

∥∥�̂eT
(r) − �e

∥∥
2 ≤ max

1≤i≤p

p∑
m=1

∣∣�̂eT
im (r) − �e

im

∣∣

= max
1≤i≤p

p∑
m=1

∣∣�̂eT
im (r) − �e

im|(I (|�e
im

∣∣≤ λpn

)

+ I
(∣∣�e

im

∣∣> λpn,
∣∣�̂eT

im (r)
∣∣< λpn

)
+ I
(∣∣�e

im

∣∣> λpn,
∣∣�̂eT

im (r)
∣∣> λpn

))
≤ max

1≤i≤p

(
(C + 1) + (C + 1)2

+ ((C + 2)q + 1
))

λ1−q
pn

p∑
m=1

∣∣�e
im

∣∣q
≤ Cqs0(p)λ1−q

pn .

(4.5) is now a direct consequence of (A.26) and (4.3). The proof of (4.6) is almost
the same, and hence omitted. �

PROOF OF THEOREM 4. Without confusion and for simplicity, we write

�̂
eT
s (r̂) in short by �̂

eT
s . Without loss of generality and for notational simplic-

ity, we assume that s = 0. The proof for s = 0 is almost the same. Recall that

(A.27) �s = σ sσ
′
s + σ ∗

sρ
∗σ ∗′

s , �̂s = σ̂ s σ̂
′
s + �̂

eT
s .

Let �̃
c

s = σ̃ s σ̃
′
s where σ̃ s = σ sH

−1
s , and �̃s = �̃

c

s + �e
s . Then we have

(A.28)
∥∥�̂−1

s − �−1
s

∥∥≤ ∥∥�̂−1
s − �̃

−1
s ‖ + ‖�̃−1

s − �−1
s

∥∥.
Now by the Sherman–Morrison–Woodbury formula, we have

�̂
−1
s − �̃

−1
s = (�̂eT

s

)−1 − (�̂eT
s

)−1
σ̂ s

(
Ir + σ̂ ′

s

(
�̂

eT
s

)−1
σ̂ s

)−1
σ̂ ′

s

(
�̂

eT
s

)−1

− {(�e
s

)−1 − (�e
s

)−1
σ̃ s

(
Ir + σ̃ ′

s

(
�e

s

)−1
σ̃ s

)−1
σ̃ ′

s

(
�e

s

)−1}
= (�̂eT

s

)−1 − (�e
s

)−1(A.29)
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− (�̂eT
s

)−1
σ̂ s

(
Ir + σ̂ ′

s

(
�̂

eT
s

)−1
σ̂ s

)−1
σ̂ ′

s

(
�̂

eT
s

)−1

+ (�e
s

)−1
σ̃ s

(
Ir + σ̃ ′

s

(
�e

s

)−1
σ̃ s

)−1
σ̃ ′

s

(
�e

s

)−1

≡ VIII + IX + XI.

By Corollary 1, we have VIII = Op(λ̃
1−q
pn s0(p)). By (A.5), we have

(A.30)
‖σ̂ s − σ̃ s‖2 ≤

∥∥∥∥VIs + δs − δs

kn

F̂
′
s

∥∥∥∥2

F

+ ‖σ ∗
sF

∗
s F̂

′
s‖2

kn

≡ ζ1 + ζ2,

where ‖A‖F =√tr(A′A). For ζ1, we have∥∥∥∥VIs + δs − δs

kn

F̂
′
s

∥∥∥∥2

F

≤ ‖σ s‖2
F

∥∥∥∥F s − H−1
s F̂ s√

kn

∥∥∥∥2

F

∥∥∥∥ F̂
′
s√
kn

∥∥∥∥2

F

+
∥∥∥∥δs − δs√

kn

∥∥∥∥2

F

∥∥∥∥ F̂
′
s√
kn

∥∥∥∥2

F

.

Let λ′
pn = 1

p
+ kn�n. By Lemma 2, the Burkhölder–Davis–Gundy inequality, the

boundedness of μi’s, and the fact that ‖ F̂
′
s√
kn

‖2
F ≤ r , we have ζ1 = Op(λ′

pnp).
For ζ2, we have

(A.31) ζ2 = 1

k2
n

λmax
(
σ ∗

sF
∗
s F̂

′
sF̂ sF

∗′
s σ ∗′

s

)= ∥∥σ ∗
sF

∗
sF

∗′
s σ ∗′

s

∥∥1/2 1

kn

.

Then by (B.12) below, we have ζ2 = Op(
p1/4√

kn
). So, in combination, we have

(A.32) ‖σ̂ s − σ̃ s‖2 = Op

(
λ′

pnp
)
.

Next, we have by the condition given in the theorem:

(A.33)

λmin(G) ≡ λmin
(
Ir + σ̃ ′

s

(
�e

s

)−1
σ̃ s

)
≥ λmin

((
�e

s

)−1)
λmin
(
σ̃ ′

s σ̃ s

)
≥ Cλmin

((
H−1

s

)′
σ ′

sσ sH
−1
s

)
≥ Cp

and

(A.34) ‖σ̃ s‖ ≤ Cp1/2,

with probability approaching one by Corollary 2 and Assumptions 4–5. Let G1 =
Ir + σ̂ ′

s(�
eT
s )−1σ̂ s , then by (A.32) and Corollary 1, we also have λmin(G1) ≥ Cp
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with probability approaching one. On the other hand, by (A.32), (A.33) and (A.34),

(A.35)

∥∥G−1 − G−1
1

∥∥≤ ∥∥G−1∥∥∥∥G−1
1

∥∥∥∥σ̃ ′
s

(
�e

s

)−1
σ̃ s − σ̂ ′

s

(
�eT

s

)−1
σ̂ s

∥∥
= Op

(
(λ′

pn)
1/2

p
+ 1

k
1/4
n p11/8

+ λ̃
1−q
pn s0(p)

p

)
.

Now we have the decomposition IX + XI =∑5
i=1 Li , where

L1 = [(�e
s

)−1 − (�̂eT
s

)−1]
σ̃ sG

−1σ̃ ′
s

(
�e

s

)−1
,

L2 = (�̂eT
s

)−1[σ̃ s − σ̂ s]G−1σ̃ ′
s

(
�e

s

)−1
,

L3 = (�̂eT
s

)−1
σ̂ sG

−1[σ̃ ′
s − σ̂ s

](
�e

s

)−1
,

L4 = (�̂eT
s

)−1
σ̂ sG

−1σ̂ s

[(
�e

s

)−1 − (�̂eT
s

)−1]
,

L5 = (�̂eT
s

)−1
σ̂ s

[
G−1 − G−1

1

]
σ̂ s

(
�̂

eT
s

)−1
.

By this decomposition and (A.32), (A.33), (A.34) and (A.35), we have IX + XI =
Op(λ̃

1−q
pn s0(p) +

√
λ′

pn + 1
k

1/4
n p3/8

). This together with the estimate of VIII, we

show that �̂
−1
s − �̃

−1
s = Op(λ

1−q
pn s0(p) +

√
λ′

pn + 1
k

1/4
n p3/8

). Similarly, by the

Sherman–Morrison–Woodbury formula again, we have

�̃
−1
s − �−1

s = (�e
s

)−1
σ s

(
Ir + σ ′

s

(
�e

s

)−1
σ s

)−1
σ ′

s

(
�e

s

)−1

− (�e
s

)−1
σ̃ s

(
Ir + σ̃ ′

s

(
�e

s

)−1
σ̃ s

)−1
σ̃ ′

s

(
�e

s

)−1
.

Let G̃ = Ir + σ̃ ′
s(�

e
s)

−1σ̃ s and G̃1 = Ir + σ ′
s(�

e)−1
s σ s . Then we have

λmin(G̃) ≥ λmin
((

�e
s

)−1)
λmin
(
σ̃ ′

s σ̃ s

)≥ Cp,

with probability approaching one due to Assumption 4, the condition in the theo-
rem, and Corollary 2. Similarly, λmin(G̃1) ≥ Cp with probability approaching one.
Therefore, by (A.11),∥∥G̃−1

1 − H−1
s G̃−1H−1

s

∥∥≤ C
∥∥G̃−1∥∥∥∥G̃−1

1

∥∥‖H sH s − Ir‖

= Op

(
1

p9/4 + 1

p2

√
logp

k1−ε
n

)
.

This together with the fact that ‖σ s‖ ≤ C
√

p yields �̃
−1
s − �−1

s = Op( 1
p5/4 +

1
p

√
logp

k1−ε
n

). This completes the proof. �
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APPENDIX B: PROOF OF THE LEMMAS

PROOF OF LEMMA 1. Proof of (A.9). By Weyl’s theorem, we have

(B.1)

max
1≤j≤r

∣∣vj − v0
j

∣∣
≤ C

(∥∥∥∥δ
′
kδk − F ′

kσ
′
kσ kF k

pkn

∥∥∥∥+
∥∥∥∥σ k(F kF

′
k/kn)σ

′
k − σ kσ

′
k

p

∥∥∥∥
)
.

By Assumption 5, we only need to prove

(B.2) P

(∥∥∥∥δ
′
kδk − F ′

kσ
′
kσ kF k

pkn

∥∥∥∥> h

(
1

p1/4 + (logp)1/4

k
1/2−ε
n

))
= O

(
p− δ′

2 ∨(−M))
and

(B.3) P

(∥∥F kF
′
k/kn − Ir

∥∥> h

√
logp

kn

)
= O

(
p−M),

for any M > 0 if h is chosen large. For (B.3), notice that the difference is a fixed
dimensional matrix, it suffices to prove

(B.4) P

(∣∣∣∣∣
kn∑

j=1

F(i, j)F (l, j)/kn − Iil

∣∣∣∣∣> h

√
logp

kn

)
= O

(
p−M),

where Iil = 1 if i = l and 0 otherwise. By the Markov inequality and the Gaus-
sianity of F(i, j)’s,

P

(∑kn

j=1 F(i, j)F (l, j)

kn

− Iil > h

√
logp

kn

)
≤ e

−xh
√

logp
kn

+Cx2/kn.

Similarly, we have

P

(∑kn

j=1 F(i, j)F (l, j)

kn

− Iil < −h

√
logp

kn

)
≤ e

−xh
√

logp
kn

+Cx2/kn.

Taking x = √
kn logp in last two equations proves (B.4). For (B.2), we bound the

quantity within the parentheses on the left-hand side by

(B.5)
‖(δk − δk)

′(δk − δk)‖ + 2‖δ′
k(δk − δk)‖ + ‖δ′

kδk − F ′
kσ

′
kσ kF k‖

pkn

.

We further have

‖(δk − δk)
′(δk − δk)‖

pkn

≤ 1

kn

kn∑
j=1

1

p

p∑
i=1

(
δk(i, j) − δk(i, j)

)2

≤ max
1≤i≤p

1

kn

kn∑
j=1

(
δk(i, j) − δk(i, j)

)2
.
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By the above equation, boundedness of μi’s and (S.3.49) in the supplement [Kong
(2017)], we have for any ε > 0 and large h,

(B.6) P

(‖(δk − δk)
′(δk − δk)‖

pkn

> h

√
logp

k1−ε
n

)
= O

(
p−M).

By the above equation, Assumptions 3 and 5, (B.3) and

‖δ′
k(δk − δk)‖

pkn

≤ ‖δk‖√
pkn

‖δk − δk‖√
pkn

we have

P

(‖δ′
k(δk − δk)‖

pkn

> h
(logp)1/4

k
1/2−ε
n

)
= O

(
p−M),(B.7)

∥∥δ′
kδk − F ′

kσ
′
kσ kF k‖ ≤ ‖F ∗′

k σ ∗′
k σ ∗

kF
∗
k

∥∥+ 2
∥∥F ′

kσ
′
kσ

∗
kF

∗
k

∥∥.(B.8)

Since σ ∗
k is a diagonal matrix with bounded entries as assumed in Assumption 5,

(B.9)
∥∥F ∗′

k σ ∗′
k σ ∗

kF
∗
k

∥∥≤ C‖F ∗′
k F ∗

k‖ ≤ C
(∥∥F ∗′

k F ∗
k −E

[
F ∗′

k F ∗
k

]∥∥+∥∥E[F ∗′
k F ∗

k

]∥∥).
Since E[F ∗′

k F ∗
k] is a diagonal matrix, we have ‖E[F ∗′

k F ∗
k]‖ ≤ C, and hence

(B.10)

∥∥F ∗′
k σ ∗′

k σ ∗
kF

∗
k

∥∥/pkn

≤ C
(
1 + ∥∥F ∗′

k F ∗
k − E

[
F ∗′

k F ∗
k

]∥∥)/pkn

≤ C

(
1/pkn

+
√√√√√ 1

pk2
n

kn∑
j=1

kn∑
l=1

(
F ∗′

k (j)F ∗
k(l) − E[F ∗′

k (j)F ∗
k(l)]√

p

)2
)
.

Let F ∗
k = ρ∗ 1

2 F̃
∗
k where F̃

∗
k has independent entries. Then we have

(B.11)

E

[
1

k2
n

kn∑
j=1

kn∑
l=1

(
F ∗′

k (j)F ∗
k(l) − E[F ∗′

k (j)F ∗
k(l)]√

p

)2
]δ′

≤ max
j,l

E

(
F ∗′

k (j)F ∗
k(l) − E[F ∗′

k (j)F ∗
k(l)]√

p

)2δ′

≤ C

(∑
i

∑
j ρ∗2

ij

p

)δ′
.

By this and Assumption 3, plus (B.10), we have, with the Markov inequality,

(B.12) P

(‖F ∗′
k σ ∗′

k σ ∗
kF

∗
k‖

pkn

>
h

p1/4

)
= O

(
p−δ′/2).
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Simple manipulation yields

(B.13)
‖F ′

kσ
′
kσ

∗
kF

∗
k‖

pkn

≤
√√√√√ 1

pk2
n

kn∑
m=1

kn∑
j=1

[ p∑
i=1

F ∗
k (i, j)√

p
σ ∗

ki

r∑
l=1

σk(i, l)Fk(l,m)

]2

.

Notice that
∑p

i=1
F ∗

k (i,j)√
p

σ ∗
ki

∑r
l=1 σk(i, l)Fk(l,m) is a Gaussian random variable

conditional on Fk−1 and F k ,

(B.14) E

[ p∑
i=1

F ∗
k (i, j)√

p
σ ∗

ki

r∑
l=1

σk(i, l)Fk(l,m)

]2δ′

≤ C

(∑
i

∑
j |ρ∗

ij |
p

)2δ′
.

By again the Markov inequality and Assumption 3, we have

(B.15) P

(‖F ′
kσ

′
kσ

∗
kF

∗
k‖

pkn

>
h

p1/4

)
= O

(
p−δ′/2).

(B.12) and (B.15) prove that

(B.16) P

(‖δ′
kδk − F ′

kσ
′
kσ kF k‖

pkn

>
h

p1/4

)
= O

(
p−δ′/2).

(B.6), (B.7) and (B.16) proves (B.2).

Proof of (A.10). We first give a representation of F kF̂
′
k

kn
. Let Rk = (

σ ′
kσ k

p
)1/2 ×

F kF̂
′
k

kn
, dk = 1

kn
(
σ ′

kσ k

p
)1/2F k

δ′
kδk−F ′

kσ
′
kσ kF k

pkn
F̂

′
k , Bk = (

σ ′
kσ k

p
)1/2 F kF

′
k

kn

× (
σ ′

kσ k

p
)1/2, L∗

nk = (diag (R′
kRk))

−1/2, and γ nk = Rk(diag (R′
kRk))

−1/2. From

the equality that δ′
kδk

pkn
F̂

′
k = F̂

′
kV k , we deduce that

(B.17)
(
Bk + dkR

−1
k

)
γ nk = γ nkV k,

demonstrating that γ nk is the eigenvector matrix of Bk + dkR
−1
k . Then from the

definition of Rk , we have

(B.18)
F kF̂

′
k

kn

=
(

σ ′
kσ k

p

)−1/2
γ nkL

∗
nk

and

(B.19) H k = V −1
k L∗

nkγ
′
nk

(
σ ′

kσ k

p

)1/2
.

Seen from (A.9) and (B.19), it is enough to show that

(B.20) P

(∥∥γ nk − γ 0
k

∥∥> h

(√
logp√
kn

+ 1√
knp1/4

))
= O

(
p− δ′

2 ∨(−M))
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and

(B.21) P

(∥∥L∗2
nk − V 0

k

∥∥> h

(√
logp√
kn

+ 1

p1/4

))
= O

(
p− δ′

2 ∨(−M)).
Let γ k be the eigenvector matrix of Bk . Then we have by the SIN(θ) theorem
[Davis and Kahan (1970)],

(B.22) ‖γ nk − γ k‖ ≤ C
∥∥R−1

k

∥∥‖dk‖.

By Assumption 4, the definition of F̂ k , and (B.3), we have, for large enough h′
and C and some C∗, c, c′ > 0,

(B.23)

P
(∥∥R−1

k

∥∥> h′)≤ P

(
λmin

(
F kF

′
k

kn

)
≤ C−1

)

≤ P

(
1 − C∗

∥∥∥∥F kF
′
k

kn

− Ir

∥∥∥∥≤ C−1
)

≤ P

(∥∥∥∥F kF
′
k

kn

− Ir

∥∥∥∥≥ c

2

)

= O
(
e−c′kn

)= O
(
p−M),

due to p = eo(kn). On the other hand,

(B.24) ‖dk‖ ≤ 1√
kn

∥∥∥∥
(

σ ′
kσ k

p

)1/2∥∥∥∥‖δ
′
kδk − F ′

kσ
′
kσ kF k‖

pkn

By (B.2), we have

(B.25) P

(
‖dk‖ > h

(√
logp

k1−ε
n

+ 1

p1/4k
1/2
n

))
= O

(
p− δ′

2 ∨(−M)).
Combining (B.23) and (B.25) proves that

(B.26) P

(
‖γ nk − γ k‖ > h

(√
logp

k1−ε
n

+ 1

p1/4k
1/2
n

))
= O

(
p− δ′

2 ∨(−M)).
By the SIN(θ) theorem again and (B.3), we have

(B.27) P

(∥∥γ k − γ 0
k

∥∥> h

√
logp

kn

)
= O

(
p− δ′

2 ∨(−M)).
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(B.26) and (B.27) prove (B.20). Now we proceed to prove (B.21). Let Lk be the

eigenvalue matrix of Bk , notice that
F̂ k(

δ′
k
δk

pkn
)F̂

′
k

kn
= V k , we have

(B.28)

∥∥∥∥ F̂
′
kF

′
k

kn

σ ′
kσ k

p

F kF̂
′
k

kn

− V 0
k

∥∥∥∥
≤
∥∥∥∥ F̂

′
kF

′
k

kn

σ ′
kσ k

p

F kF̂
′
k

kn

− V k

∥∥∥∥+ ∥∥V k − V 0
k

∥∥
≤ C‖δ′

kδk − F ′
kσ

′
kσ kF k‖

pkn

+ ∥∥V k − V 0
k

∥∥.
This together with (A.9) and (B.2) proves (B.21).

Proof of (A.11). (A.11) is a direct consequence of (A.10) because

Ir =
(

σ ′
kσ k

p

)1/2
γ 0

k

(
V 0

k

)−1
γ 0′

k

(
σ ′

kσ k

p

)1/2
. �

PROOF OF COROLLARY 2. Following the proof of Lemma 1 by simply chang-

ing 1
p1/4 , and

√
logp

k
1/2−ε
n

by generic constants, we have

P
(
max

k

(‖V k‖ + ∥∥V −1
k

∥∥+ ‖H k‖ + ∥∥H−1
k

∥∥)> h′)= O
(
p−δ′

kn

)= o(1).

By (A.4),

‖F̂ k − H kF k‖√
kn

≤ ∥∥V −1
k

∥∥∥∥∥∥δ
′
kδk − F ′

kσ
′
kσ kF k

pkn

∥∥∥∥.
Then by following the proof of (B.2) by changing 1/p1/4 by generic constants, we
have

P

(‖F̂ k − H kF k‖√
kn

> h′
)

= O
(
p−δ′

kn

)= o(1). �

PROOF OF LEMMA 2. (A.13) is a straightforward result of the independence
and Gaussianity of F k(j)’s and (B.23). By Assumption 5 and the Burkhölder–
Davis–Gundy inequality, we have

EFk−1

(‖(δk − δ̄k)
′(δk − δ̄k)‖

pkn

)d

≤ EFk−1

(
tr(δk − δ̄k)

′(δk − δ̄k)

pkn

)d

≤ C(kn�n)
d

and

EFk−1

(‖δ̄′
k(δk − δ̄k)‖

pkn

)d

≤ C(kn�n)
d/2.
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By (B.8)–(B.11) and (B.13)–(B.14), we have

EFk−1

(
δ̄k δ̄

′
k − F ′

kσ
′
kσ kF k

pkn

)d

≤ Cp−d/2.

Combining these facts, by (B.5), the bound of ‖δ′
kδk − F ′

kσ
′
kσ kF k‖/(pkn), we

have EFk−1(‖δ′
kδk − F ′

kσ
′
kσ kF k‖/(pkn))

d ≤ C( 1
Cpn

)d . Due to the Gaussianity of

F k and Assumption 4, EFk−1(‖σ k(F kF
′
k/kn − Ir)σ

′
k‖/p)d ≤ Ck

−d/2
n and hence

by (B.1), EFk−1(‖V k − V 0
k‖ + ‖V −1

k − (V 0
k)

−1‖)d ≤ C(Cpn)
d . This proves part

of (A.14). Then by Assumption 4, EFk−1(‖V k‖ + ‖V −1
k ‖)d ≤ C. This proves part

of (A.15). Following the proof of (A.10), we have

EFk−1

(∥∥H k − H 0
k

∥∥d + ∥∥H−1
k − (H 0

k

)−1∥∥d)≤ C

(
1

Cpn

)d

,

where H 0
k = (V 0

k)
−1/2γ 0

k(
σ ′

kσ k

p
)2. This proves the remaining part of (A.14). This

implies EFk−1(‖H k‖ + ‖H−1
k ‖)d ≤ C. This proves the remaining part of (A.15).

(A.16) is simply (6.31) of Lemma 2 in Kong (2017). �
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SUPPLEMENTARY MATERIAL

Supplement to “On the integrated systematic and idiosyncratic volatility
with large panel high-frequency data” (DOI: 10.1214/17-AOS1578SUPP; .pdf).
This supplement contains the technical proof of Lemmas 3–5, which is crucial in
proving Theorem 1 and Theorem 2.
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