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ARE DISCOVERIES SPURIOUS? DISTRIBUTIONS OF MAXIMUM
SPURIOUS CORRELATIONS AND THEIR APPLICATIONS
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Over the last two decades, many exciting variable selection methods have
been developed for finding a small group of covariates that are associated
with the response from a large pool. Can the discoveries from these data min-
ing approaches be spurious due to high dimensionality and limited sample
size? Can our fundamental assumptions about the exogeneity of the covari-
ates needed for such variable selection be validated with the data? To answer
these questions, we need to derive the distributions of the maximum spurious
correlations given a certain number of predictors, namely, the distribution of
the correlation of a response variable Y with the best s linear combinations
of p covariates X, even when X and Y are independent. When the covariance
matrix of X possesses the restricted eigenvalue property, we derive such dis-
tributions for both a finite s and a diverging s, using Gaussian approximation
and empirical process techniques. However, such a distribution depends on
the unknown covariance matrix of X. Hence, we use the multiplier bootstrap
procedure to approximate the unknown distributions and establish the consis-
tency of such a simple bootstrap approach. The results are further extended
to the situation where the residuals are from regularized fits. Our approach is
then used to construct the upper confidence limit for the maximum spurious
correlation and to test the exogeneity of the covariates. The former provides
a baseline for guarding against false discoveries and the latter tests whether
our fundamental assumptions for high-dimensional model selection are sta-
tistically valid. Our techniques and results are illustrated with both numerical
examples and real data analysis.

1. Introduction. Information technology has forever changed the data collec-
tion process. Massive amounts of very high dimensional or unstructured data are
continuously produced and stored at an affordable cost. Massive and complex data
and high dimensionality characterize contemporary statistical problems in many
emerging fields of science and engineering. Various statistical and machine learn-
ing methods and algorithms have been proposed to find a small group of covariate
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variables that are associated with given responses such as biological and clinical
outcomes. These methods have been very successfully applied to genomics, ge-
netics, neuroscience, economics and finance. For an overview of high-dimensional
statistical theory and methods, see the review article by Fan and Lv (2010) and
monographs by Dudoit and van der Laan (2008), Hastie, Tibshirani and Friedman
(2009), Efron (2010) and Bühlmann and van de Geer (2011).

Underlying machine learning, data mining, and high-dimensional statistical
techniques, there are many model assumptions and even heuristic arguments. For
example, the LASSO [Tibshirani (1996)] and the SCAD [Fan and Li (2001)] are
based on an exogeneity assumption, meaning that all of the covariates and the
residual of the true model are uncorrelated. However, it is nearly impossible that
such a random variable, which is the part of the response variable that cannot be
explained by a small group of covariates and lives in a low-dimensional space
spanned by the response and the small group of variables, is uncorrelated with any
of the tens of thousands of coviariates. Indeed, Fan and Liao (2014) and Fan, Han
and Liu (2014) provide evidence that such an ideal assumption might not be valid,
although it is a necessary condition for model selection consistency. Even under
the exogenous assumption, conditions such as the restricted eigenvalue condition
[Bickel, Ritov and Tsybakov (2009)] and homogeneity [Fan, Han and Liu (2014)]
are needed to ensure model selection consistency or oracle properties. Despite their
critical importance, these conditions have rarely been verified in practice. Their vi-
olations can lead to false scientific discoveries. A simpler question is then, for a
given data set, do data mining techniques produce results that are better than spuri-
ous correlation? The answer depends on not only the correlation between the fitted
and observed values, but also on the sample size, the number of variables selected
and the total number of variables.

To better appreciate the above two questions, let us consider an example. We
take the gene expression data on 90 Asians (45 Japanese and 45 Han Chinese)
from the international “HapMap” project [Thorisson et al. (2005)]. The normal-
ized gene expression data are generated with an Illumina Sentrix Human-6 Expres-
sion Bead Chip [Stranger et al. (2007)] and are available on ftp://ftp.sanger.ac.uk/
pub/genevar/. We take the expressions of gene CHRNA6, a cholinergic receptor,
nicotinic, alpha 6, as the response Y and the remaining expressions of probes
as covariates X with dimension p = 47,292. We first fit an �1-penalized least-
squares regression (LASSO) on the data with a tuning parameter automatically
selected via tenfold cross validation (25 genes are selected). The correlation be-
tween the LASSO-fitted value and the response is 0.8991. Next, we refit an ordi-
nary least-squares regression on the selected model to calculate the fitted response
and residual vector. The sample correlation between the post-LASSO fit and ob-
served responses is 0.9214, a remarkable fit! But is it any better than the spurious
correlation? The model diagnostic plot, which depicts the empirical distribution
of the correlations between each covariate Xj and the residual ε̂ after the LASSO

ftp://ftp.sanger.ac.uk/pub/genevar/
ftp://ftp.sanger.ac.uk/pub/genevar/
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FIG. 1. Histogram of the sample correlations between the residuals and each covariate (blue) and
histogram of N(0,1/

√
n) random variables (green).

fit, is given in Figure 1. Does the exogenous assumption that E(εXj ) = 0 for all
j = 1, . . . , p hold?

To answer the above two important questions, we need to derive the distributions
of the maximum spurious correlations. Let X be the p-dimensional random vector
of the covariates and XS be a subset of covariates indexed by S. Let ĉorrn(ε,αT

SXS)

be the sample correlation between the random noise ε (independent of X) and
αT

SXS based on a sample of size n, where αS is a constant vector. Then the maxi-
mum spurious correlation is defined as

(1.1) R̂n(s,p) = max|S|=s
max
αS

ĉorrn
(
ε,αT

SXS

)
,

when X and ε are independent, where the maximization is taken over all
(p
s

)
sub-

sets of size s and all of the linear combinations of the selected s covariates. Next,
let (Yi,Xi), . . . , (Yn,Xn) be independent and identically distributed (i.i.d.) obser-
vations from the linear model Y = XTβ∗ +ε. Assume that s covariates are selected
by a certain variable selection method for some 1 ≤ s � min(p,n). If the correla-
tion between the fitted response and observed response is no more than the 90th or
the 95th percentile of R̂n(s,p), it is hard to claim that the fitted value is impressive
or even genuine. In this case, the finding is hardly more impressive than the best
fit using data that consist of independent response and explanatory variables, 90%
or 95% of the time. To simplify and unify the terminology, we call this result the
spurious discovery throughout this paper.
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For the aforementioned gene expression data, as 25 probes are selected, the
observed correlation of 0.9214 between the fitted value and the response should be
compared with the distribution of R̂n(25,p). Further, a simple method to test the
null hypothesis

(1.2) E(εXj ) = 0 for all j = 1, . . . , p,

is to compare the maximum absolute correlation in Figure 1 with the distribution
of R̂n(1,p); see additional details in Section 5.3.

The importance of such spurious correlation was recognized by Cai and Jiang
(2011), Fan, Guo and Hao (2012) and Cai, Fan and Jiang (2013). When the data are
independently and normally distributed, they derive the distribution of R̂n(1,p),
which is equivalent to the distribution of the minimum angle to the north pole
among p random points uniformly distributed on the (n + 1)-dimensional sphere.
Fan, Guo and Hao (2012) conducted simulations to demonstrate that the spuri-
ous correlation can be very high when p is large and grows quickly with s. To
demonstrate this effect and to examine the impact of correlation and sample size,
we conduct a similar but more extensive simulation study based on a combination
of the stepwise addition and branch-and-bound algorithms. We simulate X from
N(0, Ip) and N(0,�0), where �0 is block diagonal with the first block being a
500 × 500 equi-correlation matrix with a correlation 0.8 and the second block be-
ing the (p − 500) × (p − 500) identity matrix. Y is simulated independently of
X and follows the standard normal distribution. Figure 2 depicts the simulation
results for n = 50,100 and 200. Clearly, the distributions depend on (s,p,n) and
�, the covariance matrix of X, although the dependence on � does not seem very
strong. However, the theoretical result of Fan, Guo and Hao (2012) covers only the
very specific case where s = 1 and � = Ip .

There are several challenges to deriving the asymptotic distribution of the statis-
tic R̂n(s,p), as it involves combinatorial optimization. Further technical complica-
tions are added by the dependence among the covariates X. Nevertheless, under the
restricted eigenvalue condition [Bickel, Ritov and Tsybakov (2009)] on �, in this
paper, we derive the asymptotic distribution of such a spurious correlation statis-
tic for both a fixed s and a diverging s, using the empirical process and Gaussian
approximation techniques given in Chernozhukov, Chetverikov and Kato (2014).
As expected, such distributions depend on the unknown covariance matrix �. To
provide a consistent estimate of the distributions of the spurious correlations, we
consider the use of a multiplier bootstrap method and demonstrate its consistency
under mild conditions. The multiplier bootstrap procedure has been widely used
due to its good numerical performance. Its theoretical validity is guaranteed by
the multiplier central limit theorem [van der Vaart and Wellner (1996)]. For the
most advanced recent results, we refer to Chatterjee and Bose (2005), Arlot, Blan-
chard and Roquain (2010) and Chernozhukov, Chetverikov and Kato (2013). In
particular, Chernozhukov, Chetverikov and Kato (2013) developed a number of
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FIG. 2. Distributions of maximum spurious correlations for p = 1000 and s = 1,2,5 and 10 when
� is the identity matrix (left panel) or block diagonal (right panel) with the first block being a
500 × 500 equi-correlation matrix with a correlation 0.8 and the second block being the 500 × 500
identity matrix. From top to bottom: n = 50,100 and 200.

nonasymptotic results on a multiplier bootstrap for the maxima of empirical mean
vectors in high dimensions with applications to multiple hypothesis testing and
parameter choice for the Dantzig selector. The use of multiplier bootstrapping en-
ables us to empirically compute the upper confidence limit of R̂n(s,p), and hence
decide whether discoveries by statistical machine learning techniques are any bet-
ter than spurious correlations.

The rest of this paper is organized as follows. Section 2 discusses the concept
of spurious correlation and introduces the main conditions and notation. Section 3
presents the main results of the asymptotic distributions of spurious correlations
and their bootstrap approximations, which are further extended in Section 4. Sec-
tion 5 identifies three important applications of our results to high-dimensional
statistical inference. Section 6 presents the numerical studies. The proof of The-
orem 3.1 is provided in Section 7, and the proofs for the remaining theoretical
results are provided in the Supplementary Material [Fan, Shao and Zhou (2018)].

2. Spurious correlation, conditions and notation. Let ε, ε1, . . . , εn be i.i.d.
random variables with a mean of zero and a finite variance σ 2 > 0, and let
X,X1, . . . ,Xn be i.i.d. p-dimensional random vectors with a mean of zero and
a covariance matrix � = E(XXT) = (σjk)1≤j,k≤p . Write

X = (X1, . . . ,Xp)T, Xi = (Xi1, . . . ,Xip)T, i = 1, . . . , n.
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Assume that the two samples {εi}ni=1 and {Xi}ni=1 are independent. Then the spu-
rious correlation (1.1) can be written as

(2.1) R̂n(s,p) = max
α∈Sp−1:|α|0=s

ĉorrn
(
ε,αTX

)
,

where the dimension p and sparsity s are allowed to grow with the sample size n.
Here, ĉorrn(·, ·) denotes the sample Pearson correlation coefficient and S

p−1 :=
{α ∈ R

p : |α|2 = 1} is the unit sphere of Rp . Due to the anti-symmetric property
of the sample correlation under the sign transformation of α, we have also

(2.2) R̂n(s,p) = max
α∈Sp−1:|α|0=s

∣∣ĉorrn
(
ε,αTX

)∣∣.
More specifically, we can express R̂n(s,p) as

max
S⊆[p]:|S|=s

max
α∈Ss−1

∑n
i=1(εi − ε̄n)〈α,Xi,S − X̄n,S〉√∑n

i=1(εi − ε̄n)2 ·∑n
i=1〈α,Xi,S − X̄n,S〉2

.(2.3)

By the scale-invariance property of R̂n(s,p), we assume without loss of generality
that σ 2 = 1 and � is a correlation matrix, so that diag(�) = Ip .

For a random variable X, the sub-Gaussian norm ‖X‖ψ2 and sub-exponential
norm ‖X‖ψ1 of X are defined, respectively, as

‖X‖ψ2 = sup
q≥1

q−1/2(
E|X|q)1/q and ‖X‖ψ1 = sup

q≥1
q−1(

E|X|q)1/q
.

A random variable X that satisfies ‖X‖ψ2 < ∞ (resp., ‖X‖ψ1 < ∞) is called a
sub-Gaussian (resp., sub-exponential) random variable [Vershynin (2012)].

The following moment conditions for ε ∈R and X ∈ R
p are imposed.

CONDITION 2.1. There exists a random vector U such that X = �1/2U,
E(U) = 0, E(UUT) = Ip and K1 := supα∈Sp−1 ‖αTU‖ψ2 < ∞. The random vari-
able ε has a zero mean and unit variance, and is sub-Gaussian with K0 := ‖ε‖ψ2 <

∞. Moreover, write vq = E(|ε|q) for q ≥ 3.

The following is our assumption for the sampling process.

CONDITION 2.2. {εi}ni=1 and {Xi}ni=1 are independent random samples from
the distributions of ε and X, respectively.

For 1 ≤ s ≤ p, the s-sparse minimal and maximal eigenvalues [Bickel, Ritov
and Tsybakov (2009)] of the covariance matrix � are defined as

φmin(s) = min
u∈Rp :1≤|u|0≤s

(|u|�/|u|2)2, φmax(s) = max
u∈Rp :1≤|u|0≤s

(|u|�/|u|2)2,
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where |u|� = (uT�u)1/2 and |u|2 = (uTu)1/2 is the �2-norm of u. Consequently,
for 1 ≤ s ≤ p, the s-sparse condition number of � is given by

(2.4) γs = γs(�) =
√

φmax(s)/φmin(s).

The quantity γs plays an important role in our analysis.
The following notation is used. For the two sequences {an} and {bn} of positive

numbers, we write an = O(bn) or an � bn if there exists a constant C > 0 such
that an/bn ≤ C for all sufficiently large n; we write an 
 bn if there exist constants
C1,C2 > 0 such that, for all n large enough, C1 ≤ an/bn ≤ C2; and we write an ∼
bn and an = o(bn) if limn→∞ an/bn = 1 and limn→∞ an/bn = 0, respectively. For
a, b ∈ R, we write a ∨ b = max(a, b) and a ∧ b = min(a, b). For every vector u,
we denote by |u|q = (

∑
i≥1 |ui |q)1/q for q > 0 and |u|0 =∑i≥1 I {ui �= 0}. We use

〈u,v〉 = uTv to denote the inner product of two vectors u and v with the same
dimension and ‖M‖ to denote the spectral norm of a matrix M. For every positive
integer �, we write [�] = {1,2, . . . , �}, and for any set S, we use Sc to denote its
complement and |S| for its cardinality. For each p-dimensional vector u and p×p

positive semidefinite matrix A, we write |u|A = (uTAu)1/2. In particular, put

(2.5) α� = α/|α|�
for every α ∈ R

p and set 0� = 0 as the convention.

3. Distributions of maximum spurious correlations. In this section, we first
derive the asymptotic distributions of the maximum spurious correlation R̂n(s,p).
The analytic form of such asymptotic distributions can be obtained in the isotropic
case. As the asymptotic distributions of R̂n(s,p) depend on the unknown covari-
ance matrix �, we provide a bootstrap estimate and demonstrate its consistency.

3.1. Asymptotic distributions of maximum spurious correlations. In view of
(2.3), we can rewrite R̂n(s,p) as

R̂n(s,p) = sup
f ∈F

n−1∑n
i=1(εi − ε̄n)f (Xi − X̄n)√

n−1∑n
i=1(εi − ε̄n)2 ·

√
n−1∑n

i=1 f 2(Xi − X̄n)
,(3.1)

where ε̄n = n−1∑n
i=1 εi , X̄n = n−1∑n

i=1 Xi and

(3.2) F = F(s,p) = {x �→ fα(x) := 〈α,x〉 : α ∈ V
}

is a class of linear functions Rp �→R, where V = V(s,p) = {α ∈ S
p−1 : |α|0 = s}.

The dependence of F and V on (s,p) is suppressed.
Let Z = (Z1, . . . ,Zp)T be a p-dimensional Gaussian random vector with a

mean of zero and the covariance matrix �, that is, Z d= N(0,�). Denote by
Z2

(1) ≤ Z2
(2) ≤ · · · ≤ Z2

(p) the order statistics of {Z2
1, . . . ,Z2

p}. The following the-
orem shows that the distribution of the maximum absolute multiple correlation
R̂n(s,p) can be approximated by that of the supremum of a centered Gaussian
process G∗ indexed by F .
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THEOREM 3.1. Let Conditions 2.1 and 2.2 hold, n,p ≥ 2 and 1 ≤ s ≤ p.
Then there exists a constant C > 0 independent of (s,p,n) such that

sup
t≥0

∣∣P{√nR̂n(s,p) ≤ t
}− P

{
R∗(s,p) ≤ t

}∣∣
≤ C(K0K1)

3/4n−1/8{sbn(s,p)
}7/8

,

(3.3)

where K0 and K1 are defined in Condition 2.1, bn(s,p) := log(γsp/s) ∨ logn

for γs as in (2.4), R∗(s,p) := supf ∈F G
∗f and G

∗ = {G∗f }f ∈F is a centered
Gaussian process indexed by F defined as, for every fα ∈ F ,

(3.4) G
∗fα = αT

�Z = αTZ√
αT�α

.

In particular, if � = Ip and s log(pn) = o(n1/7), then as n → ∞,

sup
t≥0

∣∣P{nR̂2
n(s,p) ≤ t

}− P
{
Z2

(p) + · · · + Z2
(p−s+1) ≤ t

}∣∣→ 0.(3.5)

REMARK 3.1. The Berry–Esseen bound given in Theorem 3.1 depends ex-
plicitly on the triplet (s,p,n), and it depends on the covariance matrix � only
through its s-sparse condition number γs , defined in (2.4). The proof of (3.3)
builds on a number of technical tools including a standard covering argument,
maximal and concentration inequalities for the suprema of unbounded empirical
processes and Gaussian processes as well as a coupling inequality for the max-
ima of sums of random vectors derived in Chernozhukov, Chetverikov and Kato
(2014). Instead, if we directly resort to the general framework in Theorem 2.1
of Chernozhukov, Chetverikov and Kato (2014), the function class of interest is
F = {x �→ αTx

(αT�α)1/2 : α ∈ S
p−1, |α|0 = s}. Checking high-level conditions in The-

orem 2.1 can be rather complicated and less intuitive. Also, dealing with the (uni-
form) entropy integral that corresponds to the class F relies on verifying various
VC-type properties and thus can be fairly tedious. Following a strategy similar
to that used to prove Theorem 2.1, we provide a self-contained proof of Theo-
rem 3.1 in Section 7.2 by making the best use of the specific structure of F . The
proof is more intuitive and straightforward. More importantly, it leads to an explicit
nonasymptotic bound under transparent conditions.

REMARK 3.2. In Theorem 3.1, the independence assumption of ε and X can
be relaxed as E(εX) = 0, E(ε2|X) = σ 2 and E(ε4|X) ≤ C almost surely, where
C > 0 is a constant.

Expression (3.5) indicates that the increment n{R̂2
n(s,p) − R̂2

n(s − 1,p)} is ap-
proximately the same as Z2

(p−s+1). This can simply be seen from the asymptotic

joint distribution of (R̂n(1,p), R̂n(2,p), . . . , R̂n(s,p)). The following proposition
establishes the approximation of the joint distributions when both the dimension p

and sparsity s are allowed to diverge with the sample size n.
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PROPOSITION 3.1. Let Conditions 2.1 and 2.2 hold with � = Ip . Assume
that the triplet (s,p,n) satisfies 1 ≤ s < n ≤ p and s2 logp = o(n1/7). Then as
n → ∞,

sup
0≡t0<t1<t2<···<ts<1

∣∣∣∣∣P
[

s⋂
k=1

{
R̂n(k,p) ≤ tk

}]

− P

[
s⋂

k=1

{
Z2

(p−k+1) ≤ n
(
t2
k − t2

k−1
)}]∣∣∣∣∣→ 0.

REMARK 3.3. When s = 1 and if (n,p) satisfies logp = o(n1/7), it is
straightforward to verify that, for any t ∈R,

(3.6) P
{
Z2

(p) − 2 logp + log(logp) ≤ t
}→ exp

(−π−1/2e−t/2) as p → ∞.

This result is similar in nature to (5) in Fan, Guo and Hao (2012). In fact, it
is proved in Shao and Zhou (2014) that the extreme-value statistic R̂n(1,p) is
sensitive to heavy-tailed data in the sense that, under the ultra-high dimensional
scheme, even the law of large numbers for the maximum spurious correlation re-
quires exponentially light tails of the underlying distribution. We refer readers to
Theorem 2.1 in Shao and Zhou (2014) for details. Therefore, we believe that the
exponential-type moment assumptions required in Theorem 3.1 cannot be weak-
ened to polynomial-type ones as long as logp is allowed to be as large as nc for
some c ∈ (0,1). However, it is worth mentioning that the factor 1/7 in Proposi-
tion 3.1 may not be optimal, and according to the results in Shao and Zhou (2014),
1/3 is the best possible factor to ensure that the asymptotic theory is valid. To close
this gap in theory, a significant amount of additional work and new probabilistic
techniques are needed. We do not pursue this line of research in this paper.

For a general s ≥ 2, we establish in the following proposition the limiting distri-
bution of the sum of the top s order statistics of i.i.d. chi-square random variables
with degree of freedom 1.

PROPOSITION 3.2. Assume that s ≥ 2 is a fixed integer. For any t ∈ R, we
have as p → ∞,

(3.7)

P
{
Z2

(p) + · · · + Z2
(p−s+1) − sap ≤ t

}
−→ π(1−s)/2

(s − 1)!	(s − 1)

∫ t/s

−∞

{∫ (t−sv)/2

0
us−2e−u du

}
× e−(s−1)v/2g(v) dv,
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where ap = 2 logp − log(logp), G(t) = exp(−π−1/2e−t/2) and g(t) = G′(t) =
e−t/2

2
√

π
G(t). The above integral can further be expressed as

(3.8)

G(t/s) + π1−s/2e−t/2

(s − 1)!
∫ t/s

−∞
eug(u)du + π(1−s)/2e−t/2

(s − 1)!

×
s−2∑
j=1

{
G(t/s)e(j+1)t/(2s)πj/2

j∏
�=1

(s − �)

− 1

j !2j

∫ t/s

−∞
(t − sv)j ev/2g(v) dv

}
.

In particular, when s = 2, the last term on the right-hand side of (3.8) vanishes so
that, as p → ∞,

P
{
Z2

(p) + Z2
(p−1) − 2ap ≤ t

}→ G(t/2) + e−t/2

2
√

π

∫ t/2

−∞
eu/2G(u)du.

The proofs of Propositions 3.1 and 3.2 are placed in the Supplementary Material
[Fan, Shao and Zhou (2018)].

3.2. Multiplier bootstrap approximation. The distribution of R∗(s,p) =
supf ∈F G

∗f for G∗ in (3.4) depends on the unknown � and thus cannot be used
for statistical inference. In the following, we consider the use of a Monte Carlo
method to simulate a process that mimics G∗, now known as the multiplier (wild)
bootstrap method, which is similar to that used in Hansen (1996), Barrett and
Donald (2003) and Chernozhukov, Chetverikov and Kato (2013), among others.

Let �̂n be the sample covariance matrix based on the data {Xi}ni=1 and ξ1, . . . , ξn

be i.i.d. standard normal random variables that are independent of {εi}ni=1 and
{Xi}ni=1. Then, given {Xi}ni=1,

(3.9) Zn = n−1/2
n∑

i=1

ξi(Xi − X̄n) ∼ N(0, �̂n).

The following result shows that the (unknown) distribution of R∗(s,p) =
supfα∈F

fα(Z)√
αT�α

for Z d= N(0,�) can be consistently estimated by the conditional
distribution of

(3.10) RMB
n (s,p) := sup

fα∈F
fα(Zn)√
αT�̂nα

.

THEOREM 3.2. Let Conditions 2.1 and 2.2 hold. Assume that the triplet
(s,p,n) satisfies 1 ≤ s ≤ p and s log(γspn) = o(n1/5). Then as n → ∞,

(3.11) sup
t≥0

∣∣P{R∗(s,p) ≤ t
}− P

{
RMB

n (s,p) ≤ t |X1, . . . ,Xn

}∣∣ P−→ 0.
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REMARK 3.4. Together, Theorems 3.1 and 3.2 show that the maximum spu-
rious correlation R̂n(s,p) can be approximated in distribution by the multiplier
bootstrap statistic n−1/2RMB

n (s,p). In practice, when the sample size n is rela-
tively small, the value of n−1/2RMB

n (s,p) may exceed 1, which makes it less fa-
vorable as a proxy for spurious correlation. To address this issue, we propose using
the following corrected bootstrap approximation:

(3.12) RCMB
n (s,p) := sup

fα∈F

√
n

|ξ |2
fα(Zn)√
αT�̂nα

,

where ξ = (ξ1, . . . , ξn)
T is used in the definition of Zn. By the Cauchy–Schwarz

inequality, n−1/2RCMB
n (s,p) is always between 0 and 1. In view of (3.10) and

(3.12), RCMB
n (s,p) differs from RMB

n (s,p) only up to a multiplicative random
factor n−1/2|ξ |2, which in theory is concentrated around 1 with exponentially high
probability. Thus, RMB

n and RCMB
n are asymptotically equivalent, and (3.11) re-

mains valid with RMB
n replaced by RCMB

n .

4. Extension to sparse linear models. Suppose that the observed response Y

and p-dimensional covariate X follows the sparse linear model

(4.1) Y = XTβ∗ + ε,

where the regression coefficient β∗ is sparse. The sparsity is typically explored
by the LASSO [Tibshirani (1996)], the SCAD [Fan and Li (2001)], or the MCP
[Zhang (2010)]. Now it is well known that, under suitable conditions, the SCAD
and the MCP, among other folded concave penalized least-square estimators, also
enjoy the unbiasedness property and the (strong) oracle properties. For simplic-
ity, we focus on the SCAD. For a given random sample {(Xi , Yi)}ni=1, the SCAD
exploits the sparsity by pλ-regularization, which minimizes

(4.2) (2n)−1
n∑

i=1

(
Yi − XT

i β
)2 +

p∑
j=1

pλ

(|βj |;a)
over β = (β1, . . . , βp)T ∈ R

p , where pλ(·;a) denotes the SCAD penalty function
[Fan and Li (2001)], that is, p′

λ(t;a) = λI (t ≤ λ) + (aλ−t)+
a−1 I (t > λ) for some

a > 2, and λ = λn ≥ 0 is a regularization parameter.
Denote by X = (X1, . . . ,Xn)

T the n × p design matrix, Y = (Y1, . . . , Yn)
T the

n-dimensional response vector, and ε = (ε1, . . . , εn)
T, the n-dimensional noise

vector. Without loss of generality, we assume that β∗ = (βT
1 ,βT

2 )T with each
component of β1 ∈ R

s being nonzero and β2 = 0, such that S0 := supp(β∗) =
{1, . . . , s} is the true underlying sparse model of the indices with s = |β∗|0. More-
over, write X = (X1,X2), where X1 ∈ R

n×s consists of the columns of X indexed
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by S0. In this notation, Y = Xβ + ε = X1β1 + ε and the oracle estimator β̂
oracle

has an explicit form of

β̂
oracle
1 = (XT

1X1
)−1

X
T
1Y= β1 + (XT

1X1
)−1

X
T
1ε, β̂

oracle
2 = 0.(4.3)

In other words, the oracle estimator is the unpenalized estimator that minimizes∑n
i=1(Yi − XT

i,S0
βS0

)2 over the true support set S0.
Denote by ε̂oracle = (̂εoracle

1 , . . . , ε̂oracle
n )T = Y − X

Tβ̂
oracle

the residuals after
the oracle fit. Then we can construct the maximum spurious correlation as in (2.2),
except that {εi}ni=1 is now replaced by {̂εoracle

i }ni=1, that is,

(4.4)

R̂oracle
n (1,p)

= max
j∈[p]

|∑n
i=1(̂ε

oracle
i − eT

n ε̂oracle)(Xij − X̄j )|√∑n
i=1(̂ε

oracle
i − eT

n ε̂oracle)2 ·
√∑n

i=1(Xij − X̄j )2
,

where en = (1/n, . . . ,1/n)T ∈ R
n and X̄j = n−1∑n

i=1 Xij . We here deal with the
specific case of a spurious correlation of size 1, as this is what is needed for testing
the exogeneity assumption (1.2).

To establish the limiting distribution of R̂oracle
n (1,p), we make the following

assumptions.

CONDITION 4.1. Y = Xβ∗ + ε with supp(β∗) = {1, . . . , s} and ε = (ε1, . . . ,

εn)
T being i.i.d. centered sub-Gaussian satisfying that K0 = ‖εi‖ψ2 < ∞. The

rows of X = (X1, . . . ,Xn)
T are i.i.d. sub-Gaussian random vectors as in Condi-

tion 2.1.

As before, we can assume that � = E(XiXT
i ) is a correlation matrix with

diag(�) = Ip . Set d = p − s and partition

� =
(
�11 �12
�21 �22

)
with �11 ∈ R

s×s,�22 ∈R
d×d,�21 = �T

12.(4.5)

Let �22.1 = (σ̃jk)1≤j,k≤d = �22 − �21�
−1
11 �12 be the Schur complement of �11

in �.

CONDITION 4.2. σ̃min = min1≤j≤d σ̃jj is bounded away from zero.

THEOREM 4.1. Assume that Conditions 4.1 and 4.2 hold, and that the triplet
(s,p,n) satisfies s logp = o(

√
n) and logp = o(n1/7). Then the maximum spuri-

ous correlation R̂oracle
n (1,p) in (4.4) satisfies that, as n → ∞,

sup
t≥0

∣∣P{√nR̂oracle
n (1,p) ≤ t

}− P
(|Z̃|∞ ≤ t

)∣∣→ 0,(4.6)

where Z̃ d= N(0,�22.1) is a d-variate centered Gaussian random vector with co-
variance matrix �22.1.



DISTRIBUTIONS OF MAXIMUM SPURIOUS CORRELATIONS 1001

As pλ is a folded-concave penalty function, (4.2) is a nonconvex optimization
problem. The local linear approximation (LLA) algorithm can be applied to pro-
duce a certain local minimum for any fixed initial solution [Zou and Li (2008), Fan,
Xue and Zou (2014)]. In particular, Fan, Xue and Zou (2014) prove that the LLA
algorithm can deliver the oracle estimator in the folded concave penalized prob-
lem with overwhelming probability if it is initialized by some appropriate initial
estimator.

Let β̂
LLA

be the estimator computed via the one-step LLA algorithm initiated
by the LASSO estimator [Tibshirani (1996)]. That is,

(4.7) β̂
LLA = arg min

β

{
(2n)−1

n∑
i=1

(
Yi − XT

i β
)2 +

p∑
j=1

p′
λ

(∣∣β̂LASSO
j

∣∣)|βj |
}
,

where pλ is a folded concave penalty, such as the SCAD and MCP penalties, and

β̂
LASSO = arg minβ{(2n)−1∑n

i=1(Yi − XT
i β)2 + λ|β|1}. Accordingly, denote by

R̂LLA
n (1,p) the maximum spurious correlation as in (4.4) with ε̂oracle

i replaced by

ε̂LLA
i = Yi − XT

i β̂
LLA

. Applying Theorem 4.1, we derive the limiting distribution
of R̂LLA

n (1,p) under suitable conditions. First, let us recall the Restricted Eigen-
value concept formulated by Bickel, Ritov and Tsybakov (2009).

DEFINITION 4.1. For any integer s0 ∈ [p] and positive number c0, the RE(s0,

c0) parameter κ(s0, c0,A) of a p × p matrix A is defined as

(4.8) κ(s0, c0,A) := min
S⊆[p]:|S|≤s0

min
δ �=0:|δSc |1≤c0|δS |1

δTAδ

|δS |22
.

THEOREM 4.2. Assume that Conditions 4.1 and 4.2 hold, the minimal signal
strength of β∗ satisfies minj∈S0 |βj | > (a + 1)λ for a, λ as in (4.2), and that the

triplet (s,p,n) satisfies s logp = o(
√

n), s logp
κ(s,3+ε,�)

= o(n) for some ε > 0 and

logp = o(n1/7). If the regularization parameters (λ,λLASSO) are such that λ ≥
8
√

s
κ(s,3,�)

λLASSO and λLASSO ≥ CK0
√

(logp)/n for C > 0 large enough, then as
n → ∞,

sup
t≥0

∣∣P{√nR̂LLA
n (1,p) ≤ t

}− P
(|Z̃|∞ ≤ t

)∣∣→ 0,(4.9)

where Z̃ d= N(0,�22.1).

5. Applications to high-dimensional inferences. This section outlines three
applications in high-dimensional statistics. The first determines whether discov-
eries by machine learning and data mining techniques are any better than those
reached by chance. Second, we show that the distributions of maximum spurious
correlations can also be applied to model selection. In the third application, we
validate the fundamental assumption of exogeneity (1.2) in high dimensions.
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5.1. Spurious discoveries. Let qCMB
α (s,p) be the upper α-quantile of the ran-

dom variable RCMB
n (s,p) defined by (3.12). Then an approximate 1 − α upper

confidence limit of the spurious correlation is given by qCMB
α (s,p). In view of

Theorems 3.1 and 3.2, we claim that

(5.1) P
{
R̂n(s,p) ≤ qCMB

α (s,p)
}→ 1 − α.

To see this, recall that RCMB
n = √

nRMB
n /|ξ |2 for ξ = (ξ1, . . . , ξn)

T as in (3.12),
and given {Xi}ni=1, RMB

n is the supremum of a Gaussian process. Let F MB
n (t) =

P{RMB
n (s,p) ≤ t |X1, . . . ,Xn} be the (conditional) distribution function of RMB

n

and define t0 = inf{t : F MB
n (t) > 0}. By Theorem 11.1 of Davydov, Lifshits and

Smorodina (1998), F MB
n is absolutely continuous with respect to the Lebesgue

measure and is strictly increasing on (t0,∞), indicating that P{RCMB
n ≤ qCMB

α (s,

p)|X1, . . . ,Xn} = α almost surely. This, together with (3.3) and (3.11), proves
(5.1) under Conditions 2.1, 2.2 and when s log(γspn) = o(n1/7).

Let Ŷi be fitted values using s predictors indexed by Ŝ selected by a data-driven
technique and Yi be the associated response value. They are denoted in the vector
form by Ŷ and Y, respectively. If

(5.2)
∣∣ĉorrn(Y, Ŷ)

∣∣≤ qCMB
α (s,p),

then the discovery of variables Ŝ can be regarded as spurious, that is, no better than
by chance. Therefore, the multiplier bootstrap quantile qCMB

α (s,p) provides an im-
portant critical value and yardstick for judging whether the discovery is spurious,
or whether the selected set Ŝ includes too many spurious variables. This yardstick
is independent of the method used in the fitting.

REMARK 5.1. The problem of judging whether the discovery is spurious is
intrinsically different from that of testing the global null hypothesis H0 : β∗ = 0,
which itself is an important problem in high-dimensional statistical inference
and has been well studied in the literature since the seminal work of Goeman,
van de Geer and van Houwelingen (2006). For example, the global null hypothesis
H0 : β∗ = 0 can be rejected by a test; still, the correlation between Y and the vari-
ables Ŝ selected by a statistical method can be smaller than the maximum spurious
correlation, and we should interpret the findings of Ŝ with caution. We need either
more samples or more powerful variable selection methods. This motivates us to
derive the distribution of the maximum spurious correlation R̂n(s,p). This distri-
bution serves as an important benchmark for judging whether the discovery (of s

features from p explanatory variables based on a sample of size n) is spurious. The
magnitude of R̂n(s,p) gives statisticians an idea of how big a spurious correlation
can be and, therefore, an idea of how much the covariates really contribute to the
regression for a given sample size.
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5.2. Model selection. In the previous section, we consider the reference distri-
bution of the maximum spurious correlation statistic R̂n(s,p) as a benchmark for
judging whether the discovery of s significant variables (among all of the p vari-
ables using a random sample of size n) is impressive, regardless of which variable
selection tool is applied. In this section, we show how the distribution of R̂n(s,p)

can be used to select a model. Intuitively, we would like to select a model that fits
better than the spurious fit. This limits the candidate sets of models and provides an
upper bound on the model size. In our experience, this upper bound itself provides
a model selector.

We now use LASSO as an illustration of the above idea. Owing to spurious
correlation, almost all of the variable selection procedures will, with high proba-
bility, select a number of spurious variables in the model so that the selected model
is over-fitted. For example, the LASSO method with the regularization parameter
selected by cross-validation typically selects a far larger model size, as the bias
caused by the �1 penalty forces the cross-validation procedure to choose a smaller
value of λ. Thus, it is important to stop the LASSO path earlier and the quantiles
of R̂n(s,p) provide useful guards.

Specifically, consider the LASSO estimator β̂λ for the sparse linear model (4.1)
with ŝλ = | supp(β̂λ)|, where λ > 0 is the regularization parameter. We consider
the LASSO solution path with the largest knot λini := |XT

Y|∞ and the small-
est knot λcv selected by tenfold cross-validation. To avoid over-fitting, we pro-
pose using qCMB

α as a guide to choose the regularization parameter that guards
us from selecting too many spurious variables. For each λ in the path, we com-
pute ĉorrn(Ŷλ,Y), the sample correlation between the post-LASSO fitted and ob-
served responses, and qCMB

α (̂sλ,p). Let λ̂α be the largest λ such that the sign of
ĉorrn(Ŷλ,Y) − qCMB

α (̂sλ,p) is nonnegative and then flips in the subsequent knot.
The selected model is given by Ŝα = supp(β̂ λ̂α

). As demonstrated by the simula-
tion studies in Section 6.4, this procedure selects a much smaller model size that
is closer to the real data.

5.3. Validating exogeneity. Fan and Liao (2014) show that the exogenous con-
dition (1.2) is necessary for penalized least-squares to achieve a model selection
consistency. They question the validity of such an exogeneous assumption, as it
imposes too many equations. They argue further that even when the exogenous
model holds for important variables XS , that is,

(5.3) Y = XT
Sβ∗

S + ε, E(εXS) = 0,

the extra variables XN (with N = Sc) are collected in an effort to cover the un-
known set S—but no verification of the conditions

(5.4) E(εXN) = E
{(

Y − XT
Sβ∗

S

)
XN

}= 0

has ever been made. The equality E{(Y − XT
Sβ∗

S)Xj } = 0 in (5.4) holds by luck
for some covariate Xj , but it cannot be expected that this holds for all j ∈ N . They
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propose a focussed generalized method of moment (FGMM) to avoid the unrea-
sonable assumption (5.4). Recognizing (5.3) is not identifiable in high-dimensional
linear models, they impose additional conditions such as E(εX2

S) = 0.
Despite its fundamental importance to high-dimensional statistics, there are no

available tools for validating (1.2). Regarding (1.2) as a null hypothesis, an asymp-
totically α-level test can be used to reject assumption (1.2) when

(5.5) T̂n,p = max
j∈[p]

∣∣√nĉorrn(Xj , ε)
∣∣≥ qCMB

α (1,p).

By Theorems 3.1 and 3.2, the test statistic has an approximate size α. The p-value
of the test can be computed via the distribution of the Gaussian multiplier process
RCMB

n (1,p).
As pointed out in the Introduction, when the components of X are weakly cor-

related, the distribution of the maximum spurious correlation does not depend very
sensitively on �; see also Lemma 6 in Cai, Liu and Xia (2014). In this case, we can
approximate it by the identity matrix, and hence one can compare the renormalized
test statistic

(5.6) Jn,p = T̂ 2
n,p − 2 logp + log(logp)

with the limiting distribution in (3.6). The critical value for test statistic Jn,p is

(5.7) Jα = −2 log
{−√

π log(1 − α)
}
,

and the associated p-value is given by

(5.8) exp
(−π−1/2e−Jn,p/2).

Expressions (5.7) and (5.8) provide analytic forms for a quick validation of the ex-
ogenous assumption (1.2) under weak dependence. In general, we recommend us-
ing the wild bootstrap, which takes into account the correlation effect and provides
more accurate estimates especially when the dependence is strong; see Chang et al.
(2017) for more empirical evidences.

In practice, ε is typically unknown to us. Therefore, T̂n,p in (5.5) is calculated
using the fitted residuals {̂εLLA

i }ni=1. In view of Theorem 4.2, we need to adjust the
null distribution according to (4.9). By Theorem 3.2, we adjust the definition of
the process Zn in (3.9) by

(5.9) ZLLA
n = n−1/2

n∑
i=1

ξi

(
XLLA

i − X
LLA
n

) ∈ R
p−|Ŝ|,

where XLLA
i = Xi,N̂ − �̂N̂ Ŝ�̂

−1
ŜŜ Xi,Ŝ is the residuals of XN̂ regressed on XŜ , where

Ŝ is the set of selected variables, N̂ = [p] \ Ŝ, and �̂SS′ denotes the sub-matrix
of �̂n containing entries indexed by (k, �) ∈ S × S′. From (5.9), the multiplier
bootstrap approximation of |Z̃|∞ is RMB,LLA

n (1,p) = |D̂−1/2ZLLA
n |∞, where D̂ =

diagonal matrix of the sample covariance matrix of {XLLA
i }ni=1. Consequently, we

reject (1.2) if T̂n,p > qMB,LLA
α (1,p), where qMB,LLA

α (1,p) is the (conditional) up-
per α-quantile of RMB,LLA

n (1,p) given {Xi}ni=1.
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REMARK 5.2. To the best of our knowledge, this is the first paper to con-
sider testing the exogenous assumption (1.2), for which we use the maximum
correlation between covariates and fitted residuals as the test statistic. A referee
kindly informed us in his/her review report that in the context of specification
testing, Chernozhukov, Chetverikov and Kato (2013) propose a similar extreme
value statistic and use the multiplier bootstrap to compute a critical value for the
test. To construct marginal test statistics, they use self-normalized covariances be-
tween generated regressors and fitted residuals obtained via ordinary least squares,
whereas we use sample correlations between the covariates and fitted residuals
obtained by the LLA algorithm. We refer readers to Appendix M in the Supple-
mentary Material of Chernozhukov, Chetverikov and Kato (2013) for more details.

6. Numerical studies. In this section, Monte Carlo simulations are used to
examine the finite-sample performance of the bootstrap approximation (for a given
data set) of the distribution of the maximum spurious correlation (MSC).

6.1. Computation of spurious correlation. First, we observe that R̂n(s,p) in
(2.2) can be written as R̂2

n(s,p) = σ̂−2
ε maxS⊆[p]:|S|=s vT

n,S�̂
−1
SS vn,S , where σ̂ 2

ε =
n−1∑n

i=1(εi − ε̄n)
2 and vn = n−1∑n

i=1(εi − ε̄n)(Xi − X̄n). Therefore, the com-
putation of R̂n(s,p) requires solving the combinatorial optimization problem

(6.1) Ŝ = arg max
S⊆[p]:|S|=s

vT
n,S�̂

−1
SS vn,S.

It is computationally intensive to obtain Ŝ for large values of p and s as one
essentially needs to enumerate all

(p
s

)
possible subsets of size s from p covariates.

A fast and easily implementable approach is to use the stepwise addition (forward
selection) algorithm as in Fan, Guo and Hao (2012), which results in some value
that is no larger than R̂n(s,p) but avoids computing all

(p
s

)
multiple correlations

in (6.1). Note that the optimization (6.1) is equivalent to finding the best subset
regression of size s. When p is relatively small, say if p ranges from 20 to 40,
the branch-and-bound procedure is commonly used for finding the best subset of
a given size that maximizes multiple R2 [Brusco and Stahl (2005)]. However, this
approach becomes computationally infeasible very quickly when there are hun-
dreds or thousands of potential predictors. As a trade-off between approximation
accuracy and computational intensity, we propose using a two-step procedure that
combines the stepwise addition and branch-and-bound algorithms. First, we use
the forward selection to pick the best d variables, say d = 40, which serves as a
prescreening step. Second, across the

(d
s

)
subsets of size s, the branch-and-bound

procedure is implemented to select the best subset that maximizes the multiple-R2.
This subset is used as an approximate solution to (6.1). Note that when s > 40,
which is rare in many applications, we only use the stepwise addition to reduce the
computational cost.
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TABLE 1
(Isotropic case) The mean of 200 empirical sizes cMB(·, α) × 100, with its estimate of SD in the

parenthesis, when p = 2000, s = 1,2,5,10, n = 400,800,1200 and α = 0.1,0.05

s = 1 s = 2 s = 5 s = 10

n α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05

400 9.54 4.68 9.13 4.38 9.08 3.78 8.67 4.44
(0.643) (0.294) (0.568) (0.284) (0.480) (0.245) (0.506) (0.291)

800 9.43 4.93 9.47 4.42 9.73 4.73 9.94 5.62
(0.444) (0.296) (0.474) (0.296) (0.488) (0.294) (0.557) (0.331)

1200 9.09 4.32 9.00 4.46 9.42 4.87 9.97 5.15
(0.507) (0.261) (0.542) (0.278) (0.543) (0.322) (0.579) (0.318)

6.2. Accuracy of the multiplier bootstrap approximation. For the first simu-
lation, we consider the case where the random noise ε follows the uniform dis-
tribution standardized so that E(ε) = 0 and E(ε2) = 1. Independent of ε, the p-
variate vector X of covariates has i.i.d. N(0,1) components. In the results reported
in Table 1, the ambient dimension p = 2000, the sample size n takes a value in
{400,800,1200}, and s takes a value in {1,2,5,10}. For a given significance level
α ∈ (0,1), let qα(s,p) be the upper α-quantile of R̂n(s,p) in (2.1). For each data
set Xn = {X1, . . . ,Xn}, a direct application of Theorems 3.1 and 3.2 is that

cMB(Xn,α) := P
{
RCMB

n (s,p) ≥ qα(s,p)|Xn

}→ α as n → ∞.

The difference cMB(Xn,α) − α, however, characterizes the extent of the size dis-
tortions and the finite-sample accuracy of the multiplier bootstrap approxima-
tion (MBA). Table 1 summarizes the mean and the standard deviation (SD) of
cMB(Xn,α) based on 200 simulated data sets with α ∈ {0.05,0.1}. The α-quantile
qα(s,p) is calculated from 1600 replications, and cMB(Xn,α) for each data set is
simulated based on 1600 bootstrap replications. In addition, we report in Figure 3
the distributions of the maximum spurious correlations and their multiplier boot-
strap approximations conditional on a given data set Xn when p ∈ {2000,5000},
s ∈ {1,2,5,10} and n = 400. Together, Table 1 and Figure 3 show that the mul-
tiplier bootstrap method indeed provides a quite good approximation to the (un-
known) distribution of the maximum spurious correlation.

For the second simulation, we focus on an anisotropic case where the covariance
matrix � of X is nonidentity, and the condition number of � is well controlled.
Specifically, we assume that ε follows the centered Laplace distribution rescaled
so that E(ε) = 0 and E(ε2) = 1. To introduce dependence among covariates, first
we denote with A a 10 × 10 symmetric positive definite matrix with a prespecified
condition number c > 1 and let ρ ∈ (0,1). Then the p-dimensional vector X of
the covariates is generated according to X = G1(ρ)Z1 + G2(ρ)Z2, where Z1

d=
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FIG. 3. Distributions of maximum spurious correlations (blue) and multiplier bootstrap approxi-
mations (for a given data set; red) based on 1600 simulations with combinations of p = 2000,5000,
s = 1,2,5,10 and n = 400 when � is an identity matrix.

N(0,A), Z2
d= N(0, Ip−10) and G1(ρ) ∈ R

p×10, G2(ρ) ∈ R
p×(p−10) are given

respectively by G1(ρ)T = (I10,
ρ√

1+ρ2
I10,G11(ρ)T) with

G11(ρ) = 1 − ρ√
1 + (1 − ρ)2

⎛⎜⎜⎜⎝
1 0 . . . 0
1 0 . . . 0
...

... · · · ...

1 0 . . . 0

⎞⎟⎟⎟⎠ ∈ R
(p−20)×10

and

G2(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

010×10 010×(p−20)

1√
1 + ρ2

I10 010×(p−20)

0(p−20)×10
1√

1 + (1 − ρ)2
Ip−20

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In particular, we take c = 5 and ρ = 0.8 in the simulations reported in Ta-
ble 2, which summarizes the mean and the standard deviation (SD) of the size
cMB(Xn,α) based on 200 simulated data sets with α ∈ {0.05,0.1}. Comparing the
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TABLE 2
(Anisotropic case) Mean of 200 empirical sizes cMB(·, α) × 100, with its estimate of SD in the

parenthesis, when p = 2000, s = 1,2,5,10, n = 400,800,1200 and α = 0.1,0.05

s = 1 s = 2 s = 5 s = 10

n α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05

400 9.83 4.39 9.04 4.75 9.27 4.65 9.34 4.53
(0.426) (0.222) (0.402) (0.208) (0.492) (0.273) (0.557) (0.291)

800 10.18 5.19 10.48 5.12 9.98 4.86 9.21 4.73
(0.556) (0.296) (0.519) (0.272) (0.576) (0.220) (0.474) (0.269)

1200 9.42 4.41 9.60 5.71 9.90 4.85 10.11 5.19
(0.500) (0.233) (0.543) (0.339) (0.553) (0.333) (0.606) (0.337)

simulation results shown in Tables 1 and 2, we find that the bootstrap approx-
imation is fairly robust against heterogeneity in the covariance structure of the
covariates.

6.3. Detecting spurious discoveries. To examine how the multiplier boot-
strap quantile qCMB

α (s,p) (see Section 5.1) serves as a benchmark for judging
whether the discovery is spurious, we compute the Spurious Discovery Probability
(SDP) by simulating 200 data sets from (4.1) with n = 100,120,160, p = 400,
β∗ = (1,0,−0.8,0,0.6,0,−0.4,0, . . . ,0)T ∈ R

p , and standard Gaussian noise
ε

d= N(0,1). For some integer s ≤ r ≤ p, we let x d= N(0, Ir ) be an r-dimensional
Gaussian random vector. Let �r be a p × r matrix satisfying �T

r �r = Ir . The rows
of the design matrix X are sampled as i.i.d. copies from �rx ∈ R

p , where r takes
a value in {120,160,200,240,280,320,360}. To save space, we give the numer-
ical results for the case of non-Gaussian design and noise in the Supplementary
Material [Fan, Shao and Zhou (2018)].

Put Y = (Y1, . . . , Yn)
T and let Ŷ = XŜ β̂

pLASSO
be the n-dimensional vector of

fitted values, where β̂
pLASSO = (XT

Ŝ
XŜ )−1

X
T
Ŝ
Y is the post-LASSO estimator using

covariates selected by the tenfold cross-validated LASSO estimator. Let ŝ = |Ŝ|0
be the number of variables selected. For α ∈ (0,1), the level-α SDP is defined as
P{|ĉorrn(Y, Ŷ)| ≤ qCMB

α (̂s,p)}. As the simulated model is not null, this SDP is
indeed a type II error. Given α = 5% and for each simulated data set, qCMB

α (s,p)

is computed based on 1000 bootstrap replications. Then we compute the empirical
SDP based on 200 simulations. The results are given in Table 3.

In this study, the design matrix is chosen so that there is a low-dimensional
linear dependency in the high-dimensional covariates. The collected covariates are
highly correlated when r is much smaller than p. It is known that collinearity
and high dimensionality add difficulty to the problem of variable selection and
deteriorate the performance of the LASSO. The smaller the r is, the more severe
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TABLE 3
Empirical α-level spurious discovery probability (ESDP) based on 200 simulations when p = 400,

n = 100,120,160 and α = 5%

r = 120 r = 160 r = 200 r = 240 r = 280 r = 320 r = 360

n = 100 0.6950 0.6650 0.6000 0.5200 0.5100 0.4500 0.4000
n = 120 0.6600 0.5350 0.3350 0.3800 0.2500 0.2850 0.1950
n = 160 0.1950 0.1300 0.0500 0.0400 0.0550 0.0700 0.0250

the problem of collinearity becomes. As reflected in Table 3, the empirical SDP
increases as r decreases, indicating that the correlation between fitted and observed
responses is more likely to be smaller than the spurious correlation.

6.4. Model selection. We demonstrate the idea in Section 5.2 through the fol-
lowing toy example. Consider the linear model (4.1) with (n,p) = (160,400) and
β∗ = (1,0,−0.8,0,0.6,0,−0.4,0, . . . ,0)T ∈ R

p . The covariate vector is taken to
be X = �x with x = (x1, . . . , x200)

T, where x1, . . . , x200 are i.i.d. random variables
following the continuous uniform distribution on [−1,1] and � is a 400 × 200
matrix satisfying �T� = I200. The noise variable ε follows a standardized t-
distribution with 4 degrees of freedom. Moreover, let S0 = {j : β∗

j �= 0} be the
true model.

Applying tenfold cross-validated LASSO selects 35 variables. Along the solu-
tion path, we compute the number of correctly selected variables |Ŝ ∩S0|, the fitted
correlation and the upper 5%-quantile of the multiplier bootstrap approximation of
the maximum spurious correlation based on 1000 bootstrap samples. The results
are provided in Table 4, from which we see that the cross-validation procedure un-
der the guidance of MSC selects 15 variables including all of the signal covariates.

6.5. Gene expression data. In this section, we extend the previous study in
Section 6.3 to an analysis of a real life data set. To further address the question
that for a given data set, whether the discoveries based on certain data-mining
technique are any better than spurious correlation, we consider again the gene ex-
pression data from 90 individuals (45 Japanese and 45 Chinese, JPT-CHB) from
the international “HapMap” project [Thorisson et al. (2005)] discussed in the In-
troduction.

The gene CHRNA6 is thought to be related to the activation of dopamine-
releasing neurons with nicotine and, therefore, has been the subject of many nico-
tine addiction studies [Thorgeirsson et al. (2010)]. We took the expressions of
CHRNA6 as the response Y and the remaining p = 47,292 expressions of probes
as covariates X. For a given λ > 0, LASSO selects ŝλ probes indexed by Ŝλ.
In particular, using tenfold cross-validation to select the tuning parameter gives

ŝλ0 = 25 probes with λ0 = 0.0674. Define fitted vectors Ŷ
LASSO
λ = Xβ̂

LASSO
λ and
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TABLE 4
Number of true positive results, the sample correlation between fitted and observed responses, and
the upper 5%-quantile of the multiplier bootstrap approximation based on 1000 bootstrap samples

|̂Sλ ∩ S0| ĉorrn(Y, ̂Y
pLASSO
λ ) qCMB

0.05 (̂sλ,p)

λ = 0.3410 (̂sλ = 1) 1 0.3314 0.3040
λ = 0.2703 (̂sλ = 2) 2 0.4802 0.3870
λ = 0.2580 (̂sλ = 3) 3 0.5255 0.4435
λ = 0.2351 (̂sλ = 4) 3 0.5536 0.4907
λ = 0.2142 (̂sλ = 5) 3 0.5791 0.5297
λ = 0.2044 (̂sλ = 6) 3 0.5971 0.5608
λ = 0.1952 (̂sλ = 8) 3 0.6205 0.6131
λ = 0.1778 (̂sλ = 9) 3 0.6377 0.6365
λ = 0.1697 (̂sλ = 11) 4 0.6953 0.6758
λ = 0.1620 (̂sλ = 14) 4 0.7380 0.7208
λ = 0.1409 (̂sλ = 15) 4 0.7490 0.7346
λ = 0.1345 (̂sλ = 19) 4 0.7685 0.7799
...

...
...

...

λ = 0.0885 (̂sλ = 35) 4 0.8428 0.8847

Ŷ
pLASSO
λ = XŜλ

β̂
pLASSO
λ , where β̂

LASSO
λ is the LASSO estimator and β̂

pLASSO
λ

is the post-LASSO estimator, which is the least-square estimator based on the
LASSO selected set.

We depict the observed correlations between the fitted value and the response
as well as the median and upper α-quantile of the multiplier bootstrap approxima-
tion with α = 10% based on 1000 bootstrap replications in Table 5. Even though
ĉorrn(Y, ŶLASSO) = 0.8991 and ĉorrn(Y, ŶpLASSO) = 0.9214, the discoveries ap-
pear to be no better than chance. We therefore increase λ, which decreases the size
of discovered probes. From Table 4, only the discovery of three probes is above
chance results at α = 10%. The three probes are BBS1—Homo sapiens Bardet-
Biedl syndrome 1, POLE2—Homo sapiens polymerase (DNA directed), epsilon 2
(p59 subunit) and TG737—Homo sapiens Probe hTg737 (polycystic kidney dis-
ease, autosomal recessive), transcript variant 2. Figure 4 shows the observed cor-
relations of the fitted values and observed values compared to the reference null
distribution.

We now use the test statistic (5.5) to test whether the null hypothesis (1.2) holds.
We take λ0 = 0.0674 and compute the observed test statistic T̂ obs

n,p = 4.6318. This
corresponds to

√
n times the maximum correlation presented in Figure 1. Using

the null distribution provided by (4.9), which can be estimated via the multiplier
bootstrap, yields the p-value 0.001. Further, using the SCAD gives T̂ obs

n,p = 4.1324
and a p-value 0.0164. Both calculations are based on 5000 bootstrap replications.
Therefore, the evidence against the exogeneity assumption is very strong. Figure 4
depicts the observed test statistics relative to the null distribution.
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TABLE 5
Sample correlations between fitted and observed responses, and the empirical median and upper

α-quantile of the multiplier bootstrap approximation based on 1200 bootstrap samples when
α = 10%

ĉorrn(Y, ̂Y
LASSO
λ ) ĉorrn(Y, ̂Y

pLASSO
λ ) qCMB

0.5 (̂sλ,p) qCMB
0.1 (̂sλ,p)

λ = 0.1789 (̂sλ = 2) 0.6813 0.6879 0.5585 0.5988
λ = 0.1708 (̂sλ = 3) 0.6915 0.7010 0.6555 0.6904
λ = 0.1630 (̂sλ = 4) 0.7059 0.7260 0.7252 0.7554
λ = 0.1556 (̂sλ = 5) 0.7141 0.7406 0.7797 0.8044
λ = 0.1292 (̂sλ = 8) 0.7454 0.7641 0.8828 0.8988
λ = 0.1177 (̂sλ = 14) 0.7714 0.8307 0.9658 0.9724
λ = 0.1073 (̂sλ = 17) 0.8026 0.8739 0.9817 0.9860
λ = 0.0933 (̂sλ = 21) 0.8451 0.9019 0.9915 0.9945
λ = 0.0891 (̂sλ = 23) 0.8561 0.9109 0.9937 0.9966
λ = 0.0674 (̂sλ = 25) 0.8991 0.9214 0.9953 0.9979

FIG. 4. Top panel: Distributions of the spurious correlation R̂n(s,p) estimated by the bootstrap
approximation for (a) s = 3 and (b) s = 25 and the sample correlation between fitted and observed
responses (see Table 5). Red solid lines are observed correlations and blue dash-dot lines mark
the 90th percentile in (a) the median and (b) the distributions of the median. Bottom panel: Null
distributions for testing exogeneity (1.2) and its 95th percentile (indicated by dash blue line) using
bootstrap approximation (4.9) and observed test statistics T̂ obs

n,p (indicated by solid red line) based
on the residuals of the LASSO and SCAD.
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7. Proofs. We first collect several technical lemmas in Section 7.1 before
proving our main result, Theorem 3.1 in Section 3. The proofs of Theorems 3.2,
4.1 and 4.2 are given in the Supplemental Material [Fan, Shao and Zhou (2018)],
where the proofs of Propositions 3.1 and 3.2 and Lemmas 7.2–7.6 can also be
found. Throughout, the letters C,C1,C2, . . . and c, c1, c2, . . . denote generic pos-
itive constants that are independent of (s,p,n), whose values may change from
line to line.

7.1. Technical lemmas. The following lemma combines Propositions 5.10 and
5.16 in Vershynin (2012).

LEMMA 7.1. Let X1, . . . ,Xn be independent centered random variables and
write xn = (X1, . . . ,Xn)

T ∈ R
n. Then for every a = (a1, . . . , an)

T ∈ R
n and every

t ≥ 0, we have

(7.1) P
(∣∣aTxn

∣∣≥ t
)≤ 2 exp

{
−cB min

(
t2

B2
1 |a|22

,
t

B1|a|∞
)}

and

(7.2) P
(∣∣aTxn

∣∣≥ t
)≤ 2 exp

(
−cH

t2

B2
2 |a|22

)
,

where Bv = max1≤i≤n ‖Xi‖ψv for v = 1,2 and cB, cH > 0 are absolute constants.

LEMMA 7.2. Let Conditions 2.1 and 2.2 be fulfilled. Write

Dn = Dn(s,p) := sup
α∈V
∣∣αT�̂nα/αT�α − 1

∣∣ and σ̂ 2
ε = n−1

n∑
i=1

(εi − ε̄n)
2,

where �̂n = n−1∑n
i=1(Xi − X̄n)(Xi − X̄n)

T and V is as in (3.2). Then there exists
a constant C1 > 0 such that, for every t ≥ 1,

Dn ≤ C1K
2
1

[√
s

n
log(γsep/s) + max

{√
t

n
, cn(s,p)

t

n

}]
(7.3)

holds with probability at least 1 − 8e−t , where cn(s,p) := s log(γsep/s) ∨ logn.
Moreover, for every t > 0,

(7.4)
∣∣σ̂ 2

ε − 1
∣∣≤ K2

0n−1t + 4K2
0 max

(
n−1/2√t, n−1t

)
holds with probability greater than 1 − 2 exp(−cBt) − 2 exp(−cHt), where
cB, cH > 0 are absolute constants as in (7.1) and (7.2).

The following results address the concentration and anti-concentration phenom-
ena of the supremum of the Gaussian process G∗ indexed by F [see (3.4)]. In line
with Chernozhukov, Chetverikov and Kato (2013), inequalities (7.5) and (7.6) be-
low are referred to as the concentration and anti-concentration inequalities, respec-
tively.
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LEMMA 7.3. Let R∗(s,p) = supfα∈F fα(Z)/|α|� for F = F(s,p) given in

(3.2) and Z d= N(0,�). Then there exists an absolute constant C > 0 such that,
for every p ≥ 2, 1 ≤ s ≤ p and t > 0,

P
{
R∗(s,p) ≥ C

√
s log(γsep/s) + t

}≤ e−t2/2 and(7.5)

sup
x≥0

P
{∣∣R∗(s,p) − x

∣∣≤ t
}≤ Ct

√
s log(γsep/s),(7.6)

where γs = √
φmax(s)/

√
φmin(s).

LEMMA 7.4. Suppose that a ≥ 1 and bj , cj > 0 for j = 1, . . . ,m are positive
constants. Let X1, . . . ,Xm be real-valued random variables that satisfy

P
(|Xj | ≥ t

)≤ a exp
{−t2/(2bj )

}
for t > 0, j = 1, . . . ,m.

Then, for all m ≥ 4/a, we have E(max1≤j≤m |Xj |) ≤ 2
√

log(am)max1≤j≤m bj .
Furthermore, suppose that P(|Xj | ≥ t) ≤ a exp(−t/cj ) holds for all t > 0 and
j = 1, . . . ,m. Then, for any m ≥ 4/a, we have E(max1≤j≤m |Xj |) ≤ {log(am) +
1}max1≤j≤m cj .

To save space, we leave the proofs of Lemmas 7.2–7.4 to Appendix A in the
Supplemental Material [Fan, Shao and Zhou (2018)].

7.2. Proof of Theorem 3.1. In view of (3.1), we have

R̂n(s,p) = sup
α∈V

n−1∑n
i=1 αT(εiXi ) − ε̄nα

TX̄n

(αT�̂nα)1/2 · {n−1∑n
i=1(εi − ε̄n)2}1/2

,

where V is as in (3.2).
By Lemma 7.2, instead of dealing with R̂n(s,p) directly, we first investigate the

asymptotic behavior of its standardized counterpart given by

(7.7) Rn(s,p) = sup
α∈V

n−1
n∑

i=1

αT(εiXi)

|α|� = sup
α∈V

n−1
n∑

i=1

αT
�yi ,

where yi = εiXi = (Yi1, . . . , Yip)T are i.i.d. random vectors with mean zero and
covariance matrix �. Let Py be the probability measure on R

p induced by y = εX.
Further, define rescaled versions of R̂n(s,p) and Rn(s,p) as

(7.8) L̂n = L̂n(s,p) = √
nR̂n(s,p), Ln = Ln(s,p) = sup

α∈V
n−1/2

n∑
i=1

αT
�yi .

The main strategy is to prove the Gaussian approximation of Ln by the supre-
mum of a Gaussian process G∗ indexed by F with covariance function

E
(
G

∗fα1G
∗fα2

)= αT
1 �α2

|α1|� · |α2|� , α1,α2 ∈ V.
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Let Z be a p-variate centered Gaussian random vector with covariance matrix �.
Then the aforementioned Gaussian process G

∗ can be induced by Z in the sense
that for every α ∈ V , G

∗fα = αT
�Z. The following lemmas show that, under

certain moment conditions, the distribution of Ln = √
nRn(s,p) can be consis-

tently estimated by that of the supremum of the Gaussian process G∗, denoted by
R∗(s,p) = supα∈V G

∗fα , and L̂n and Ln are close. We state them first in the fol-
lowing two lemmas and prove them in Appendix A of the Supplementary Material
[Fan, Shao and Zhou (2018)].

LEMMA 7.5. Under Conditions 2.1 and 2.2, there exists a random variable
T ∗ = T ∗(s,p)

d= supα∈V αT
�Z for Z d= N(0,�) such that, for any δ ∈ (0,K0K1],∣∣Ln − T ∗∣∣� n−1c1/2

n (s,p) + K0K1n
−3/2c2

n(s,p) + δ(7.9)

holds with probability at least 1−C�n(s,p; δ), where cn(s,p) = s log(γsep/s)∨
logn and

�n(s,p; δ) = (K0K1)
3 {sbn(s,p)}2

δ3
√

n
+ (K0K1)

4 {sbn(s,p)}5

δ4n

with bn(s,p) = log(γsp/s) ∨ logn.

LEMMA 7.6. Let Conditions 2.1 and 2.2 hold. Assume that the sample
size satisfies n ≥ C1(K0 ∨ K1)

4cn(s,p). Then, with probability at least 1 −
C2n

−1/2c
1/2
n (s,p),

|L̂n − Ln| � (K0 ∨ K1)
2K0K1n

−1/2cn(s,p),(7.10)

where cn(s,p) = s log(γsep/s) ∨ logn.

Let bn(s,p) = log(γsp/s) ∨ logn. Applying Lemmas 7.5 and 7.6 with

δ = δn(s,p) = (K0K1)
3/4 min

[
1, n−1/8{sbn(s,p)

}3/8]
yields that, with probability at least 1 − C(K0K1)

3/4n−1/8{sbn(s,p)}7/8,∣∣L̂n − T ∗∣∣� (K0K1)
3/4n−1/8{sbn(s,p)

}3/8
.

Together with the inequality (7.6), this proves (3.3).

Further, using (3.2), (3.4) and the identity vTA−1v = maxα∈Ss−1
(αTv)2

αTAα
that

holds for any s × s positive definite matrix A, we find that with probability one,

R∗(s,p) = max
S⊆[p]:|S|=s

max
α∈Ss−1

αTZS√
αT�SSα

= max
S⊆[p]:|S|=s

√
ZT

S�−1
SS ZS,(7.11)

where for each S ⊆ [p] fixed, the second maximum over α is achieved when
α = �

−1/2
SS ZS/|�−1/2

SS ZS |2, as for each p ≥ 1 fixed, all of the coordinates
of Z are nonzero almost surely. In particular, when � = Ip , the right-hand
side of (7.11) is reduced to maxS⊆[p]:|S|=s |ZS |2 and, therefore, {R∗(s,p)}2 =
maxS⊆[p]:|S|=s

∑
j∈S Z2

j = Z2
(p) + · · · + Z2

(p−s+1) happens with probability one.
This and (3.3) complete the proof of (3.5).
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SUPPLEMENTARY MATERIAL

Supplement to “Are discoveries spurious? Distributions of maximum spu-
rious correlations and their applications” (DOI: 10.1214/17-AOS1575SUPP;
.pdf). This supplemental material contains additional proofs for all the remaining
theoretical results in the main text, including Lemmas 7.2–7.6, Theorems 3.2, 4.1
and 4.2 and Propositions 3.1 and 3.2. A discussion on the moment assumptions is
also included.
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