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This paper is about index policies for minimizing (frequentist) regret in
a stochastic multi-armed bandit model, inspired by a Bayesian view on the
problem. Our main contribution is to prove that the Bayes-UCB algorithm,
which relies on quantiles of posterior distributions, is asymptotically optimal
when the reward distributions belong to a one-dimensional exponential fam-
ily, for a large class of prior distributions. We also show that the Bayesian
literature gives new insight on what kind of exploration rates could be used
in frequentist, UCB-type algorithms. Indeed, approximations of the Bayesian
optimal solution or the Finite-Horizon Gittins indices provide a justification
for the kl-UCB+ and kl-UCB-H+ algorithms, whose asymptotic optimality
is also established.

1. Introduction. This paper presents new analyses of Bayesian-flavored
strategies for sequential resource allocation in an unknown, stochastic environ-
ment modeled as a multi-armed bandit. A stochastic multi-armed bandit model is
a set of K probability distributions, V1, . . . ,VK , called arms, with which an agent
interacts in a sequential way. At round t , the agent, who does not know the arms’
distributions, chooses an arm At . The draw of this arm produces an independent
sample Xt from the associated probability distribution VAt , often interpreted as a
reward. Indeed, the arms can be viewed as those of different slot machines, also
called one-armed bandits, generating rewards according to some underlying prob-
ability distribution.

In several applications that range from the motivating example of clinical trials
[38] to the more modern motivation of online advertisement (e.g., [16]), the goal
of the agent is to adjust his strategy A = (At )t∈N, also called a bandit algorithm, in
order to maximize the rewards accumulated during his interaction with the bandit
model. The adopted strategy has to be sequential, in the sense that the next arm
to play is chosen based on past observations: letting Ft = σ(A1,X1, . . . ,At ,Xt)
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be the σ -field generated by the observations up to round t , At is σ(Ft−1,Ut )-
measurable, where Ut is a uniform random variable independent from Ft−1 (as
algorithms may be randomized).

More precisely, the goal is to design a sequential strategy maximizing the ex-
pectation of the sum of rewards up to some horizon T . If μ1, . . . ,μK denote the
means of the arms, and μ∗ = maxa μa , this is equivalent to minimizing the regret,
defined as the expected difference between the reward accumulated by an oracle
strategy always playing the best arm, and the reward accumulated by a strategy A:

(1) R(T ,A) := E

[
T μ∗ −

T∑
t=1

Xt

]
= E

[
T∑

t=1

(
μ∗ − μAt

)]
.

The expectation is taken with respect to the randomness in the sequence of succes-
sive rewards from each arm a, denoted by (Ya,s)s∈N, and the possible randomiza-
tion of the algorithm, (Ut )t . We denote by Na(t) = ∑t

s=1 1(As=a) the number of
draws from arm a at the end of round t , so that Xt = YAt ,NAt (t)

.
This paper focuses on good strategies in parametric bandit models, in which the

distribution of arm a depends on some parameter θa : we write Va = νθa . Like in ev-
ery parametric model, two different views can be adopted. In the frequentist view,
θ = (θ1, . . . , θK) is an unknown parameter. In the Bayesian view, θ is a random
variable, drawn from a prior distribution �. More precisely, we define Pθ (resp.,
Eθ ) the probability (resp., expectation) under the probabilistic model in which for
all a, (Ya,s)s∈N is i.i.d. distributed under νθa and P

� (resp., E�) the probability
(resp., expectation) under the probabilistic model in which for all a (Ya,s)s∈N is
i.i.d. conditionally to θa with conditional distribution νθa , and θ ∼ �. The expec-
tation in (1) can thus be taken under either of these two probabilistic models. In
the first case, this leads to the notion of frequentist regret, which depends on θ :

(2) Rθ (T ,A) := Eθ

[
T∑

t=1

(
μ∗ − μAt

)] =
K∑

a=1

(
μ∗ − μa

)
Eθ

[
Na(T )

]
.

In the second case, this leads to the notion of Bayesian regret, sometimes called
Bayes risk in the literature (see [27]), which depends on the prior distribution �:

(3) R�(T ,A) := E
�

[
T∑

t=1

(
μ∗ − μAt

)] =
∫

Rθ (T ,A) d�(θ).

The first bandit strategy was introduced by Thompson in 1933 [38] in a
Bayesian framework, and a large part of the early work on bandit models is adopt-
ing the same perspective [7, 8, 10, 19]. Indeed, as Bayes risk minimization has
an exact—yet often intractable—solution, finding ways to efficiently compute this
solution has been an important line of research. Since 1985 and the seminal work
of Lai and Robbins [28], there is also a precise characterization of good bandit al-
gorithms in a frequentist sense. They show that for any uniformly efficient policy A
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(i.e., such that for all θ , Rθ (T ,A) = o(T α) for all α ∈ ]0,1]), the number of draws
of any suboptimal arm a (μa < μ∗) is asymptotically lower bounded as follows:

(4) lim inf
T →∞

Eθ [Na(T )]
logT

≥ 1

KL(νθa , νθ∗)
,

where KL(ν, ν′) denotes the Kullback–Leibler divergence between the distribu-
tions ν and ν′. From (2), this yields a lower bound on the regret.

This result holds for simple parametric bandit models, including exponential
family bandit models presented in Section 2, that will be our main focus in this
paper. It paved the way to a new line of research, aimed at building asymptotically
optimal strategies, that is, strategies matching the lower bound (4) for some classes
of distributions. Most of the algorithms proposed since then belong to the family
of index policies, that compute at each round one index per arm, depending on the
history of rewards observed from this arm only, and select the arm with largest in-
dex. More precisely, they are UCB-type algorithms, building confidence intervals
for the means of the arms and choosing as an index for each arm the associated
Upper Confidence Bound (UCB). The design of the confidence intervals has been
successively improved [1, 4–6, 14, 21, 27] so as to obtain simple index policies for
which nonasymptotic upper bound on the regret can be given. Among them, the
kl-UCB algorithm [14] matches the lower bound (4) for exponential family bandit
models. As they use confidence intervals on unknown parameters, all these index
policies are based on frequentist tools. Nevertheless, it is interesting to note that
the first index policy was introduced by Gittins in 1979 [19] to solve a Bayesian
multi-armed bandit problem and is based on Bayesian tools, that is, on exploiting
the posterior distribution on the parameter of each arm.

However, tools and objectives can be separated: one can compute the Bayes risk
of an algorithm based on frequentist tools, or the (frequentist) regret of an algo-
rithm based on Bayesian tools. In this paper, we focus on the latter and advocate
the use of index policies inspired by Bayesian tools for minimizing regret, in par-
ticular the Bayes-UCB algorithm [24], which is based on quantiles of the posterior
distributions on the means. Our main contribution is to prove that Bayes-UCB is
asymptotically optimal, that is, it matches the lower bound (4), for any exponen-
tial bandit model and for a large class of prior distributions. Our analysis relies on
two new ingredients: tight bounds on the tail of posterior distributions (Lemma 4),
and a self-normalized deviation inequality featuring an exploration rate that de-
creases with the number of observations (Lemma 5). This last tool also allows us
to prove the asymptotic optimality of two variants of kl-UCB, called kl-UCB+
and kl-UCB-H+, that display improved empirical performance. Interestingly, the
alternative exploration rate used by these two algorithms is already suggested by
asymptotic approximations of the Bayesian exact solution or the Finite-Horizon
Gittins indices.

The paper is structured as follows. Section 2 introduces the class of exponential
family bandit models that we consider in the rest of the paper, and the associated
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frequentist and Bayesian tools. In Section 3, we present the Bayes-UCB algorithm,
and give a proof of its asymptotic optimality. We introduce kl-UCB+ and kl-UCB-
H+ in Section 4, in which we prove their asymptotic optimality and also exhibit
connections with existing Bayesian policies. In Section 5, we illustrate numerically
the good performance of our three asymptotically optimal, Bayesian-flavored in-
dex policies in terms of regret. We also investigate their ability to attain an optimal
rate in terms of Bayes risk. Some proofs are provided in the Supplemtary Material
[23].

1.1. Notation. Recall that Na(t) = ∑t
s=1 1(As=a) is the number of draws from

arm a at the end of round t . Letting μ̂a,s = 1
s

∑s
k=1 Ya,k be the empirical mean of

the first s rewards from a, the empirical mean of arm a after t rounds of the bandit
algorithm, μ̂a(t), satisfies μ̂a(t) = 0 if Na(t) = 0, μ̂a(t) = μ̂a,Na(t) otherwise.

2. (Bayesian) exponential family bandit models. In the rest of the paper,
we consider the important class of exponential family bandit models, in which the
arms belong to a one-parameter canonical exponential family.

2.1. Exponential family bandit model. A one-parameter canonical exponential
family is a set P of probability distributions, indexed by a real parameter θ called
the natural parameter, that is defined by

P = {
νθ , θ ∈ � : νθ has a density fθ (x) = exp

(
θx − b(θ)

)
w.r.t. ξ

}
,

where � = (θ−, θ+) ⊆ R is an open interval, b a twice-differentiable and convex
function (called the log-partition function) and ξ a reference measure. Examples
of such distributions include Bernoulli distributions, Gaussian distributions with
known variance, Poisson distributions or Gamma distributions with known shape
parameter.

If X ∼ νθ , it can be shown that E[X] = ḃ(θ) and Var[X] = b̈(θ) > 0, where ḃ

(resp., b̈) is the derivative (resp., second derivative) of b with respect to the natural
parameter θ . Thus there is a one-to-one mapping between the natural parameter
θ and the mean μ = ḃ(θ), and distributions in an exponential family can be alter-
natively parametrized by their mean. Letting J := ḃ(�), for μ ∈ J we denote by
νμ the distribution in P that has mean μ: νμ = νḃ−1(μ). The variance V(μ) of the
distribution νμ is related to its mean in the following way:

(5) V(μ) = b̈
(
ḃ−1(μ)

)
.

In the sequel, we fix an exponential family P and consider a bandit model
νμ = (νμ1, . . . , νμK ), where νμa belongs to P and has mean μa . When consider-
ing Bayesian bandit models, we restrict our attention to product prior distributions
on μ = (μ1, . . . ,μK), such that μa is drawn from a prior distribution on J = ḃ(�)

that has density fa with respect to the Lebesgue measure. We let πt
a be the pos-

terior distribution on μa after the first t rounds of the bandit game. With a slight
abuse of notation, we will identify πt

a with its density, for which a more precise
expression is provided in Section 2.3.
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2.2. Kullback–Leibler divergence and confidence intervals. For distributions
that belong to a one-parameter exponential family, the large deviation rate function
has a simple and explicit form, featuring the Kullback–Leibler (KL) divergence,
and one can build tight confidence intervals on their means. The KL-divergence
between two distributions νθ and νλ in an exponential family has a closed-form
expression as a function of the natural parameters θ and λ, given by

(6) K(θ, λ) := KL(νθ , νλ) = ḃ(θ)(θ − λ) − b(θ) + b(λ).

We also introduce d(μ,μ′) as the KL-divergence between the distributions of
means μ and μ′:

d
(
μ,μ′) := KL

(
νμ, νμ′) = K

(
ḃ−1(μ), ḃ−1(

μ′)).
Applying the Cramér–Chernoff method (see, e.g., [9]) in an exponential family
yields an explicit deviation inequality featuring this divergence function: if μ̂s

is the empirical mean of s samples from νμ and x > μ, one has P(μ̂s > x) ≤
exp(−sd(x,μ)). This inequality can be used to build a confidence interval for μ

based on a fixed number of observations s. Inside a bandit algorithm, computing a
confidence interval on the mean of an arm a requires to take into account the ran-
dom number of observations Na(t) available at round t . Using a self-normalized
deviation inequality (see [14] and references therein), one can show that, at any
round t of a bandit game, the kl-UCB index, defined as

(7) ua(t) := sup
{
q ∈ J : Na(t)d

(
μ̂a(t), q

) ≤ log
(
t logc(t)

)}
,

where c ≥ 3 is a real parameter, satisfies P(ua(t) > μa) � 1 − 1/(t logc−2 t) and
is thus an upper confidence bound on μa . The exploration rate, which is here
log(t logc(t)), controls the coverage probability of the interval.

Closed-form expressions for the divergence function d in the most common
examples of exponential families are available (see [14]). Using the fact that y �→
d(x, y) is increasing when y > x, an approximation of ua(t) can then be obtained
using, for example, binary search.

2.3. Posterior distributions in Bayesian exponential family bandits. It is well
known that the posterior distribution on the mean of a distribution that belongs to
an exponential family depends on two sufficient statistics: the number of obser-
vations and the empirical means of these observations. With fa the density of the
prior distribution on μa , introducing

πa,n,x(u) := exp(n[ḃ−1(u)x − b(ḃ−1(u))])fa(u)∫
J exp(n[ḃ−1(u)x − b(ḃ−1(u))])fa(u) du

for u ∈ J,

the density of the posterior distribution on μa after t rounds of the bandit game
can be written

πt
a = πa,Na(t),μ̂a(t).
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While our analysis holds for any choice of prior distribution, in practice one may
want to exploit the existence of families of conjugate priors (e.g., Beta distribu-
tions for Bernoulli rewards, Gaussian distributions for Gaussian rewards, Gamma
distributions for Poisson rewards). With a prior distribution chosen in such a fam-
ily, the associated posterior distribution is well known and its quantiles are easy to
compute, which is of particular interest for the Bayes-UCB algorithm, described
in the next section.

Finally, we give below a rewriting of the posterior distribution that will be very
useful in the sequel to obtain tight bounds on its tails.

LEMMA 1.

πa,n,x(u) = exp(−nd(x,u))fa(u)∫
J exp(−nd(x,u))fa(u) du

for all u ∈ J.

PROOF. Let u ∈ J. One has

πa,n,x(u) = exp(n[ḃ−1(u)x − b(ḃ−1(u))])fa(u)∫
J exp(n[ḃ−1(u)x − b(ḃ−1(u))])fa(u) du

× e−n[xḃ−1(x)−b(ḃ−1(x))]

e−n[xḃ−1(x)−b(ḃ−1(x))]

= exp(−n[x(ḃ−1(x) − ḃ−1(u)) − b(ḃ−1(x)) + b(ḃ−1(u))])fa(u)∫
J exp(−n[x(ḃ−1(x) − ḃ−1(u)) − b(ḃ−1(x)) + b(ḃ−1(u))])fa(u) du

= exp(−nd(x,u))fa(u)∫
J exp(−nd(x,u))fa(u) du

,

using the closed-form expression (6) and the fact that θ = ḃ−1(μ). �

3. Bayes-UCB: A simple and optimal Bayesian index policy.

3.1. Algorithm and main result. The Bayes-UCB algorithm is an index policy
that was introduced by [24] in the context of parametric bandit models. Given a
prior distribution on the parameters of the arms, the index used for each arm is
a well-chosen quantile of the (marginal) posterior distributions of its mean. For
exponential family bandit models, given a product prior distribution on the means,
the Bayes-UCB index is

qa(t) := Q

(
1 − 1

t (log t)c
;πt

a

)
= Q

(
1 − 1

t (log t)c
;πa,Na(t),μ̂a(t)

)
,

where Q(α;π) is the quantile of order α of the distribution π [i.e., PX∼π(X ≤
Q(α;π)) = α] and c is a real parameter. In the particular case of bandit models
with Gaussian arms, [33] have introduced a variant of Bayes-UCB with a slightly
different tuning of the confidence level, under the name UCL (for Upper Credible
Limit).
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While the efficiency of Bayes-UCB has been demonstrated even beyond bandit
models with independent arms, regret bounds are available only in very limited
cases. For Bernoulli bandit models asymptotic optimality is established by [24]
when a uniform prior distribution on the mean of each arm is used. For Gaussian
bandit models, [33] give a logarithmic regret bound when an uninformative prior is
used. In this section, we provide new finite-time regret bounds that hold in general
exponential family bandit models, showing that a slight variant of Bayes-UCB is
asymptotically optimal for a large class of prior distributions.

We fix an exponential family, characterized by its log-partition function b and
the interval � = ]θ−, θ+[ of possible natural parameters. We let μ− = ḃ(θ−) and
μ+ = ḃ(θ+) (μ− may be equal to −∞ and μ+ to +∞). We analyze Bayes-UCB
for exponential bandit models satisfying the following assumption.

ASSUMPTION 2. There exist μ−
0 > μ− and μ+

0 < μ+ such that ∀a ∈
{1, . . . ,K},μ−

0 ≤ μa ≤ μ+
0 .

For Poisson or exponential distributions, this assumption requires that the means
of all arms are different from zero, while they should be included in ]0,1[ for
Bernoulli distributions. We now introduce a regularized version of the Bayes-UCB
index that relies on the knowledge of μ−

0 and μ+
0 , as

(8) qa(t) := Q

(
1 − 1

t (log t)c
;πa,Na(t),μ̄a(t)

)
,

where μ̄a(t) = min(max(μ̂a(t),μ
−
0 ),μ+

0 ). Note that μ−
0 and μ+

0 can be chosen
arbitrarily close to μ− and μ+, respectively, in which case qa(t) often coincides
with the original Bayes-UCB index qa(t).

THEOREM 3. Let νμ be an exponential bandit model satisfying Assumption 2.
Assume that for all a, π0

a has a density fa with respect to the Lebesgue measure
such that fa(u) > 0 for all u ∈ J = ḃ(�). Let c ≥ 7. The algorithm that draws each
arm once and for t ≥ K selects at time t + 1

At+1 = argmax
a

qa(t),

with qa(t) defined in (8) satisfies, for all ε > 0,

∀a 
= a∗, E
[
Na(T )

] ≤ 1 + ε

d(μa,μ∗)
log(T ) + oε

(
log(T )

)
.

From Theorem 3, taking the lim sup and letting ε go to zero show that (this
slight variant of) Bayes-UCB satisfies

∀a 
= a∗, lim sup
T →∞

E[Na(T )]
log(T )

≤ 1

d(μa,μ∗)
.
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Thus this index policy is asymptotically optimal, as it matches Lai and Robbins’
lower bound (4). As we shall see in Section 5, from a practical point of view
Bayes-UCB outperforms kl-UCB and performs similarly (sometimes slightly bet-
ter, sometimes slightly worse) as Thompson Sampling, another popular Bayesian
algorithm that we now discuss.

3.2. Posterior quantiles versus posterior samples. Over the past few years,
another Bayesian algorithm, Thompson Sampling, has become increasingly popu-
lar for its good empirical performance, and we explain how Bayes-UCB is related
to this alternative, randomized, Bayesian approach.

The Thompson Sampling algorithm, that draws each arm according to its pos-
terior probability of being optimal, was introduced in 1933 as the very first bandit
algorithm [38] and re-discovered recently for its good empirical performance [16,
36]. Thompson Sampling can be implemented in virtually any Bayesian bandit
model in which one can sample the posterior distribution, by drawing one sample
from the posterior on each arm and selecting the arm that yields the largest sam-
ple. In any such case, Bayes-UCB can be implemented as well and may appear as a
more robust alternative as the quantiles can be estimated based on several samples
in case there is no efficient algorithm to compute them.

Our experiments of Section 5 show that Bayes-UCB as well as the other
Bayesian-flavored index policies presented in Section 4 are competitive with
Thompson Sampling in general one-dimensional exponential families. Compared
to Bayes-UCB, the theoretical understanding of Thompson Sampling is more lim-
ited: this algorithm is known to be asymptotically optimal in exponential family
bandit models, yet only for specific choices of prior distributions [3, 25, 26].

In more complex bandit models, there are situations in which Bayes-UCB is
indeed used over Thompson Sampling. When there is a potentially infinite number
of arms and the mean reward function is assumed to be drawn from a Gaussian
Process, the GP-UCB of [37], that coincides with Bayes-UCB, is very popular in
the Bayesian optimization community [11].

3.3. Tail bounds for posterior distributions. Just like the analysis of [24], the
analysis of Bayes-UCB that we give in the next section relies on tight bounds on
the tails of posterior distributions that permit to control quantiles. These bounds
are expressed with the Kullback–Leibler divergence function d . Therefore, an ad-
ditional tool in the proof is the control of the deviations of the empirical mean re-
wards from the true mean reward, measured with this divergence function, which
follows from the work of [14].

In the particular case of Bernoulli bandit models, Bayes-UCB uses quantiles of
Beta posterior distributions. In that case a specific argument, namely the fact that
Beta(a, b) is the distribution of the ath order statistic among a+b−1 uniform ran-
dom variables, relates a Beta distribution (and its tails) to a Binomial distribution
(and its tails). This “Beta-Binomial trick” is also used extensively in the analysis
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of Thompson Sampling for Bernoulli bandits proposed by [2, 3, 25]. Note that this
argument can only be used for Beta distributions with integer parameters, which
rules out many possible prior distributions. The analysis of [33] in the Gaussian
case also relies on specific tails bounds for the Gaussian posterior distributions.
For exponential family bandit models, an upper bound on the tail of the posterior
distribution was obtained by [26] using the Jeffreys prior.

Lemma 4 below presents more general results that hold for any class of expo-
nential family bandit models and any prior distribution with a density that is pos-
itive on J = ḃ(�). For such (proper) prior distributions, we give deterministic up-
per and lower bounds on the corresponding posterior probabilities πa,n,x([v,μ+[).
Compared to the result of [26], which is not presented in this deterministic way,
Lemma 4 is based on a different rewriting of the posterior distribution, given in
Lemma 1.

LEMMA 4. Let μ−
0 ,μ+

0 be defined in Assumption 2:

1. There exist two positive constants A and B such that for all x, v that satisfy
μ−

0 < x < v < μ+
0 , for all n ≥ 1, for all a ∈ {1, . . . ,K},

An−1e−nd(x,v) ≤ πa,n,x

([
v,μ+[) ≤ B

√
ne−nd(x,v).

2. There exists a constant C such that for all x, v that satisfy μ−
0 < v ≤ x < μ+

0 ,
for all n ≥ 1, for all a ∈ {1, . . . ,K},

πa,n,x

([
v,μ+[) ≥ C√

n
.

The constants A,B,C depend on μ−
0 , μ+

0 , b and the prior densities.

This result permits in particular to show that the quantile qa(t) defined in (8)
satisfies Ua(t) ≤ qa(t) ≤ Ua(t), with

Ua(t) = sup
{
q < μ+

0 : Na(t)d
(
μa(t), q

) ≤ log
((

At logc(t)
)
/Na(t)

)}
,

Ua(t) = sup
{
q < μ+

0 : Na(t)d
(
μa(t), q

) ≤ log
(
Bt logc(t)

√
Na(t)

)}
.

Hence, despite their Bayesian nature, the indices used in Bayes-UCB are strongly
related to frequentist kl-UCB type indices. However, compared to the index ua(t)

defined in (7), the exploration rate that appears in Ua(t) and Ua(t) also features the
current number of draws Na(t). Lai [27] gives an asymptotic analysis of any in-
dex strategy of the above form with an exploration function g(T /Na(t)), where
g(t) ∼ log(t) when t goes to infinity. Yet neither Ua(t) nor Ua(t) are not ex-
actly of that form, and we propose below a finite-time analysis that relies on new,
nonasymptotic tools.
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3.4. Finite-time analysis. We give here the proof of Theorem 3. To ease the
notation, assume that arm 1 is an optimal arm, and let a be a suboptimal arm:

E
[
Na(T )

] = E

[
T −1∑
t=0

1(At+1=a)

]
= 1 +E

[
T −1∑
t=K

1(At+1=a)

]
.

We introduce a truncated version of the KL-divergence, d+(x, y) := d(x, y)1(x<y)

and let gt be a decreasing sequence to be specified later.
Using that, by definition of the algorithm, if a is played at round t + 1, it holds

in particular that qa(t) ≥ q1(t), one has

(At+1 = a) ⊆ (
μ1 − gt ≥ q1(t)

) ∪ (
μ1 − gt ≤ q̄1(t),At+1 = a

)
⊆ (

μ1 − gt ≥ q1(t)
) ∪ (

μ1 − gt ≤ q̄a(t),At+1 = a
)
.

This yields

E
[
Na(T )

] ≤ 1 +
T −1∑
t=K

P
(
μ1 − gt ≥ q̄1(t)

) +
T −1∑
t=K

P
(
μ1 − gt ≤ q̄a(t),At+1 = a

)
.

The posterior bounds established in Lemma 4 permit to further upper bound
the two sums in the right-hand side of the above inequality. With C defined in
Lemma 4, we introduce t0, defined by

t ≥ t0 ⇒ (
μ1 − gt ≥ μ−

0 and C2t log(t)2c > 1
)
.

On the one hand, for t ≥ t0,

(
μ1 − gt ≥ q̄1(t)

) =
(
π1,N1(t),μ̄1(t)

([
μ1 − gt ,μ

+[) ≤ 1

t logc t

)

=
(
π1,N1(t),μ̄1(t)

([
μ1 − gt ,μ

+[) ≤ 1

t logc t
, μ̄1(t) ≤ μ1 − gt

)
,

since by the lower bound in the second statement of Lemma 4,(
π1,N1(t),μ̄1(t)

([
μ1 − gt ,μ

+[) ≤ 1

t logc t
, μ̄1(t) ≥ μ1 − gt

)

⊂
(

C√
N1(t)

≤ 1

t logc t

)
⊂ (

N1(t) ≥ C2t2 log2c t
) ⊂ (

N1(t) > t
) =∅.

Now using the lower bound in the first statement of Lemma 4,

(
μ1 − gt ≥ q̄1(t)

) ⊆
(

Ae−N1(t)d(μ̄1(t),μ1−gt )

N1(t)
≤ 1

t logc t
, μ̄1(t) ≤ μ1 − gt

)

⊂
(
N1(t)d

+(
μ̂1(t),μ1 − gt

) ≥ log
(

At logc t

N1(t)

))
.
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On the other hand,

T −1∑
t=K

P
(
μ1 − gt ≤ q̄a(t),At+1 = a

)

=
T −1∑
t=K

P

(
πa,Na(t),μ̄a(t)

([
μ1 − gt ,μ

+[) ≥ 1

t logc t
,At+1 = a

)

≤
T −1∑
t=K

P

(
μ̄a(t) < μ1 − gt ,

πa,Na(t),μ̄a(t)

([
μ1 − gt ,μ

+[) ≥ 1

t logc t
,At+1 = a

)

+
T −1∑
t=K

P
(
μ̄a(t) ≥ μ1 − gt ,At+1 = a

)
.

(9)

Using Lemma 4, the first sum in (9) is upper bounded by

T −1∑
t=K

P

(
B

√
Na(t)e

−Na(t)d+(μ̄a(t),μ1−gt ) ≥ 1

t logc t
,At+1 = a

)

≤
T −1∑
t=K

t∑
s=1

P

(
B

√
se−sd+(μ̄a,s ,μ1−gt ) ≥ 1

t logc t
,Na(t) = s,At+1 = a

)

≤
T −1∑
t=K

t∑
s=1

P

(
sd+(μ̄a,s,μ1 − gs) ≤ log

(
T logc T

) + log(B) + 1

2
log s,

Na(t) = s,At+1 = a

)

≤
T∑

s=1

P

(
sd+(μ̄a,s,μ1 − gs) ≤ logT + c log logT + log(B) + 1

2
log s

)

≤
T∑

s=1

P

(
sd+(μ̂a,s,μ1 − gs) ≤ logT + c log logT + log(B) + 1

2
log s

)

+
T∑

s=1

P
(
μ̂a,s < μ−

0

)
.

To third inequality follows from exchanging the sums over s and t and using that∑N
t=1 1(Na(t)=s)∩(At+1=a) is smaller than 1 for all s. The last inequality uses that

if μ̂a,s ≥ μ0, μa,s ≤ μ̂a,s and d+(μa,s,μ1 − gs) ≥ d+(μ̂a,s,μ1 − gs). Then by
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Chernoff inequality,

T∑
s=1

P
(
μ̂a,s < μ−

0

) ≤
∞∑

s=1

exp
(−sd

(
μ−

0 ,μa

)) = 1

1 − e−d(μ−
0 ,μa)

.

Still using Chernoff inequality, the second sum in (9) is upper bounded by

T −1∑
t=K

P
(
μ̂a(t) ≥ μ1 − gt ,At+1 = a

)

≤
T −1∑
t=K

P
(
μ̂a(t) ≥ μ1 − gNa(t),At+1 = a

)

≤
T −1∑
t=K

t∑
s=1

P
(
μ̂a,s ≥ μ1 − gs,Na(t) = s,At+1 = a

)

≤
T∑

s=1

P(μ̂a,s ≥ μ1 − gs) ≤
∞∑

s=1

exp
(−sd(μ1 − gs,μa)

) := N0 < +∞.

Putting things together, we showed that there exists some constant N =
max(t0,N0 + (1 − e−d(μ−

0 ,μa))−1) + 1 such that

E
[
Na(T )

] ≤ N +
T −1∑
t=K

P

(
N1(t)d

+(
μ̂1(t),μ1 − gt

) ≥ log
(

At logc t

N1(t)

))
︸ ︷︷ ︸

T1

+
T∑

s=1

P

(
sd+(μ̂a,s ,μ1 − gs) ≤ logT + c log logT + log(B) + 1

2
log s

)
︸ ︷︷ ︸

T2

.

Term T1 is shown below to be of order o(log(T )), as μ̂1(t) cannot be too far
from μ1 − gt . Note however that the deviation is expressed with log(t/N1(t)) in
place of the traditional log(t), which makes the proof of Lemma 5 more intricate.
In particular, Lemma 5 applies to a specific sequence (gt ) defined therein, and a
similar result could not be obtained for the choice gt = 0, unlike Lemma 6 below.

LEMMA 5. Let gt be such that d(μ1 − gt ,μ1) = 1
log(t)

. If c ≥ 7, for all A, if t

is larger than exp(max(
√

3,A−1/7)),

P

(
N1(t)d

+(
μ̂1(t),μ1 − gt

) ≥ log
At logc t

N1(t)

)

≤ e

(
1

At log t
+ 3 log log t + logA

At log2 t
+ 1

At log3 t

)
+ 1

t2 .
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From Lemma 5, one has

(T1) ≤ e

T −1∑
t=K

log2 t + 3(log t) log log(t) + logA log t + 1

At(log3 t)
+

T −1∑
t=K

1

t2

≤ e

A

(
2 + 3

e
+ logA

logK

) T −1∑
t=K

1

t log(t)
+ π2

6

≤ e

A

(
2 + 3

e
+ logA

logK

)
log logT + π2

6
.

The following lemma permits to give an upper bound on Term T2.

LEMMA 6. Let f,g,h be three functions such that

f (s) −→
s→∞ ∞, g(s) −→

s→∞ 0 and
h(s)

s
−→
s→∞ 0,

with g and s �→ h(s)/s nonincreasing for s large enough.
For all ε > 0, there exists a (problem-dependent) constant Na(ε) such that for

all T ≥ Na(ε),

T∑
s=1

P
(
sd+(

μ̂a,s,μ1 − g(s)
) ≤ f (T ) + h(s)

)

≤ 1 + ε

d(μa,μ1)
f (T ) +

√
f (T )

√
8V2

aπ(1 + ε)3d ′(μa,μ1)2

d(μa,μ1)3

+ 8(1 + ε)2V2
a

(
d ′(μa,μ1)

d(μa,μ1)

)2 1

1 − e−d(μ−
0 ,μa)

+ 1,

with Va = supμ∈[μa,μ1] V(μ), where the variance function is defined in (5).

Let ε > 0. Using Lemma 6, with f (s) = log(s) + c log log(s) + log(B), g(s) =
gs defined in Lemma 5 and h(s) = 1

2 log(s), there exists problem dependent con-
stants C0 and D0(ε) such that

(T2) ≤ 1 + ε

d(μa,μ1)
(logT + c log logT ) + C0

√
logT + c log logT + D0(ε).

Putting together the upper bounds on (T1) and (T2) yields the conclusion: for all
ε > 0,

E
[
Na(T )

] ≤ 1 + ε

d(μa,μ∗)
log(T ) + Oε

(√
log(T )

)
.
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4. A Bayesian insight on alternative exploration rates. The kl-UCB index
of an arm, ua(t), introduced in (7), uses the exploration rate log(t logc(t)), that
does not depend on arm a. Some alternatives to this universal exploration rate
have been suggested in the literature, and we formally introduce two variants of
kl-UCB, called kl-UCB+ and kl-UCB-H+ using an exploration rate that decreases
with the number of draws of arm a. The tools developed for the analysis of Bayes-
UCB allow us to prove the asymptotic optimality of both algorithms. We then show
that the Bayesian literature on the multi-armed bandit problem provides a natural
justification for these algorithms that are related to approximations of the Bayesian
optimal optimal solution or the Gittins indices.

4.1. The kl-UCB+ and kl-UCB-H+ algorithms. We introduce in Definition 7
two new index policies, and prove their asymptotic optimality. The indices in-
dices uH,+

a (t) and u+
a (t) both rely on an exploration rate that decreases with the

number of plays of arm a. kl-UCB-H+ additionally requires the knowledge of
the horizon T . In practice, both algorithms outperform kl-UCB, as can be seen in
Section 5.

DEFINITION 7. Let c ≥ 0. We define kl-UCB-H+ and kl-UCB+ with param-
eter c ≥ 0 as the index policies respectively based on the indices:

uH,+
a (t) = sup

{
q : Na(t)d

(
μ̂a(t), q

) ≤ log
(

T logc T

Na(t)

)}
,(10)

u+
a (t) = sup

{
q : Na(t)d

(
μ̂a(t), q

) ≤ log
(

t logc t

Na(t)

)}
.(11)

A key step in the analysis of Bayes-UCB is the control of the probability of the
event (

N1(t)d
+(

μ̂1(t),μ1 − gt

) ≥ log
(

At logc t

N1(t)

))
,

in which an exploration rate of order log(t/N1(t)) appears. This control is obtained
in Lemma 5, which can also be used to analyze the kl-UCB-H+ and kl-UCB+ algo-
rithms that are based on such alternative exploration rates. The following theorem
proves the asymptotic optimality of these two index policies. Its proof is provided
in Appendix B of [23].

THEOREM 8. Let c ≥ 7. Each of the index policy associated to the indices
defined by (11) and (10) satisfies, for all ε > 0,

E
[
Na(T )

] ≤ 1 + ε

d(μa,μ∗)
log(T ) + Oε

(√
log(T )

)
.
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The use of alternative exploration rates in UCB-type algorithms has appeared
before in the bandit literature, for example, the MOSS algorithm [4], based on the
index

μ̂a(t) +
√

log(T /(KNa(t)))

Na(t)
,

is designed to be optimal in a minimax sense for bandit models with sub-Gaussian
rewards: the algorithm achieves a O(

√
KT ) distribution-independent upper bound

on the regret. Besides, it was already noted by [17] that the use of the exploration
rate log(t/Na(t)) in place of log(t) in the kl-UCB algorithm leads to better empir-
ical performance. In this paper, additionally to proving the asymptotic optimality
of these approaches, we now provide a new insight on the use of such alternative
exploration rates by relating the kl-UCB-H+ algorithm to other Bayesian policies.

4.2. Bayesian optimal solution and Gittins indices. The alternative explo-
ration rate discussed in Section 4.1 happens to be related to two other Bayesian
strategies for the multi-armed bandit problem: the Bayesian optimal solution and
the Finite-Horizon Gittins index policy that we present here.

In a Bayesian framework, the interaction of an agent with a multi-armed bandit
can be modeled by a Markov Decision Process (MDP) in which the state �t is the
current posterior distribution over the parameter of the arms. In exponential bandit
models, the posterior over μ is �t = ⊗

πt
a . There are K possible actions and when

action At is chosen in state �t , the observed reward Xt is a sample from arm At ,
that satisfies, conditionally to the past, Xt ∼ νμ and μ ∼ �t(At). The new state
is �t+1 = ⊗

πt+1
a with πt+1

a = πt
a for all a 
= At and the density of πt+1

At
gets

updated according to

πt+1
At

(u) ∝ exp
(−(

ḃ−1(u)Xt − b
(
ḃ−1(u)

)))
πt

At
(u).

Bayes risk minimization, or reward maximization under the Bayesian probabilistic
model, is equivalent to solving this MDP for the finite-horizon criterion, which
boils down to finding a strategy of the form At = g(�t) for some deterministic
function g that maximizes

(12) E
�

[
T∑

t=1

X
g
t

]
,

where (X
g
t )t is the sequence of rewards obtained under policy g. From the theory

of MDPs (see, e.g., [32]), the optimal policy is solution of dynamic programming
equations and can be computed by induction. However, due to the very large, if
not infinite, state space (the set of possible posterior distributions over μ), the
computation is often intractable.

In a slightly different setting, Gittins proved in 1979 [19] that the apparently
intractable optimal policy reduces to an index policy, with corresponding indices
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later called the Gittins indices. He considers the discounted Bayesian multi-armed
bandit problem, in which the goal is to find a policy g that minimizes

E
�

[ ∞∑
t=1

αt−1X
g
t

]
,

for some discount parameter α ∈ ]0,1[. Interestingly, it was proved in [8] that the
discount is necessary for this reduction to hold: in particular, the policy maximiz-
ing (12) is not an index policy. However, the notion of Gittins indices is a powerful
concept that can also be defined in a finite-horizon multi-armed bandit. The Finite-
Horizon Gittins index of an arm depends on the current posterior distribution on its
mean (π = πt

a) and on the remaining time to play (r = T − t). It can be interpreted
as the price worth paying for playing an arm with posterior π at most r times. In-
deed, for λ > 0 consider the following game, called Cλ, in which a player can either
pay λ and draw the arm to receive a sample Yt , which results in a reward Yt − λ,
or stop playing, which yields no reward. As precisely defined below, the Gittins
index is the critical value of λ for which the optimal policy in Cλ is to stop playing
the arm from the beginning. This definition transposes to the nondiscounted case
one of the equivalent definitions of the discounted Gittins index that can be found
in [20].

DEFINITION 9. The Finite-Horizon Gittins index for a current posterior π and
remaining time r is G(π, r) = inf{λ ∈ R : V ∗

λ (π, r) = 0}, with

V ∗
λ (π, r) = sup

0≤τ≤r

E
Yt

i.i.d∼ νμ

μ∼π

[
τ∑

t=1

(Yt − λ)

]
,

where the supremum is taken over all stopping time τ smaller than r a.s., with the
convention

∑0
t=1 · = 0.

Computing the FH-Gittins indices requires to compute V ∗
λ (π, r) for several val-

ues of λ in order to find the critical value (using, e.g., binary search). Each compu-
tation requires solving a MDP, but on a smaller state space: the possible posterior
distributions on the mean of a single arm. Hence, the FH-Gittins algorithm, that is,
the index policy based on the Finite-Horizon Gittins indices,

At+1 = argmax
a=1,...,K

G
(
πt

a, T − t
)
,

is a more practical algorithm than the Bayesian optimal solution. Although FH-
Gittins does not coincide with the Bayesian optimal solution, we believe it is a
good approximation. This is supported by simulations performed in a two-armed
Bernoulli bandit problem, for which we compute the Bayes risk of the optimal
strategy and that of the FH-Gittins algorithm up to horizon T = 70, as presented in
Figure 1. For small horizons, Ginebra and Clayton [18] propose a comparison of
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FIG. 1. Bayes risk of the optimal strategy (blue) and FH-Gittins (dashed red) estimated using
N = 106 replications of a bandit game, for which the means are drawn from U([0,1]).

different algorithms with the Bayesian optimal solution and similarly notice that
the Bayes risk of FH-Gittins (called �-strategy) is very close to the optimal value,
for various choices of prior and horizons.

Compared to a simple index policy like Bayes-UCB, the computational cost of
the FH-Gittins algorithm (not to mention that of the Bayesian optimal strategy) is
still very high. In particular, the complexity of these two approaches grows dra-
matically when the horizon T increases, which motivates some approximations
that have been proposed for large horizons, described in the next sections.

However, when the FH-Gittins algorithm is efficiently implementable (i.e., for
relatively small horizons), we would like to advocate its use for minimizing the
frequentist regret. Indeed our experiments of Section 5 report good empirical per-
formance in Bernoulli bandit models. In this particular case, using a uniform prior
on the means, the set of (Beta) posterior is parametrized by two integers (the num-
ber of zeros and ones observed so far), and we could implement FH-Gittins up to
horizon T = 1000. An efficient implementation of FH-Gittins for Gaussian ban-
dits, up to horizon T = 10,000, has been recently given by [29]. More generally,
finding efficient methods to compute Finite-Horizon Gittins indices is still an area
of investigation [31]. Interestingly, [29] provides the first theoretical elements sup-
porting the use of FH-Gittins for regret minimization, by giving the first logarith-
mic upper bound on its regret in the particular case of Gaussian bandit models.
However, the asymptotic optimality of this algorithm for Gaussian bandits and
more general models remains a conjecture.

4.3. Approximation of the Bayesian optimal solution. In the paper [27], Lai
shows that, in exponential family bandit models, the Bayes risk of any strategy is
asymptotically lower bounded by C0(π) log2(T ), when C0(π) is a prior-dependent
constant. He also provides matching strategies, which implies in particular that
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the Bayes risk of the Bayesian optimal solution is of order log2(T ). Any strategy
matching this lower bound can be viewed as an asymptotic approximation of the
Bayesian optimal solution.

In the particular case of product prior distributions, we provide in Theorem 10 a
Bayes risk lower bound that is slightly more general than Lai’s result in the sense
that it does not require the prior distribution on the natural parameter of each arm to
have a compact support. The proof of this result, provided in Appendix D of [23],
follows however closely that of [27]. The lower bound is expressed in terms of the
prior distribution on the natural parameters θ = (θ1, . . . , θK) of the arms, with the
following notation. For a = 1, . . . ,K , we let θ−a = (θ1, . . . , θa−1, θa+1, . . . , θK)

be the vector of �K−1 that consists of all components of θ except component
number a. We let θ∗

a = maxi 
=a θi , so that θ∗
a only depends on θ−a .

THEOREM 10. Let H be a prior distribution on �K that has a product form,
such that each marginal has a density ha with respect to the Lebesgue measure λ

that satisfies ha(θ) > 0 for all θ ∈ �. Letting H−a be the marginal distribution of
θ−a , that has density

∏
i 
=a hi(θi) with respect to λ⊗K−1, one assumes that

∀a = 1, . . . ,K,

∫
�K−1

ha

(
θ∗
a

)
dH−a(θ−a) < ∞.

Under the prior distribution H , the Bayes risk of any strategy A satisfies

lim inf
T →∞

RH(T ,A)

log2(T )
≥ 1

2

K∑
a=1

∫
�K−1

ha

(
θ∗
a

)
dH−a(θ−a).

For exponential family bandit models with a product prior, Lai provides the
first (asymptotic) prior-dependent Bayes risk upper bounds, when � is compact.
Letting [μ−

0 ,μ+
0 ] = ḃ(�), he shows in particular that the index policy based on

(13) Ia(t) = sup
{
q ∈ [

μ−
0 ,μ+

0

] : Na(t)d
(
μ̂a(t), q

) ≤ log
(

T

Na(t)

)}
,

where d(x, y) = d(max(μ−
0 ,min(μ+

0 , x)), y), has a Bayes risk that asymptotically
matches the lower bound of Theorem 10. This index policy is very similar to kl-
UCB-H+ and differs only from the use of a regularized version of the divergence
function d .

While a recent line of research on Bayesian randomized algorithms (e.g.,
Thompson Sampling) has provided Bayes risk upper bounds in quite general set-
tings ([34, 35]), to the best of our knowledge, no upper bound scaling in log2(T )

has been obtained for exponential family bandit models since the work of Lai.
Bubeck and Liu [12] and Liu and Li [30] give the first prior-dependent upper
bounds on the Bayes risk of Thompson Sampling, in a particular case quite dif-
ferent from our setting: a two-armed bandit model in which the means of the arms
are known up to a permutation. The joint prior distribution is thus supported on
(μ1,μ2) and (μ2,μ1). In Section 5.2, we investigate numerically the optimality
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of the Bayesian index policies discussed in the paper with respect to the lower
bound of Theorem 10.

4.4. Approximation of the Finite-Horizon Gittins indices. As discussed Sec-
tion 4.2, the FH-Gittins algorithm, that is, the index policy associated to

Ja(t) = G
(
πt

a, T − t
)
,

is conjectured to be a good approximation of the Bayesian optimal policy, yet
the above indices remain difficult to compute. Building on approximations of the
Finite-Horizon Gittins indices that can be extracted from the literature permits to
obtain a related efficient index policy.

Recall from Definition 9 that the Finite-Horizon Gittins index takes the form

G(π, r) = inf
{
λ ∈ R : V ∗

λ (π, r) = 0
}
,

where V ∗
λ (π, r) corresponds to the optimal value function associated to a calibra-

tion game Cλ. In the paper [13], Burnetas and Katehakis propose tight bounds on
the value function V ∗

λ (πa,n,x, r) for exponential family bandits. These bounds per-
mit to derive asymptotic approximations of the FH-Gittins indices, when r is large,
and to show that, for large values of the remaining time T − t ,

(14) Ja(t) � sup
{
q ∈ [

μ−,μ+] : Na(t)d̃
(
μ̂a(t), q

) ≤ log
(

T − t

Na(t)

)}
.

This approximation is valid under the assumption that � is compact: [μ−,μ+] =
ḃ(�) and d̃ is another regularization of the divergence function d , such that, for
any y, d̃(x, y) = d(x, y) for x > μ− and for x ≤ μ−,

d̃(x, y) = d
(
μ−, y

) + (
ḃ−1(y) − ḃ−1(

μ−))(
μ− − x

)
.

In the particular case of Gaussian bandit models, the work of Chang and Lai [15]
on the approximation of discounted Gittins indices can also be adapted to ob-
tain approximations of the Finite-Horizon Gittins indices, showing the same ten-
dency as in (14): compared to the corresponding kl-UCB index, here the log t is
replaced by log((T − t)/Na(t)). This alternative exploration rate also appears in
the nonasymptotic lower bound on the Gaussian Gittins index obtained by [29].

These approximations of the Finite-Horizon Gittins indices provide another jus-
tification for exploration rates of the form log(h(t, T )/Na(t)), with some function
h, which are also used by the kl-UCB-H+ and kl-UCB+ algorithms. These two
algorithms can thus be viewed as Bayesian (inspired) index policies.

5. Numerical experiments.

5.1. Regret minimization. We first perform experiments with a moderate hori-
zon T = 1000, which permits to include the Finite-Horizon Gittins algorithm dis-
cussed in Section 4.2. Figure 2 displays the regret of kl-UCB, Thompson Sampling
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FIG. 2. Regret on two-armed Bernoulli bandits [μ = [0.05 0.15] (left) μ = [0.75 0.8] (right)] up
to horizon T = 1000, averaged over N = 10,000 simulations.

and the four Bayesian (or Bayesian inspired) index policies discussed in this pa-
per, in two instances of two-armed Bernoulli bandit problems. The Bayesian index
policies display comparable, if not better, performance than kl-UCB and Thomp-
son Sampling. In particular, FH-Gittins appears to be significantly better than the
other algorithms on the instance with small rewards.

For a larger horizon T = 20,000, we then run experiments on a bandit model
in which rewards follow an exponential distribution (which is a particular Gamma
distribution). Bayes-UCB and Thompson Sampling are implemented using a con-
jugate InvGamma(1,1) prior on the means. Results are displayed in Figure 3. In
this setting, Bayes-UCB, kl-UCB+ and kl-UCB-H+ improve over kl-UCB, and
are also competitive with Thompson Sampling. As already noted in several works
(e.g., [14]), the Lai and Robbins lower bound, that is asymptotic, is quite pes-
simistic for finite (even large) horizons.

FIG. 3. Regret on a five-armed bandit with Exponential distributions with means μ = [1 1.5 2 2.5 3]
up to horizon T = 20,000, averaged over N = 50,000 simulations.
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5.2. Bayes risk minimization. In this paper, Bayes risk minimization and its
exact solution is mostly presented as a justification for improved algorithms for
regret minimization. However, it is also interesting to understand whether the pro-
posed algorithm are good approximations of the Bayesian solution, that is, whether
they match the asymptotic lower bound of Theorem 10.

We report here results of experiments in Bernoulli bandit models with a uniform
prior on the means. In this setting, some computations (see Appendix D.4 of the
Supplemtary Material [23]) show that the lower bound rewrites

lim inf
T →∞

R(T ,A)

log2(T )
≥ K − 1

K + 1
.

In particular, we see that the asymptotic rate of the Bayesian regret is (almost)
independent of the number of arms. For several values of K , we display on Figure 4
the Bayes risk RT (A(T )) of several algorithms, together with the theoretical lower
bound, as a function of log2(T ).

For each value of K , we observe that all the algorithms have a Bayes risk that
seems to be affine in log2(T ). For Thompson Sampling, kl-UCB+ and kl-UCB-H+

FIG. 4. Bayes risk up to T = 20,000 on a Bernoulli bandit model with a uniform prior on the K

arms, for K = 5,10,15,20, averaged over N = 50,000 simulations.
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the slope is close to (K − 1)/(K + 1), whereas for kl-UCB and Bayes-UCB it is
strictly larger. This leads to the conjecture that the first three algorithms are asymp-
totically optimal in a Bayesian sense. It is to be noted that, while the Bayes risk
of these algorithms seems to be of order (K − 1)/(K + 1) log2(T ) + C(K) for
large values of T , the second-order term C(K) appears to be increasing signifi-
cantly with the number of arms. Compared to Lai and Robbins’ lower bound on
the regret, this lower bound does not appear to be over-pessimistic in finite time.

6. Conclusion. This paper provides an analysis of the Bayes-UCB algorithm
that does not rely on arguments specific to Bernoulli or Gaussian distributions, and
is valid in any exponential family bandit model. It also brings theoretical justifica-
tions for the use of the kl-UCB-H+ and kl-UCB+ algorithms together with a new
insight on the alternative exploration rate used by these algorithms. Finally, the
proposed analysis holds for a wide class of prior distributions, namely all distribu-
tions that have positive density with respect to the Lebesgue measure. This shows
that the choice of prior has no impact on the asymptotic optimality of Bayes-UCB,
unlike what happens for Thompson Sampling in Gaussian bandit with unknown
mean and variance [22]. Beyond asymptotic optimality, an interesting direction of
future work would be to quantify the impact of the prior on second-order terms in
the regret. Another important research direction is to better understand the Finite-
Horizon Gittins strategy, which performs well in practice, but whose asymptotic
optimality is still to be established.

SUPPLEMENTARY MATERIAL

Technical proofs (DOI: 10.1214/17-AOS1569SUPP; .pdf). The supplemental
article contains the proofs of some results stated in the paper.
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