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This paper considers the estimation of the sparse additive quantile regres-
sion (SAQR) in high-dimensional settings. Given the nonsmooth nature of the
quantile loss function and the nonparametric complexities of the component
function estimation, it is challenging to analyze the theoretical properties of
ultrahigh-dimensional SAQR. We propose a regularized learning approach
with a two-fold Lasso-type regularization in a reproducing kernel Hilbert
space (RKHS) for SAQR. We establish nonasymptotic oracle inequalities for
the excess risk of the proposed estimator without any coherent conditions.
If additional assumptions including an extension of the restricted eigenvalue
condition are satisfied, the proposed method enjoys sharp oracle rates without
the light tail requirement. In particular, the proposed estimator achieves the
minimax lower bounds established for sparse additive mean regression. As a
by-product, we also establish the concentration inequality for estimating the
population mean when the general Lipschitz loss is involved. The practical
effectiveness of the new method is demonstrated by competitive numerical
results.

1. Introduction. High dimensional sparse models arise in situations where
many predictors are available and the regression function is well approximated by
a few relevant, yet unknown covariates. Sparsity assumption leads to more inter-
pretable and stable models, less computational cost, and allows for model iden-
tifiability even when the number of covariates is much bigger than the sample
size. Over the last decade, high dimensional sparse models have been extensively
studied in conditional mean regression settings, which lead to several important
regularized least squares approaches (see, e.g., [33, 36, 37, 45] and the references
therein).

However, high-dimensional data often display heterogeneity in practice, due to
either heteroscedastic variance or other forms of nonlocation-scale covariate ef-
fects. This type of heterogeneity usually conceals a piece of important information
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that tends to be ignored by the mean of the conditional distribution. In addition, the
active sets of covariates may be different for different quantile points of the condi-
tional distribution. These cannot be addressed by the mean regression models, but
can be handled well by the quantile regression. The quantile regression method,
first proposed by Koenker and Bassett [24], has been widely used in various dis-
ciplines, including finance, economics, medicine and biology. We refer to [23] for
a comprehensive introduction, and to [16] for a general overview of many inter-
esting recent developments. In contrast to the conditional mean regression models,
the quantile regression is able to capture heterogeneity [10] and different active
sets of covariates for different quantile points, possesses certain robustness prop-
erties to outliers [23], has comparable computational efficiency [25] and requires
relatively weak assumptions on the noise terms.

Several authors have investigated the problem of variable selection in linear
quantile regression models in recent years [6, 49, 51]. Wang et al. [49] proposed a
penalized quantile approach with a nonconvex SCAD penalty [15] and established
the corresponding model selection property under a ultra high-dimensional setting.
Their method is based on a nonconvex program, but they did not give oracle rates
of the estimators. Under some mild conditions, [51] established the oracle proper-
ties of the SCAD and adaptive-Lasso penalized quantile regressions. Belloni and
Cheronzhukov [6] studied the variable selection, estimation and prediction proper-
ties of the Lasso-type methods. All these works assume a linear or other parametric
forms for the regression model.

In practice, there is often little prior information indicating that the effects of
the predictors take a linear form or belong to any other finite-dimensional para-
metric family. Substantial improvements are possible by allowing a data-analytic
transform of the predictors [19], which leads to quantile additive regression model.
Nonetheless, the literature on sparse additive quantile regression (SAQR) is limited
([22, 28, 31]). Using an argument similar to that in [28, 51] studied several statis-
tical properties of semiparametric quantile regression in the finite dimensional set-
ting. In high dimensions, [22] proposed the group Lasso method by finite splines
approximation to estimate additive components, and derived �2-estimation errors
of the estimator under quite different settings from what are given in this arti-
cle. By contrast, our proposed approach belongs to an infinite dimensional Lasso-
type scheme and enables us to estimate each additive component directly within
RKHSs. Thus, no approximation error of the proposed estimator is present. Be-
sides, our method is quite flexible, since the use of RKHS includes linear func-
tions, polynomial functions and Sobolev/Besov spaces as special cases. Moreover,
another advantage of the RKHS is that only few tuning parameters are chosen, and
in general it suffices to specify the kernel function. By contrast, the commonly-
used spline methods in nonparametric estimation require to specify the number of
basis functions and the sequence of knots. Also, the excess risk of the estimator
has not been studied in [22], which is significantly different from estimation er-
ror. Analogous to our current paper, reference [31] proposed a group-type Lasso
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scheme for the SAQR within the RKHSs. However, they only established a low
rate of convergence in terms of the excess risk of the estimator.

Despite the aforementioned developments, a rigorous analysis of penalization-
based methods for SAQR in high-dimensional settings is still lacking. In particular,
it is unclear whether the rates derived in each of the above papers are sharp under
certain conditions, nor whether the rates are near minimax-optimal in some sense.
Also, it is interesting to explore different conditions under which different-order
oracle rates are established, so as to indicate the applicable scope of these �1-type
penalized methods. In practice, these �1-type penalized methods often work better
in terms of prediction performance than sparsity recovery. It is also interesting
to justify this observation from theoretical aspects. Investigating such theoretical
problems mentioned above is of significance, in view of the recent advances in
understanding the performance of regularization methods in the mean regression
and classification models [30, 33, 36].

In this paper, we consider a regularized approach in SAQR with two Lasso-type
regularization terms under the framework of RKHS. The proposed approach has
two features. First, the proposed quantile approach with two Lasso-type regular-
ization terms is defined directly on the infinite dimensional RKHSs and avoids
approximation error. Second, as mentioned above, compared with the traditional
spline-based methods or other dictionary-based tools, the RKHS has fewer tun-
ing parameters to be determined and are quite flexible, including linear functions,
various spline spaces and Sobelev/Besov class as special cases; see [35] for some
discussions on RKHS and spline tools.

In theoretic development, however, it is challenging to simultaneously deal
with the nonsmoothness of the quantile loss function, the nonparametric nature
of the component functions and the high-dimensionality of the predictor vector in
a SAQR model. In particular, unlike any dictionary-based tool, the RHKS does
not have an explicit form and is generally an infinite dimensional Hilbert space,
which makes most of traditional analysis techniques not applicable. We thus need
to develop certain empirical process techniques to establish the oracle inequalities.
We also note that [26, 36] developed some techniques to derive oracle inequal-
ities or minimax rates based on the RHKS for sparse additive mean regression
model. However, their techniques can not be used directly in our case since the
quantile loss functions are nonsmooth and nonstrongly convex. To deal with the
nonsmoothness problem in the quantile loss, we apply the subgradient tools to
guarantee that the error bound induced by the loss function is dominated by that
of the penalty terms. In this case, a weighted empirical process associated with
general random variables should be employed to deal with sequences of nonsym-
metric random variables, involved in the theoretical analysis for SAQR. Note also
that our analysis does not require a global boundedness condition on the candidate
space, which is required in [26]. Besides, our theoretical results allow for mutual
dependence among covariates, by contrast, [36] assumes that the covariates are
drawn from a product probability measure, which is equivalent to assuming that
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the covariates are mutually independent. This is an unrealistic assumption in the
context of regression analysis, particularly in high-dimensional settings.

Our results are obtained under two different settings, so that we shed new light
on high-dimensional oracle properties for SAQR models. We first establish oracle
inequalities of the excess risk under some quite mild conditions. In particular, we
may dispense with the usual incoherence conditions required by �1-based methods.
If some additional suitable assumptions including an extension of the restricted
eigenvalue condition are satisfied, the proposed method enjoys sharp oracle rates
with proper choices of the regularization parameters. Furthermore, oracle rates for
the excess risk and estimation error of the proposed estimator are shown to be
adaptive to the sparsity of the model. These results show that, up to a logarith-
mic factor of the ambient dimension, the upper bound for the estimation error in
Theorem 2 coincides with the minimax lower bound obtained recently in [36] for
the least square regression with Gaussian noise. By contrast, our results allow for
possibility of the heavy-tailed noise term.

Even though our analysis is conducted only for SAQR, our proof techniques
can be extended to general regularized approaches with Lipschitz loss functions,
for example, the hinge loss for support vector machines studied recently in [53]. In
particular, we establish the concentration inequality for estimating the population
mean when the general Lipschitz loss is involved. In addition, our proofs also re-
veal some new features for the classical fixed dimensional settings. We shall show
that, the oracle rate (see Corollary 1 below) coincides with a rate of convergence
for the fixed dimensional case established in [18]. However, tackling proofs for our
main results in Hilbert spaces are more challenging and are based on the structures
of sparsity and complexity and advanced empirical processes, which is of a signifi-
cant difference between analyzing high-dimensional problems and analyzing fixed
dimensional problems.

The paper is organized as follows. In Section 2, we introduce some basic no-
tation and model assumptions. Section 3 includes the description of our method
and statements of main theoretical results. The upper bounds on the convergence
rate are provided under weak and strong conditions, respectively, as well as model
selection property is given. In Section 4, simulation results are implemented for nu-
merically exploring the robustness and efficiency of the estimators. A real example
analysis is displayed in Section 5. Proofs and some useful lemmas are located in
Section 6.

2. Model and assumptions. Let (xi, yi), i = 1, . . . , n, be random vectors that
are independent and identically distributed as (x, y), where y is a response variable
and x = (x1, . . . , xd)′ is a d-dimensional covariate vector. Suppose that (x, y) ∈
X ×Y is endowed with an underlying joint distribution P. For theoretical analysis,
we assume that X is a compact subset of Rd . The SAQR has the following form:

(2.1) yi = μτ + ∑
j∈Sτ

f ∗
τ,j (xij ) + ετ,i , i = 1, . . . , n,
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where μτ is an intercept, and f ∗
τ,j is an unknown univariate component function in

some specified RKHS. Sτ ⊆ {1,2, . . . , d} is some unknown subset with cardinality
|Sτ | = sτ (sτ � d), and ετ,i is the random error with P(ετ,i ≤ 0|xi) = τ . Note that
the distribution of ετ,i is not specified and heterogeneous errors are not excluded
since ετ,i can depend on the predictors. In addition, the active set Sτ may vary with
different quantile points τ . This allows for different sparsity patterns for different
quantile τ . For simplicity, we will omit τ in the expressions wherever there is
no confusion from the context. For identifiability, we assume E[f ∗

j (xj )] = 0 for
j ∈ S.

Given a compact subset X ⊂ R, let K : X × X → R be a bounded, symmetric
and positive semidefinite function. The RKHS denoted by HK associated with the
kernel K is the completion of the linear span of functions {Kx := K(x, ·), x ∈ X}
with the inner product given by 〈Kx,Ky〉K = K(x,y). For more detailed dis-
cussions on RKHS, we refer the reader to two standard references [1, 39]. The
so-called reproducing property of HK is critical in both theoretical analysis and
computation, which states that f (x) = 〈f,K(x, )〉K,x ∈ X,∀f ∈ HK . This prop-
erty implies that ‖f ‖∞ ≤ κ‖f ‖K for all f ∈ HK , where κ = supx∈X

√
K(x,x).

For notational simplicity, we assume that κ = 1 in the rest of the paper. For each
j = 1, . . . , d , the marginal distribution of xj is denoted by Qj . Let Hj ⊂ L2(Qj )

be a RKHS of univariate functions on Xj with kernel Kj . We assume that
E[fj (x)] = ∫

Xj
fj (x) dQj (x) = 0, for any fj ∈ Hj . These centering constraints

is to facilitate the identifying restrictions E[f ∗
j (xj )] = 0, j ∈ S. In the model (2.1),

we also assume that |μτ | ≤ 1 and ‖f ∗
j ‖Kj

≤ 1 for the ease of notation.
For any fixed j = 1, . . . , d , denote by BHj

(1) the unit ball of Hj , the hypothesis
space we consider in this paper is defined by

F :=
{
f =

d∑
j=1

fj : fj ∈ BHj
(1), j = 1, . . . , d

}
,

which corresponds to the class of functions f :X →R that decompose as sums of
univariate functions on each coordinates. Note that F is a subset of a RKHS [1],
with the norm ‖f ‖2

F = inf{∑d
j=1 ‖fj‖2

Kj
,with every formf = ∑d

j=1 fj }, where
‖ · ‖Hj

denotes the norm on the univariate Hilbert space Hj . Let Q be the
marginal distribution on X induced by the joint distribution P. We write the
usual Lq(Q) norm (1 ≤ q ≤ 2), ‖f ‖q

Lq(Q) = ∫
X |f |q dQ. Analogously, we de-

fine the empirical L2(Qn)-norm associated with the sample {xi}ni=1, ‖f ‖2
L2(Qn)

=
1
n

∑n
i=1 f 2(xi). For simplicity, we frequently use the notation ‖f ‖q = ‖f ‖Lq(Q)

and ‖f ‖n = ‖f ‖L2(Qn). For a univariate function fj ∈ Hj , we also use the short-
hand ‖fj‖q = ‖fj‖Lq(Qj ) and ‖fj‖n = ‖fj‖L2(Qn,j ).

3. Two-fold penalization and main results. For ease of presentation, we
state our results in the special case where the univariate Hilbert space Hj ,
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j = 1, . . . , d are all identical, still denoted by HK . For any function of the
form f = ∑d

j=1 fj , the (L2(Qn),1) and (HK,1)-norms are given by ‖f ‖n,1 =∑d
j=1 ‖fj‖n and ‖f ‖K,1 = ∑d

j=1 ‖fj‖K , respectively. We define the empirical
and population risk respectively associated with the quantile loss as En(μ,f ) =
1
n

∑n
i=1 ρτ (yi − μ − f (xi)) and E(μ,f ) = E[ρτ (Y − μ − f (X))]. The cost func-

tional with a sparsity penalty ‖f ‖n,1 and a smoothness penalty ‖f ‖K,1 is

L(μ,f ) = En(μ,f ) + λ1‖f ‖n,1 + λ2‖f ‖K,1,

where ρτ (t) = t (τ − I{t≤0}) is the quantile loss function (also call the pinball loss).
We consider the minimization problem

(μ̂, f̂ ) = arg min
μ∈[−1,1],f L(μ,f ),

subject to f =
d∑

j=1

fj and ‖fj‖K ≤ 1 for j = 1, . . . , d.

(3.1)

Here, (λ1, λ2) is a pair of positive regularization parameters, whose choice in our
theory is to be specified as follows: λ2 = λ2

1 = ζγ 2
n , where γn is given in (3.5)

and ζ is given in Theorem 1 below. From the choices of (λ1, λ2), there exists a
close relationship between them in theory and λ1 is larger than λ2, since γn → 0
as n increases. The reasoning behind this is that it is more important to control
sparsity than control smoothness in high dimensions. In practice, cross validation
for choosing the regularization parameter seems to be the most reasonable way to
go.

Though the formulation (3.1) is defined directly on infinite-dimensional
Hilbert spaces, it can be shown that the solution to (3.1) is finite-dimensional
by the reproducing property of RKHS, and has the form f̂ (z1, . . . , zd) =∑n

i=1
∑d

j=1 α̂ijK(zj , xij ). Let α̂j = (α̂1j , . . . , α̂nj ) (j = 1, . . . , d) and the empir-

ical matrix Kj ∈ Rn×n, with entries K
j
i,� = K(xij , x�j ). The optimal coefficients

(μ̂, α̂1, . . . , α̂d) are the solution to the convex optimization problem

min
μ∈[−1,1],αj∈Rn,αT

j K
j αj≤1

{
1

n

n∑
i=1

ρτ

(
yi − μ −

[
d∑

j=1

(
Kjαj

)]
i

)

+ λ1√
n

d∑
j=1

√
αT

j

(
Kj

)2
αj + λ2

d∑
j=1

√
αT

j K
jαj

}
.

(3.2)

This problem can be transformed easily into a second-order cone program (SOCP)
[22] and the existence of an optimal solution is guaranteed; however, the SOCP is
computationally intensive for large-scale problems. To address this issue, we pro-
pose a majorization-minimization algorithm in Section 4, which will be repeatedly
used to practically solve the optimization problem (3.2) in high dimensions.
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REMARK 1. As mentioned above, the computational tasks in RKHS’s can be
reduced to finite-dimensional optimization problems whose solutions are spanned
naturally by the kernelized functions {Kxi

}ni=1, rather than some basis functions
defined by specified knots.

REMARK 2. In the literature, there are various combinations of sparsity and
smoothness penalties with the quadratic loss for the mean regression models.
For example, the square norm

∑d
j=1 ‖fj‖2

K in [27] is only used to control func-
tional smoothness and cannot capture sparsity structure. Lin and Zhang [29]
and Koltchinskii and Yuan [26] combine the least squares loss and the penalty∑d

j=1 ‖fj‖K . Meier et al. [33] used the penalty
∑d

j=1

√
λ1‖fj‖2

n + λ2‖fj‖2
K for

the least squares approach. The penalty we consider here belongs to two-fold group
Lasso scheme [52] and was also used in [26, 36] for mean regression problems.
Compared with the other types of penalties, the two-fold penalization can lead to
sharp rates of convergence. Moreover, the growth rates of the penalty parameters
induced by this scheme are adaptive, without involving any prior information on
the active set S.

REMARK 3. Computationally, the nonsmooth quantile loss and either of two
penalties can be approximated well by a series of quadratic functions, then the ap-
proximated L(μ,f ) can be solved by many methods, such as the proximal meth-
ods and block-coordinate descent algorithms [5, 46]. For more details, we refer the
reader to a survey on sparsity-induced algorithms [2].

In this paper, we focus on the theoretical properties of the estimator, includ-
ing the upper bounds on the excess risk and estimation error of f̂ , that is,
E(μ̂, f̂ ) − E(μτ , f

∗) and
∑d

j=1 ‖f̂j − f ∗
j ‖2. These bounds are obtained based

on the empirical process theory [3, 4]. We first introduce the following notation
and assumptions.

A key property of RKHS is the spectral theorem, which says that K associated
to HK admits the following eigenvalue decomposition [1]:

(3.3) K
(
x, x′) = ∑

�≥1

b�ψ�(x)ψ�

(
x′), x, x′ ∈ X,

where b1 ≥ b2 ≥ · · · ≥ 0 are its eigenvalues and {ψ� : � ≥ 1} are the correspond-
ing eigenfunctions, consisting of an orthogonal basis in L2(ν(X)), where ν is
some underlying measure on X. In this paper, ν refers in particular to each Qj ’,
j = 1, . . . , d . Since the complexity of RKHS is determined by the rate of decay
of eigenvalues b�’s [40], we introduce the following spectral assumption for our
analysis.

ASSUMPTION 1 (Spectral assumption). There exists some 0 < α < 1 and a
universal constant C0 > 0, such that

(3.4) b� ≤ C0�
−1/α ∀� ≥ 1.
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Throughout this paper, C with various subscripts denote universal constants in-
dependent of n, d or s, and may be different from line to line. Note that, α < 1 is a
quite weak condition, due to the relation

∑
�=1 b� = E[K(x,x)] ≤ 1. For example,

if Qj is the Lebesgue measure on [0,1], it is known that b� � �−2h for the Sobolev
class HK = Wh

2 (h > 1
2 ). Also, spectral assumption has a close quantitative rela-

tionship with entropy number of the RKHS [40].
We next impose the following technical assumption concerning the sup-norm

of members in the RKHS.

ASSUMPTION 2 (Sup-norm assumption). For some 0 < α < 1 given in As-
sumption 1, there exists some universal constant C1 > 0, such that

‖f ‖∞ ≤ C1‖f ‖1−α
2 ‖f ‖α

K ∀f ∈ HK.

In general, this assumption is slightly stronger than the spectral assumption, but
when the eigenfunctions ψ�’s defined as above are bounded uniformly, the sup-
norm assumption is equivalent to the spectral decay, as stated in Assumption 1.
See the related details in [40], as well as Assumption 4 in [42].

3.1. A slow oracle inequality. We first state an oracle inequality for the SAQR
with a slow rate of convergence. This inequality is obtained under a weak assump-
tion that only concerns the complexity of HK , thereby giving us an understanding
of the statistical performance of the proposed estimator without any “correlated-
ness” conditions on covariates.

To this end, we introduce the notation of Rademacher complexity as another
measurement of functional complexity. Let {xi}ni=1 be an i.i.d. sequence of vari-
ables from X distributed as some underlying measure, we define the Rademacher
complexity in RKHS by Rn(f ) := 1

n

∑n
i=1 σif (xi), f ∈ HK , where {σi}ni=1 is an

i.i.d. sequence of Rademacher variables that take the values {±1} with probabil-
ity 1/2.

For any given A ≥ 2 and an arbitrary d̃ ≥ d such that log d̃ ≥ 2 log logn, we
define the critical quantity γn as

γn = γn(K)

:= inf
{
γ ≥

√
A log d̃/n,E

[
sup

‖f ‖K=1
‖f ‖2≤t

∣∣Rn(f )
∣∣] ≤ γ t + γ 2,∀t ∈ (0,1]

}
.(3.5)

The quantity γn, as the critical univariate rate, plays a crucial role in the error
bounds on the excess risk in various empirical risk minimization problems in non-
parametric context [3, 4]. In order to establish the relationship between α in the
spectral assumption and γn, we need the following conclusion. In the case of a
univariate Hilbert space HK with eigenvalues {b�}∞�=1, [34] has proved that for
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all t2 ≥ 1/n, we have ERn({‖g‖K = 1,‖g‖2 ≤ t}) � 1√
n
[∑∞

�=1 min{t2, b�}]1/2,
which follows from the spectral assumption (Assumption 1) that

(3.6) γn � max
(√

A log d̃

n
,

(
1

n

) 1
2(1+α)

)
.

Under very weak conditions, we are now in a position to provide a slow rate of
the excess risk E(μ̂, f̂ ) − E(μτ , f

∗) that characterizes the prediction accuracy of
the proposed estimator (μ̂, f̂ ).

THEOREM 1. Let (μ̂, f̂ ) be the minimizer of the convex program (3.1) with
regularization parameters λ1 = √

ζγn and λ2 = ζγ 2
n . Suppose that Assumption 1

and Assumption 2 hold, for any d̃ ≥ d such that logd ≤ √
n and log d̃ ≥ 2 log logn,

then for some constant A ≥ 2, such that with probability at least 1 − 2d̃−A,

E(μ̂, f̂ ) − E
(
μτ ,f

∗) ≤ 9s
√

ζγn + 14

√
3A log d̃

n
,

where t0 = 2 log(2
√

3/ log 2) + A log d̃ + 2 log d̃ , η(t) = max(1,
√

t, t/
√

n) and
ζ = max{2C∗η(t0)c,4}.

We provide the proof of Theorem 1 in the Supplementary Material [32] due to
space limitation. This result in Theorem 1 means that the excess risk E(μ̂, f̂ ) −
E(μτ , f

∗) is essentially controlled by γn, up to the logarithm factor log d̃ . To the
best of our knowledge, this nonasymptotic prediction error bound is a new result
for SAQR under such weak conditions. The condition is weaker than those in the
existing literature [6, 22, 48]. In particular, the existing oracle inequalities depend
heavily on some coherent conditions among the predictors such as “irrepresentable
condition” [54], the “restricted isometry constants” condition [11] and “restricted
eigenvalue” condition [7]. Furthermore, due to allowing

√
n ≥ logd ≥ 2 log logn

by taking d = d̃ , the proposed estimator can handle a nonpolynomially growing
dimension of predictors as high as d = o(e

√
n). Meanwhile, the dimension of the

true sparse model can be s = o(n1/4) in the worst case ( α → 1) and s = o(n1/2)

in the ideal case (α → 0). Finally, the commonly used sub-Gaussian assumption
for the noise term is not needed here. Thus heavy-tailed distributions are allowed
in Theorem 1.

The results in this paper only requires that d̃ → ∞ as n → ∞, and there is
no similar constraint on the number of ambient dimension d . In other words, our
results cover the fixed dimensional case, which has been studied extensively; see
[14, 18, 28] and among others. Interestingly, the result of the excess risk via the
proposed method shows that the Lasso-type method is more favorable in term of
prediction performance than sparsity recovery, since the latter requires strong inco-
herent conditions to guarantee sparsity recovery consistency; see the related details
in [54].
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We notice that, for mean regression model with Gaussian noise term, Rigollet
and Tsybakov [38] obtained the oracle rate in ‖ · ‖2

2 with the order (log d̃/n)1/2

without any “correlatedness” assumption on covariates. Since there is no approx-
imation error in our setting and α → 0 for the linear case, the oracle rate derived
in Theorem 1 is the same as that in Theorem 4.1 in [38]. However, there is no
light-tail assumption on the noise error for obtaining our result in Theorem 1. Un-
der the similar setting to that adopted in this paper, [31] derived the same rate of
the excess risk as ours in Theorem 1; nevertheless, the result in [31] rules out the
classical fixed dimensional case.

3.2. A fast oracle inequality. Before providing sharp convergence rates in
terms of the excess risk and estimation error, we show that the proposed estimator
(μ̂, f̂ ) belongs to a small restricted subset of FS,μ, defined by

FS,μ :=
{
(μ,f ), (μ,f ) ∈ [−1,1] ×F such that

d∑
j=1

∥∥fj − f ∗
j

∥∥
K ≤ 4

∑
j∈S

∥∥fj − f ∗
j

∥∥
K or

d∑
j=1

∥∥fj − f ∗
j

∥∥
n ≤ 4

∑
j∈S

∥∥fj − f ∗
j

∥∥
n + C3|μ − μτ |

}
.

(3.7)

This is a subset of [−1,1] × F whose elements satisfy the inequality in (3.7).
It will be shown in Lemma 2 below that, under mild conditions and appropriate
constraints for regularization parameters, the estimator (μ̂, f̂ ) belongs to FS,μ

with high probability. Thus, it suffices to conduct our refined analysis over the
restricted subset FS,μ.

Since the proposed method (3.1) has the form of a nonsmooth loss plus L1 pe-
nalization, our proofs have some essential differences from those with a quadratic
loss. Particularly, to establish strong oracle rates, we need the following self-
calibration inequality, which shows that convergence in a weak form implies strong
convergence in norms under certain conditions.

ASSUMPTION 3 (Self-calibration assumption). There exist universal con-
stants c1 > 0 and q ∈ [1,2], such that E(μ,f ) − E(μτ , f

∗) ≥ c1‖μ + f −
(μτ + f ∗)‖2

q for all (μ,f ) ∈ FS,μ.

Assumption 3, as an identifiability condition, characterizes the concentration of
the conditional distribution of y given x near μτ +f ∗(x). To satisfy Assumption 3
for q ∈ [1,2), a sufficient condition concerning the underlying distribution is pro-
vided by Theorem 2.7 in [41]. To further clarify this sufficient condition, we state
a simple version of Theorem 2.7 in [41] in the Supplementary Material [32]. In the
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specific case of q = 2, Assumption 3 under the finite dimensional setting has been
verified under the so-called RNI condition imposed in [6, 22]. Considering that
the RNI condition cannot be verified in the general cases under the infinite dimen-
sional setting, we introduce a relaxed RNI condition under which Assumption 3
still holds in our additive RKHSs. Moreover, our relaxed RNI condition can be
verified when each kernel is appropriately smooth and Assumption 4 below holds.
See the related discussions in the last part of the Supplementary Material [32].

Let βq(S) be defined as follows:

βq(S) := sup
{
β : 0 ≤ β ≤ ‖(μ + f ) − (μτ + f ∗)‖q∑

j∈S∪{0} ‖fj − f ∗
j ‖2

, (μ,f ) ∈ FS,μ

}
,

where we denote f0 := μ and f ∗
0 := μτ for unified representation of notation.

ASSUMPTION 4 (Incoherence assumption). βq(S) is strictly bounded from
zero below, that is, 0 < βq(S).

Assumption 4, as a coherence condition in infinite spaces, is analogous to Con-
dition D.4 of [6] and Condition C5 of [22], respectively, for the quantile linear
regression models, as well as Assumption C in [48]. In fact, it is frequently used in
the theory of sparse recovery with q = 2 as a standard coherent condition, includ-
ing the so-called “restricted isometry constants” [11] and “restricted eigenvalue”
[7], as well as in [26, 42] for learning kernels in an infinite dimensional framework.
In the Supplementary Material [32], we give a lower bound of a simple version of
βq(S), which consists of two interpretable geometric quantities. Our result can be
viewed as a generalization of Proposition 1 in [26] with q = 2.

REMARK 4. By Assumptions 3–4, we can check that√
E(μ,f ) − E

(
μτ ,f ∗) ≥ c1βq(S)

∑
j∈S∪{0}

∥∥fj − f ∗
j

∥∥
2

for all (μ,f ) ∈ FS,μ, which is sufficient for most of our main results except The-
orem 3. Here, the separate introduction of Assumptions 3–4 is to make the expo-
sition more transparent and interpretable, and tie them to those existing familiar
conditions in the literature [26, 41, 42].

REMARK 5. If we consider all candidate estimators within a bounded domain,
that is, ‖μ + f − (μτ + f ∗)‖∞ is upper bounded by some constant Cb, already
used in [26, 43] in high dimensions, then we have ‖μ + f − (μτ + f ∗)‖2

q ≤
C

2(q−1)/q
b ‖μ + f − (μτ + f ∗)‖2/q

1 for any q ∈ [1,2]. On the other hand, this

boundedness conclusion also yields that ‖μ + f − (μτ + f ∗)‖2
2 ≤ C

2−q
b ‖μ + f −

(μτ + f ∗)‖q
q , which means that, for Assumption 4, it also suffices to consider the

well-understood case q = 2.
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The following result states sharp upper bounds on the excess risk and estimation
error of the estimator (3.1), based on n i.i.d. samples (xi, yi)

n
i=1 from the observa-

tion model (2.1).

THEOREM 2. Let (μ̂, f̂ ) be the minimizer of the convex program (3.1) with
regularization parameters λ1 = √

ζγn and λ2 = ζγ 2
n . Suppose that Assumptions

1–4 hold. If logd ≤ √
n, then for some constant A ≥ 2 with probability at least

1 − 3d̃−A, we have

E(μ̂, f̂ ) − E
(
μτ ,f

∗) ≤
(

16c
√

ζ + 64c2ζ

c1β2
q (S)

)
sγ 2

n + 156c−1
1

t0

n

and
d∑

j=1

∥∥f̂j − f ∗
j

∥∥
2 ≤ 32c2

(
1 + 4c

√
ζ

c1β2
q (S)

)
sγn + 28cc

−1/2
1

(
3
√

2 + 14
√

3c
−1/2
1

)
s

√
t0

n
,

where ζ , t0 and d̃ are defined as those in Theorem 1, c1 was given in Assumption 3
and constant c is given Lemma 4 below.

We provide the proof of Theorem 2 in Section 6. Up to the logarithmic factor
log d̃ , Theorem 2 shows that the convergence rate of the excess risk is of the or-
der max(

sA logd
n

, s( 1
n
)1/(1+α)) by taking d̃ = d , hence allows for nonpolynomial

dimension growing as n increases. This rate also reveals the degree of the influ-
ence of the functional complexity, the effective dimension s and the number of di-
mensions d on the prediction accuracy, to be exponential, linear and logarithmic,
respectively. The functional complexity hence has the strongest influence, whereas
the number of dimension d has the weakest influence on the prediction accuracy.
Similar conclusions still hold true for the estimation error

∑d
j=1 ‖f̂j − f ∗

j ‖2.
When q = 2 in Assumption 3 is satisfied, the rate of the excess risk in Theo-

rem 2 implies the same rate of the estimation error, which is also the lower bound
established for the additive mean regression in [36], up to some logarithmic fac-
tors. Without the requirement of a light-heavy tail, we achieve the same oracle
rates for estimating additive components as that for the additive mean regression
with Gaussian noise. Using finite splines approximation to additive components,
a group Lasso approach for estimating each additive components of the SAQR is
proposed in [22]. In the case of the Sobolev class and q = 2, the oracle rates of
the estimation error derived in [22] is the same as ours in Theorem 2, up to the
logarithmic factor. However, their settings are quite different from our study, for
example, they imposed a stronger condition than Assumption 3 with q = 2; see
their Lemma A.2. In the case of q = 2, the excess risk of the estimator is similar
to those based on quadratic losses. In contrast, our Assumption 3 allows for the
possibility of q < 2, under which the estimation error derived in Theorem 2 is still
optimal as long as the sparsity parameter s is fixed. This result indicates that the
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quadratic property of the loss function is not essential to the optimal rates. In ad-
dition, the method in [22] is a standard group Lasso scheme, while our proposed
method is a two-fold Lasso scheme within infinite-dimensional Hilbert spaces.

For fixed d and s, the rate of
∑d

j=1 ‖f̂j − f ∗
j ‖2 simplifies to the order

(1/n)1/(1+α). This is the optimal rate in the classical literature of statistical learn-
ing for finitely many predictors (see Theorem 3 of [42]). Under the framework
of RKHS, Christmann and Zhou [14] gave the same learning rates of regular-
ized kernel based methods for additive but fixed dimensional models. Nonethe-
less, their rates require a variance-expectation bound, different from our sparse
�1-regularized method.

Theorem 2 is a weak form of the oracle inequality. To derive explicit rates with
the ‖ · ‖2-norm for any 1 ≤ q ≤ 2, we need further analysis, which gives the fol-
lowing conclusions. Denote Ŝ := {j : ‖f̂j‖2 �= 0}, following our oracle rate, we
can state the model selection properties of (3.1).

THEOREM 3. Suppose all the conditions in Theorem 2 hold. Then with the
same probability as stated in Theorem 2, we have(∑

j∈S

∥∥f̂j − f ∗
j

∥∥
2

)2
≤ r0

(
A(s + 3) log d̃

n
+ s

(
1

n

) 1
1+α

)
,

where r0 := 1
c1βq(S)

max(16c
√

ζ + 64c2ζ

c1β
2
q (S)

,156c−1
1 ). In addition, if the value of the

minimal true function is separated well from zero, to be precise, minj∈S ‖f ∗
j ‖2 >

√
r0

√
A(s+3) log d̃

n
+ s( 1

n
)

1
1+α , we have Ŝ ⊇ S with the same probability as stated in

Theorem 2.

The proof of Theorem 3 is provided in Section 6 as well. These results parallel
those of [6] for linear sparse quantile models. Although we can also obtain a simi-
lar conclusion for model selection in Theorem 2, the rate in Theorem 3 relative to
the index S is sharper than that in Theorem 2 since s is replaced by

√
s. We notice

that the same rate was derived in the linear model [6]; however, we do not require
any additional conditions on the conditional density and the covariates. The sec-
ond result of Theorem 3 implies that with high probability, the estimator selects
a sup-set of the active functions, provided that the active functions have enough
signal. On the other hand, Theorems 2 and 3 show that the oracle rates are closely
related to the structure and complexity of the additive components. In order to cor-
rectly identify the active set S, a much stronger signal is needed when the additive
component is more complex.

At the end of this section, we consider the optimal rate within the mini-
max framework given in [36]. For the additive mean regression with Gaussian
noise, [36] has shown that, with a probability at least 1/2, the lower bounds of
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‖f̂n − f ∗‖2
2 is of the order { s log(d/s)

n
+ s( 1

n
)1/(1+α)} for any measurable estima-

tor f̂n. Surprisingly, up to the sparse parameter s, our convergence rates of Theo-
rem 2 with q = 2 can attain this lower bound under weaker assumptions, particu-
larly, we do not require the Gaussian tails for the noise term. An interesting and
fundamental question is the lower bound of the SAQR in terms of the excess risk
and estimation error, which will be our future work.

We finally present a corollary for the Sobolev kernel classes. When the design
distribution is uniform on [−1,1], it is known from [1] that the spectral decay of
eigenvalues in the Sobolev space Wh with smoothness h > 1/2 has the following

asymptotic behavior b� � �−2h, which implies γn � n− h
2h+1 . Then the following

corollary can be derived immediately from Theorem 2.

COROLLARY 1. Suppose all the conditions in Theorem 2 hold. Consider an
univariate Sobolev class Wh[−1,1] with some smoothness h > 1/2. For some con-
stant A ≥ 2, such that the kernel estimator defined in (3.1) with λ1 = √

ζγn and
λ2 = ζγ 2

n satisfies

E(μ̂, f̂ ) − E
(
μτ ,f

∗) ≤ C̃s max
(

A log d̃

n
, n− 2h

2h+1

)
and

d∑
j=1

∥∥f̂j − f ∗
j

∥∥
2 ≤ C̃s max

(√
A log d̃

n
, n− h

2h+1

)

with probability at least 1 − 3d̃−A, where C̃ is some universal constant.

Note that up to constant factors, the achievable rate from Corollary 1 is the same
as that in Theorem 3.3 in [18] for the fixed dimensional case.

4. Numerical results.

4.1. Implementation details. We use the Majorization-Minimization (MM) al-
gorithm to solve (3.2), which is a general technique for solving complicated op-
timization problems (see [21] for a nice review). Here, we briefly describe the
method. More details on MM algorithms can be found in [20].

First, the loss function ρτ (u) is approximated by its perturbation for some

small ε > 0, ρε
τ (u) := ρτ (u) − ε

2 ln(ε + |u|). The function ρ̃(u|uk) = 1
4 [ u2

ε+|uk | +
(4τ − 2)u + c] can be shown to majorize ρε

τ (u) at uk [which simply means that
ρ̃(u|uk) ≥ ρε

τ (u) for all u and ρ̃(uk|uk) = ρε
τ (u

k)] for an appropriately chosen
constant c. Without the penalty, at iteration k + 1, the MM algorithm works by
minimizing the majorizer 1

n

∑
i ρ̃τ (ui |uk

i ) with respect to αj , j = 1, . . . , d , where
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ui = yi − [∑d
j=1(K

jαj )]i , and uk
i = yi − [∑d

j=1(K
jαk

j )]i is the residual at itera-

tion k. The minimizer is the new estimate αk+1
j , j = 1, . . . , d .

With the two penalties, the implementation is only slightly more complicated.
For example, given the current estimate αk

j , the first penalty can be approximated

as
√

αT
j (Kj )2αj ≈

√
αkT

j (Kj )2αk
j + 1

2
√

αT
j (Kj )2αj

(αT
j (Kj )2αj − αkT

j (Kj )2αk
j ).

Note that this is similar to the majorizer for the loss function when τ = 0.5, and is
just the same as local quadratic approximation advocated in [15].

After these approximations, the loss function in each iteration becomes a
quadratic function and the minimization problem can be solved in closed form.
However, with the number of parameters nd , directly solving the minimization
problem is time consuming. Thus we adopt the group coordinate descent approach
that updates αj for each j in turn with others fixed. Group coordinate descent has
been used previously in [9, 50] without quadratic approximation. However, since
there are two penalty terms here, it seems necessary to approximate the penalty
functions first. In our implementation, we set ε = 10−3. Besides, if ‖αj‖ falls be-
low a small number (10−4 in our implementation), we take it to be zero.

For the kernel, we use the kernel for the Sobelev space of order 3 (the
space containing functions whose 3rd derivative is in L2) given by K(s, t) =
1 + st + 0.25(st)2 + 0.25(min(s, t)3 max(s, t)2/3 − min(s, t)4 max(s, t)/6 +
min(s, t)5/30). We use five-fold cross-validation to select λn and we set ρn = λ2

n

as suggested by our theory.

4.2. Simulations. We conducted Monte Carlo studies for the following i.i.d.
and heteroscedastic error model:

(4.1) yi = 0.5 +
p∑

j=1

gj (xij ) + 0.5
(
1 + g(xi3)

)
ei

with g1(x) = −6(x(1−x)−1/6), g2(x) = sin(2πx)/(2−sin(2πx))−0.1547 and
g(x) = 6(x(1 − x) − 1/6). Thus in our generating model, the number of nonzero
nonparametric components is s = 2 at τ = 0.5, while s = 3 for other values of τ .
More specifically, the conditional quantile function is 0.5+0.5F−1

e (τ )+f1(xi1)+
f2(xi2) + f3(xi3) with f1 = g1, f2 = g2, f3 = 0.5F−1

e (τ )g, where Fe(·) denotes
the distribution function of the mean zero error ei . Several simulation scenarios are
considered. For sample size, we set n = 100 or 200, for τ we consider τ = 0.5 and
0.75, for ei we consider a standard normal distribution and a Student t-distribution
with degrees of freedom 3. To generate the covariates, we first let xij be marginally
standard normal with correlations given by Cov(xij1, xij2) = 0.3|j1−j2|, and then
apply the cumulative distribution function of the standard normal distribution to
transform xij to be marginally uniform on [0,1]. For all scenarios, 200 datasets
are generated.

We generate data from (4.1) and fit our RKHS model to the data, as well as
the group lasso estimator of [22] and a linear quantile model with lasso penalty
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for comparison, at both τ = 0.5 and τ = 0.75. We also fit a RKHS mean re-
gression model [36] to the same data. For the spline estimator of [22], we use
cubic splines with the number of internal knots together with the tuning parame-
ter for the penalty selected by five-fold cross-validation. When performing cross-
validation, the prediction error is defined based on the loss function used in the cor-
responding estimator. More specifically, for mean regression, the prediction error
is

∑
i (ŷi − yi)

2 while for quantile regression the prediction error is
∑

i ρτ (ŷi − yi)

where ŷi is the fitted response value and yi is the true response value in the hold-
out data.

First, we compare the different estimators at τ = 0.5, as well as the RKHS
mean regression estimator. For functions fj , j = 1,2,3 (note f3 is a zero function
at τ = 0.5), we compute the mean squared error: msej = ∫

(f̂j (x) − fj (x))2 dx,
with integral approximated by the Riemannian sum over a grid of 500 points,
and the total mean squared error mse = ∑p

j=1 msej . Furthermore, we define the

following two prediction errors: predLS = ∑500
i=1(ŷi − yi)

2/500 and predLAD =∑500
i=1 |ŷi − yi |/500, calculated on independently generated 500 observations. We

also present the estimated number of nonzero components (#NZ) and the esti-
mated number of nonzero components that are truly nonzero (#NZC). The results
are summarized in Tables 1 and 2, for the two error distributions, respectively. We
see that for normal error, least squares regression is similar or better than RKHS
median estimator. While for Student’s t error, median regression is better proba-
bly due to its robustness. The error decreases when sample size is increased from
100 to 200. The variable selection results also look reasonable in all additive mod-
els. The nonlinear models performs better than linear quantile model as expected,
and RKHS estimator is often, though not always, better than the spline estimator.
Linear models often miss some important variables as expected.

Next, we compare different quantile estimators at τ = 0.75, with results re-
ported in Tables 3 and 4. We present the msej , j = 1,2,3 and total mse mse =∑p

j=1 msej , the prediction error based on quantile loss defined by predQL =∑500
i=1 ρ0.75(ŷi −yi)/500, as well as the variable selection results (#NZ and #NZC).

As expected, the performance is better with normal noise than with t noise, and the
errors are smaller when n = 200. Again, the RKHS estimator is generally better
than the spline estimator, and the linear estimator is the worst. Finally, we note
that least squares estimator never picks up xi3 in our simulations, which is a sig-
nificant variable at τ = 0.75. The additive quantile methods can identify all three
significant variables most of the time as seen from the tables.

5. Breast cancer data. We use the breast cancer data from the Cancer
Genome Atlas project [44] to illustrate the proposed method. We focus on the
gene expression data obtained using Agilent mRNA expression microarrays. In
this dataset, expression measurements of 17,814 genes, including BRCA1, from
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TABLE 1
Simulation results for τ = 0.5 with normal error using RKHS additive quantile regression (RKHS),

spline additive quantile regression (SPLINE), least squares additive regression (LSQ) and
linear quantile regression (LIN)

(n,p) Method mse1 mse2 mse3 mse predLS predLAD #NZ #NZC

(100,100) RKHS 0.0145 0.0172 0.0068 0.0861 0.1497 0.1509 3.67 2
(0.0084) (0.0085) (0.0048) (0.0208) (0.0252) (0.0120) (1.08) (0)

SPLINE 0.0170 0.0214 0.0053 0.0962 0.1517 0.1534 3.54 2
(0.0186) (0.0099) (0.0068) (0.0310) (0.0370) (0.0186) (1.43) (0)

LSQ 0.0182 0.0201 0.0064 0.0927 0.1476 0.1519 3.33 2
(0.0131) (0.0082) (0.0088) (0.0282) (0.0270) (0.0142) (1.26) (0)

LIN 0.1889 0.1057 0.0061 0.3172 0.4033 0.2571 1.79 1.15
(0.0073) (0.0150) (0.0118) (0.0351) (0.0397) (0.0128) (1.07) (0.30)

(100,200) RKHS 0.0351 0.0460 0.0065 0.1712 0.2322 0.1893 3.96 2
(0.0250) (0.0337) (0.0054) (0.0548) (0.0528) (0.0207) (1.84) (0)

SPLINE 0.0474 0.0509 0.0065 0.2002 0.2735 0.1901 6.93 2
(0.0177) (0.0247) (0.0065) (0.0873) (0.0954) (0.0363) (2.66) (0)

LSQ 0.0327 0.0480 0.0037 0.1579 0.2149 0.1838 3.80 2
(0.0212) (0.0346) (0.0025) (0.0452) (0.0450) (0.0205) (1.54) (0)

LIN 0.1973 0.1320 0.0010 0.3790 0.4501 0.2700 2.33 0.92
(0.0345) (0.0462) (0.0032) (0.0996) (0.1044) (0.0276) (2.94) (0.64)

(200,100) RKHS 0.0150 0.0124 0.0017 0.0314 0.1072 0.1281 2.27 2
(0.0103) (0.0081) (0.0015) (0.0160) (0.0192) (0.0121) (0.55) (0)

SPLINE 0.0155 0.0133 0.0026 0.0393 0.1096 0.1298 2.25 2
(0.0036) (0.0039) (0.0018) (0.0133) (0.0172) (0.0107) (0.44) (0)

LSQ 0.0158 0.0135 0.0019 0.0380 0.1057 0.1272 2.18 2
(0.0098) (0.0073) (0.0017) (0.0135) (0.0177) (0.0111) (0.36) (0)

LIN 0.1872 0.1149 0.0006 0.3160 0.4034 0.2569 1.52 0.92
(0.0027) (0.0290) (0.0013) (0.0311) (0.0351) (0.0109) (0.94) (0.39)

(200,200) RKHS 0.0188 0.0154 0.0025 0.0874 0.1502 0.1523 2.61 2
(0.0046) (0.0046) (0.0021) (0.0206) (0.0262) (0.0134) (0.68) (0)

SPLINE 0.0193 0.0171 0.0019 0.0880 0.1537 0.1597 2.53 2
(0.0125) (0.0082) (0.0020) (0.0243) (0.0325) (0.0175) (0.68) (0)

LSQ 0.0193 0.0177 0.0017 0.0854 0.1496 0.1476 2.46 2
(0.0124) (0.0073) (0.0023) (0.0217) (0.0284) (0.0157) (0.59) (0)

LIN 0.1899 0.1052 0.0007 0.3063 0.3878 0.2518 1.20 1.13
(0.0125) (0.0191) (0.0021) (0.0217) (0.0317) (0.0093) (0.61) (0.32)

The numbers in the brackets are the standard errors computed on the same 200 datasets.

536 patients are available at http://cancergenome.nih.gov/. BRCA1 is the first gene
identified that increases the risk of early onset breast cancer. Because BRCA1 is
likely to interact with many other genes, including tumor suppressors and regula-
tors of the cell division cycle, it is of interest to find genes with expression levels
related to that of BRCA1. These genes may be functionally related to BRCA1 and
are useful candidates for further studies.

http://cancergenome.nih.gov/
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TABLE 2
Simulation results for τ = 0.5 with t (3) error using RKHS additive quantile regression (RKHS),

spline additive quantile regression (SPLINE), least squares additive regression (LSQ) and
linear quantile regression (LIN)

(n,p) Method mse1 mse2 mse3 mse predLS predLAD #NZ #NZC

(100,100) RKHS 0.0180 0.0232 0.0066 0.0982 0.2864 0.1930 3.82 2
(0.01059) (0.0129) (0.0079) (0.0347) (0.0792) (0.0264) (1.32) (0)

SPLINE 0.0204 0.0233 0.0073 0.1002 0.3051 0.2087 4.77 2
(0.0204) (0.0375) (0.0085) (0.0579) (0.0651) (0.0229) (1.65) (0)

LSQ 0.0285 0.0584 0.0071 0.1444 0.3631 0.2587 3.98 2
(0.0198) (0.0374) (0.0088) (0.0442) (0.0546) (0.0183) (1.57) (0)

LIN 0.1870 0.1266 0.0040 0.3445 0.5325 0.2856 1.88 0.85
(0.0022) (0.0314) (0.0076) (0.0449) (0.0765) (0.0183) (1.42) (0.36)

(100,200) RKHS 0.0579 0.0625 0.0083 0.2638 0.4304 0.2489 7.14 1.94
(0.0510) (0.0452) (0.0062) (0.085) (0.1130) (0.0317) (3.16) (0.30)

SPLINE 0.0578 0.0631 0.0083 0.2933 0.4723 0.2633 7.99 1.85
(0.0431) (0.0474) (0.0108) (0.1093) (0.1131) (0.0343) (4.01) (0.61)

LSQ 0.0726 0.0817 0.0045 0.3602 0.4986 0.2796 7.52 1.75
(0.0626) (0.0451) (0.0065) (0.0750) (0.1162) (0.0292) (3.59) (0.55)

LIN 0.1864 0.1313 0.0003 0.3423 0.5292 0.2853 1.75 0.83
(0.0003) (0.0434) (0.0013) (0.0483) (0.0683) (0.0166) (1.71) (0.41)

(200,100) RKHS 0.0156 0.0155 0.0027 0.0464 0.2089 0.1618 2.35 2
(0.0040) (0.0049) (0.0024) (0.0158) (0.0349) (0.0114) (0.65) (0)

SPLINE 0.0149 0.0150 0.0041 0.0616 0.2365 0.1756 3.27 2
(0.0157) (0.0115) (0.0044) (0.0391) (0.0393) (0.0173) (1.25) (0)

LSQ 0.0284 0.0333 0.0034 0.1015 0.2701 0.2019 2.94 2
(0.0188) (0.0301) (0.0042) (0.0454) (0.0504) (0.0219) (0.94) (0)

LIN 0.1884 0.1105 0.0004 0.3153 0.4900 0.2737 1.41 1.13
(0.0043) (0.0208) (0.0009) (0.0305) (0.0511) (0.0125) (0.94) (0.32)

(200,200) RKHS 0.0254 0.0275 0.0035 0.1197 0.2918 0.1947 3.01 1.93
(0.0385) (0.0426) (0.0034) (0.0695) (0.0838) (0.0305) (1.35) (0.44)

SPLINE 0.0257 0.0289 0.0039 0.1201 0.3341 0.2116 5.13 1.93
(0.0396) (0.0349) (0.0035) (0.0809) (0.1054) (0.0356) (3.11) (0.22)

LSQ 0.0295 0.0482 0.0035 0.1619 0.3433 0.2476 4.20 2
(0.0417) (0.0369) (0.0047) (0.0735) (0.0890) (0.0315) (1.73) (0)

LIN 0.1865 0.1083 0.0003 0.3034 0.4836 0.2703 1.23 1
(0.0007) (0.0152) (0.0012) (0.0147) (0.0533) (0.0111) (0.44) (0)

The numbers in the brackets are the standard errors computed on the same 200 datasets.

We only include genes with sufficient expression levels and variations across
the subjects in the analysis. So we first do an initial screen according to the fol-
lowing requirements: the coefficient of variation is greater than 1 and the standard
deviation is greater than 0.6. Finally, we do a marginal screening using nonpara-
metric regression spline estimation as proposed in [17] to select the top 200 genes
and feed these into our proposed model.
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TABLE 3
Simulation results for τ = 0.75 with normal error

(n,p) Method mse1 mse2 mse3 mse predQL #NZ #NZC

(100,100) RKHS 0.0178 0.0233 0.0831 0.1692 0.1374 4.57 3
(0.0073) (0.0076) (0.0226) (0.0316) (0.0217) (1.27) (0)

SPLINE 0.0179 0.0284 0.0929 0.1802 0.1343 4.09 3
(0.0189) (0.0417) (0.0247) (0.0528) (0.0203) (1.19) (0)

LIN 0.1807 0.1210 0.0904 0.4135 0.2132 1.64 0.92
(0.0024) (0.0404) (0.0124) (0.0449) (0.0136) (1.27) (0.44)

(100,200) RKHS 0.0390 0.0620 0.0932 0.2632 0.1965 4.82 3
(0.0248) (0.0431) (0.0223) (0.0522) (0.0192) (1.60) (0)

SPLINE 0.0462 0.0640 0.0823 0.3175 0.1973 5.25 2.94
(0.0378) (0.0366) (0.0308) (0.1022) (0.0444) (3.10) (0.30)

LIN 0.1885 0.1305 0.0861 0.4319 0.2146 1.63 0.93
(0.0067) (0.0346) (0.0019) (0.0387) (0.0117) (1.30) (0.44)

(200,100) RKHS 0.0159 0.0125 0.0739 0.1161 0.1096 3.49 3
(0.0045) (0.0037) (0.0184) (0.0243) (0.0168) (0.68) (0)

SPLINE 0.0177 0.0139 0.0896 0.1346 0.1140 3.26 3
(0.0096) (0.0055) (0.0124) (0.0189) (0.0115) (0.52) (0)

LIN 0.1876 0.1236 0.0855 0.4069 0.2117 1.16 0.80
(0.0030) (0.0286) (0.0004) (0.0278) (0.0119) (0.98) (0.52)

(200,200) RKHS 0.0226 0.0166 0.0830 0.1640 0.1353 3.94 3
(0.0042) (0.0059) (0.0135) (0.0310) (0.0156) (1.05) (0)

SPLINE 0.0223 0.0187 0.0872 0.1664 0.1374 3.28 3
(0.0123) (0.0103) (0.0147) (0.0290) (0.0139) (0.44) (0)

LIN 0.1886 0.1048 0.0855 0.3966 0.2105 1.64 1.13
(0.0064) (0.0152) (0.0006) (0.0287) (0.0087) (0.98) (0.30)

The numbers in the brackets are the standard errors computed on the same 200 datasets.

We use the same Sobolev kernel of order 3 as used in our simulations, and
consider three quantile levels τ = 0.25,0.5,0.75, and report the selected genes in
Table 5. Linear lasso methods are also applied to the same 200 genes. It is seen that
the additive model and linear model selected have entirely a different set of genes.
These identified genes may be worth further investigation in genomic studies. Dif-
ferent genes are identified for different quantile levels suggesting heterogeneity of
gene effects at different quantile levels.

The two additive methods (RKHS and SPLINE) selected similar sets of genes.
The numbers in the bracket after the gene names indicate the ranking of the se-
lected genes in the marginal screening stage, which suggests that the genes selected
by the additive model are usually top ranking genes in the screening stage, which is
as expected since the screening stage used a nonparametric model, and thus linear
models may fail to select these genes. The list of selected genes clearly indicate the
existence of heterogeneity in the dataset, with only one gene, C17orf53, selected
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TABLE 4
Simulation results for τ = 0.75 with t (3) error

(n,p) Method mse1 mse2 mse3 mse predQL #NZ #NZC

(100,100) RKHS 0.0373 0.0384 0.1013 0.2300 0.1752 5.16 2.91
(0.0419) (0.0472) (0.0156) (0.0784) (0.0266) (1.63) (0.44)

SPLINE 0.0366 0.0465 0.1042 0.2413 0.1783 4.78 2.95
(0.0391) (0.0329) (0.0238) (0.0706) (0.0230) (1.74) (0.22)

LIN 0.190 0.1398 0.1133 0.4759 0.2418 1.92 0.76
(0.0064) (0.0450) (0.0135) (0.0409) (0.0137) (1.66) (0.71)

(100,200) RKHS 0.0781 0.0792 0.1096 0.3654 0.2167 6.41 2.73
(0.0680) (0.0490) (0.0113) (0.0803) (0.0299) (4.31) (0.57)

SPLINE 0.0828 0.0842 0.1021 0.3805 0.2231 6.44 2.45
(0.0642) (0.0731) (0.0188) (0.1302) (0.0386) (5.12) (0.88)

LIN 0.1878 0.1228 0.1135 0.4422 0.2723 1.37 0.73
(0.0030) (0.0374) (0.0170) (0.0400) (0.0115) (0.87) (0.44)

(200,100) RKHS 0.0190 0.0232 0.0879 0.1439 0.1391 4.18 3
(0.0072) (0.0092) (0.0286) (0.0369) (0.0121) (1.34) (0)

SPLINE 0.0228 0.0242 0.1052 0.1897 0.1451 4.04 3
(0.0145) (0.0141) (0.0295) (0.0454) (0.0143) (1.12) (0)

LIN 0.1879 0.1084 0.1127 0.4325 0.2283 1.76 1.07
(0.0031) (0.0206) (0.0064) (0.0364) (0.0111) (1.20) (0.32)

(200,200) RKHS 0.0310 0.0300 0.0951 0.2147 0.1688 4.32 2.90
(0.0378) (0.0427) (0.0232) (0.0760) (0.0253) (1.78) (0.44)

SPLINE 0.0378 0.0448 0.1062 0.2401 0.1692 4.48 3
(0.0403) (0.0379) (0.0189) (0.0642) (0.0249) (1.23) (0)

LIN 0.1881 0.1113 0.1105 0.4339 0.2301 1.87 1.03
(0.0035) (0.0205) (0.0056) (0.0239) (0.0156) (0.87) (0.32)

The numbers in the brackets are the standard errors computed on the same 200 datasets.

in all three quantile levels. After the genes are selected, we also refit a RKHS ad-
ditive regression model using a ridge smoothing penalty with the results shown in
Figures 1–3. The 95% pointwise confidence interval is obtained by calculating the
0.025 and 0.975 quantiles from estimates based on 500 bootstrap samples. The fit-
ted curves suggest the existence of nonlinear effect of some of the genes selected.
We note that such intervals are certainly exploratory in nature, without theoretical
guarantees. Inferences for penalized estimators based on bootstrap is a challeng-
ing problem (see some recent works such as [12, 13] for parametric models) and
we are not aware of any well-developed statistical approach for high-dimensional
penalized semiparametric models.

Finally, we compare the cross-validation errors for different methods by ran-
domly partitioning the data into training data and test data, with 400 observations
used in training. Average cross-validation error based on 100 random partitions
are reported in Table 6. Here, the cross-validation error is the average quantile loss
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TABLE 5
Selected genes for the breast cancer data

Method Genes

RKHS (τ = 0.25) C17orf53 (1) PRC1 (2) C15orf42 (4) FOXM1 (18)
KIF23 (24) FANCI (25)

RKHS (τ = 0.5) C17orf53 (1) CDC6 (2) TUBG1 (3) TOP2A (4)
TUBG2 (6) SPAG5 (9) C16orf59 (39) SPRY2 (170)

RKHS (τ = 0.75) C17orf53 (3) UHRF1 (5) TIMELESS (6) SPAG5 (7)
CDC25C(8) PTTG3 (15) CDC2 (16) TPX2 (24)

SPLINE (τ = 0.25) C17orf53 (1) PRC1 (2) C15orf42 (4) FOXM1 (18)
TOP2A (20) KIF23 (24) FANCI (25)

SPLINE (τ = 0.5) C17orf53 (1) CDC6 (2) TUBG1 (3) TUBG2 (6)
SPAG5 (9) CENPM (18) C16orf59 (39)

SPLINE (τ = 0.75) CDC6 (1) C17orf53 (3) UHRF1 (5) TIMELESS (6)
CDC25C (8) PTTG3 (15) TPX2 (24) RNASEH2A (32)
KIF20A (33)

LSQ C17orf53 (1) CDC6 (2) TUBG1 (3) TOP2A (4)
DTL (8) SPAG5 (9) UHRF1 (14) C16orf59 (39)
TPX2 (148) KPNB1 (194)

Linear (τ = 0.25) BLM (10) RDM1 (14) CCDC56 (28) DTL (32)
MAST4 (44) CDC14B (46) XRCC2 (66) CENPE (92)
DDX39 (107) KIF2C (109) PPAP2B (141) FAM54A (153)
SIGIRR (154) MCM6 (165) RACGAP1 (167) MSH6 (171)
HCN3 (179)

Linear (τ = 0.5) RDM1 (7) CENPE (26) NEIL3 (43) FANCA (47)
CENPQ (48) FEN1 (54) C15orf42 (64) CDCA5 (65)
MCM7 (83) KIF11 (99) CCDC56 (118) MKI67 (155)
SPRY2 (170)

Linear (τ = 0.75) CENPE (10) DTL (11) FAM54A (100) ANLN (130)
RBL1 (141) CENPA (146) MAD2L1 (172) CCDC56 (197)

The number in the bracket after the gene names indicates the ranking of the selected genes in the
marginal screening stage.

between the fitted response and the true response
∑

i ρτ (ŷi − yi)/n, over hold-out
data. For τ = 0.5, we also computed the least squares loss

∑
i (ŷi − yi)

2/n. We
see again that the performance of the two quantile additive models are similar,
both better than the linear quantile models. The median additive models are only
slightly better than least squares regression. However, the least squares regression
can only target the mean response, instead of the tails of the distribution.

6. Main proofs. The main idea of the proof is to first define an event with high
probability and then analyze the behavior of the regularized estimator f̂ condi-
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FIG. 1. Estimated curves for the selected genes when τ = 0.25, with 95% pointwise confidence
interval.

tional on that event. The first part involves concentration inequality. In view of our
two �1-type penalties, we will introduce a weighted empirical process for asym-
metric random sequences, since asymmetric noises should be considered in the
quantile regression models.

FIG. 2. Estimated curves for the selected genes when τ = 0.5.
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FIG. 3. Estimated curves for the selected genes when τ = 0.75.

For any t > 0, define the function η(t) := max(1,
√

t, t/
√

n). For any given
λ > 0, let ξn := ξn(λ) = max(λ−α/2/

√
n,λ−1/2/n1/(1+α),

√
logd/n). Let εi be

zero-mean i.i.d. random variables with |εi | ≤ L, and we introduce the event
�(t) = {| 1

n

∑n
i=1 εif (xi)| ≤ Cαη(t)ξn(‖f ‖2 + λ1/2‖f ‖K),∀f ∈ HK}, where Cα

is a constant depending on α and L.
Now we describe a key inequality on weighted empirical processes associated

with bounded nonsymmetric random variables, which can be found in Theorem 10
of the supplementary file in [42].

LEMMA 1. Let εi be zero-mean i.i.d. random variables with |εi | ≤ L. Under
the spectral assumption and sup-norm assumption, when logd√

n
≤ 1, we have for all

λ > 0 and all t ≥ 1

P
(
�(t)

) ≥ 1 − exp(−t).

TABLE 6
Cross-validation error for different methods. For τ = 0.25 and 0.75, the error is the average

quantile loss
∑

i ρτ (ŷi − yi)/n over hold-out data. For τ = 0.5, the first number in each cell is the
average quantile loss while the second number is the average mean squared error

∑
i (ŷi − yi)

2/n

RKHS SPLINE LSQ LIN

τ = 0.25 0.443 0.475 NA 0.826
τ = 0.5 0.406/0.249 0.400/0.256 0.426/0.274 0.734/0.651
τ = 0.75 0.338 0.349 NA 0.740
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Let δ = μ − μτ , � = f − f ∗ and �S = ∑
j∈S(fj − f ∗

j ). The next lemma
shows that the quantities ‖�̂‖n,1 and ‖�̂‖K,1 can be controlled by the correspond-
ing norms as applied to the function �̂S . This allows us to exploit the sparsity
assumption.

LEMMA 2. Under the spectral assumption and sup-norm assumption, with
the choices λ1 ≥ 2Cαcη(t)ξn and λ2 ≥ 2Cαη(t)ξn(cγn + λ1/2), then the following
bound holds with probability at least 1 − 2 exp(−t) − d̃−A:

(6.1) λ1‖�̂‖n,1 + λ2‖�̂‖K,1 ≤ 4λ1‖�̂S‖n,1 + 4λ2‖�̂S‖K,1 + 2

√
2t

n
δ̂.

PROOF. See the Supplementary Material [32]. �

Remark that, since we choose (λ, t) as n− 1
1+α and t = t0, respectively, in this

paper, it is easy to check that the constraint of (λ1, λ2) in Lemma 2 does not con-
tradict their choices in Theorems 1–3. In addition, it is easy to check that the
result in Lemma 2 implies that f̂ lies in the subset Fμ,S defined in (3.7) with
high probability. In fact, it is trivial if ‖�̂‖K,1 ≤ 4‖�̂S‖K,1. Otherwise, we have

λ1‖�̂‖n,1 ≤ 4λ1‖�̂S‖n,1 + 2
√

2t
n
δ̂, which implies ‖�̂‖n,1 ≤ 4‖�̂S‖n,1 + C3δ̂ due

to the relation λ1 ≥
√

2t0
n

.

6.1. Uniform concentration inequality for the quantile loss. We will use sev-
eral basic facts of the empirical processes theory for our analysis, including sym-
metrization inequalities and particularly concentration inequality for the empirical
process. In this paper, we employ the following Talagrand’s concentration inequal-
ity [4, 8]. The result shows that the supremum of any empirical process is concen-
trated near its mean. The amount of concentration depends only on the maximal
sup-norm and the maximal variance.

LEMMA 3 (Concentration theorem [8]). Let Z1, . . . ,Zn be independent ran-
dom variables with values in some space Z and let � be a class of real-valued
functions on Z , satisfying for some positive constants ηn and τn,

‖γ ‖ ≤ ηn and
1

n

n∑
i=1

var
(
γ (Zi)

) ≤ τ 2
n ∀γ ∈ �.

Define Z := supγ∈� | 1
n

∑n
i=1(γ (Zi) −Eγ (Zi))|. Then for t > 0

P

(
Z ≥ E(Z) + t

√
2
(
τ 2
n + 2ηnE(Z)

) + 2ηnt
2

3

)
≤ exp

(−nt2)
.
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Furthermore, for the case of a single RKHS HK , we need the relationship be-
tween the empirical and ‖ ·‖2 norms for function in HK . The following conclusion
is derived immediately from Theorem 4 of [26] with a slight change.

LEMMA 4. Suppose that A ≥ 1 and any given d̃ ≥ d with log d̃ ≥ 2 log logn.
Then there exists a universal constant c > 0 such that with probability
at least 1 − d̃−A, for all f ∈ HK , ‖f ‖2 ≤ c(‖f ‖n + γn‖f ‖K) and ‖f ‖n ≤
c(‖f ‖2 + γn‖f ‖K).

Recall that Theorem 4 of [26] is stated as the special case d̃ = d , which excludes
the fixed dimensional case. Fortunately, we check the proof of Theorem 4 there and
conclude that Lemma 4 still holds if one replaces d by an arbitrary d̃ ≥ d such that
log d̃ ≥ 2 log logn. Indeed, this observation was also pointed out in Theorem 3 of
[26].

For any given �μ,�− and �+ > 0, we define

F(�μ,�−,�+)

:= {
(μ,f ) : |μ − μτ | ≤ �μ,γn

∥∥f − f ∗∥∥
2,1 ≤ �−, γ 2

n

∥∥f − f ∗∥∥
K,1 ≤ �+

}
.

Based on this notation, we prove a refined uniform convergence rate. More in-
terestingly, the following conclusion still holds for a general Lipschitz-type loss,
including the hinge loss for SVM. We believe that it will play an important role in
studying sparse additive SVM in the high-dimensional setting.

PROPOSITION 1. Let F(�μ,�−,�+) be as defined as above. Suppose that
spectral assumption and sup-norm assumption hold for each univariate HK . For
any given A ≥ 2, with probability at least 1 − d̃−A, the following bound holds
uniformly on �− ≤ ed̃ and �+ ≤ ed̃ :[E(μ,f ) − E(

μτ ,f
∗)] − [En(μ,f ) − En

(
μτ ,f

∗)]
≤ C∗η(t0)(�− + �+) + exp(−d̃) + 7�μ

√
t0

n
∀(μ,f ) ∈F(�μ,�−,�+),

where t0 = 2 log(2
√

3/ log 2) + A log d̃ + 2 log d̃ and λ = n− 1
1+α .

PROOF. To apply Lemma 3, denote � = {γ (z), γ (z) = [ρτ (y − μ − f (x)) −
ρτ (y − μτ − f ∗(x))], (μ,f ) ∈ F(�μ,�−,�+)}. We can write [E(μ,f ) −
E(μτ , f

∗)] − [En(μ,f ) − En(μτ , f
∗)] = E[γ (z)] − 1

n

∑n
i=1 γ (zi), γ ∈ �. Then,

by the Bousquet concentration inequality, with probability at least 1 − exp(−t),

(6.2) Z ≤ E(Z) +
√

2t (τ 2
n + 2ηnEZ)

n
+ 2ηnt

3n
.



806 LV, LIN, LIAN AND HUANG

The subadditivity of
√· implies that√

2t (τ 2
n + 2ηnEZ)

n
≤

√
2t

n
τ 2
n + 2

√
ηn

n
E(Z) ≤

√
2t

n
τ 2
n +EZ + ηn

n
,

where we used the basic inequality
√

xy ≤ (x + y)/2 for any x, y ≥ 0. Mean-
while, the contraction property of ρτ implies E(γ (Z))2 ≤ 2‖f − f ∗‖2

2 +
2|μ−μτ |2 for any f ∈ F(�−,�+) and μ ∈ R, that is, τ 2

n ≤ 2 supf ∈F(�−,�+) ‖f −
f ∗‖2

2 + 2 supμ∈[−1,1] |μ − μτ |2. Plugging the above quantities into (6.2) yields

Z ≤ 2E(Z) + 2
√

t
n
(supf ∈F ‖f − f ∗‖2 + supμ∈[−1,1] |μ − μτ |) + (1+t)ηn

n
. Thus,

by the contraction property of ρτ and noting κ = 1, we get ‖γ ‖∞ ≤ ‖f −f ∗‖∞ +
|μ − μτ | ≤ ‖f − f ∗‖K,1 + |μ − μτ | ≤ �+

γ 2
n

+ �μ,∀(μ,f ) ∈ F(�μ,�−,�+),

which means ηn = �+/γ 2
n + �μ. In addition, for any f ∈ F(�μ,�−,�+),

‖f − f ∗‖2 ≤ ∑d
j=1 ‖fj − f ∗

j ‖2 ≤ �−
γn

. In summary, with probability at least
1 − exp(−t) we have

(6.3) Z ≤ 2E(Z) + 2
(

�−
γn

+ �μ

)√
t

n
+

(
�+
γ 2
n

+ �μ

)
(1 + t)

n
.

To bound E(Z), we use a symmetrization technique [47]. Then we have E(Z) ≤
2E[Rn(�)] ≤ 2E[Rn(F−f ∗)]+2E[Rn(μ−μτ )] ≤ 2E[Rn(F−f ∗)]+2�μ/

√
n,

where the second inequality follows from the contraction property of the
Rademacher process. Applying Talagrand’s concentration inequality in Lemma 3
for Rn(F − f ∗), we get that

E
[
Rn

(
F − f ∗)] ≤ 2

(
Rn

(
F − f ∗) +

(
�−
γn

)√
2t

n
+

(
�+
γ 2
n

)
(1 + t)

n

)
,

with probability at least 1 − exp(−t). By Lemma 1, on the event �(t) we have∣∣Rn(f )
∣∣ ≤ Cαη(t)ξn

(‖f ‖2 + λ1/2‖f ‖K

) ∀f ∈ HK,∀λ > 0.

Hence, with probability at least 1 − 3 exp(−t), we have

Z ≤ 8Rn

(
F − f ∗) + 18�−

γn

√
t

n
+ 9�+

γ 2
n

(1 + t)

n
+ 7�μ

√
t

n

≤ 8
d∑

j=1

Rn

(
HK − f ∗

j

) + 18�−
γn

√
t

n
+ 9�+

γ 2
n

(1 + t)

n
+ 7�μ

√
t

n

≤ 8Cαη(t)ξn sup
f ∈F

{∥∥f − f ∗∥∥
2,1 + λ1/2∥∥f − f ∗∥∥

K,1

}

+ 18�−
γn

√
t

n
+ 9�+

γ 2
n

(1 + t)

n
+ 7�μ

√
t

n
,
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where the second inequality follows from the subadditivity of the Redemacher

process. Then, with the choices of λ = n− 1
1+α , we can check that ξn ≤ cγn and

ξnλ
1/2 ≤ cγ 2

n . Hence we conclude that

(6.4) Z ≤ 8Cαcη(t)(�− + �+) + 18�−
γn

√
t

n
+ 9�+

γ 2
n

(1 + t)

n
+ 7�μ

√
t

n
,

which holds on some event �(�μ,�−,�+), where P(�(�μ,�−,�+)) ≥
1 − 3e−t . By the definition of γn, γn ≥

√
A log d̃/n. So, the inequality in (6.4)

can be further bounded by

Z ≤ 8Cαcη(t)(�− + �+) + 18�−
√

t

A log d̃
+ 18�+

t

A log d̃
+ 7�μ

√
t

n
.

Under the choice of t = 2 log(2
√

3/ log 2) + A log d̃ + 2 log d̃ , we will obtain a
bound that is uniformly over

(6.5) e−d̃ ≤ �− ≤ ed̃ and e−d̃ ≤ �+ ≤ ed̃ .

For this purpose, we consider (2d̃ + 1)2-different discrete pairs �
j
− = �

j
+ :=

2−j , j = −d̃, . . . , d̃ . Then, on the event
⋂

k,j �(�μ,�
j
−,�k+) with at most

(2/ log 2)2d̃2 intersection terms, we have that Z ≤ C∗η(t)(�
j
− + �k+) + 7�μ

√
t
n

for all j, k, since A ≥ 2. Moreover,

P

(⋂
k,j

�
(
�

j
−,�k+, t

)) ≥ 1 − 3(2/ log 2)2d̃2

× exp
(−2 log(2

√
3/ log 2) − A log d̃ − 2 log d̃

)
≥ 1 − d̃−A,

which tends to 1 as d̃ increases. Besides, using monotonicity of the functions
�−,�+ involved in the inequalities, the result can be extended to the whole range
of �−,�+ satisfying (6.5).

If �− ≤ e−d̃ or,�+ ≤ e−d̃ , it is trivial to derive the desired result with the same
probability. This completes the proof of Proposition 1. �

The proof of Proposition 1 is inspired partially by Lemma 9 in [26] for the
quadratic loss. Remark that, global boundedness condition is required for deriving
Lemma 9 in [26]. However, this condition leads to suboptimal convergence rates,
which has been discussed in [36]. In the case of a Lipschitz-type loss, we show
that a global boundedness condition is not necessary and this may lead to better
rates.
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6.2. Proof of sharp oracle inequalities. The main procedure of the proofs for
Theorem 2 is as follows. We first fully exploit the sparsity pattern using the additiv-
ity of the Lasso penalties. Then we make use of the concentration inequality given
in Proposition 1, whose upper bound is controlled by the regularization terms.
Furthermore, by Assumptions 3–4, the upper bound on

∑
j∈S ‖f̂j − f ∗

j ‖n can be
absorbed by the root of the excess risk. Thus, tight oracle rates on the excess risk
and estimation error are obtained easily.

PROOF OF THEOREM 2. By the definition of (μ̂, f̂ ), it follows that En(μ̂, f̂ )+
λ1‖f̂ ‖n,1 + λ2‖f̂ ‖K,1 ≤ En(μτ , f

∗) + λ1‖f ∗‖n,1 + λ2‖f ∗‖K,1, or equivalently,

E(μ̂, f̂ ) − E
(
μτ ,f

∗) + λ1‖f̂ ‖n,1 + λ2‖f̂ ‖K,1

≤ [
E(μ̂, f̂ ) − E

(
μτ ,f

∗)] − [
En(μ̂, f̂ ) − En

(
μτ ,f

∗)]
+ λ1

∥∥f ∗∥∥
n,1 + λ2

∥∥f ∗∥∥
K,1.

(6.6)

Similar to the proof of Theorem 1, provided that (λ1, λ2) is chosen with properly
large constant ζ as that in Theorem 1, with probability at least 1 − 2d̃−A, we have

E(μ̂, f̂ ) − E
(
μτ ,f

∗) + c−1

2
λ1

∥∥f̂ − f ∗∥∥
2,1 + λ2

4

∥∥f̂ − f ∗∥∥
K,1

≤ 2λ1
∑
j∈S

∥∥f̂j − f ∗
j

∥∥
n + 2λ2

∑
j∈S

∥∥f̂j − f ∗
j

∥∥
K + 7|μ̂ − μτ |

√
t0

n
+ e−d̃ .

(6.7)

We first consider the case when

2λ1
∑
j∈S

∥∥f̂j − f ∗
j

∥∥
n ≥ 2λ2

∑
j∈S

∥∥f̂j − f ∗
j

∥∥
K + 7|μ̂ − μτ |

√
t0

n
+ e−d̃ .

In this case, (6.7) implies that

E(μ̂, f̂ ) − E
(
μτ ,f

∗) + c−1λ1

2

∥∥f̂ − f ∗∥∥
2,1 + λ2

4

∥∥f̂ − f ∗∥∥
K,1

≤ 4λ1
∑
j∈S

∥∥f̂j − f ∗
j

∥∥
n.

(6.8)

Note that by Lemma 4 and Assumptions 3–4, with probability at least 1 − d̃−A

there holds∑
j∈S

∥∥f̂j − f ∗
j

∥∥
n ≤ c

∑
j∈S

∥∥f̂j − f ∗
j

∥∥
2 + 2csγn ≤ c

∑
j∈S∪{0}

∥∥f̂j − f ∗
j

∥∥
2 + 2csγn

≤ c

βq(S)

∥∥μ̂ + f̂ − (
μτ + f ∗)∥∥

q + 2csγn

≤ c√
c1βq(S)

√
E(μ̂, f̂ ) − E

(
μτ ,f ∗) + 2csγn.
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The first inequality follows from Lemma 4, the third inequality follows from As-
sumption 4, and the last one is derived from Assumption 3. Then we obtain from
(6.8) that

E(μ̂, f̂ ) − E
(
μτ ,f

∗) + c−1λ1

2

∥∥f̂ − f ∗∥∥
2,1 + λ2

4

∥∥f̂ − f ∗∥∥
K,1

≤ 4cλ1√
c1βq(S)

√
E(f̂ ) − E

(
f ∗) + 8csλ1γn.

(6.9)

By a simple calculation, with probability at least 1 − 3d̃−A there holds

E(μ̂, f̂ ) − E
(
μτ ,f

∗) ≤ max
{

16csλ1γn,
64c2

c1β2
q (S)

λ2
1

}

≤
(

16c
√

ζ + 64c2ζ

c1β2
q (S)

)
sγ 2

n ,

(6.10)

and based on the above conclusion, this furthermore follows from (6.9):

(6.11)
∥∥f̂ − f ∗∥∥

2,1 ≤ 32c2
(

1 + 4c
√

ζ

c1β2
q (S)

)
sγn.

It remains to consider the other case when

2λ1
∑
j∈S

∥∥f̂j − f ∗
j

∥∥
n < 2λ2

∑
j∈S

∥∥f̂j − f ∗
j

∥∥
K + 7|μ̂ − μτ |

√
t0

n
+ e−d̃ .

In this case, it follows easily from (6.7) that

E(μ̂, f̂ ) − E
(
μτ ,f

∗) + c−1λ1

2

∥∥f̂ − f ∗∥∥
2,1 + λ2

4

∥∥f̂ − f ∗∥∥
K,1

≤ 4λ2
∑
j∈S

∥∥f̂j − f ∗
j

∥∥
K + 14|μ̂ − μτ |

√
t0

n
+ 2e−d̃ .

Note that ‖f̂j‖K ≤ 1 and ‖f ∗
j ‖K ≤ 1, we have

∑
j∈S ‖f̂j − f ∗

j ‖K ≤ 2s. Then it
follows that

E(μ̂, f̂ ) − E
(
μτ ,f

∗) + c−1λ1

2

∥∥f̂ − f ∗∥∥
2,1 + λ2

4

∥∥f̂ − f ∗∥∥
K,1

≤ 8sλ2 + 14|μ̂ − μτ |
√

t0

n
+ 2e−d̃ .
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As verified in the proof of Theorem 1, e−d̃ ≤ n−2 ≤ γ 2
n , which implies that

E(μ̂, f̂ ) − E
(
μτ ,f

∗) + c−1λ1

2

∥∥f̂ − f ∗∥∥
2,1 + λ2

4

∥∥f̂ − f ∗∥∥
K,1

≤ 9ζ sγ 2
n + 14|μ̂ − μτ |

√
t0

n

(6.12)

with probability at least 1 − 3d̃−A. Since E[f̂ ] = E[f ∗] = 0 by assumption, a
simple calculation yields that, for ∀q ≥ 1,

|μ̂ − μτ | =
∣∣E[μ̂ + f̂ ] −E

[
μτ + f ∗]∣∣

≤ ∥∥μ̂ + f̂ − (
μτ + f ∗)∥∥

q ≤ c
−1/2
1

√
E(μ̂, f̂ ) − E

(
μτ ,f ∗)

,

(6.13)

where the second inequality follows from the Cauchy–Schwarz inequality and the
third one follows from Assumption 3. Therefore, this together with (6.12) and
(6.13) implies that

(6.14) E(μ̂, f̂ ) − E
(
μτ ,f

∗) ≤ 18ζ sγ 2
n + 156c−1

1
t0

n
,

and furthermore by (6.13), we have |μ̂ − μτ | ≤ c
−1/2
1 (3

√
2ζ sγn + 14c

−1/2
1

√
t0
n
).

Similarly, we also get

(6.15)
∥∥f̂ − f ∗∥∥

2,1 ≤ 28cc
−1/2
1

(
3
√

2s + 14
√

3c
−1/2
1

)√ t0

n
+ 18csγn.

Finally, combining (6.10), (6.11) with (6.14), (6.15), our desired results follow
immediately. �

Theorem 3 is easily derived from the combination of Theorem 2 and Assump-
tions 3 and 4, whose proof is stated as follows.

PROOF OF THEOREM 3. By Assumptions 3 and 4, we have(∑
j∈S

∥∥f̂j − f ∗
j

∥∥
2

)2
≤ 1

βq(S)

∥∥μ̂ + f̂ − (
μτ + f ∗)∥∥2

q

≤ 1

c1βq(S)

[
E(μ̂, f̂ ) − E

(
μτ ,f

∗)]
.

This together with the result of Theorem 2 yields the first conclusion. Furthermore,

let r̄0 = √
r0

√
A(s+3) log d̃

n
+ s( 1

n
)

1
1+α , for any given j ∈ S, the first result we just

derived implies that ∥∥f ∗
j

∥∥
2 − ‖f̂j‖2 ≤ ∥∥f̂j − f ∗

j

∥∥
2 ≤ r̄0.

Hence if minj∈S ‖f ∗
j ‖2 > r̄0, we have ‖f̂j‖2 ≥ ‖f ∗

j ‖2 − r̄0 > 0, that is, Ŝ ⊇ S with
the same probability as that in Theorem 2. �
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SUPPLEMENTARY MATERIAL

Supplement to “Oracle inequalities for sparse additive quantile regression
in reproducing kernel Hilbert space” (DOI: 10.1214/17-AOS1567SUPP; .pdf).
To highlight the nature and usefulness of Assumptions 3–4, we state some sim-
ple sufficient conditions to verify them respectively in the Supplementary Mate-
rial. Besides, due to space limitation, we also give the proofs of Theorem 1 and
Lemma 2 in the Supplementary Material.
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