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REGULARIZATION AND THE SMALL-BALL METHOD I:
SPARSE RECOVERY

BY GUILLAUME LECUÉ1,∗ AND SHAHAR MENDELSON2,†

CREST, CNRS, Université Paris Saclay∗, and Technion—Israel Institute of
Technology and Australian National University†

We obtain bounds on estimation error rates for regularization procedures
of the form

f̂ ∈ argmin
f ∈F

(
1

N

N∑
i=1

(
Yi − f (Xi)

)2 + λ�(f )

)

when � is a norm and F is convex.
Our approach gives a common framework that may be used in the analysis

of learning problems and regularization problems alike. In particular, it sheds
some light on the role various notions of sparsity have in regularization and
on their connection with the size of subdifferentials of � in a neighborhood
of the true minimizer.

As “proof of concept” we extend the known estimates for the LASSO,
SLOPE and trace norm regularization.

1. Introduction. The focus of this article is on regularization, which is one
of the most significant methods in modern statistics. To give some intuition on the
method and on the reasons behind its introduction, consider the following standard
problem.

Let (�,μ) be a probability space and set X to be distributed according to μ.
F is a class of real-valued functions defined on � and Y is the unknown random
variable that one would like to approximate using functions in F . Specifically,
one would like to identify the best approximation to Y in F , say in the L2 sense,
and find the function f ∗ that minimizes in F the squared loss functional f →
E(f (X) − Y)2; that is,

f ∗ = argmin
f ∈F

E
(
f (X) − Y

)2
,

with the underlying assumption that f ∗ exists and is unique.
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Unlike problems in approximation theory, neither the target Y nor the underly-
ing measure μ are known. Therefore, computing the L2 distance between func-
tions in F and Y is impossible. Instead, one is given partial information: a random
sample (Xi, Yi)

N
i=1, selected independently according to the joint distribution of X

and Y .
Because of the random nature of the sample and the limited information it pro-

vides, there is no real hope of identifying f ∗, but rather, only of approximating
it. In an estimation problem, one uses the sample to produce a random function
f̂ ∈ F , and the success of the choice is measured by the distance between f̂ and
f ∗ in the L2(μ) sense. Thus, one would like to ensure that with high probability
with respect to the samples (Xi, Yi)

N
i=1, the error rate∥∥f̂ − f ∗∥∥2

L2(μ) = E
((

f̂ (X) − f ∗(X)
)2|(Xi, Yi)

N
i=1

)
is small. More accurately, the question is to identify the way in which the error rate
depends on the structure of the class F and scales with the sample size N and the
required degree of confidence (probability estimate).

It is not surprising (and rather straightforward to verify) that the problem be-
comes harder the larger F is. In contrast, if F is small, chances are that f ∗(X) is
very far from Y , and identifying it, let alone approximating it, is pointless.

In situations, we shall refer to as learning problems, the underlying assumption
is that F is indeed small, and the issue of the approximation error—the distance
between Y and f ∗ is ignored.

While the analysis of learning problems is an important and well-studied topic,
the assumption that F is reasonably small seems somewhat restrictive; it certainly
does not eliminate the need for methods that allow one to deal with very large
classes.

Regularization was introduced as an alternative to the assumption on the “size”
of F . One may consider large classes, but combine it with the belief that f ∗ be-
longs to a relatively small substructure in F . The idea is to penalize a choice of
a function that is far from that substructure, which forces the learner to choose a
function in the “right part” of F .

Formally, let E be a vector space, assume that F ⊂ E is a closed and convex set
and let � : E → R

+ be the penalty. Here, we will only consider the case in which
� is a norm on E.

Let λ > 0 and for a sample (Xi, Yi)
N
i=1, set

f̂ ∈ argmin
f ∈F

(
1

N

N∑
i=1

(
Yi − f (Xi)

)2 + λ�(f )

)
;

f̂ is called a regularization procedure, � is the regularization function and λ is the
regularization parameter.

In the classical approach to regularization, the substructure of f ∗ is quantified
directly by � . The underlying belief is that �(f ∗) is not “too big” and one expects
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the procedure to produce f̂ for which �(f̂ ) is of the order of �(f ∗). Moreover,
the anticipated error rate ‖f̂ − f ∗‖L2(μ) depends on �(f ∗). In fact, an optimistic
viewpoint is that regularization could perform as well as the best learning proce-
dure in the class {f : �(f ) ≤ �(f ∗)}, but without knowing �(f ∗) beforehand.

Among the regularization schemes that are based on the classical approach are
reproducing kernel Hilbert spaces (RKHS), in which the RKHS norm serves as
the penalty. Since RKHS norms capture various notions of smoothness, in RKHS
regularization one is driven towards a choice of a smooth f̂ —as smooth as f ∗ is.

In more modern regularization problems, the situation is very different. Even
when penalizing with a norm � , one no longer cares whether or not �(f ∗) is
small; rather, one knows (or at least believes) that f ∗ is sparse in some sense, and
the hope is that this sparsity will be reflected in the error rate.

In other words, although one uses certain norms as regularization functions—
norms that seemingly have nothing to do with “sparsity”—the hope is that the
sparse nature of f ∗ will be exposed by the regularization procedure, while �(f ∗)
will be of little importance.

The most significant example in the context of sparsity-driven regularization is
the celebrated LASSO estimator [34]. Let F = {〈t, ·〉 : t ∈ R

d} and set t∗ to be a
minimizer in R

d of the functional t → E(〈t,X〉 − Y)2. The LASSO is defined by

t̂ ∈ argmin
t∈Rd

(
1

N

N∑
i=1

(〈t,Xi〉 − Yi

)2 + λ�(t)

)

for the choice �(t) = ‖t‖1 = ∑d
i=1 |ti |.

The remarkable property of the LASSO (see [8] and [3]) is that for a well-
chosen regularization parameter λ, if t∗ is supported on at most s coordinates (and
under various assumptions on X and Y to which we will return later), then with
high probability,

∥∥t̂ − t∗
∥∥2

2 �
s log(ed)

N
.

Thus, the error rate of the LASSO does not depend on �(t∗) = ‖t∗‖1, but rather
on the degree of sparsity of t∗, measured here by the cardinality of its support
‖t∗‖0 = |{i : t∗i 
= 0}|.

This fact seems almost magical, because to the naked eye, the regularization
function ‖t‖1 has nothing to do with sparsity; yet �1 regularization leads to a
sparsity-driven error rate.

A standard (yet somewhat unconvincing) explanation of this phenomenon is
that the penalty ‖t‖1 is a convexified version of ‖t‖0 = |{i : ti 
= 0}|, though this
loose connection hardly explains why ‖t∗‖0 has any effect on the error rate of the
LASSO.

A similar phenomenon occurs for other choices of � , such as the SLOPE and
trace-norm regularization, which will be explored in detail in what follows. In all
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these cases and others like them, the regularization function is a norm that does not
appear to be connected to sparsity, nor to other natural notions of low-dimensional
structures for that matter. Yet, and quite mysteriously, the respective regularization
procedure emphasizes those very properties of t∗.

The aim of this note is to offer a framework that can be used to tackle standard
learning problems (small F ) and regularized problems alike. Moreover, using the
framework, one may explain how certain norms lead to the emergence of sparsity-
based bounds.

In what follows, we will show that two parameters determine the error rate of
regularization problems. The first one captures the “complexity” of each set in the
natural hierarchy in F

Fρ = {
f ∈ F : �(

f − f ∗) ≤ ρ
}
.

Applying results from [19, 20, 22], the “complexity” of each Fρ turns out to be the
optimal (in the minimax sense) error rate of the learning problem in that set. To
be more precise, the main ingredient in obtaining a sharp error rate of a learning
problem in a class H is an accurate analysis of the empirical excess squared loss
functional

(1.1) f → PNLf = 1

N

N∑
i=1

(
f (Xi) − Yi

)2 − 1

N

N∑
i=1

(
f ∗(Xi) − Yi

)2
.

Since the minimizer f̂ of the functional (1.1) satisfies PNL
f̂

≤ 0, one may
obtain an estimate on the error rate by showing that with high probability, if
‖f − f ∗‖L2(μ) ≥ r then PNLf > 0. This excludes functions in the set {f ∈ H :
‖f − f ∗‖L2(μ) ≥ r} as potential empirical minimizers. That “critical level” turns
out to be the correct (minimax) error rate of a learning problem in H . That very
same parameter is of central importance in regularization problems—specifically,
the “critical level” r(ρ) for each one of the sets {f ∈ F : �(f −f ∗) ≤ ρ} [see Sec-
tion 2.1 for an accurate definition of r(ρ) and its role in the analysis of learning
problems and regularization problems].

The second parameter, which is the main ingredient in our analysis of regular-
ization problems, measures the “size” of the subdifferential of � in points that are
close to f ∗: recall that the subdifferential of � in f is

(∂�)f = {
z∗ ∈ E∗ : �(f + h) ≥ �(f ) + z∗(h) for every h ∈ E

}
,

where E∗ is the dual space of the normed space (E,�), and that if f 
= 0, the
subdifferential consists of all the norm one linear functionals z∗ for which z∗(f ) =
�(f ).

Fix ρ > 0 and let �f ∗(ρ) be the collection of functionals that belong to the
subdifferential (∂�)f for some f ∈ F that satisfies �(f − f ∗) ≤ ρ/20. Set

Hρ = {
f ∈ F : �(

f − f ∗) = ρ and
∥∥f − f ∗∥∥

L2(μ) ≤ r(ρ)
}
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and let

	(ρ) = inf
h∈Hρ

sup
z∗∈�f ∗ (ρ)

z∗(
h − f ∗)

.

Hence, �f ∗(ρ) is a subset of the unit sphere of E∗ when 0 /∈ {f ∈ F : �(f −f ∗) ≤
ρ/20} and it is the entire unit ball of E∗ otherwise. And, since Hρ consists of
functions whose � norm is ρ, it is evident that 	(ρ) ≤ ρ. Therefore, if 	(ρ) ≥ αρ

for a fixed 0 < α ≤ 1 then �f ∗(ρ) is rather large: for every h ∈ Hρ there is some
z∗ ∈ �f ∗(ρ) for which z∗(h) is “almost extremal”—that is, at least αρ.

Our main result (Theorem 3.2 below) is that if �f ∗(ρ) is large enough to ensure
that 	(ρ) ≥ 4ρ/5, and the regularization parameter λ is set to be of the order of
r2(ρ)

ρ
, then with high probability, the regularized minimizer in F , f̂ , satisfies that

‖f̂ − f ∗‖L2(μ) ≤ r(ρ) and �(f̂ − f ∗) ≤ ρ.
Theorem 3.2 implies that one may analyze regularization problems by selecting

ρ wisely, keeping in mind that points in a �-ball of radius ∼ ρ around f ∗ must
generate a sufficiently large subdifferential. And the fact that functionals in �f ∗(ρ)

need to be “almost extremal” only for points in Hρ rather than for the entire sphere
is crucial; otherwise, it would have forced �f ∗(ρ) to be unreasonably large—close
to the entire dual sphere.

As will be clarified in what follow, sparsity, combined with the right choice
of � , contributes in two places: first, if f ∗ is sparse in some sense and � is
not smooth on sparse elements, then �f ∗(ρ), which contains the subdifferential
(∂�)f ∗ , is large; second, for the right choice of ρ the “localization” Hρ consists
of elements that are well placed: if �(f − f ∗) = ρ and ‖f − f ∗‖L2(μ) ≤ r(ρ),
there is some z∗ ∈ �f ∗(ρ) for which z∗(f − f ∗) is large enough. The fact that
Hρ is well placed is an outcome of some compatibility between � and the L2(μ)

norm.
Of course, to find the right choice of ρ one must first identify r(ρ), which is, in

itself, a well-studied yet nontrivial problem.
Before we dive into technical details, let us formulate some outcomes of our

main result. We will show how it can be used to obtain sparsity-driven error rates
in three regularization procedures: the LASSO, SLOPE and trace norm regulariza-
tion. In all three cases, our results actually extend the known estimates in various
directions.

The LASSO. The LASSO is defined for the class of linear functional F = {〈t, ·〉 :
t ∈ R

d}. For a fixed t0 ∈ R
d , the goal is to identify t0 using linear measurements,

the regularization function is �(t) = ‖t‖1 = ∑d
i=1 |ti |, and the resulting regular-

ization procedure produces

t̂ ∈ argmin
t∈Rd

(
1

N

N∑
i=1

(〈t,Xi〉 − Yi

)2 + λ‖t‖1

)
.
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The LASSO has been studied extensively in the last two decades. Even though
some recent advances [28, 36, 40] have shown the LASSO to have its limitation,
historically, it has been the benchmark estimator of high-dimensional statistics—
mainly because a high dimensional parameter space does not significantly affect
its performance as long as t0 is sparse. This was shown for example, in [3, 16, 18,
27, 35, 37, 38] in the context of estimation and sparse oracle inequalities, in [2, 17,
41] for support recovery results; and in various other instances as well; we refer
the reader to the books [5, 8] for more results and references on the LASSO.

SLOPE. In some sense, SLOPE, introduced in [4, 32], is actually an extension
of the LASSO, even though it has been introduced as an extension of multiple-test
procedures. Again, the underlying class is F = {〈t, ·〉 : t ∈ R

d}, and to define the
regularization function let β1 ≥ β2 ≥ · · · ≥ βd > 0 and set

�(t) =
d∑

i=1

βit
�
i ,

where (t
�
i )

d
i=1 denotes the nonincreasing re-arrangement of (|ti |)di=1. Thus, the

SLOPE norm is a sorted, weighted �1-norm, and for (β1, . . . , βd) = (1, . . . ,1),
SLOPE regularization coincides with the LASSO.

Trace-norm regularization. Consider the trace inner-product on R
m×T . Let F =

{〈A, ·〉 : A ∈ R
m×T } and given a target Y put A∗ to be the matrix that minimizes

A → E(〈A,X〉 − Y)2. The regularization function is the trace norm.

DEFINITION 1.1. Let A be a matrix and set (σi(A)) to be its singular values,
arranged in a nonincreasing order. For p ≥ 1, ‖A‖p = (

∑
σ

p
i (A))1/p is the p-

Schatten norm.

Note that the trace-norm is simply the 1-Schatten norm, the Hilbert–Schmidt
norm is the 2-Schatten norm and the operator norm is the ∞-Schatten norm.

The trace norm regularization procedure is

Â ∈ argmin
A∈Rm×T

(
1

N

N∑
i=1

(
Yi − 〈Xi,A〉)2 + λ‖A‖1

)

and it was introduced for the reconstruction of low-rank, high-dimensional matri-
ces [6, 7, 9, 26, 29, 30].

As will be explained in what follows, our main result holds in rather general
situations and may be implemented in examples once the “critical levels” r(ρ) are
identified. Since the examples we present serve mainly as “proof of concept”, we
will focus only on one scenario in which r(ρ) may be completely characterized
for an arbitrary class of functions.
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DEFINITION 1.2. Let �M
2 be an M-dimensional inner product space and let μ

be a measure on �M
2 . The measure μ is isotropic if for every x ∈ �M

2 ,∫
〈x, t〉2 dμ(t) = ‖x‖2

�M
2

;
it is L-subgaussian if for every p ≥ 2 and every x ∈ �M

2 ,∥∥〈x, ·〉∥∥Lp(μ) ≤ L
√

p
∥∥〈x, ·〉∥∥L2(μ).

Hence, the covariance structure of an isotropic measure coincides with the inner
product in �M

2 , and if μ is an L-subgaussian measure then the Lp(μ) norm of a
linear form does not grow faster than the Lp norm of the corresponding Gaussian
variable.

ASSUMPTION 1.1. Assume that the underlying measure μ is isotropic and
L-subgaussian, and that for f ∗ = 〈t∗, ·〉 (or f ∗ = 〈A∗, ·〉 in the matrix case), the
noise3 ξ = f ∗(X) − Y belongs to Lq for some q > 2.

When dealing with the LASSO and SLOPE, the natural Euclidean structure is
the standard one in R

d , and for trace norm regularization, the natural Euclidean
structure is endowed by the trace inner product in R

m×T .

REMARK 1.3. In the Supplementary Material [14], we study a general X

without assuming it is isotropic, which means dealing with less natural Euclidean
structures in the examples we present. It is also possible to go beyond the subgaus-
sian case, we refer the reader to [12] where other moment assumptions on X are
considered.

The second part of Assumption 1.1, that ξ ∈ Lq for some q > 2, is rather min-
imal. Indeed, for the functional f → E(f (X) − Y)2 to be well defined, one must
assume that f (X) − Y ∈ L2; the assumption here is only slightly stronger.

Applying our main result we will show the following.

THEOREM 1.4. Consider the LASSO under Assumption 1.1. Let 0 < δ < 1.
Assume that there is some v ∈ R

d supported on at most s coordinates for which

∥∥t∗ − v
∥∥

1 ≤ c1(δ)‖ξ‖Lq s

√
log(ed)

N
.

3In what follows we will refer to ξ as “the noise” even though it depends in general on Y and X.
The reason for using that term comes from the situation in which Y = f ∗(X) − W for a symmetric
random variable W that is independent of X (independent additive noise); thus ξ = W . We have
opted to call ξ “the noise” because its role in the general case and its impact on the error rate is rather
similar to what happens for independent noise.
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If λ = c2(L, δ)‖ξ‖Lq

√
log(ed)/N and N ≥ s log(ed/s), then with probability at

least 1 − δ the LASSO estimator with regularization parameter λ satisfies that for
every 1 ≤ p ≤ 2

∥∥t̂ − t∗
∥∥
p ≤ c3(L, δ)‖ξ‖Lq s

1/p

√
log(ed)

N
.

The error rate in Theorem 1.4 coincides with the standard estimate on the
LASSO (cf. [3]), but in a broader context: t∗ need not be sparse but only approx-
imated by a sparse vector; the target Y is arbitrary and the noise ξ may be heavy
tailed and need not be independent of X.

Turning to SLOPE, let us recall the estimates from [32], where the setup is
somewhat restricted: Let X be a Gaussian vector on R

d , set W to be a Gaus-
sian random variable with variance σ 2 that is independent of X and put Y =
〈t∗,X〉 + W . Consider some q ∈ (0,1), let �−1(α) be the αth quantile of the
standard normal distribution and put βi = �−1(1 − iq/(2d)).

THEOREM 1.5 ([32]). Let 1 ≤ s ≤ d satisfy that s/d = o(1) and (s logd)/N =
o(1) when N → ∞. If 0 < ε < 1, N → ∞ and λ = 2σ/

√
N , the SLOPE estimator

with weights (βi)
d
i=1 and regularization parameter λ satisfies

sup
‖t∗‖0≤s

Pr
(

N‖t̂ − t∗‖2
2

2σ 2s log(d/s)
> 1 + 3ε

)
→ 0.

Note that Theorem 1.5 is asymptotic in nature and not “high-dimensional”.
Moreover, it only holds for a Gaussian X, independent Gaussian noise W , a spe-
cific choice of weights (βi)

d
i=1 and t∗ that is s-sparse.

We consider a more general situation. Let βi ≤ C
√

log(ed/i) and set �(t) =∑d
i=1 βit

�
i .

THEOREM 1.6. There exist constants c1, c2 and c3 that depend only on L, δ

and C for which the following holds. Under Assumption 1.1, if there is v ∈ R
d

that satisfies | supp(v)| ≤ s and �(t∗ − v) ≤ c1‖ξ‖Lq
s√
N

log( ed
s

), then for N ≥
c2s log(ed/s) and with the choice of λ = c2‖ξ‖Lq /

√
N , one has

�
(
t̂ − t∗

) ≤ c3‖ξ‖Lq

s√
N

log
(

ed

s

)
and

∥∥t̂ − t∗
∥∥2

2 ≤ c3‖ξ‖2
Lq

s

N
log

(
ed

s

)

with probability at least 1 − δ.

Finally, let us consider trace norm regularization.

THEOREM 1.7. Under Assumption 1.1 and if there is V ∈ R
m×T that satisfies

that rank(V ) ≤ s and ‖A∗ − V ‖1 ≤ c1‖ξ‖Lq s
√

max{m,T }
N

, one has the following.
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Let N ≥ c2s max{m,T } and λ = c3‖ξ‖Lq

√
max{m,T }

N
. Then with probability at least

1 − δ, for any 1 ≤ p ≤ 2

∥∥Â − A∗∥∥
p ≤ c4‖ξ‖Lq s

1/p

√
max{m,T }

N
.

The constants c1, c2, c3 and c4 depends only on L and δ.

A result of a similar flavor to Theorem 1.7 is Theorem 9.2 from [8].

THEOREM 1.8. Let X be an isotropic and L-sub-Gaussian vector, and W

that is mean-zero, independent of X and belongs to the Orlicz space Lψα for some
α ≥ 1. If Y = 〈A∗,X〉 + W and

λ ≥ c1(L)max
{
‖ξ‖2

√
m(t + logm)

N
,

‖ξ‖ψα log1/α

(‖ξ‖ψα

‖ξ‖L2

)√
m(t + logN)(t + logm)

N

}
,

then with probability at least 1 − 3 exp(−t) − exp(−c2(L)N)

(1.2)
∥∥Â − A∗∥∥2

2 ≤ c3 min
{
λ
∥∥A∗∥∥

1, λ
2 rank

(
A∗)}

.

Clearly, the assumptions of Theorem 1.8 are more restrictive than those of The-
orem 1.7, as the latter holds for a heavy tailed ξ that need not be independent of X,
and for A∗ that can be approximated by a low-rank matrix. Moreover, if ‖A∗‖1
is relatively large and the error rate in Theorem 1.8 is the sparsity-dominated
λ2 rank(A∗), then the error rate in Theorem 1.7 is better by a logarithmic factor.

The proofs of the error rates in all the three examples will be presented in Sec-
tion 5.

1.1. Notation. We end the Introduction with some standard notation.
Throughout, absolute constants are denoted by c, c1, . . . , etc. Their value may

change from line to line. When a constant depends on a parameter α it will be
denoted by c(α). A � B means that A ≤ cB for an absolute constant c, and the
analogous two-sided inequality is denoted by A ∼ B . In a similar fashion, A�α B

implies that A ≤ c(α)B , etc.
Let E ⊂ L2(μ) be a vector space and set � to be a norm on E. For a set A ⊂ E,

t ∈ E and r > 0, let rA + t = {ra + t : a ∈ A}.
Denote by B� = {w ∈ E : �(w) ≤ 1} the unit ball of (E,�) and set S� = {f ∈

E : �(f ) = 1} to be the corresponding unit sphere. B�(ρ,f ) is the ball of radius
ρ centred in f and S�(ρ,f ) is the corresponding sphere. Also, set D to be the
unit ball in L2(μ), S is the unit sphere there, and D(ρ,f ) and S(ρ,f ) are the ball
and sphere centred in f and of radius ρ, respectively.
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A class of spaces we will be interested in consists of �d
p , that is, Rd endowed

with the �p norm; Bd
p denotes the unit ball in �d

p and S(�d
p) is the unit sphere.

For every x = (xi)
d
i=1, (x

�
i )

d
i=1 denotes the nonincreasing rearrangement of

(|xi |)di=1.
Finally, if (Xi, Yi)

N
i=1 is a sample, PNh = 1

N

∑N
i=1 h(Xi, Yi) is the empirical

mean of h.

2. Preliminaries: The regularized functional. Let F ⊂ E be a closed and
convex class of functions. Recall that for target Y , f ∗ is the minimizer in F of the
functional f → E(f (X)−Y)2. Since F is closed and convex, the minimum exists
and is unique.

Let Lf (X,Y ) = (f (X)−Y)2 − (f ∗(X)−Y)2 be the excess squared loss func-
tional and for λ > 0 let Lλ

f (X,Y ) = Lf + λ(�(f ) − �(f ∗)) be its regularized

counterpart. Thus, for a random sample (Xi, Yi)
N
i=1, the empirical (regularized)

excess loss functional is

PNLλ
f = 1

N

N∑
i=1

Lf (Xi, Yi) + λ
(
�(f ) − �

(
f ∗))

.

Note that if �f (x, y) = (y − f (x))2 and f̂ minimizes PN�f + λ�(f ) then f̂

also minimizes PNLλ
f . Moreover, since Lλ

f ∗ = 0, it is evident that PNLλ

f̂
≤ 0.

This simple observation shows that the random set {f ∈ F : PNLλ
f > 0} may

be excluded from our considerations, as it does not contain potential minimizers.
Therefore, if one can show that with high probability{

f ∈ F : PNLλ
f ≤ 0

} ⊂ {
f ∈ F : ∥∥f − f ∗∥∥

L2(μ) ≤ r
}
,

then on that event, ‖f̂ − f ∗‖L2(μ) ≤ r .
We will identify when PNLλ

f > 0 by considering the two parts of the empirical
functional: the empirical excess loss PNLf and the regularized part λ(�(f ) −
�(f ∗)).

Because of its crucial role in obtaining error estimates in learning problems, the
functional f → PNLf has been studied extensively using the small-ball method,
(see, e.g., [19, 20, 22]). Thus, the first component in the machinery we require for
explaining both learning problems and regularization problems is well understood
and ready-to-use; its details are outlined below.

2.1. The natural decomposition of PNLf . Set ξ = ξ(X,Y ) = f ∗(X) − Y and
observe that

Lf (X,Y ) = (
f − f ∗)2

(X) + 2
(
f − f ∗)

(X) · (
f ∗(X) − Y

)
= (

f − f ∗)2
(X) + 2ξ

(
f − f ∗)

(X).
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Since F is convex, the characterization of the nearest point map in a Hilbert space
shows that E(f − f ∗)(X) · (f ∗(X) − Y) ≥ 0 for every f ∈ F . Hence, setting
ξi = f ∗(Xi) − Yi , one has

PNLλ
f ≥ 1

N

N∑
i=1

(
f − f ∗)2

(Xi) + 2

(
1

N

N∑
i=1

ξi

(
f − f ∗)

(Xi) −Eξ
(
f − f ∗)

(X)

)

+ λ
(
�(f ) − �

(
f ∗))

.

To simplify notation, for w ∈ L2(μ) set Qw = w2 and Mw = ξw − Eξw. Thus,
for every f ∈ F ,

(2.1) PNLλ
f ≥ PNQf −f ∗ + 2PNMf −f ∗ + λ

(
�(f ) − �

(
f ∗))

.

The decomposition of the empirical excess loss to the quadratic component
(Qf −f ∗ ) and the multiplier one (Mf−f ∗) is the first step in applying the small-ball
method to learning problems. One may show that on a large event, if ‖f −f ∗‖L2(μ)

is larger than some critical level then PNQf −f ∗ ≥ θ‖f − f ∗‖2
L2

and dominates
PNMf −f ∗ ; hence PNLf > 0.

To identify this critical level, let us define the following parameters.

DEFINITION 2.1. Let H ⊂ F be a convex class that contains f ∗. Let (εi)
N
i=1

be independent, symmetric, {−1,1}-valued random variables that are independent
of (Xi, Yi)

N
i=1.

For γQ,γM > 0 set

rQ(H,γQ) = inf

{
r > 0 : E sup

h∈H∩D(r,f ∗)

∣∣∣∣∣ 1

N

N∑
i=1

εi

(
h − f ∗)

(Xi)

∣∣∣∣∣ ≤ γQr

}
,

let

φN(H, s) = sup
h∈H∩D(s,f ∗)

∣∣∣∣∣ 1√
N

N∑
i=1

εiξi

(
h − f ∗)

(Xi)

∣∣∣∣∣,
and put

rM(H,γM, δ) = inf
{
s > 0 : Pr

(
φN(H, s) ≤ γMs2

√
N

) ≥ 1 − δ
}
.

The main outcome of the small-ball method is that for the right choices of γM

and γQ, r = max{rM, rQ} is the above-mentioned “critical level” in H , once H

satisfies a weak small-ball condition.

ASSUMPTION 2.1 (The small ball condition). Assume that there are constants
κ > 0 and 0 < ε ≤ 1, for which, for every f,h ∈ F ∪ {0},

Pr
(|f − h| ≥ κ‖f − h‖L2(μ)

) ≥ ε.
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There are numerous examples in which the small-ball condition may be verified
for κ and ε that are absolute constants. We refer the reader to [10, 13, 19, 21, 22,
31] for some of them.

THEOREM 2.2 ([22]). Let H be a closed, convex class of functions that con-
tains f ∗ and satisfies Assumption 2.1 with constants κ and ε. If θ = κ2ε/16 then
for every 0 < δ < 1, with probability at least 1 − δ − 2 exp(−Nε2/2) one has for
every f ∈ H :

• |PNMf −f ∗ | ≤ θ
8 max{‖f − f ∗‖2

L2(μ), r
2
M(H, θ/10, δ/4)},

• if ‖f − f ∗‖L2(μ) ≥ rQ(H,κε/32) then PNQf −f ∗ ≥ θ‖f − f ∗‖2
L2(μ).

In particular, with probability at least 1 − δ − 2 exp(−Nε2/2),

PNLf ≥ θ

2

∥∥f − f ∗∥∥2
L2(μ)

for every f ∈ H that satisfies∥∥f − f ∗∥∥
L2(μ) ≥ max

{
rM(H, θ/10, δ/4), rQ(H,κε/32)

}
.

From now on, we will assume that F satisfies the small-ball condition with
constants κ and ε, and that θ = κ2ε/16.

DEFINITION 2.3. Let ρ > 0 and set

rM(ρ) = rM

(
F ∩ B�

(
ρ,f ∗)

,
θ

10
,
δ

4

)
and rQ(ρ) = rQ

(
F ∩ B�

(
ρ,f ∗)

,
κε

32

)
.

In what follows, we will abuse notation and omit the dependence of rM and rQ on
f ∗, κ , ε and δ.

Let r(·) be a function that satisfies r(ρ) ≥ supf ∗∈F max{rQ(ρ), rM(ρ)}. Finally,
put

O(ρ) = sup
f ∈F∩B�(ρ,f ∗)∩D(r(ρ),f ∗)

|PNMf −f ∗ |.

Theorem 2.2 implies the following.

COROLLARY 2.4 ([22]). Using the notation introduced above, on an event
of probability at least 1 − δ − 2 exp(−Nε2/2), if f ∈ F ∩ B�(ρ,f ∗) and ‖f −
f ∗‖L2(μ) ≥ r(ρ) then PNLf ≥ θ

2‖f − f ∗‖2
L2(μ). Moreover, on the same event,

O(ρ) ≤ θ
8 r2(ρ).

REMARK 2.5. Let us stress once again that r(ρ) plays a central role in the
analysis of empirical risk minimization in the set F ∩B�(ρ,f ∗). Theorem 2.2 im-
plies that with high probability, the empirical risk minimizer h̃ in F ∩ B�(ρ,f ∗)
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satisfies ‖h̃ − h∗‖L2(μ) ≤ r(ρ). Moreover, it follows from [11] and [23] that un-
der mild structural assumptions on F , r(ρ) is the best possible error rate of any
learning procedure in F ∩ B�(ρ,f ∗)—that is, the minimax rate in that class.

Let A be the event from Corollary 2.4 and set

γO(ρ) = sup
w∈A

O(ρ).

γO will be of little importance in what follows, because it may be upper bounded
by (θ/8)r2(ρ). However, it will be of the utmost importance in [12], where
complexity-based regularization is studied (see Section 6 for more details).

3. The main result. Let us turn to the second part of the regularized
functional—namely, λ(�(f ) − �(f ∗)). Let E∗ be the dual space to (E,�) and
set �∗ to be the dual norm. B�∗ and S�∗ denote the dual unit ball and unit sphere,
respectively; that is, B�∗ consists of all the linear functionals z∗ on E for which
sup�(x)=1 |z∗(x)| ≤ 1.

DEFINITION 3.1. The functional z∗ ∈ S�∗ is a norming functional for z ∈ E

if z∗(z) = �(z).

In the language of Convex Analysis, a functional is norming for x if and only if
it belongs to (∂�)x , the subdifferential of � in x.

Let �f ∗(ρ) be the collection of functionals that are norming for some f ∈
B�(ρ/20, f ∗). In particular, �f ∗(ρ) contains all the norming functionals of f ∗.

Set

	(ρ) = inf
h∈H

sup
z∗∈�f ∗ (ρ)

z∗(
h − f ∗)

,

where the infimum is taken in the set

H = F ∩ S�

(
ρ,f ∗) ∩ D

(
r(ρ), f ∗)

= {
h ∈ F : �(

h − f ∗) = ρ and
∥∥h − f ∗∥∥

L2(μ) ≤ r(ρ)
}
.

Note that if z∗ ∈ �f ∗(ρ) and h ∈ S�(ρ,f ∗) then |z∗(h−f ∗)| ≤ �(h−f ∗) = ρ.
Thus, a lower bound of the form 	(ρ) ≥ (1 − δ)ρ implies that �f ∗(ρ) is a
relatively large subset of the dual unit sphere: each point in F ∩ S�(ρ,f ∗) ∩
D(r(ρ), f ∗) has an “almost norming” functional in �f ∗(ρ).

Our main result is that if �f ∗(ρ) is indeed large enough to ensure that 	(ρ) ≥
4/5ρ then with high probability ‖f̂ − f ∗‖L2(μ) ≤ r(ρ) and �(f̂ − f ∗) ≤ ρ.

THEOREM 3.2. Assume that F is closed and convex. Let ρ > 0 and set A to
be an event on which Corollary 2.4 holds. If 	(ρ) ≥ 4ρ/5 and

3
γO(ρ)

ρ
≤ λ <

θ

2
· r2(ρ)

ρ
,
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then on the event A, a regularized empirical minimizer f̂ ∈ argminf ∈F PNLλ
f sat-

isfies

�
(
f̂ − f ∗) ≤ ρ and

∥∥f̂ − f ∗∥∥
L2(μ) ≤ r(ρ).

Moreover, since rO(ρ) ≤ (θ/8)r2(ρ), the same assertion holds if

3θ

8
· r2(ρ)

ρ
≤ λ <

θ

2
· r2(ρ)

ρ
.

The proof of the theorem follows in three steps: first, one has to show that
PNLλ

f is positive on the set F ∩S�(ρ,f ∗). Second, thanks to certain homogeneity
properties of the functional, it is positive in F \ B�(ρ,f ∗), because it is positive
on the “sphere” F ∩ S�(ρ,f ∗). Finally, one has to study the functional in F ∩
B�(ρ,f ∗) and verify that it is positive in that set, provided that ‖f − f ∗‖L2(μ) ≥
r(ρ).

PROOF OF THEOREM 3.2. Fix h ∈ F ∩ S�(ρ,f ∗) and we shall treat two dif-
ferent cases: when ‖h − f ∗‖L2(μ) ≥ r(ρ) and when ‖h − f ∗‖L2(μ) ≤ r(ρ).

If ‖h − f ∗‖L2 ≥ r(ρ), then by the triangle inequality for � ,

�(h) − �
(
f ∗) = �

(
h − f ∗ + f ∗) − �

(
f ∗) ≥ −�

(
h − f ∗)

.

Hence, for (Xi, Yi)
N
i=1 ∈ A and by the upper estimate in the choice of λ,

(3.1) PNLλ
h ≥ θ

2

∥∥h − f ∗∥∥2
L2(μ) − λ�

(
h − f ∗) ≥ θ

2
r2(ρ) − λρ > 0.

Next, if ‖h − f ∗‖L2(μ) ≤ r(ρ) then PNLλ
h ≥ −2O(ρ) + λ(�(h) − �(f ∗)).

Consider u, v ∈ E that satisfy f ∗ = u + v and �(u) ≤ ρ/20. Let z∗ be
any norming functional of v; thus, z∗ ∈ S�∗ and z∗(v) = �(v). Since �(h) =
supx∗∈B�∗ x∗(h) it follows that

�(h) − �
(
f ∗) ≥ �(h) − �(v) − �(u) ≥ z∗(h − v) − �(u)

≥ z∗(
h − f ∗) − 2�(u).

This holds for any v ∈ B�(ρ/20, f ∗), and by the definition of 	(ρ) and for an
optimal choice of z∗,

PNLλ
h ≥ −2O(ρ) + λ

(
z∗(

h − f ∗) − 2�(u)
)

(3.2)
≥ −2O(ρ) + λ

(
	(ρ) − ρ/10

)
> 0,

where the last inequality holds because 	(ρ) ≥ 4ρ/5 and λ ≥ 3γO(ρ)/ρ. Also,
since γO(ρ) ≤ (θ/8)r2(ρ), it suffices that λ ≥ (3θ/8)r2(ρ)/ρ to ensure that
PNLλ

h > 0 in (3.2). This completes the proof of the first step—that PNLλ
h > 0

on F ∩ S�(ρ,f ∗).
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Turning to the second step, one has to establish a similar inequality for functions
outside B�(ρ,f ∗). To that end, let f ∈ F \ B�(ρ,f ∗). Since F is convex and �

is homogeneous, f = f ∗ + α(h − f ∗) for some h ∈ F ∩ S�(ρ,f ∗) and α > 1.
Therefore, PNQf −f ∗ = α2PNQh−f ∗ and PNMf −f ∗ = αPNMh−f ∗ ; moreover,
�(f −f ∗) = α�(h−f ∗) and for every functional z∗, z∗(f −f ∗) = αz∗(h−f ∗).

Thus, by (3.1), when ‖h − f ∗‖L2(μ) ≥ r(ρ), PNLλ
f > 0, and when ‖h −

f ∗‖L2(μ) ≤ r(ρ),

PNLλ
f ≥ α2PNQh−f ∗ + 2αPNMh−f ∗ + λ

(
αz∗(

h − f ∗) − 2�(u)
)

≥ α
(
PNQh−f ∗ + 2PNMh−f ∗ + λ

(
z∗(

h − f ∗) − 2�(u)
))

> 0.

Finally, when h ∈ F ∩ B�(ρ,f ∗) and ‖h − f ∗‖L2(μ) ≥ r(ρ), (3.1) shows that
PNLλ

f > 0. �

REMARK 3.3. Note that if ρ ≥ �(f ∗) there is no upper limitation on the
choice of λ. Indeed, if ‖h − f ∗‖L2(μ) ≥ r(ρ) and �(h) = ρ ≥ �(f ∗) then
λ(�(h) − �(f ∗)) ≥ 0, and PNLλ

h > 0 just as in (3.1). The rest of the proof re-
mains unchanged.

It follows from the proof that the quadratic component PNQf −f ∗ and the regu-
larization one λ(�(f )−�(f ∗)) dominate the multiplier component 2PNMf −f ∗
in different parts of F . The behavior of PNQf −f ∗ allows one to exclude the set
(F ∩ Bψ(ρ,f ∗)) \ D(r(ρ), f ∗), as well as any point in F for which the interval
[f,f ∗] intersects (F ∩ Sψ(ρ,f ∗)) \D(r(ρ), f ∗). This exclusion is rather free-of-
charge, as it holds with no assumptions on the norm � .

The situation is more subtle when trying to exclude points for which the interval
[f,f ∗] intersects F ∩ Sψ(ρ,f ∗) ∩ D(r(ρ), f ∗). That is precisely the region in
which the specific choice of � is important and the regularization component is
the reason why PNLλ

f > 0.

Figure 1 shows this idea: PNLλ
f > 0 for two different reasons: either Q > M—

the quadratic component dominates the multiplier component, or R > M—the reg-
ularization component dominates the multiplier component.

Note that an output of the sparsity equation is that the descent cone T�(f ∗) =⋃
τ>0{h : �(f ∗+τh) ≤ �(f ∗)} does not intersect S�(ρ,f ∗)∩D(r(ρ), f ∗) when

the “sparsity condition” 	(ρ) ≥ 4ρ/5 is satisfied (cf. Figure 2).

4. The role of �(ρ). It is clear that 	(ρ) plays a crucial role in the proof of
Theorem 3.2, and that the larger �f ∗(ρ) is, the better the lower bound on 	(ρ).

Having many norming functionals of points in B�(ρ/20, f ∗) can be achieved
somewhat artificially, by taking ρ ∼ �(f ∗). If ρ is large enough, B�(ρ/20, f ∗)
contains a �-ball centred in 0. Therefore, �f ∗(ρ) is the entire dual sphere and
	(ρ) = ρ. This is the situation when one attempts to derive complexity-based
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FIG. 1. The “Q > M and R > M” decomposition.

bounds (see Section 6 and [12]), that is, when one wishes to find f̂ that inherits
some of f ∗’s “good qualities” that are captured by �(f ∗).

Here, we are interested in cases in which ρ may be significantly smaller than
�(f ∗) and enough norming functionals have to be generated by other means.

If � is smooth, each f 
= 0 has a unique norming functional, and for a small ρ,
the norming functionals of points in B�(ρ/20, f ∗) are close to the (unique) norm-
ing functional of f ∗; hence there is little hope that �f ∗(ρ) will be large enough to
ensure that 	(ρ) ∼ ρ. It is therefore reasonable to choose � that is not smooth in
f ∗ or in a neighborhood of f ∗.

FIG. 2. T�(f ∗) ∩ S�(ρ,f ∗) ∩ D(r(ρ), f ∗) =∅.
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Another important fact is that �f ∗(ρ) need not be as large as the entire dual
sphere to ensure that 	(ρ) ∼ ρ. Indeed, it suffices if �f ∗(ρ) contains “almost
norming” functionals only to points that satisfy ‖w‖L2(μ) ≤ r(ρ)/ρ and �(w) = 1,
rather than to every point in the sphere S� .

4.1. 	(ρ) and sparsity. It turns out that the combination of the right notion of
sparsity with a wise choice of a norm � ensures that �f ∗(ρ) contains enough “al-
most norming” functionals precisely for the subset of the sphere one is interested
in.

To give an indication of how this happens, let us show the following.

LEMMA 4.1. Let Z ⊂ S�∗ , W ⊂ S� and 0 < η1, η2 < 1. If every w ∈ W can
be written as w = w1 + w2, where �(w1) ≤ η1�(w) and supz∗∈Z z∗(w2) ≥ (1 −
η2)�(w2), then

inf
w∈W

sup
z∗∈Z

z∗(w) ≥ (1 − η1)(1 − η2) − η1.

In particular, if η1, η2 ≤ 1/20 then infw∈W supz∗∈Z z∗(w) ≥ 4/5.

PROOF. Let w = w1 + w2 and observe that �(w2) ≥ �(w) − �(w1) ≥ (1 −
η1)�(w). Thus, for the optimal choice of z∗ ∈ Z,

z∗(w1 + w2) ≥ (1 − η2)�(w2) + z∗(w1) ≥ (1 − η2)�(w2) − η1�(w)

≥ (
(1 − η1)(1 − η2) − η1

)
�(w),

and the claim follows because w ∈ S� . �

Let E = R
d viewed as a class of linear functionals on R

d . Set μ to be an
isotropic measure on R

d ; thus {t ∈R
d : E〈t,X〉2 ≤ 1} = Bd

2 .
Assume that for t ∈ R

d that is supported on I ⊂ {1, . . . , d}, the set of its norming
functionals consists of functionals of the form z∗

0 + (1 − η2)u
∗ for some fixed z∗

0
that is supported on I and any u ∈ B�∗ that is supported on I c (such is the case,
for example, when E = �d

1 ).
For every such t , consider w ∈ ρS� and set w1 = PIw and w2 = PIcw, the

coordinate projections of w onto span(ei)i∈I and span(ei)i∈I c , respectively. Hence,
there is a functional z∗ = z∗

0 + (1 − η2)u
∗ that is norming for t and also satisfies

z∗(w2) = (1−η2)u
∗(w2) = (1−η2)�(w2). Therefore, Lemma 4.1 may be applied

once �(PIw) ≤ η1�(w).
Naturally, such a shrinking phenomenon need not be true for every w ∈ S� ;

fortunately, it is only required for w ∈ S� ∩ (r(ρ)/ρ)D—and we will show that it
is indeed the case in the three examples we present. In all three, the combination
of sparsity and the right choice of the norm helps in establishing a lower bound
on 	(ρ) in two ways: first, the set �t∗(ρ) consists of functionals that are “almost
norming” for any x whose support is disjoint from the support of t∗; and second,
a coordinate projection “shrinks” the � norm of points in ρS� ∩ r(ρ)D.
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4.2. 	(ρ) in the three examples. Let us show that in the three examples, the
LASSO, SLOPE and trace norm regularization, 	(ρ) ≥ (4/5)ρ for the right choice
of ρ, and that choice depends on the degree of sparsity in each case.

In all three examples, we will assume that the underlying measure is isotropic;
thus the L2(μ) norm coincides with the natural Euclidean structure: the �d

2 norm
for the LASSO and SLOPE, and the Hilbert–Schmidt norm for trace-norm regu-
larization.

The LASSO. Observe that if f ∗ = 〈t∗, ·〉 is the true minimizer of the functional
〈t, ·〉 → E(〈t,X〉 − Y)2 in F = {〈t, ·〉 : t ∈ R

d}, then any function ht = 〈t, ·〉 for
which ‖ht − f ∗‖L2 ≤ r(ρ) and �(ht − f ∗) = ρ is of the form ht = 〈t, ·〉 = 〈w +
t∗, ·〉, where w ∈ ρS(�d

1) ∩ r(ρ)Bd
2 . Recall that the dual norm to ‖ · ‖1 is ‖ · ‖∞,

and thus

	(ρ) = inf
w∈ρS(�d

1 )∩r(ρ)Bd
2

sup
z∈�t∗ (ρ)

〈z,w〉,

where �t∗(ρ) is the set of all vectors z∗ ∈ R
d that satisfy∥∥z∗∥∥∞ = 1 and z∗(v) = ‖v‖1 for some v for which

∥∥v − t∗
∥∥

1 ≤ ρ/20.

LEMMA 4.2. If t∗ = v + u for u ∈ (ρ/20)Bd
1 and 100| supp(v)| ≤ (ρ/r(ρ))2

then 	(ρ) ≥ 4ρ/5.

In other words, if t∗ is well approximated with respect to the �d
1 norm by some

v ∈ R
d that is s-sparse, and s is small enough relative to the ratio (ρ/r(ρ))2, then

	(ρ) ≥ (4/5)ρ.
Just as noted earlier, we shall use two key properties of the �1 norm and sparse

vectors: first, that if x and y have disjoint supports, there is a functional that is
simultaneously norming for x and y, that is, z∗ ∈ Bd∞ for which

(4.1) z∗(x) = ‖x‖1 and z∗(y) = ‖y‖1;
second, that if ‖x‖1 = ρ and ‖x‖2 is significantly smaller than ρ, a coordinate
projection “shrinks” the �d

1 norm: ‖PIx‖1 is much smaller than ‖x‖1.

PROOF OF LEMMA 4.2. Let w ∈ ρS(�d
1) ∩ r(ρ)Bd

2 . Since ‖t∗ − v‖1 ≤ ρ/20
there exists z∗ ∈ �t∗(ρ) that is norming for v. Moreover, if I = supp(v), then ac-
cording to (4.1) one can choose z∗ that is also norming for PIcw. Thus, ‖PIcw‖1 =
z∗(PIcw) and

z∗(w) = z∗(PIw) + z∗(PIcw) ≥ ‖PIcw‖1 − ‖PIw‖1

≥ ‖w‖1 − 2‖PIw‖1.

Since ‖w‖2 ≤ r(ρ), one has ‖PIw‖1 ≤ √
s‖PIw‖2 ≤ √

sr(ρ). Therefore, 〈z,w〉 ≥
ρ − 2

√
sr(ρ) ≥ 4ρ/5 when 100s ≤ (ρ/r(ρ))2. �
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SLOPE. Let β1 ≥ β2 ≥ · · · ≥ βd > 0 and recall that �(t) = ∑d
i=1 βit

∗
i .

Note that �(t) = supz∈Z〈z, t〉, for

Z =
{

d∑
i=1

εiβπi
ei : (εi)

d
i=1 ∈ {−1,1}d,π is a permulation of {1, . . . , d}

}
.

Therefore, the extreme points of the dual unit ball are of the form
∑d

i=1 εiβπi
ei .

Following the argument outlined above, let us show that if x is supported on
a reasonably small I ⊂ {1, . . . , d}, the set of norming functionals of x consists of
“almost norming” functionals for any y that is supported on I c. Moreover, and just
like the �d

1 norm, if �(x) = ρ and ‖x‖2 is significantly smaller than ρ, a coordinate
projection of x “shrinks” its � norm.

LEMMA 4.3. Let 1 ≤ s ≤ d and set Bs = ∑
i≤s βi/

√
i. If t∗ is ρ/20 ap-

proximated (relative to �) by an s-sparse vector and if 40Bs ≤ ρ/r(ρ) then
	(ρ) ≥ 4ρ/5.

PROOF. Let t∗ = u + v, for v that is supported on at most s coordinates and
u ∈ (ρ/20)B� . Set I ⊂ {1, . . . , d} to be the support of v and let z = (zi)

d
i=1 be a

norming functional for v to be specified later; thus, z ∈ �t∗(ρ).
Given t for which �(t − t∗) = ρ and ‖t − t∗‖2 ≤ r(ρ), one has

z
(
t − t∗

) = z(t − v) − z(u) = z
(
PIc(t − v)

) + z
(
PI (t − v)

) − z(u)

≥ ∑
i∈I c

zi(t − v)i + ∑
i∈I

zi(t − v)i − �(u)

≥ ∑
i∈I c

zi(t − v)i − ∑
i≤s

βi(t − v − u)
�
i − 2�(u)

= ∑
i∈I c

zi(t − v)i − ∑
i≤s

βi

(
t − t∗

)�
i − 2�(u) = (∗).

Since v is supported in I , one may optimize the choice of z by selecting the right
permutation of the coordinates in I c, and∑

i∈I c

zi(t − v)i ≥ ∑
i>s

βi(t − v)
�
i ≥ ∑

i>s

βi(t − v − u)
�
i − �(u)

=
d∑

i=1

βi

(
t − t∗

)�
i − ∑

i≤s

βi

(
t − t∗

)�
i − �(u).

Therefore,

(∗) ≥
d∑

i=1

βi

(
t − t∗

)�
i − 2

∑
i≤s

βi

(
t − t∗

)�
i − 3�(u) ≥ 17

20
ρ − 2

∑
i≤s

βi

(
t − t∗

)�
i .
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Since ‖t − t∗‖2 ≤ r(ρ), it is evident that (t − t∗)�i ≤ r(ρ)/
√

i, and

s∑
i=1

βi

(
t − t∗

)�
i ≤ r(ρ)

s∑
i=1

βi√
i

= r(ρ)Bs .

Hence, if ρ ≥ 40r(ρ)Bs then 	(ρ) ≥ 4ρ/5. �

Trace-norm regularization. The trace norm has similar properties to the �1
norm. First, one may show that the dual norm to ‖ · ‖1 is ‖ · ‖∞, which is simply
the standard operator norm. Moreover, one may find a functional that is simul-
taneously norming for any two elements with “disjoint support” (and, of course,
the meaning of “disjoint support” has to be interpreted correctly here). Finally, it
satisfies a “shrinking” phenomenon for matrices whose Hilbert–Schmidt norm is
significantly smaller than their trace norm.

LEMMA 4.4. If A∗ = V + U , where ‖U‖1 ≤ ρ/20 and 400 rank(V ) ≤
(ρ/r(ρ))2, then 	(ρ) ≥ 4ρ/5.

The fact that a low-rank matrix has many norming functionals is well known
and follows, for example, from [39].

LEMMA 4.5. Let V ∈ Rm×T and assume that V = PIV PJ for appropriate
orthogonal projections onto subspaces I ⊂ R

m and J ⊂ R
T . Then, for every W ∈

R
m×T there is a matrix Z that satisfies ‖Z‖∞ = 1, and

〈Z,V 〉 = ‖V ‖1, 〈Z,PI⊥WPJ⊥〉 = ‖PI⊥WPJ⊥‖1,

〈Z,PIWPJ⊥〉 = 0 and 〈Z,PI⊥WPJ 〉 = 0.

Lemma 4.5 describes a similar phenomenon to the situation in �d
1 , but with a

different notion of “disjoint support”: if V is low-rank and the projections PI and
PJ are nontrivial, one may find a functional that is norming both for V and for the
part of W that is “disjoint” of V . Moreover, the functional vanishes on the “mixed”
parts PIWPJ⊥ and PI⊥WPJ .

PROOF OF LEMMA 4.4. Recall that S1 is the unit sphere of the trace norm and
that B2 is the unit ball of the Hilbert–Schmidt norm. Hence,

	(ρ) = inf
W∈ρS1∩r(ρ)B2

sup
Z∈�A∗ (ρ)

〈Z,W 〉,

where �A∗(ρ) is the set of all matrices Z ∈ R
m×T that satisfy ‖Z‖∞ = 1 and

〈Z,V 〉 = 1 for some V for which ‖A∗ − V ‖1 ≤ ρ/20.
Fix a rank-s matrix V = PIV PJ , for orthogonal projections PI and PJ that are

onto subspaces of dimension s. Consider W ∈ R
m×T for which ‖W‖1 = ρ and
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‖W‖2 ≤ r(ρ) and put Z to be a norming functional of V as in Lemma 4.5. Thus,
Z ∈ �A∗(ρ) and

〈Z,W 〉 = 〈Z,PI⊥WPJ⊥〉 + 〈Z,PIWPJ 〉 = ‖PI⊥WPJ⊥‖1 − ‖PIWPJ ‖1

≥ ‖W‖1 − ‖PIWPJ⊥‖1 − ‖PI⊥WPJ ‖1 − 2‖PIWPJ ‖1.

All that remains is to estimate the trace norms of the three components that are
believed to be “low-dimension”—in the sense that their rank is at most s.

Recall that (σi(A)) are the singular values of A arranged in a nonincreasing
order. It is straightforward to verify (e.g., using the characterization of the singular
values via low-dimensional approximation), that

σi(PIWPJ⊥), σi(PI⊥WPJ ), σi(PIWPJ ) ≤ σi(W).

Moreover, ‖W‖2 ≤ r(ρ), therefore, being rank-s operators, one has

‖PIWPJ⊥‖1,‖PI⊥WPJ ‖1,‖PIWPJ ‖1 ≤
s∑

i=1

σi(W) ≤ √
s

(
s∑

i=1

σ 2
i (W)

)1/2

,

implying that 〈Z,W 〉 ≥ ρ − 4r(ρ)
√

s. Therefore, if 400s ≤ (ρ/r(ρ))2, then
	(ρ) ≥ 4ρ/5. �

5. The three examples revisited. The estimates on 	(ρ) presented above
show that in all three examples, when f ∗ is well approximated by a function whose
“degree of sparsity” is � (ρ/r(ρ))2, then 	(ρ) ≥ 4ρ/5 and Theorem 3.2 may be
used. Clearly, the resulting error rates depend on the right choice of ρ, and thus on
r(ρ).

Because r(ρ) happens to be the minimax rate of the learning problem in the
class F ∩ B�(ρ,f ∗), its properties have been studied extensively. Obtaining an
estimate on r(ρ) involves some assumptions on X and ξ , and the one setup in
which it can be characterized for an arbitrary class F is when the class is L-sub-
Gaussian and ξ ∈ Lq for some q > 2 (though ξ need not be independent of X).
It is straightforward to verify that an L-sub-Gaussian class satisfies the small-ball
condition of Assumption 2.1 for κ = 1/2 and ε = c/L4 where c is an absolute con-
stant. Moreover, if the class is L-sub-Gaussian, the natural complexity parameter
associated with it is the expectation of the supremum of the canonical Gaussian
process indexed by the class.

DEFINITION 5.1. Let F ⊂ L2(μ) and set {Gf : f ∈ F } to be the canonical
Gaussian process indexed by F ; that is, each Gf is a centred Gaussian variable
and the covariance structure of the process is endowed by the inner product in
L2(μ). The expectation of the supremum of the process is defined by

�∗(F ) = sup
{
E sup

f ∈F ′
Gf : F ′ ⊂ F is finite

}
.
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It follows from a standard chaining argument that if F is L-sub-Gaussian then

E sup
f ∈F

∣∣∣∣∣ 1

N

N∑
i=1

εi

(
h − f ∗)

(Xi)

∣∣∣∣∣ � L
�∗(F )√

N
.

Therefore, if Fρ,r = F ∩ B�(ρ,f ∗) ∩ D(r,f ∗) then for every ρ > 0 and f ∗ ∈ F

rQ(ρ) ≤ inf
{
r > 0 : �∗(Fρ,r ) ≤ C(L)r

√
N

}
.

Turning to rM , we shall require the following fact from [25].

THEOREM 5.2 (Corollary 1.10 in [25]). Let q > 2 and L ≥ 1. For every 0 <

δ < 1 there is a constant c = c(δ,L, q) for which the following holds. If H is an
L-sub-Gaussian class and ξ ∈ Lq , then with probability at least 1 − δ,

sup
h∈H

∣∣∣∣∣ 1√
N

N∑
i=1

εiξih(Xi)

∣∣∣∣∣ ≤ c‖ξ‖Lq �∗(H).

The complete version of Theorem 5.2 includes a sharp estimate on the con-
stant c. However, obtaining accurate probability estimates is not the main feature
of this note and deriving such estimates leads to a cumbersome presentation. To
keep our message to the point, we have chosen not to present the best possible
probability estimates in what follows.

A straightforward application of Theorem 5.2 shows that

rM(ρ) ≤ inf
{
r > 0 : ‖ξ‖Lq �∗(Fρ,r ) ≤ cr2

√
N

}
for a constant c that depends on L,q and δ.

Recall that we have assumed that X is isotropic, which means that the L2(μ)

norm coincides with the natural Euclidean structure on the space: the standard �d
2

norm for the LASSO and SLOPE and the Hilbert–Schmidt norm for trace norm
regularization. Since the covariance structure of the indexing Gaussian process is
endowed by the inner product, it follows that

�∗(ρB� ∩ rD) = E sup
w∈ρB�∩rB2

〈G,w〉

for the standard Gaussian vector G = (g1, . . . , gd) in the case of the LASSO and
SLOPE and the Gaussian matrix G = (gij ) in the case of trace norm minimization.
Hence, one may obtain a bound on r(ρ) by estimating this expectation in each case.

The LASSO and SLOPE. Let (βi)
d
i=1 be a nonincreasing positive sequence and

set �(t) = ∑d
i=1 t

�
i βi .

Since the LASSO corresponds to the choice of (βi)
d
i=1 = (1, . . . ,1), it suffices

to identify �∗(ρB� ∩ rBd
2 ) for the SLOPE norm and a general choice of weights.
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LEMMA 5.3. There exists an absolute constant C for which the following
holds. If β and � are as above, then

E sup
w∈ρB�∩rBd

2

〈G,w〉 ≤ C min
k

{
r

√
(k − 1) log

(
ed

k − 1

)
+ ρ max

i≥k

√
log(ed/i)

βi

}

(and if k = 1, the first term is set to be 0).

PROOF. Fix 1 ≤ k ≤ d . Let J be the set of indices of the k largest coordinates
of (|gi |)di=1, and for every w let Iw be the sets of indices of the k largest coordinates
of (|wi |)di=1. Put Jw = J ∪ Iw and note that |Jw| ≤ 2k. Hence,

sup
w∈ρB�∩rBd

2

d∑
i=1

wigi ≤ sup
w∈rBd

2

∑
i∈Jw

wigi + sup
w∈ρB�

∑
i∈J c

w

wigi

� r

(∑
i<k

(
g

�
i

)2
)1/2

+ sup
w∈ρB�

∑
i≥k

w
�
i βi

g
�
i

βi

� r

(∑
i<k

(
g

�
i

)2
)1/2

+ ρ max
i≥k

g
�
i

βi

.

As a starting point, note that a standard binomial estimate shows that

Pr
(
g

�
i ≥ t

√
log(ed/i)

) ≤
(
d

i

)
Pri

(|g| ≥ t
√

log(ed/i)
)

≤ 2 exp
(
i log(ed/i) − i log(ed/i) · t2/2

)
.

Applying the union bound one has that for t ≥ 4, with probability at least 1 −
2 exp(−(t2/2)k log(ed/k)),

(5.1) g
�
i ≤ c3t

√
log(ed/i) for every i ≥ k.

The same argument shows that E(g
�
i )

2 � log(ed/i).
Let Uk be the set of vectors on the Euclidean sphere that are supported on at

most k coordinates. Set

‖x‖[k] =
(∑

i≤k

(
x

�
i

)2
)1/2

= sup
u∈Uk

〈x,u〉

and recall that by the Gaussian concentration of measure theorem (see, e.g., Theo-
rem 7.1 in [15]),(

E‖G‖q
[k]

)1/q ≤ E‖G‖[k] + c
√

q sup
u∈Uk

∥∥〈G,u〉∥∥L2
≤ E‖G‖[k] + c1

√
q.
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Moreover, since E(g
�
i )

2 � log(ed/i), one has

E‖G‖[k] ≤
(
E

∑
i≤k

(
g

�
i

)2
)1/2

�
√

k log(ed/k).

Therefore, by Chebyshev’s inequality for q ∼ k log(ed/k), for t ≥ 1, with proba-
bility at least 1 − 2t−c1k log(ed/k),(∑

i≤k

(
g

�
i

)2
)1/2

≤ c2t
√

k log(ed/k).

Turning to the “small coordinates”, by (5.1),

max
i≥k

g
�
i

βi

� t max
i≥k

√
log(ed/i)

βi

.

It follows that, for every choice of 1 ≤ k ≤ d ,

E sup
w∈ρB�∩rBd

2

〈G,w〉� rE

(∑
i<k

(
g

�
i

)2
)1/2

+ ρEmax
i≥k

g
�
i

βi

� r

√
(k − 1) log

(
ed/(k − 1)

) + ρ max
i≥k

√
log(ed/i)

βi

and, if k = 1, the first term is set to be 0. �

If β = (1, . . . ,1) (which corresponds to the LASSO), then B� = Bd
1 , and one

may select
√

k ∼ ρ/r , provided that r ≤ ρ ≤ r
√

d . In that case,

E sup
w∈ρBd

1 ∩rBd
2

〈G,w〉 � ρ

√
log

(
edr2/ρ2

)
.

The estimates when r ≥ ρ or r
√

d ≤ ρ are straightforward. Indeed, if r ≥ ρ then
ρBd

1 ⊂ rBd
2 and �∗(ρBd

1 ∩ rBd
2 ) = �∗(ρBd

1 ) ∼ ρ
√

log(ed), while if r
√

d ≤ ρ then
rBd

2 ⊂ ρBd
1 , and �∗(ρBd

1 ∩ rBd
2 ) = �∗(rBd

2 ) ∼ r
√

d .
The LASSO. A straightforward computation shows that

r2
M(ρ)�L,q,δ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖ξ‖2
Lq

d

N
, if ρ2N �L,q,δ ‖ξ‖2

Lq
d2,

ρ‖ξ‖Lq

√
1

N
log

(
e‖ξ‖Lq d

ρ
√

N

)
, otherwise,

and

r2
Q(ρ)�L

⎧⎪⎨
⎪⎩

0, if N �L d,

ρ2

N
log

(
c(L)d

N

)
, otherwise.
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PROOF OF THEOREM 1.4. We will actually prove a slightly stronger result,
which gives an improved estimation error if one has prior information on the de-
gree of sparsity.

Using the estimates on rM and rQ, it is straightforward to verify that the sparsity
condition of Lemma 4.2 holds when N �L,q,δ s log(ed/s) and for any

ρ �L,q,δ ‖ξ‖Lq s

√
1

N
log

(
ed

s

)
.

It follows from Lemma 4.2 that if there is an s-sparse vector that belongs to t∗ +
(ρ/20)Bd

1 , then 	(ρ) ≥ 4ρ/5. Finally, Theorem 3.2 yields the stated bounds on
‖t̂ − t∗‖1 and ‖t̂ − t∗‖2 once we set

λ ∼ r2(ρ)

ρ
∼L,q,δ ‖ξ‖Lq

√
1

N
log

(
ed

s

)
.

The estimates on ‖t̂ − t∗‖p for 1 ≤ p ≤ 2 can be easily verified because

‖x‖p ≤ ‖x‖−1+2/p
1 ‖x‖2−2/p

2 .

In case one has no prior information on s, one may take

ρ ∼L,q,δ ‖ξ‖Lq s

√
1

N
log(ed)

and

λ ∼L,q,δ ‖ξ‖Lq

√
log(ed)

N
.

The rest of the argument remains unchanged. �

SLOPE. Assume that βi ≤ C
√

log(ed/i), which is the standard assumption for
SLOPE [4, 32]. By considering the cases k = 1 and k = d ,

(5.2) E sup
w∈ρB�∩rBd

2

〈G,w〉� min{Cρ,
√

dr}.

Thus, one may show that

r2
Q(ρ) �L

⎧⎪⎨
⎪⎩

0, if N �L d,

ρ2

N
, otherwise,

and

r2
M(ρ) �L,q,δ

⎧⎪⎨
⎪⎩

‖ξ‖2
Lq

d

N
, if ρ2N �L,q,δ ‖ξ‖2

Lq
d2,

‖ξ‖Lq

ρ√
N

, otherwise.
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PROOF OF THEOREM 1.6. Recall that Bs = ∑
i≤s βi/

√
i, and when βi ≤

C
√

log(ed/i), one may verify that

Bs � C
√

s log(ed/s).

Hence, the condition Bs � ρ/r(ρ) holds when N �L,q,δ s log(ed/s) and

ρ �L,q,δ ‖ξ‖Lq

s√
N

log
(

ed

s

)
.

It follows from Lemma 4.3 that 	(ρ) ≥ 4ρ/5 when there is an s-sparse vector in
t∗ + (ρ/20)B� ; therefore, one may apply Theorem 3.2 for the choice of

λ ∼ r2(ρ)

ρ
∼L,q,δ

‖ξ‖Lq√
N

. �

The trace-norm. Recall that B1 is the unit ball of the trace norm, that B2 is the
unit ball of the Hilbert–Schmidt norm, and that the canonical Gaussian vector here
is the Gaussian matrix G = (gij ). Since the operator norm is the dual to the trace
norm, �∗(B1) = Eσ1(G) �

√
max{m,T }, and clearly, �∗(B2) = E‖G‖2 �

√
mT .

Thus,

�∗(ρB� ∩ rB2) = �∗(ρB1 ∩ rB2) ≤ min
{
ρ�∗(B1), r�∗(B2)

}
� min

{
ρ

√
max{m,T }, r√mT

}
.

Therefore,

r2
Q(ρ)�L

⎧⎨
⎩

0, if N �L mT,

ρ2 max{m,T }
N

, otherwise,

and

r2
M(ρ)�L,q,δ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖ξ‖2
Lq

mT

N
, if ρ2N �L,q,δ ‖ξ‖2

Lq
mT

(
min {m,T })2

,

ρ‖ξ‖Lq

√
max{m,T }

N
, otherwise.

PROOF OF THEOREM 1.7. It is straightforward to verify that if N �L,q,δ

s max{m,T } then s � (ρ/r(ρ))2 when

ρ �L,q,δ ‖ξ‖Lq s

√
max{m,T }

N

as required in Lemma 4.4. Moreover, if there is some V ∈ R
m×T for which ‖V −

A∗‖1 � ρ and rank(V ) ≤ s, it follows that 	(ρ) ≥ 4ρ/5. Setting

λ ∼ r2(ρ∗)
ρ∗ ∼L,q,δ ‖ξ‖Lq

√
max{m,T }

N
.
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Theorem 3.2 yields the bounds on ‖Â − A∗‖1 and ‖Â − A∗‖2. The bounds
on the Schatten norms ‖Â − A∗‖p for 1 ≤ p ≤ 2 hold because ‖A‖p ≤
‖A‖−1+2/p

1 ‖A‖2−2/p
2 . �

6. Concluding remarks. As noted earlier, the method we present may be im-
plemented in classical regularization problems as well, leading to an error rate that
depends on �(f ∗)—by applying the trivial bound on 	(ρ) when ρ ∼ �(f ∗).

The key issue in classical regularization schemes is the price that one has to pay
for not knowing �(f ∗) in advance. Indeed, given information on �(f ∗), one may
use a learning procedure taking values in {f ∈ F : �(f ) ≤ �(f ∗)} such as Empir-
ical Risk Minimization. This approach would result in an error rate of r(c�(f ∗)),
and the hope is that the error rate of the regularized procedure is close to that—
without having prior knowledge on �(f ∗). Surprisingly, as we show in [12], that
is indeed the case.

The problem with applying Theorem 3.2 to the classical setup is the choice of λ.
One has no information on �(f ∗), and thus setting λ ∼ r2(ρ)/ρ for ρ ∼ �(f ∗) is
clearly impossible.

A first attempt of bypassing this obstacle is Remark 3.3: if ρ � �(f ∗), there is

no upper constraint on the choice of λ. Thus, one may consider λ ∼ supρ>0
r2(ρ)

ρ
,

which suits any ρ > 0. Unfortunately, that choice will not do, because in many
important examples the supremum happens to be infinite. Instead, one may opt for
the lower constraint on λ and select

(6.1) λ ∼ sup
ρ>0

γO(ρ)

ρ
,

which is also a legitimate choice for any ρ, and is always finite.
We will show in [12] that the choice in (6.1) leads to optimal bounds in many

interesting examples—thanks to the first part of Theorem 3.2.
An essential component in the analysis of regularization problems is bounding

r(ρ), and we only considered the sub-Gaussian case and completely ignored the
question of the probability estimate. In that sense, the method we presented falls
short of being completely satisfactory.

Addressing both these issues requires sharp upper estimates on empirical and
multiplier processes, preferably in terms of some natural geometric feature of the
underlying class. Unfortunately, this is a notoriously difficult problem. Indeed, the
final component in the chaining-based analysis used to study empirical and mul-
tiplier processes is to translate a metric complexity parameter (e.g., Talagrand’s
γ -functionals) to a geometric one (for example, the mean-width of the set). Such
estimates are known almost exclusively in the Gaussian case—which is, in a nut-
shell, Talagrand’s Majorizing Measures theory [33].

The chaining process in [25] is based on a more sensitive metric parameter than
the standard Gaussian one. This leads to satisfactory results for other choices of
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random vectors that are not necessarily sub-Gaussian, for example, unconditional
log-concave random vectors. Still, it is far from a complete theory—as a general
version of the Majorizing Measures theorem is not known.

Another relevant fact is from [24]. It turns out that if V is a class of linear
functionals on R

d that satisfies a relatively minor symmetry property, and X is an
isotropic random vector for which

(6.2) sup
t∈Sd−1

∥∥〈X, t〉∥∥Lp
≤ L

√
p for 2 ≤ p � logd,

then the empirical and multiplier processes indexed by V behave as if X were a
sub-Gaussian vector. In other words, for such “symmetric” problems it suffices to
have a sub-Gaussian moment growth up to p ∼ logd to ensure a sub-Gaussian
behavior.

This fact is useful because all the indexing sets considered here (and in many
other sparsity-based regularization procedures as well) satisfy the required sym-
metry property.

Finally, a word about the probability estimate in Theorem 5.2. The actual result
from [25] leads to a probability estimate governed by two factors: the Lq space to
which ξ belongs and the “effective dimension” of the class. For a class of linear
functionals on R

d and an isotropic vector X, this effective dimension is

D(V ) =
(

�∗(V )

d2(V )

)2
,

where �∗(V ) = E supv∈V |〈G,v〉| and d2(V ) = supv∈V ‖v‖�d
2
.

One may show that with probability at least

1 − c1w
−qN−((q/2)−1) logq N − 2 exp

(−c2u
2D(V )

)
,

(6.3)

sup
v∈V

∣∣∣∣∣ 1√
N

N∑
i=1

(
ξi〈V,Xi〉 −Eξ〈X,v〉)

∣∣∣∣∣ � Lwu‖ξ‖Lq �∗(V ).

If ξ has better tail behavior, the probability estimate improves; for example, if ξ

is sub-Gaussian then (6.3) holds with probability at least 1 − 2 exp(−cw2N) −
2 exp(−cu2D(V )).

The obvious complication is that one has to obtain a lower bound on the effec-
tive dimension D(V ). And while it is clear that D(v) � 1, in many cases (including
our three examples) a much better bound is true.

Let us mention that the effective dimension is perhaps the most important pa-
rameter in Asymptotic Geometric Analysis. Milman’s version of Dvoretzky’s the-
orem (see, e.g., [1]) shows that D(V ) captures the largest dimension of a Euclidean
structure hiding in V . In fact, this geometric observation exhibits why that part of
the probability estimate in (6.3) cannot be improved.
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SUPPLEMENTARY MATERIAL

Supplementary material to “Regularization and the small-ball method I:
sparse recovery” (DOI: 10.1214/17-AOS1562SUPP; .pdf). In the supplementary
material we study a general X without assuming it is isotropic.
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