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ONLINE RULES FOR CONTROL OF FALSE DISCOVERY RATE
AND FALSE DISCOVERY EXCEEDANCE

BY ADEL JAVANMARD1 AND ANDREA MONTANARI2

University of Southern California and Stanford University

Multiple hypothesis testing is a core problem in statistical inference
and arises in almost every scientific field. Given a set of null hypotheses
H(n) = (H1, . . . ,Hn), Benjamini and Hochberg [J. R. Stat. Soc. Ser. B. Stat.
Methodol. 57 (1995) 289–300] introduced the false discovery rate (FDR),
which is the expected proportion of false positives among rejected null hy-
potheses, and proposed a testing procedure that controls FDR below a pre-
assigned significance level. Nowadays FDR is the criterion of choice for
large-scale multiple hypothesis testing.

In this paper we consider the problem of controlling FDR in an online
manner. Concretely, we consider an ordered—possibly infinite—sequence of
null hypotheses H = (H1,H2,H3, . . .) where, at each step i, the statistician
must decide whether to reject hypothesis Hi having access only to the previ-
ous decisions. This model was introduced by Foster and Stine [J. R. Stat. Soc.
Ser. B. Stat. Methodol. 70 (2008) 429–444].

We study a class of generalized alpha investing procedures, first intro-
duced by Aharoni and Rosset [J. R. Stat. Soc. Ser. B. Stat. Methodol. 76
(2014) 771–794]. We prove that any rule in this class controls online FDR,
provided p-values corresponding to true nulls are independent from the other
p-values. Earlier work only established mFDR control. Next, we obtain con-
ditions under which generalized alpha investing controls FDR in the presence
of general p-values dependencies. We also develop a modified set of proce-
dures that allow to control the false discovery exceedance (the tail of the
proportion of false discoveries). Finally, we evaluate the performance of on-
line procedures on both synthetic and real data, comparing them with offline
approaches, such as adaptive Benjamini–Hochberg.

1. Introduction. The common practice in claiming a scientific discovery is
to support such claim with a p-value as a measure of statistical significance. Hy-
potheses with p-values below a significance level α, typically 0.05, are considered
to be statistically significant. While this ritual controls type I errors for single test-
ing problems, in case of testing multiple hypotheses it leads to a large number
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of false positives (false discoveries). Consider, for instance, a setting in which N

hypotheses are to be tested, but only a few of them, say s, are non-null. If we
test all of the hypotheses at a fixed significance level α, each of N − s truly null
hypotheses can be falsely rejected with probability α. Therefore, the number of
false discoveries—equal to α(N − s) in expectation—can substantially exceed the
number s of true non-nulls.

The false discovery rate (FDR)—namely, the expected fraction of discoveries
that are false positives—is the criterion of choice for statistical inference in large
scale hypothesis testing problem. In their groundbreaking work [4], Benjamini
and Hochberg (BH) developed a procedure to control FDR below a pre-assigned
level, while allowing for a large number of true discoveries when many non-nulls
are present. The BH procedure remains—with some improvements—the state-of-
the-art in the context of multiple hypothesis testing, and has been implemented
across genomics [34], brain imaging [12], marketing [32], and many other applied
domains.

Standard FDR control techniques, such as the BH procedure [4], require aggre-
gating p-values for all the tests and processing them jointly. This is impossible in
a number of applications which are best modeled as an online hypothesis testing
problem [11] (a more formal definition will be provided below):

Hypotheses arrive sequentially in a stream. At each step, the analyst must decide
whether to reject the current null hypothesis without having access to the number
of hypotheses (potentially infinite) or the future p-values, but solely based on the
previous decisions.

This is the case, for instance, with publicly available datasets, where new hy-
potheses are tested in an on-going fashion by different researchers [1]. Similar
constraints arise in marketing research, where multiple A-B tests are carried out
on an ongoing fashion [32]. Finally, scientific research as a whole suffers from the
same problem: a stream of hypotheses are tested on an ongoing basis using a fixed
significance level, thus leading to large numbers of false positives [17]. We refer
to Section 1.2 for further discussion.

In order to illustrate the online scenario, consider an approach that would control
the family-wise error rate (FWER), that is, the probability of rejecting at least one
true null hypothesis. Formally,

(1) FWER(n) ≡ sup
θ∈�

Pθ

(
V θ(n) ≥ 1

)
,

where θ denotes the model parameters (including the set of non-null hypotheses)
and V θ(n) the number of false positives among the first n hypotheses. This metric
can be controlled by choosing different significance levels αi for tests Hi , with α =
(αi)i≥1 summable, for example, αi = α2−i . Notice that the analyst only needs to
know the number of tests performed before the current one, in order to implement
this scheme. However, this method leads to small statistical power. In particular,
making a discovery at later steps becomes very unlikely.
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In contrast, the BH procedure assumes that all the p-values are given a priori.
Given p-values p1,p2, . . . , pN and a significance level α, BH follows the steps
below:

1. Let p(i) be the ith p-value in the (increasing) sorted order, and define p(0) =
0. Further let

iBH ≡ max{0 ≤ i ≤ N : p(i) ≤ αi/N}.(2)

2. Reject Hj for every test with pj ≤ p(iBH).

As mentioned above, BH controls the false discovery rate defined as

FDR(N) ≡ sup
θ∈�

Eθ

(
V θ(N)

R(N) ∨ 1

)
,(3)

where R(N) is the total the number of rejected hypotheses. Note that BH requires
the knowledge of all p-values to determine the significance level for testing the
hypotheses. Hence, it does not address the online scenario.

In this paper, we study methods for online control of false discovery rate.
Namely, we consider a sequence of hypotheses H1,H2,H3, . . . that arrive sequen-
tially in a stream, with corresponding p-values p1, p2, . . . . We aim at developing a
testing mechanism that ensures false discovery rate remains below a pre-assigned
level α. A testing procedure provides a sequence of significance levels αi , with
decision rule

Ri =
{

1, if pi ≤ αi (reject Hi),

0, otherwise (accept Hi).
(4)

In online testing, we require significance levels to be functions of prior outcomes:

αi = αi(R1,R2, . . . ,Ri−1).(5)

Foster and Stine [11] introduced the above setting and proposed a class of proce-
dures named alpha investing rules. Alpha investing starts with an initial wealth, at
most α, of allowable false discovery rate. The wealth is spent for testing different
hypotheses. Each time a discovery occurs, the alpha investing procedure earns a
contribution toward its wealth to use for further tests. Foster and Stine [11] proved
that alpha investing rules control a modified metric known as mFDR, defined as

mFDRη(n) ≡ sup
θ∈�

E(V θ (n))

E(R(n)) + η
.(6)

In words, mFDR is the ratio of the expected number of false discoveries to the
expected number of discoveries. As illustrated in the Supplementary Material [22],
mFDR and FDR can be very different in situations with high variability. While
FDR is the expected proportion of false discoveries, mFDR is the ratio of two
expectations and hence is not directly related to any single sequence quantity.
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Several recent papers [15, 27, 29] consider a “sequential hypothesis testing”
problem that arises in connection with sparse linear regression. Let us emphasize
that the problem treated in [15, 29] is substantially different from the one ana-
lyzed here. For instance, as discussed in Section 1.2, the methods of [15] achieve
vanishingly small statistical power for the present problem.

1.1. Contributions. In this paper, we study a class of procedures that are
known as generalized alpha investing, and were first introduced by Aharoni and
Rosset in [1]. As in alpha investing [11], generalized alpha investing makes use
of a potential sequence (wealth) that increases every time a null hypothesis is re-
jected, and decreases otherwise. However: (i) The pay-off and pay-out functions
are general functions of past history; (ii) The pay-out is not tightly determined by
the testing level αi . This additional freedom allows to construct interesting new
rules.

The contributions of this paper are summarized as follows.
Online control of FDR. We prove that generalized alpha investing rules control

FDR, under the assumption of independent p-values, and provided they are mono-
tone (a technical condition defined in the sequel). To the best of our knowledge,
this is the first work3 that guarantees online control of FDR.

Online control of FDR for dependent p-values. Dependencies among p-values
can arise for multiple reasons. For instance, the same data can be re-used to test
a new hypothesis, or the choice of a new hypothesis can depend on the past out-
comes. We present a general upper bound on the FDR for dependent p-values
under generalized alpha investing.

False discovery exceedance. FDR can be viewed as the expectation of false
discovery proportion (FDP). In some cases, FDP may not be well represented by
its expectation, for example, when the number of discoveries is small. In these
cases, FDP might be sizably larger than its expectation with significant probabil-
ity. In order to provide tighter control, we develop bounds on the false discovery
exceedance (FDX), that is, on the tail probability of FDP.

Statistical power. In order to compare different procedures, we develop lower
bounds on fraction of non-null hypotheses that are discovered (statistical power),
under a mixture model where each null hypothesis is false with probability π1, for
a fixed arbitrary π1.

We focus in particular on a concrete example of generalized alpha investing rule
(called LORD below) that we consider particularly compelling. We use our lower
bound to guide the choice of parameters for this rule.

Numerical validation. We validate our procedures on synthetic and real data in
Section 5 and the Supplementary Material [22], showing that they control FDR
and mFDR in an online setting. We further compare them with BH and Bonferroni

3Special cases were presented in our earlier technical report [21].
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procedures. We observe that generalized alpha investing procedures can benefit
from ordering of hypotheses. Specifically, they can achieve higher statistical power
compared to offline benchmarks such as adaptive BH, when fraction of non-nulls
is small and hypotheses can be a priori ordered in such a way that those most likely
to be rejected appear first in the sequence.

1.2. Further related work. General context. An increasing effort was devoted
to reducing the risk of fallacious research findings. Some of the prevalent issues
such as publication bias, lack of replicability and multiple comparisons on a dataset
were discussed in Ioannidis’s 2005 papers [16, 17] and in [33].

Statistical databases. Concerned with the above issues and the importance of
data sharing in the genetics community, [35] proposed an approach to public
database management, called Quality Preserving Database (QPD). A QPD makes
a shared data resource amenable to perpetual use for hypothesis testing while con-
trolling FWER and maintaining statistical power of the tests. In this scheme, for
testing a new hypothesis, the investigator should pay a price in form of additional
samples that should be added to the database. The number of required samples for
each test depends on the required effect size and the power for the corresponding
test. A key feature of QPD is that type I errors are controlled at the management
layer and the investigator is not concerned with p-values for the tests. Instead,
investigators provide effect size, assumptions on the distribution of the data, and
the desired statistical power. A critical limitation of QPD is that all samples, in-
cluding those currently in the database and those that will be added, are assumed
to have the same quality and are coming from a common underlying distribution.
Motivated by similar concerns in practical data analysis, [9] applies insights from
differential privacy to efficiently use samples to answer adaptively chosen estima-
tion queries. These papers however do not address the problem of controlling FDR
in online multiple testing.

Online feature selection. Building upon alpha investing procedures, [28] devel-
ops VIF, a method for feature selection in large regression problems. VIF is accu-
rate and computationally very efficient; it uses a one-pass search over the pool of
features and applies alpha investing to test each feature for adding to the model.
VIF regression avoids overfitting due to the property that alpha investing controls
mFDR. Similarly, one can incorporate LORD in VIF regression to perform fast
online feature selection and provably avoid overfitting.

High-dimensional and sparse regression. There has been significant interest
over the last two years in developing hypothesis testing procedures for high-
dimensional regression, especially in conjunction with sparsity-seeking methods.
Procedures for computing p-values of low-dimensional coordinates were devel-
oped in [18–20, 39, 41]. Sequential and selective inference methods were proposed
in [10, 29, 38]. Methods to control FDR were put forward in [2, 7].

As exemplified by VIF regression, online hypothesis testing methods can be
useful in this context as they allow to select a subset of regressors through a one-
pass procedure. Also they can be used in conjunction with the methods of [29],
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where a sequence of hypothesis is generated by including an increasing number of
regressors (e.g., sweeping values of the regularization parameter).

In particular, [15, 27] develop multiple hypothesis testing procedures for or-
dered tests. Note, however, that these approaches fall short of addressing the issues
we consider, for several reasons: (i) They are not online, since they reject the first
k̂ null hypotheses, where k̂ depends on all the p-values. (ii) They require knowl-
edge of all past p-values (not only discovery events) to compute the current score.
(iii) Since they are constrained to reject all hypotheses before k̂, and accept them
after, they cannot achieve any discovery rate increasing with n, let alone nearly
linear in n. For instance, in the mixture model of Section 4, if the fraction of true
non-null is π1 < α, then the methods of [15, 27] achieves O(1) discoveries out of
�(n) true non-null. In other words, their power is of order 1/n in this simple case.

1.3. Notations. Throughout the paper, we typically use upper case symbols
(e.g., X,Y,Z, . . .) to denote random variables, and lower case symbols for deter-
ministic values (e.g., x, y, z, . . .). Vectors are denoted by boldface, for example,
X,Y ,Z, . . . for random vectors, and x,y,z, . . . for deterministic vectors. Given
a vector X = (X1,X2, . . . ,Xn), we use X

j
i = (Xi,Xi+1, . . . ,Xj ) to denote the

subvector with indices between i and j . We will often consider sequences indexed
by the same “time index” as for the hypotheses {H1,H2,H3, . . .}. Given such a
sequence (Xi)i∈N, we denote by X(n) ≡ ∑n

i=1 Xi its partial sums.

We denote the standard Gaussian density by φ(x) = e−x2/2/
√

2π , and the
Gaussian distribution function by �(x) = ∫ x

−∞ φ(t)dt . We use the standard big-O
notation. In particular, f (n) = O(g(n)) as n → ∞ if there exists a constant C > 0
such that |f (n)| ≤ Cg(n) for all n large enough. We also use ∼ to denote asymp-
totic equality, that is, f (n) ∼ g(n) as n → ∞, means limn→∞ f (n)/g(n) = 1. We
further use � for equality up to constants, that is, if f (n) = �(g(n)), then there
exist constants C1,C2 > 0 such that C1|g(n)| ≤ f (n) ≤ C2|g(n)| for all n large
enough.

2. Generalized alpha investing. In this section, we define generalized alpha
investing rules, and provide some concrete examples. Our definitions and notations
follow the paper of Aharoni and Rosset that first introduced generalized alpha
investing [1].

2.1. Definitions. Given a sequence of input p-values (p1,p2, . . .), a gener-
alized alpha investing rule generates a sequence of decisions (R1,R2, . . .) (here
Rj ∈ {0,1} and Rj = 1 is to be interpreted as rejection of null hypothesis Hj ) by
using test levels (α1, α2, α3, . . .). After each decision j , the rule updates a potential
function W(j) as follows:

• If hypothesis j is accepted, then the potential function is decreased by a pay-out
ϕj .
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• If hypothesis j is rejected, then the potential is increased by an amount ψj −ϕj .

In other words, the pay-out ϕj is the amount paid for testing a new hypothesis, and
the pay-off ψj is the amount earned if a discovery is made at that step.

Formally, a generalized alpha investing rule is specified by three (sequences
of) functions αj ,ϕj ,ψj : {0,1}j−1 → R≥0, determining test levels, pay-out and
pay-off. Decisions are taken by testing at level αj

Rj =
{

1, if pj ≤ αj = αj (R1, . . . ,Rj−1),

0, otherwise.
(7)

The potential function is updated via

W(0) = w0,(8)

W(j) = W(j − 1) − ϕj

(
R

j−1
1

) + Rjψj

(
R

j−1
1

)
,(9)

with w0 ≥ 0 an initial condition. Notice in particular that W(j) is a function of
(R1, . . . ,Rj ).

A valid generalized alpha investing rule is required to satisfy the following con-
ditions, for a constant b0 > 0:

G1. For all j ∈ N and all R
j−1
1 ∈ {0,1}j−1, letting ψj = ψj(R

j−1
1 ), ϕj =

ϕj (R
j−1
1 ), αj = αj (R

j−1
1 ), we have

ψj ≤ ϕj + b0,(10)

ψj ≤ ϕj

αj

+ b0 − 1,(11)

ϕj ≤ W(j − 1).(12)

G2. For all j ∈ N, and all R
j−1
1 ∈ {0,1}j−1, if W(j − 1) = 0 then αj = 0.

Notice that Condition (12) and G2 are well posed since W(j − 1), ϕj and αj are

functions of R
j−1
1 . Further, because of (12), the function W(j) remains nonnega-

tive for all j ∈ N.
We later show that generalized alpha investing guarantees FDR control as a

function of b0 and w0.
Throughout, we shall denote by Fj the σ -algebra generated by the random vari-

ables {R1, . . . ,Rj }.

DEFINITION 2.1. For x, y ∈ {0,1}n, we write x � y if xj ≤ yj for all j ∈
{1, . . . , n}. We say that an online rule is monotone if the functions αj are monotone
nondecreasing with respect to this partial ordering [i.e., if x � y implies αj (x) ≤
αj (y)].
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REMARK 2.2. Our notation differs from [1] in one point, namely we use w0

for the initial potential (which is denoted by αη in [1]) and b0 for the constant
appearing in equations (10), (11) (which is denoted by α in [1]). We prefer to
reserve α for the FDR level.4

REMARK 2.3. In a generalized alpha investing rule, as we reject more hy-
potheses the potential W(j) increases and hence we can use large test levels αj .
In other words, the burden of proof decreases as we reject more hypotheses. This
is similar to the BH rule, where the most significant p-values is compared to a
Bonferroni cutoff, the second most significant to twice this cutoff and so on.

2.2. Examples. Generalized α-investing rules comprise a large variety of on-
line hypothesis testing methods. We next describe some specific subclasses that
are useful for designing specific procedures.

2.2.1. Alpha investing. Alpha investing, introduced by Foster and Stine [11],
is a special case of generalized alpha investing rule. In this case, the potential is
decreased by αj/(1−αj ) if hypothesis Hj is not rejected, and increased by a fixed
amount b0 if it is rejected. In formula, the potential evolves according to

W(j) = W(j − 1) − (1 − Rj)
αj

1 − αj

+ Rjb0.(13)

This fits the above framework by defining ϕj = αj/(1 − αj ) and ψj = b0 +
αj/(1 − αj ). Note that this rule depends on the choice of the test levels αj , and of
the parameter b0. The test levels αj can be chosen arbitrarily, provided that they
satisfy condition (12), which is equivalent to αj/(1 − αj ) ≤ W(j − 1).

2.2.2. Alpha spending with rewards. Alpha spending with rewards was intro-
duced in [1], as a special subclass of generalized alpha investing rules, which are
convenient for some specific applications.

In this case, test levels are chosen to be proportional to the pay-out function,
αj = ϕj/κ , with a proportionality coefficient κ . Conditions (10) and (11) coincide
with5

0 ≤ ψj ≤ min(καj + b0, κ − 1 + b0).(14)

The choice of penalties ϕj is arbitrary as long as constraint (12) is satisfied. For
instance, [1] uses ϕj = c1W(j − 1) with c1 ∈ (0,1).

4The use of η in [1] was related to control of mFDRη in that paper.
5Note that [1] rescales the potential function by κ , and hence the condition on ψj is also rescaled.
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2.2.3. LORD. As a running example, we shall use a simple procedure that we
term LORD, for Levels based On Recent Discovery. LORD is easily seen to be a
special case of alpha spending with rewards, for κ = 1.

Below, we present three different versions of LORD . For a concrete exposition,
choose any sequence of nonnegative numbers γ = (γi)i∈N, which is monotone
nonincreasing (i.e., for i ≤ j we have γi ≥ γj ) and such that

∑∞
i=1 γi = 1. We

refer to Section 4 for concrete choices of this sequence.
At each time i, we let T (i) be the set of discovery times up to time i. We further

define τi as the last time a discovery was made before i:

T (i) = {
� ∈ {1, . . . , i − 1} : R� = 1

}
τi = max

{
� : � ∈ T (i)

}
.

At each step, if a discovery is made, we add an amount b0 to the current wealth.
Otherwise, we remove an amount of the current test level from the wealth. For-
mally, we set

W(0) = w0, ψi = b0, ϕi = αi,(15)

where {W(j)}j≥0 is defined recursively via equation (9).
We present three versions of LORD which differ in the way that the test levels

αi are set.

• LORD 1: We set the test levels solely based on the time of the last discovery.
Specifically,

αi =
{
γiw0 if i ≤ t1,

γi−τi
b0 if i > t1,

(16)

where t1 denotes the time of first discovery. In words, up until the first discovery
is made, we set levels by discounting the initial wealth, that is, γiw0. After the
first discovery is made, we use a fraction γi−τi

of b0 to spend in testing null
hypothesis Hi .

• LORD 2: We set the test levels based on the previous discovery times. Specifi-
cally,

αi = γiw0 +
( ∑

�∈T (i)

γi−�

)
b0.(17)

• LORD 3: In this alternative, the significance levels αi depend on the past only
through the time of the last discovery, and the wealth accumulated at that time.
Specifically,

αi = γi−τi
W(τi) ,(18)

Note that τi and T (i) are measurable on Fi−1, and hence in all the variants of
LORD , ϕi,ψi are functions of Ri−1

1 , while W(i) is a function of Ri
1. Therefore,

each of the above rules defines an online multiple hypothesis testing procedure.
Indeed, the three versions of LORD are generalized alpha investing rules. Further,
LORD 1 and LORD 2 are monotone rules (see Definition 2.1), while LORD 3 is not
necessarily a monotone rule without making further assumptions on γ .



ONLINE RULES FOR CONTROL OF FALSE DISCOVERY RATE 535

3. Control of false discovery rate.

3.1. FDR control for independent test statistics. As already mentioned, we
are interested in testing a—possibly infinite—sequence of null hypotheses H =
(Hi)i∈N. The set of first n hypotheses will be denoted by H(n) = (Hi)1≤i≤n.
Without loss of generality, we assume Hi concerns the value of a parameter θi ,
with Hi = {θi = 0}. Rejecting the null hypothesis Hi can be interpreted as θi being
significantly nonzero. We will denote by � the set of possible values for the param-
eters θi , and by � = �N the space of possible values of the sequence θ = (θi)i∈N.

Under the null hypothesis Hi : θi = 0, the corresponding p-value is uniformly
random in [0,1]:

pi ∼ Unif
([0,1]).(19)

Recall that Ri is the indicator that a discovery is made at time i, and R(n) =∑n
i=1 Ri the total number of discoveries up to time n. Analogously, let V θ

i be the
indicator that a false discovery occurs at time i and V θ(n) = ∑n

i=1 V θ
i the total

number of false discovery up to time n. Throughout the paper, superscript θ is
used to distinguish unobservable variables such as V θ(n), from statistics such as
R(n). However, we drop the superscript when it is clear from the context.

There are various criteria of interest for multiple testing methods. We will
mostly focus on the false discovery rate (FDR) [4], and we repeat its definition
here for the reader’s convenience. We first define the false discovery proportion
(FDP) as follows. For n ≥ 1,

FDPθ (n) ≡ V θ(n)

R(n) ∨ 1
.(20)

The false discovery rate is defined as

FDR(n) ≡ sup
θ∈�

Eθ

(
FDPθ (n)

)
.(21)

Our first result establishes FDR control for all monotone generalized alpha in-
vesting procedures, where the monotonicity of a testing rule is given by Defini-
tion 2.1. Its proof is presented in the Supplementary Material [22].

THEOREM 3.1. Assume the p-values (pi)i∈N to be independent. Then, for any
monotone generalized alpha investing rule with w0 + b0 ≤ α, we have

sup
n

FDR(n) ≤ α.(22)

The same holds if only the p-values corresponding to true nulls are mutually inde-
pendent, and independent from the nonnull p-values.
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By applying Theorem 3.1, we obtain that LORD 1 and LORD 2 control FDR
at level α, as long as w0 + b0 ≤ α. For LORD 3, such result cannot be obtained
directly from Theorem 3.1 because this rule is not necessarily a monotone rule
without making further assumptions on the sequence γ . Nevertheless, in our nu-
merical experiments, we focus on LORD 3 and as we show empirically, it also
controls FDR.

REMARK 3.2. In the Supplementary Material [22], we prove a somewhat
stronger version of Theorem 3.1, namely FDR(n) ≤ b0E{R(n)/(R(n) ∨ 1)} +
w0E{1/(R(n) ∨ 1)}. In particular, FDR(n) � b0 when the total number of dis-
coveries R(n) is large, with high probability. This is the case for instance, when
the hypotheses to be tested comprise a large number of “strong signals” (even if
these form a small proportion of the total number of hypotheses).

Another possible strengthening of Theorem 3.1 is obtained by considering a
new metric, that we call sFDRη(n) (for smoothed FDR):6

sFDRη(n) ≡ sup
θ∈�

E

{
V θ(n)

R(n) + η

}
.(23)

The following theorem bounds sFDRw0/b0(n) for monotone generalized alpha in-
vesting rules (cf. Definition 2.1).

THEOREM 3.3. Under the assumptions of Theorem 3.1, for any w0, b0 > 0,
we have

sup
n

sFDRw0/b0(n) ≤ b0.(24)

Note that equation (24) implies (22) by using R(n) + (w0/b0) ≤ (b0 +
w0)R(n)/b0 for R(n) ≥ 1. Also, E{V θ(n)/(R(n) + (w0/b0))} ≈ FDR(n) if R(n)

is large with high probability.
Let us emphasize that the guarantee in Theorem 3.3 is different from the one in

[1, 11], which instead use mFDRη(n) ≡ E{V θ(n)}/(E{R(n)} + η). As mentioned
earlier, mFDR does not correspond to a single-sequence property.

REMARK 3.4. In the Supplementary Material [22], we show that Theo-
rems 3.1 and 3.3 cannot be substantially improved, unless specific restrictions are
imposed on the generalized alpha investing rule. In particular, we prove that there
exist generalized alpha investing rules for which lim infn→∞ FDR(n) ≥ b0, and
limn→∞ sFDRw0/b0 = b0.

We conclude that LORD is a monotone generalized alpha investing rule, as per
Definition 2.1.

6Some authors [3] refer to this quantity as “modified FDR.” We will not follow this terminology
since its acronym (mFDR) gets confused with “marginal FDR” [1, 11].



ONLINE RULES FOR CONTROL OF FALSE DISCOVERY RATE 537

3.2. FDR control for dependent test statistics. In some applications, the
assumption of independent p-values is not warranted. This is the case—for
instance—of multiple related hypotheses being tested on the same experimental
data. Benjamini and Yekutieli [5] introduced a property called positive regression
dependency from a subset I0 (PRDS on I0) to capture a positive dependency struc-
ture among the test statistics. They showed that if the joint distribution of the test
statistics is PRDS on the subset of test statistics corresponding to true null hypothe-
ses, then BH controls FDR. (See Theorem 1.3 in [5].) Further, they proved that BH
controls FDR under general dependency if its threshold is adjusted by replacing α

with α/(
∑N

i=1
1
i
) in equation (2).

Our next result establishes an upper bound on the FDR of generalized alpha
investing rules, under general p-values dependencies. For a given generalized al-
pha investing rule, let Ri ≡ {r i

1 ∈ {0,1}i : P(Ri
1 = r i

1) > 0}, the set of decision
sequences that have nonzero probability.

DEFINITION 3.5. An index sequence is a sequence of deterministic functions
I = (Ii )i∈N with Ii : {0,1}i →R≥0. For an index sequence I , let

RL
i (s) ≡ min

r i−1
1 ∈Ri−1

{
i−1∑
j=1

rj : Ii−1
(
r i−1

1

) ≥ s

}
,(25)

Imin(i) ≡ min
r i

1∈Ri

Ii

(
r i

1
)
, Imax(i) ≡ max

r i
1∈Ri

Ii

(
r i

1
)
.(26)

As concrete examples of the last definition, for a generalized alpha investing
rule, the current potentials {W(i)}i∈N, potentials at the last rejection {W(τi)}i∈N
and total number of rejections {R(i)}i∈N are index sequences.

THEOREM 3.6. Consider a generalized alpha investing rule and assume that
the test level αj is determined based on index function Ij−1. Namely, for each

j ∈ N there exists a function gj : R≥0 → [0,1] such that αj = gj (Ij−1(R
j−1
1 )).

Further, assume gj (·) to be nondecreasing and weakly differentiable with weak
derivative ġj (s).

Then, the following upper bound holds for general dependencies among p-
values:

FDR(n) ≤
n∑

i=1

{
gi

(
Imin(i − 1)

) +
∫ Imax(i−1)

Imin(i−1)

ġi(s)

RL
i (s) + 1

ds

}
.(27)

The proof of this theorem is presented in the Supplementary Material [22].

EXAMPLE 3.7 (FDR control for dependent test statistics via modified LORD).
We can modify LORD as to achieve FDR control even under dependent test statis-
tics. As before, we let ψi = b0. However, we fix a sequence ξ = (ξi)i∈N, ξi ≥ 0,
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and set test levels according to rule αi = ϕi = ξiW(τi). In other words, compared
with the original LORD procedure, we discount the capital accumulated at the last
discovery as a function of the number of hypotheses tested so far, rather than the
number of hypotheses tested since the last discovery.

This rule satisfies the assumptions of Theorem 3.6, with index sequence Ii−1 =
W(τi) and gi(s) = ξis. Further, Imin(0) = w0, Imin(i − 1) = b0 for i ≥ 2, and
Imax(i − 1) ≤ w0 +b0(i − 1), and RL

i (s) ≥ (
s−w0

b0
)+. Substituting in equation (27)

we obtain, assuming w0 ≤ b0,

FDR(n) ≤ w0ξ1 +
n∑

i=2

(
b0ξi +

∫ w0+b0(i−1)

b0

b0ξi

s − w0 + b0
ds

)

≤ w0ξ1 +
n∑

i=2

b0ξi

(
1 + log(i)

)

≤
n∑

i=1

b0ξi

(
1 + log(i)

)
.

Hence, this rule controls FDR below level α under general dependency structure,
if coefficients (ξi)i∈N are set such that

∑∞
i=1 ξi(1 + log(i)) ≤ α/b0.

4. Statistical power. The class of generalized alpha investing rules is quite
broad. In order to compare different approaches, it is important to estimate their
statistical power.

Here, we consider a mixture model wherein each null hypothesis is false with
probability π1 independently of other hypotheses, and the p-values correspond-
ing to different hypotheses are mutually independent. Under the null hypothe-
sis Hi , we have pi uniformly distributed in [0,1] and under its alternative, pi

is generated according to a distribution whose c.d.f. is denoted by F . We let
G(x) = π0x + π1F(x), with π0 + π1 = 1, be the marginal distribution of the p-
values. For presentation clarity, we assume that F(x) is continuous.

While the mixture model is admittedly idealized, it offers a natural ground to
compare online procedures to offline procedures. Indeed, online approaches are
naturally favored if the true nonnulls arise at the beginning of the sequence of hy-
potheses, and naturally unfavored if they only appear later. On the other hand, if
the p-values can be processed offline, we can always apply an online rule after a
random re-ordering of the hypotheses. By exchangeability, we expect the perfor-
mance to be similar to the ones in the mixture model.

The next theorem lower bounds the statistical power of LORD under the mixture
model. This lower bound applies to any of the three versions of LORD.

THEOREM 4.1. Consider the mixture model with G(x) denoting the marginal
distribution of p-values. Further, let �0(n) [and its complement �c

0(n)] be the
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subset of true nulls (nonnulls), among the first n hypotheses. Then, the average
power of LORD rule is almost surely bounded as follows:

lim inf
n→∞

1

|�c
0(n)|

∑
i∈�c

0(n)

Ri ≥
( ∞∑

m=1

m∏
�=1

(
1 − G(b0γ�)

))−1

.(28)

Proof of Theorem 4.1 is deferred to the Supplementary Material [22]. The lower
bound is in fact the exact power for a slightly weaker rule that resets the potential
at level b0 after each discovery [in other words, equation (18) is replaced by ϕi =
γi−τi

b0]. This procedure is weaker only when multiple discoveries are made in a
short interval of time. Hence, the above bound is expected to be accurate when π1
is small, and discoveries are rare.

Recall that in LORD, parameters γ = (γ�)
∞
�=1 can be any sequence of nonneg-

ative, monotone nonincreasing numbers that sums up to one. This leaves a great
extent of flexibility in choosing γ . The above lower bound on statistical power
under the mixture model provides useful insight on what are good choices of γ .

We first simplify the lower bound further. We notice that
∏m

�=1(1 − G(b0γ�)) ≤
exp(−∑m

�=1 G(b0γ�)). Further, by the monotonicity property of γ , we have
G(b0γ�) ≥ G(b0γm) for � ≤ m. Thus,

lim
n→∞

1

|�c
0(n)|

∑
i∈�c

0(n)

Ri ≥ A(G,γ ), A(G,γ ) =
( ∞∑

m=1

e−mG(b0γm)

)−1

.

In order to choose γ , we use the lower bound A(G,γ ) as a surrogate objective
function. We let γ opt be the sequence that maximizes A(G,γ ). The following
proposition characterizes the asymptotic behavior of γ opt.

PROPOSITION 4.2. Let γ opt be the sequence that maximizes A(G,γ ) un-
der the constraint

∑∞
�=1 γm = 1. Further suppose that F(x) is concave and dif-

ferentiable on an interval [0, x0) for some x0 ∈ (0,1). Then there is a constant
η = η(G,π1) independent of m such that, for all m large enough, the following
holds true:

1

b0
G−1

(
1

m
log

(
m(1 − π1)

η

))
≤ γ opt

m ≤ 1

b0
G−1

(
2

m
log

(
1

ηG−1(1/m)

))
.

The proof of Proposition 4.2 is given in the Supplementary Material [22].
The concavity assumption of F(x) requires the density of nonnull p-values

[i.e., F ′(x)] to be nonincreasing in a neighborhood [0, x0). This is a reasonable
assumption because significant p-values are generically small and the assumption
states that, in a neighborhood of zero, smaller values have higher density than
larger values. In the Supplementary Material [22], we discuss compute the optimal
sequence γ opt for two case examples.



540 A. JAVANMARD AND A. MONTANARI

5. Numerical simulations. In this section, we carry out some numerical ex-
periments with synthetic data. For an application with real data, we refer to the
Supplementary Material [22].

5.1. Comparison with off-line rules. In our first experiment, we consider hy-
potheses H(n) = (H1,H2, . . . ,Hn) concerning the means of normal distributions.
The null hypothesis is Hj : θj = 0. We observe test statistics Zj = θj + εj , where
εj are independent standard normal random variables. Therefore, one-sided p-
values are given by pj = �(−Zj), and two sided p-values by pj = 2�(−|Zj |).
Parameters θj are set according to a mixture model:

θj ∼
{

0, w.p. 1 − π1,

F1, w.p. π1.
(29)

In our experiment, we set n = 3000 and and use the following three choices of the
nonnull distribution:

Gaussian. In this case, the alternative F1 is N(0, σ 2) with σ 2 = 2 logn. This
choice of σ produces parameters θj in the interesting regime in which they are
detectable, but not easily so. In order to see this recall that, under the global null
hypothesis, Zi ∼ N(0,1) and maxi∈[n] Zi ∼ √

2 logn with high probability. Indeed√
2 logn is the minimax amplitude for estimation in the sparse Gaussian sequence

model [8, 25].
In this case, we carry out two-sided hypothesis testing.
Exponential. In this case, the alternative F1 is exponential Exp(λ) with mean

λ−1 = √
2 logn. The rationale for this choice is the same given above. The alter-

native is known to be nonnegative, and hence we carry out one-sided hypothesis
testing.

Simple. In this example, the nonnulls are constant and equal to A = √
logn.

Again, we carry out one-sided tests in this case.
We consider three online testing rules, namely alpha investing (AI), LORD

(a special case of alpha spending with rewards) and Bonferroni. We also simu-
late the expected reward optimal (ERO) alpha investing rule introduced in [1]. For
a brief overview of the ERO notion, recall that in a generalized alpha investing
rule, pay-out ϕj , test level αj and the reward ψj should satisfy inequalities (10)
and (11). An ERO procedure finds the optimal point of trade-off between αj and
ψj , for a given value of ϕj , where optimality criterion is the expected reward of
the current test, that is, E(Rj )ψj . We compare performance of these online meth-
ods with the (adaptive) BH procedure, which as emphasized already, is an offline
testing rule: it has access to the number of hypotheses and p-values in advance,
while the former algorithms receive p-values in an online manner, without know-
ing the total number of hypotheses. We use Storey’s variant of BH rule, that is
better suited to cases in which the fraction of nonnulls π1 is not necessarily small
[36]. In all cases, we set as our objective to control FDR below α = 0.05.
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The different procedures are specified as follows.
Alpha investing. We set test levels according to

αj = W(j)

1 + j − τj

,(30)

where τj denotes the time of the most recent discovery before time j . This pro-
posal was introduced by [11] and boosts statistical power in cases in which the
nonnull hypotheses appear in batches. We use parameters w0 = 0.005 (for the ini-
tial potential), and b0 = α − w0 = 0.045 (for the rewards). The rationale for this
choice is that b0 controls the evolution of the potential W(n) for large n, while
w0 controls its initial value. Hence, the behavior of the resting rule for large n is
mainly driven by b0.

Note that by [1], Corollary 2, this is an ERO alpha investing rule,7 under the
Gaussian and exponential alternatives. It is worth noting that for the case of ex-
ponential alternatives, alpha investing is indeed an ERO procedure, cf. [1], Theo-
rem 2.

ERO alpha investing. For the case of simple alternative, the maximum power
achievable at test i is ρi = �(A + �−1(αi)). In this case, we consider ERO alpha
investing [1] defined by ϕi = (1/10) · W(i − 1), and with αi , ψi given implicitly
by the solution of ϕi/ρi = ϕi/αi − 1 and ψi = ϕi/αi + b0 − 1. We use parameters
b0 = 0.045 and w0 = 0.005.

LORD. We use LORD 3 and choose the sequence γ = (γm)m∈N as follows:

γm = C
log(m ∨ 2)

me
√

logm
,(31)

with C determined by the condition
∑∞

m=1 γm = 1, which yields C ≈ 0.07720838.
This choice of γ is loosely motivated by Example E.2, given in the Supplementary
Material [22]. Notice, however, that we do not assume the data to be generated
with the model treated in that example. Further, for this case we set parameters
w0 = 0.005 (for the initial potential), and b0 = 0.045 (for the rewards).

Bonferroni. We set the test levels as αm = γmα, where the values of γm are set
as per equation (31), and therefore

∑∞
m=1 αm = α.

Storey. It is well known that the classical BH procedure satisfies FDR ≤ π0α

where π0 is the proportion of true nulls. A number of adaptive rules have been
proposed that use a plug-in estimate of π0 as a multiplicative correction in the BH
procedure [23, 24, 30, 36]. Following [6], the adaptive test thresholds are given by
αH(p)i/n (instead of αi/n), where H(p) is an estimate of π−1

0 , determined as a
function of p-values, p = (p1, . . . , pn).

Here, we focus on Storey-λ estimator given by [36]:

H(p) = (1 − λ)n∑n
i=1 I(pi > λ) + 1

.(32)

7Note that, since θj is unbounded under the alternative the maximal power is equal to one.
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Storey’s estimator is in general an underestimate of π−1
0 . A standard choice of

λ = 1/2 is used in the SAM software [37]. In [6], it is shown that the choice λ = α

can have better properties under dependent p-values. In our simulations, we tried
both choices of λ.

Our empirical results are presented in Figure 1. As we see, all the rules control
FDR below the nominal level α = 0.05, as guaranteed by Theorem 3.1. While BH
and the generalized alpha investing schemes (LORD, alpha investing, ERO alpha
investing) exploit most of the allowed amount of false discoveries, Bonferroni is
clearly too conservative. A closer look reveals that the generalized alpha investing
schemes are somewhat more conservative than BH. Note however that the present
simulations assume the nonnulls to arrive at random times, which is a more benign
scenario than the one considered in Theorem 3.1, where arrival times of nonnulls
are adversarial.

In terms of power, LORD appears particularly effective for small π1, while
standard alpha investing suffers a loss of power for large π1. This is related to the
fact that ϕj = αj/(1 − αj ) in this case. As a consequence, the rule can effectively
stop after a large number of discoveries, because αj gets close to one.

Figure 2 showcases the FDR achieved by various rules as a function of α, for
π1 = 0.2 and exponential alternatives. For alpha investing and LORD, we use pa-
rameters b0 = 0.9α and w0 = 0.1α. The generalized alpha investing rules under
consideration have FDR below the nominal α, and track it fairly closely. The gap
is partly due to the fact that, for large number of discoveries, the FDR of general-
ized alpha investing rules is closer to b0 than to α = b0 + w0, cf. Remark 3.2.

5.2. The effect of ordering. By definition, the BH rule is insensitive to the or-
der in which the hypotheses are presented. On the contrary, the outcome of online
testing rules depends on this ordering. This is a weakness, because the ordering
of hypotheses can be adversarial, leading to a loss of power, but also a strength.
Indeed, in some applications, hypotheses can be ordered, using side information,
such that those most likely to be rejected come first. In these cases, we expect gen-
eralized alpha investing procedures to be potentially more powerful than bench-
mark offline rules as BH.

For instance, Li and Barber [27] analyze a drug-response dataset proceeding
in two steps. First, a family of hypotheses (gene expression levels) are ordered
using side information, and then a multiple hypothesis testing procedure is applied
to the ordered data.8 Other approaches, such as distributing the weights unevenly
among the hypotheses [13] are also potentially useful in settings where there is
side information about the hypotheses that are more likely to be nonnull.

8The procedure of [27] is designed as to reject the first k̂ null hypotheses, and accept the remaining

n − k̂. However, this specific structure is a design choice, and is not a constraint arising from the
application.
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FIG. 1. FDR and statistical power versus fraction of nonnull hypotheses π1 for setup described in
Section 5 with α = 0.05. The three rows correspond to Gaussian, exponential, and simple alternatives
(from top to bottom). FDR and power are computed by averaging over 20,000 independent trials (for
Gaussian and exponential alternatives) or 500 trials (for simple alternatives). Here hypotheses are
considered in random order of arrival.
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FIG. 2. FDR achieved by various methods compared to the target FDR α as α varies. Here we use
n = 3000 hypotheses with a proportion π1 = 0.2 of nonnulls and exponential alternatives. The FDR
is estimated by averaging over 20,000 independent trials.

In order to explore the effect of a favorable ordering of the hypotheses, we
reconsider the exponential model in the previous section, and simulate a case
in which side information is available. For each trial, we generate the mean
(θj )1≤j≤n, and two independent sets of observations Zj = θj + εj , Z′

j = θj + ε′
j ,

with εj ∼ N(0,1), ε′
j ∼ N(0, σ 2) independent. We then compute the correspond-

ing (one-sided) p-values (pj )1≤j≤n, (p′
j )1≤j≤n. We use the p-values (p′

j )1≤j≤n

to order the hypotheses9 (in such a way that these p-values are increasing along
the ordering). We then use the other set of p-values (pj )1≤j≤n to test the null
hypotheses Hj,0 : θj = 0 along this ordering.

Let us emphasize that, for this simulation, better statistical power would be
achieved if we computed a single p-value pj by processing jointly Zj and Z′

j .
However, in real applications, the two sources of information are heterogenous
and this joint processing is not warranted, see [27] for a discussion of this point.

Figure 3 reports the FDR and statistical power in this setting. We used LORD

with parameters (γm)m≥1 given by equation (31), and simulated two noise levels
for the side information: σ 2 = 1 (noisy ordering information) and σ 2 = 1/2 (less
noisy ordering). As expected, with a favorable ordering the FDR decreases signif-
icantly. The statistical power increases as long as the fraction of nonnulls π1 is not
too large. This is expected: when the fraction of nonnulls is large, ordering is less
relevant.

9Note that ordering by increasing p′
j is equivalent to ordering by decreasing |Z′

j | and the latter

can be done without knowledge of the noise variance σ 2.
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FIG. 3. FDR and statistical power for LORD with favorably ordered hypotheses (setup of Sec-
tion 5.2). Here n = 3000, π1 = 0.2 and data are obtained by averaging over 20,000 trials. Un-
ordered: Null and nonnull hypotheses are ordered at random. Ordered 1: hypotheses are ordered
using very noisy side information (σ 2 = 1). Ordered 2: hypotheses are ordered using less noisy side
information (σ 2 = 1/2).

In particular, for small π1, the gain in power can be as large as 20% (for σ 2 = 1)
and as 30% (for σ 2 = 1/2). The resulting power is superior to adaptive BH [36]
for π1 � 0.15 (for σ 2 = 1), or π1 � 0.25 (for σ 2 = 1/2).

5.3. FDR control versus mFDR control. Aharoni and Rosset [1] proved that
generalized alpha investing rules control mFDRw0/b0 . Formally,

mFDRw0/b0(n) ≡ sup
θ∈�

EV θ(n)

ER(n) + (w0/b0)
≤ b0.(33)

As mentioned before (see also the Supplementary Material [22]), this metric has
been criticized because it does not control a property of the realized sequence of
tests; instead it controls a ratio of expectations.

Our Theorem 3.3 controls a different metric that we called sFDRη(n):

sFDRw0/b0(n) ≡ sup
θ∈�

E

{
V θ(n)

R(n) + (w0/b0)

}
≤ b0.(34)

This quantity is the expected ratio, and hence passes the above criticism. Note that
both theorems yield control at level α = b0, for the same class of rules.

Finally, Theorem 3.1 controls a more universally accepted metric, namely FDR,
at level α = w0 + b0. A natural question is whether, in practice, we should choose
w0, b0 as to guarantee FDR control (and hence set w0 + b0 ≤ α) or instead be sat-
isfied with mFDR and sFDR control, which allow for b0 = α and hence potentially
larger statistical power.
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While an exhaustive answer to this question is beyond the scope of this pa-
per, we repeated the simulations in Figure 1, using the two different criteria. The
results, provided in the Supplementary Material [22], suggest that this question
might not have a simple answer. On one hand, under the setting of Figure 1 (in-
dependent p-values, large number of discovery) mFDR and sFDR seem stringent
enough criteria. On the other, the gain in statistical power that is obtained from
these criteria, rather than FDR, is somewhat marginal.

6. Control of false discovery exceedance. Ideally, we would like to control
the proportion of false discoveries in any given realization of our testing proce-
dures. We recall that this is given by [cf. equation (20)]

FDPθ (n) ≡ V θ(n)

R(n) ∨ 1
.(35)

False discovery rate is the expected proportion of false discoveries. However—
in general—control of FDR does not prevent FDP from varying, even when its
average is bounded. In real applications, the actual FDP might be far from its
expectation. For instance, as pointed out by Owen [31], the variance of FDP can
be large if the test statistics are correlated.

Motivated by this concern, the false discovery exceedance is defined as

FDXγ (n) ≡ sup
θ∈�

P
(
FDPθ (n) ≥ γ

)
(36)

for a given tolerance parameter γ ≥ 0. Controlling FDX instead of FDR gives a
stronger preclusion from large fractions of false discoveries.

Several methods have been proposed to control FDX in an offline setting.
Van der Laan, Dudoit and Pollard [40] observed that any procedure that controls
FWER, if augmented by a sufficiently small number of rejections, also controls
FDX. Genovese and Wasserman [14] suggest controlling FDX by inverting a set
of uniformity tests on the vector of p-values. Lehmann and Romano [26] proposed
a step-down method to control FDX.

A natural criterion to impose in the online setting would be the control of
supn≥1 FDXγ (n). However, this does not preclude the possibility of large propor-
tions of false discoveries at some (rare) random times n. It could be—as a cartoon
example—that FDPθ (n) = 1/2 independently with probability α at each n, and
FDPθ (n) = γ /2 with probability 1 − α. In this case, supn≥1 FDXγ (n) ≤ α but
FDPθ (n) = 1/2 almost surely for infinitely many times n. This is an undesirable
situation.

A more faithful generalization of FDX to the online setting is therefore

FDXγ ≡ sup
θ∈�

P

(
sup
n≥1

FDPθ (n) ≥ γ
)
.(37)

We will next propose a class of generalized alpha investing rules for online control
of FDXγ .



ONLINE RULES FOR CONTROL OF FALSE DISCOVERY RATE 547

6.1. The effect of reducing test levels. Before describing our approach, we
demonstrate through an example that the FDP can differ substantially from its
expectation. We also want to illustrate how a naive modification of the previous
rules only achieves a better control of this variability at the price of a significant
loss in power.

Note that the desired bound FDPθ (n) < γ follows if we can establish b0R(n)−
V (n) + (γ − b0) > 0 for some γ ≥ b0 ≥ 0. Recall that a generalized alpha invest-
ing procedure continues until the potential W(n) remains nonnegative. Therefore,
for such a procedure, it suffices to bound the probability that the stochastic process
B(n) ≡ b0R(n)−W(n)−V (n)+(γ −b0) crosses zero. As we show in Lemma F.1,
B(n) is a submartingale, and thus in expectation it moves away from zero. In order
to bound the deviations from the expectation, consider the submartingale incre-
ments Bj ≡ B(j) − B(j − 1) given by

Bj = (b0 − ψj)Rj + ϕj − Vj .(38)

If the j th null hypothesis is false, that is, θj �= 0, we have Vj = 0 and Bj ≥ 0 by
invoking assumption G1 and noting that Rj ∈ {0,1}. Under the null hypothesis,
Vj = Rj , and

Var(Bj |Fj−1) = (b0 − ψj − 1)2αj (1 − αj ).(39)

Reducing Var(Bj |Fj−1) lowers variations of the submartingale and hence the vari-
ation of the false discovery proportions. Note that for a generalized alpha investing
rule, if we keep b0, ψj unchanged and lower the test levels αj , the rule still sat-
isfies conditions G1, G2 and thus controls FDR at the desired level. On the other
hand, this modification decreases Var(Bj |Fj−1) as per equation (39). In summary,
reducing the test levels has the effect of reducing the variation of false discovery
proportion at the expense of reducing statistical power.

We carry out a numerical experiment within a similar setup as the one discussed
in Section 5. A set of n hypotheses are tested, each specifying mean of a normal
distribution, Hj : θj = 0. The test statistics are independent, normally distributed
random variables Zj ∼ N(θj ,1). For nonnull hypotheses, we set θj = 3. The total
number of tests is n = 1000 of which the first 100 are nonnull.

We consider three different testing rules, namely alpha investing, alpha spending
with rewards and LORD, all ensuring FDR control at level α = 0.05. The details
of these rules as well as the choice of parameters is the same as Section 5.

In order to study the effect of reducing test levels, for each of these rules we
truncate them by a threshold value T , that is, we use αT

j = αj ∨T . We plot the his-
togram of false discovery proportions using 30,000 replications of the test statis-
tics sequence. We further report standard deviation and 0.95 quantile of FDPs. The
results are shown in Figures 4, 5, 6.

As a first remark, while all of the rules considered control FDR below α =
0.05, the actual false discovery proportion in Figures 4, 5, 6 has a very broad
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FIG. 4. Histogram of FDP for alpha investing rule with different values of T .

distribution. Consider for instance alpha investing, at threshold level T = 0.9. Then
FDP exceeds 0.15 (three times the nominal value) with probability 0.13.

Next, we notice that reducing the test levels (by reducing T ) has the desired
effect of reducing the variance of the FDP. This effect is more pronounced for alpha
investing. Nevertheless quantifying this effect is challenging due to the complex
dependence between Bj and history Fj−1. This makes it highly nontrivial to adjust
threshold T to obtain FDXγ ≤ α. In the next section, we achieve this through a
different approach.

6.2. Rules for controlling FDXγ . Let M(0) = γ −b0 −w0 > 0 and define, for
n ∈ N, M(n) = M(0) + ∑n

j=1 Mj , where

Mj ≡ max
{
(1 + ψj − b0)(αj − Rj), (b0 − ψj)Rj ,ψj − b0

}
.(40)

Note that M(n) is a function of (R1, . . . ,Rn), that is, it is measurable on Fn.
We then require the following conditions in addition to G1 and G2 introduced in
Section 2.1:
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FIG. 5. Histogram of FDP for alpha spending with rewards for different values of T .

G3. w0 < γ − b0.
G4. For j ∈N and all R

j
1 ∈ {0,1}j , if

M(j) + ξj+1 >
γ − b0 − w0

1 − α
,(41)

then αi = 0 for all i > j , where we define ξj ≡ max{(1 + ψj − b0)αj , |b0 − ψj |}.
Condition G4 is well posed since M(j) and ξj+1 are functions of R

j
1.

Note that any generalized alpha investing rule can be modified as to satisfy these
conditions. Specifically, the rule keeps track of LHS of (41) (it is an observable
quantity) and whenever inequality (41) is violated, the test levels are set to zero
onwards, that is, αi = 0 for i ≥ j . The sequence (ξj )j∈N is constructed in a way to
be a predictable process that bounds Mj . Consequently, M(j)+ξj+1 ∈ Fj bounds
M(j + 1).

The decrement and increment values ϕj and ψj are determined in way to satisfy
conditions G2 and G5.
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FIG. 6. Histogram of FDP for LORD rule with different values of T .

We then establish FDX control under a certain negative dependency condition
on the test statistics.

THEOREM 6.1. Assume that the p-values (pi)i∈N are such that, for each j ∈
N, and all θ ∈ Hj (i.e., all θ such that the null hypothesis θj = 0 holds), we have

Pθ (pj ≤ αj |Fj−1) ≤ αj ,(42)

almost surely.
Then, any generalized alpha investing rule that satisfies conditions G3, G4

above (together with G1 and G2) controls the false discovery exceedance:

FDXγ ≤ α.(43)

The proof of this theorem is presented in the Supplementary Material [22]. No-
tice that the dependency condition (42) is satisfied, in particular, if the p-values
are independent.
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TABLE 1
FDXγ and FDR for LORD with stopping criterion (44) using 30,000 realizations of the test

statistics. Here, α = 0.05 and γ = 0.15, and π1 represents the fraction of truly nonnull hypotheses
that appear at the beginning of the stream as described in Section 6.1

Online control of FDXγ using stopping criterion (44)

π1 0.005 0.01 0.02 0.03 0.04
FDXγ 0.028 0.004 0.000 0.000 0.000
FDR 0.006 0.005 0.005 0.005 0.005
Power 0.666 0.699 0.679 0.658 0.639

EXAMPLE 6.2. For given values of α ∈ (0,1) and γ ∈ (α,1), consider LORD

algorithm with b0 = α, ψj = α for j ∈ N and w0 = (γ − α)/2. By equation (40)
we have Mj = αj I(Rj = 0). In order to satisfy condition G4, the rule keeps track
of M(n) and stops as soon as inequality (41) is violated:

αn+1 +
n∑

i=1

αiI(Ri = 0) >
γ − α

2(1 − α)
.(44)

Note that for LORD, the potential sequence W(n) always remain positive and thus
the stopping criterion is defined solely based on the above inequality. Clearly, this
rule satisfies assumptions G1, G2, G3, G4 and by applying Theorem 6.1 ensures
FDXγ ≤ α.

We use the above rule to control false discovery exceedance for the simulation
setup described in Section 6.1 for values of α = 0.05 and γ = 0.15. The results are
summarized in Table 1. The false discovery rates and proportions are estimated
using 30,000 realizations of test statistics. As we see the rule controls both FDR
and FDXγ below α.

7. Discussion. Our main result is that all generalized alpha investing rules
control FDR, provided they satisfy a natural monotonicity condition. This result
can be regarded as reinforcing and complementing the conclusions of [1] which
introduced generalized alpha investing, and proved mFDR control. Since the two
metrics can be significantly different, with FDR somewhat more broadly accepted,
this should develop more confidence towards the practical use of these methods.

Within this broad family, we believe that LORD is mainly appealing because
of its simplicity: testing levels only depend on the the time of the most recent
discovery, and not on the whole past. This property also simplifies the analysis
of LORD. In particular, in Section 4 we obtained bounds on the statistical power
of the LORD under the mixture model, that could be used to set the parameters
of the rule. Further, a simple modification of LORD was suggested for the case of
dependent p-values; cf. Section 3.2.
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While our work broadly supports the use of generalized alpha investing rules
(and, in particular, LORD), we believe that extra caution should be taken when the
false discovery proportion can deviate significantly from its expectation (which
is the FDR). This can be the case when the number of hypotheses is not very
large, or there is significant correlation. In this case, the false discovery exceedance
(FDX) is a more meaningful metric, and additional constraints should be imposed
on generalized alpha investing rules.

Acknowledgments. The authors would like to thank the Co-Editor, Associate
Editor and referees for their valuable comments that helped us improve the paper
significantly.

SUPPLEMENTARY MATERIAL

Online rules for control of false discovery rate and false discovery ex-
ceedance (DOI: 10.1214/17-AOS1559SUPP; .pdf). Due to space constraints,
proof of theorems and some of the technical details as well as additional numerical
studies are provided in the Supplementary Material [22].

REFERENCES

[1] AHARONI, E. and ROSSET, S. (2014). Generalized α-investing: Definitions, optimality results
and application to public databases. J. R. Stat. Soc. Ser. B. Stat. Methodol. 76 771–794.
MR3248676

[2] BARBER, R. F. and CANDÈS, E. J. (2015). Controlling the false discovery rate via knockoffs.
Ann. Statist. 43 2055–2085. MR3375876

[3] BARBER, R. F. and CANDES, E. J. (2016). A knockoff filter for high-dimensional selective
inference. Available at arXiv:1602.03574.

[4] BENJAMINI, Y. and HOCHBERG, Y. (1995). Controlling the false discovery rate: A practical
and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. Stat. Methodol. 57 289–
300. MR1325392

[5] BENJAMINI, Y. and YEKUTIELI, D. (2001). The control of the false discovery rate in multiple
testing under dependency. Ann. Statist. 29 1165–1188. MR1869245

[6] BLANCHARD, G. and ROQUAIN, É. (2009). Adaptive false discovery rate control under inde-
pendence and dependence. J. Mach. Learn. Res. 10 2837–2871. MR2579914

[7] BOGDAN, M., VAN DEN BERG, E., SABATTI, C., SU, W. and CANDÈS, E. J. (2015).
SLOPE—Adaptive variable selection via convex optimization. Ann. Appl. Stat. 9 1103–
1140. MR3418717

[8] DONOHO, D. L. and JOHNSTONE, I. M. (1994). Minimax risk over lp-balls for lq -error.
Probab. Theory Related Fields 99 277–303. MR1278886

[9] DWORK, C., FELDMAN, V., HARDT, M., PITASSI, T., REINGOLD, O. and ROTH, A. (2015).
Preserving statistical validity in adaptive data analysis [extended abstract]. In STOC’15—
Proceedings of the 2015 ACM Symposium on Theory of Computing 117–126. ACM, New
York. MR3388189

[10] FITHIAN, W., SUN, D. and TAYLOR, J. (2014). Optimal inference after model selection. Avail-
able at arXiv:1410.2597.

[11] FOSTER, D. P. and STINE, R. A. (2008). α-investing: A procedure for sequential control of ex-
pected false discoveries. J. R. Stat. Soc. Ser. B. Stat. Methodol. 70 429–444. MR2424761

https://doi.org/10.1214/17-AOS1559SUPP
http://www.ams.org/mathscinet-getitem?mr=3248676
http://www.ams.org/mathscinet-getitem?mr=3375876
http://arxiv.org/abs/arXiv:1602.03574
http://www.ams.org/mathscinet-getitem?mr=1325392
http://www.ams.org/mathscinet-getitem?mr=1869245
http://www.ams.org/mathscinet-getitem?mr=2579914
http://www.ams.org/mathscinet-getitem?mr=3418717
http://www.ams.org/mathscinet-getitem?mr=1278886
http://www.ams.org/mathscinet-getitem?mr=3388189
http://arxiv.org/abs/arXiv:1410.2597
http://www.ams.org/mathscinet-getitem?mr=2424761


ONLINE RULES FOR CONTROL OF FALSE DISCOVERY RATE 553

[12] GENOVESE, C. R., LAZAR, N. A. and NICHOLS, T. (2002). Thresholding of statistical maps
in functional neuroimaging using the false discovery rate. Neuroimage 15 870–878.

[13] GENOVESE, C. R., ROEDER, K. and WASSERMAN, L. (2006). False discovery control with
p-value weighting. Biometrika 93 509–524. MR2261439

[14] GENOVESE, C. R. and WASSERMAN, L. (2006). Exceedance control of the false discovery
proportion. J. Amer. Statist. Assoc. 101 1408–1417. MR2279468

[15] G’SELL, M. G., WAGER, S., CHOULDECHOVA, A. and TIBSHIRANI, R. (2016). Sequen-
tial selection procedures and false discovery rate control. J. R. Stat. Soc. Ser. B. Stat.
Methodol. 78 423–444. MR3454203

[16] IOANNIDIS, J. P. (2005). Contradicted and initially stronger effects in highly cited clinical
research. Jornal of the American Medical Association 294 218–228.

[17] IOANNIDIS, J. P. A. (2005). Why most published research findings are false. Chance 18 40–47.
MR2216666

[18] JAVANMARD, A. and MONTANARI, A. (2013). Nearly optimal sample size in hypothesis test-
ing for high-dimensional regression. In 51st Annual Allerton Conference 1427–1434,
Monticello, IL.

[19] JAVANMARD, A. and MONTANARI, A. (2014). Confidence intervals and hypothesis testing for
high-dimensional regression. J. Mach. Learn. Res. 15 2869–2909. MR3277152

[20] JAVANMARD, A. and MONTANARI, A. (2014). Hypothesis testing in high-dimensional regres-
sion under the Gaussian random design model: Asymptotic theory. IEEE Trans. Inform.
Theory 60 6522–6554. MR3265038

[21] JAVANMARD, A. and MONTANARI, A. (2015). On online control of false discovery rate. Avail-
able at arXiv:1502.06197.

[22] JAVANMARD, A. and MONTANARI, A. (2018). Supplement to “Online rules for control of false
discovery rate and false discovery exceedance.” DOI:10.1214/17-AOS1559SUPP.

[23] JIN, J. (2008). Proportion of non-zero normal means: Universal oracle equivalences and
uniformly consistent estimators. J. R. Stat. Soc. Ser. B. Stat. Methodol. 70 461–493.
MR2420411

[24] JIN, J. and CAI, T. T. (2007). Estimating the null and the proportional of nonnull effects in
large-scale multiple comparisons. J. Amer. Statist. Assoc. 102 495–506. MR2325113

[25] JOHNSTONE, I. M. (1994). On minimax estimation of a sparse normal mean vector. Ann.
Statist. 22 271–289. MR1272083

[26] LEHMANN, E. L. and ROMANO, J. P. (2012). Generalizations of the Familywise Error Rate.
Springer, Berlin.

[27] LI, A. and BARBER, R. F. (2016). Accumulation tests for FDR control in ordered hypothesis
testing. J. Amer. Statist. Assoc. 112 1–38. MR3671774

[28] LIN, D., FOSTER, D. P. and UNGAR, L. H. (2011). VIF regression: A fast regression algorithm
for large data. J. Amer. Statist. Assoc. 106 232–247. MR2816717

[29] LOCKHART, R., TAYLOR, J., TIBSHIRANI, R. J. and TIBSHIRANI, R. (2014). A significance
test for the lasso. Ann. Statist. 42 413–468. MR3210970

[30] MEINSHAUSEN, N. and RICE, J. (2006). Estimating the proportion of false null hypotheses
among a large number of independently tested hypotheses. Ann. Statist. 34 373–393.
MR2275246

[31] OWEN, A. B. (2005). Variance of the number of false discoveries. J. R. Stat. Soc. Ser. B. Stat.
Methodol. 67 411–426. MR2155346

[32] PEKELIS, L., WALSH, D. and JOHARI, R. (2015). The new stats engine. Available at http:
//pages.optimizely.com/rs/optimizely/images/stats_engine_technical_paper.pdf.

[33] PRINZ, F., SCHLANGE, T. and ASADULLAH, K. (2011). Believe it or not: How much can
we rely on published data on potential drug targets? Nature Reviews Drug Discovery 10
712–712.

http://www.ams.org/mathscinet-getitem?mr=2261439
http://www.ams.org/mathscinet-getitem?mr=2279468
http://www.ams.org/mathscinet-getitem?mr=3454203
http://www.ams.org/mathscinet-getitem?mr=2216666
http://www.ams.org/mathscinet-getitem?mr=3277152
http://www.ams.org/mathscinet-getitem?mr=3265038
http://arxiv.org/abs/arXiv:1502.06197
https://doi.org/10.1214/17-AOS1559SUPP
http://www.ams.org/mathscinet-getitem?mr=2420411
http://www.ams.org/mathscinet-getitem?mr=2325113
http://www.ams.org/mathscinet-getitem?mr=1272083
http://www.ams.org/mathscinet-getitem?mr=3671774
http://www.ams.org/mathscinet-getitem?mr=2816717
http://www.ams.org/mathscinet-getitem?mr=3210970
http://www.ams.org/mathscinet-getitem?mr=2275246
http://www.ams.org/mathscinet-getitem?mr=2155346
http://pages.optimizely.com/rs/optimizely/images/stats_engine_technical_paper.pdf
http://pages.optimizely.com/rs/optimizely/images/stats_engine_technical_paper.pdf


554 A. JAVANMARD AND A. MONTANARI

[34] REINER, A., YEKUTIELI, D. and BENJAMINI, Y. (2003). Identifying differentially expressed
genes using false discovery rate controlling procedures. Bioinformatics 19 368–375.

[35] ROSSET, S., AHARONI, E. and NEUVIRTH, H. (2014). Novel statistical tools for management
of public databases facilitate community-wide replicability and control of false discovery.
Genetic Epidemiology 38 477–481.

[36] STOREY, J. D. (2002). A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B. Stat.
Methodol. 64 479–498. MR1924302

[37] STOREY, J. D. and TIBSHIRANI, R. (2003). SAM thresholding and false discovery rates for
detecting differential gene expression in DNA microarrays. In The Analysis of Gene Ex-
pression Data 272–290. Springer, New York. MR2001400

[38] TIBSHIRANI, R. J., TAYLOR, J., LOCKHART, R. and TIBSHIRANI, R. (2016). Exact post-
selection inference for sequential regression procedures. J. Amer. Statist. Assoc. 111 600–
620. MR3538689

[39] VAN DE GEER, S., BÜHLMANN, P., RITOV, Y. and DEZEURE, R. (2014). On asymptotically
optimal confidence regions and tests for high-dimensional models. Ann. Statist. 42 1166–
1202. MR3224285

[40] VAN DER LAAN, M. J., DUDOIT, S. and POLLARD, K. S. (2004). Augmentation procedures
for control of the generalized family-wise error rate and tail probabilities for the propor-
tion of false positives. Stat. Appl. Genet. Mol. Biol. 3 Art. 15, 27. MR2101464

[41] ZHANG, C.-H. and ZHANG, S. S. (2014). Confidence intervals for low dimensional parameters
in high dimensional linear models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 76 217–242.
MR3153940

DATA SCIENCES AND OPERATIONS DEPARTMENT

MARSHALL SCHOOL OF BUSINESS

UNIVERSITY OF SOUTHERN CALIFORNIA

LOS ANGELES, CALIFORNIA 90089
USA
E-MAIL: ajavanma@usc.edu

DEPARTMENT OF ELECTRICAL ENGINEERING

AND DEPARTMENT OF STATISTICS

STANFORD UNIVERSITY

STANFORD, CALIFORNIA 94305
USA
E-MAIL: montanar@stanford.edu

http://www.ams.org/mathscinet-getitem?mr=1924302
http://www.ams.org/mathscinet-getitem?mr=2001400
http://www.ams.org/mathscinet-getitem?mr=3538689
http://www.ams.org/mathscinet-getitem?mr=3224285
http://www.ams.org/mathscinet-getitem?mr=2101464
http://www.ams.org/mathscinet-getitem?mr=3153940
mailto:ajavanma@usc.edu
mailto:montanar@stanford.edu

	Introduction
	Contributions
	Further related work
	Notations

	Generalized alpha investing
	Deﬁnitions
	Examples
	Alpha investing
	Alpha spending with rewards
	LORD


	Control of false discovery rate
	FDR control for independent test statistics
	FDR control for dependent test statistics

	Statistical power
	Numerical simulations
	Comparison with off-line rules
	The effect of ordering
	FDR control versus mFDR control

	Control of false discovery exceedance
	The effect of reducing test levels
	Rules for controlling FDXgamma

	Discussion
	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

