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STATISTICAL INFERENCE FOR SPATIAL STATISTICS
DEFINED IN THE FOURIER DOMAIN

BY SUHASINI SUBBA RAO1

Texas A&M University

A class of Fourier based statistics for irregular spaced spatial data is in-
troduced. Examples include the Whittle likelihood, a parametric estimator
of the covariance function based on the L2-contrast function and a simple
nonparametric estimator of the spatial autocovariance which is a nonnega-
tive function. The Fourier based statistic is a quadratic form of a discrete
Fourier-type transform of the spatial data. Evaluation of the statistic is com-
putationally tractable, requiring O(nb) operations, where b are the number
of Fourier frequencies used in the definition of the statistic and n is the sam-
ple size. The asymptotic sampling properties of the statistic are derived using
both increasing domain and fixed-domain spatial asymptotics. These results
are used to construct a statistic which is asymptotically pivotal.

1. Introduction. In recent years, irregular spaced spatial data has become
ubiquitous in several disciplines as varied as the geosciences to econometrics. The
analysis of such data poses several challenges which do not arise in data which
is sampled on a regular lattice. A major obstacle is the computational costs when
dealing with large irregular sampled data sets. If spatial data are sampled on a reg-
ular lattice, then algorithms such as the fast Fourier transform can be employed
to reduce the computational burden (see, e.g., [9]). Unfortunately, such algorithms
have little benefit if the spatial data are irregularly sampled. To address this issue,
within the spatial domain, several authors, including [10, 35, 38], have proposed
estimation methods which are designed to reduce the computational burden.

In contrast to the above references, [17] and [27] argue that working within the
frequency domain often simplifies the computational burden. Both authors focus
on parametric estimation using a Whittle-type likelihood. Fuentes [17] assumes
that the irregular spaced data can be embedded on a grid and the missing mecha-
nism is deterministic and “locally smooth.” A possible drawback of this construc-
tion is that the local smooth assumption will not hold if the locations are extremely
irregular. Therefore, [27] proposes a Whittle likelihood approach to parameter esti-
mation which takes into account the irregular nature of the locations. The focus of
most Fourier domain estimators have been on the Whittle likelihood (the exception
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being the recent paper by [2], which we discuss later). In this paper, we argue that
several estimators, both parametric and nonparametric, can be defined within the
Fourier domain. For example, within the Fourier domain, we propose a nonpara-
metric, nonnegative definite estimator of the spatial covariance. Nonparametric
estimators of the spatial autocovariance are often defined using kernel smoothing
methods (see [20]) or the empirical variogram (see [11]). However, these “raw”
covariance estimators may not be nonnegative functions, and a second step is re-
quired, which involves taking the Fourier transform of a finite discretisation of the
sample autocovariance, setting negative values to zero and inverting back, to en-
sure that the resulting estimator is a nonnegative function. In contrast, by defining
the covariance estimator within the Fourier domain the estimator is guaranteed to
be a nonnegative definite function. The purpose of this paper is twofold. The first
is to demonstrate that several parameters can be estimated within the Fourier do-
main. The second is to obtain a comprehensive understanding of quadratic forms
of irregular sampled spatial processes.

In order to define estimators within the Fourier domain, we adopt the approach
pioneered by [27] and [1] who assume that the irregular locations are independent,
identically distributed random variables (thus allowing the data to be extremely
irregular) and define the irregular sampled discrete Fourier transform (DFT) as

(1.1) Jn(ω) = λd/2

n

n∑
j=1

Z(sj ) exp
(
is′

jω
)
,

where sj ∈ [−λ/2, λ/2]d denotes the spatial locations observed in the space
[−λ/2, λ/2]d and {Z(sj )} denotes the spatial random field at these locations. It
is worth mentioning a similar transformation on irregular sampled data goes back
to [26], who defines the discrete Fourier transform of Poisson sampled continuous
time series. Using this definition, [27] define the Whittle likelihood by taking the
weighted integral of the periodogram, |Jn(ω)|2. Of course, in practice the weighted
integral needs to be approximated by a Riemann sum. Indeed in Remark 2, [27]
suggest using the frequency grid {ωk = 2πk/λ;k ∈ Zd} when constructing the
Whittle likelihood. No justification is given for this discretisation. However, their
observation has insight. We prove that this transformation is “optimal” for most
estimators defined within the Fourier domain.

Motivated by the integrated Whittle likelihood, our aim is to consider estimators
with the form

∫
gθ (ω)|Jn(ω)|2 dω. Such quantities have been widely studied in

time series, dating as far back as [29], but has received very little attention in the
spatial literature. In practice, this integral cannot be evaluated, and needs to be
approximated by a Riemann sum:

(1.2) Qa,�,λ(gθ ;0) = 1

�d

a∑
k1,...,kd=−a

gθ (ω�,k)
∣∣Jn(ω�,k)

∣∣2,
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where {ω�,k = 2πk/�,k = (k1, . . . , kd),−a ≤ ki ≤ a} is the frequency grid over
which the sum is evaluated. In terms of computation, evaluation of {Jn(ω�,k);
k = (k1, . . . , kd), kj = −a, . . . , a} requires O(adn) operations. However, once
{Jn(ω�,k)} has been evaluated the evaluation of Qa,�,λ(gθ ;0) only requires
O(ad) operations.

As far as we are aware, there exists no results on the sampling properties of
the general quadratic form defined in (1.2). To derive the asymptotic sampling
properties of Qa,�,λ(gθ ;0), we will work under two asymptotic frameworks that
are commonly used in spatial statistics. Our main focus will be the increasing
domain framework, introduced in [21] (see also [20] and used in, e.g., [1, 2, 24,
27] and [3]). This is where the number of observed locations n → ∞ as the size of
the spatial domain λ → ∞ (we usually assume λd/n → 0). We also analyze the
sampling properties of Qa,�,λ(gθ ;0) within the fixed-domain framework (where
λ is kept fixed but the number of locations, n grows) considered in [33, 34, 40] and
[41]. The sampling properties of Qa,�,λ(gθ ;0) differ according to the framework
used.

We show in Sections 3 and 4 that Qa,�,λ(gθ ;0) is a consistent estimator of the
functional I (gθ ; a

�
) as λ → ∞ and � → ∞, where

(1.3) I

(
gθ ; a

�

)
= 1

(2π)d

∫
[−2πa/�,2πa/�]d

gθ (ω)f (ω) dω.

However, the choice of frequency grid ω�,k plays a vital role in the rate of conver-
gence. In particular, we show that

E
[
Qa,�,λ(gθ ;0)

]= I

(
gθ ; a

�

)
+ O

(
logλ

λ
+ 1

�
+ 1

n

)
and

(1.4) var
[
Qa,�,λ(gθ ;0)

]= {
O
(
λ−d), � > λ,

O
(
�−d), � ≤ λ.

Therefore, under suitable conditions on gθ , Qa,�,λ(gθ ;0)
P→ I (gθ ;∞) if a/� →

∞ as a → ∞ n → ∞, λ → ∞ and � → ∞.
To understand the influence the user chosen frequency grid has on the sampling

properties, we show that the asymptotic limit of λd var[Qa,�,λ(gθ ;0)] will always
be the same for all � ≥ λ as λ → ∞. On the other hand, using a frequency grid
which is coarser than {2πk/λ;k ∈ Zd} leads to an estimator with a larger bias
and variance. Thus, balancing efficiency with computational burden, in general,
{Jn(ωλ,k)}k∈Zd is the optimal transformation of the spatial data into the frequency
domain. As mentioned above, [2] also use the Fourier domain for spatial inference;
however, their objectives are very different to those in this paper. Bandyopadhyay
et al. [2] show that the transformations {Jn(ω�,k)}k are asymptotically indepen-
dent if �/λ → 0 as λ → ∞ (this corresponds to a very coarse frequency grid).
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Based on this property, they use Qa,�,λ(g;0), where � is such that �/λ → 0
as λ → ∞ and � → ∞, to construct the empirical likelihood. The justification
for their construction is that the distribution of the resulting empirical likelihood is
asymptotically pivotal as λ → ∞. The sampling properties of Qa,�,λ(g;0) are not
derived in [2]. However, it is clear from (1.4), that using a frequency grid where
� � λ leads to an estimator that is not optimal in the mean squared sense.

Since Qa,�,λ(g;0) is optimal when using the frequency grid � = λ, in Section 4
we focus on deriving the sampling properties of Qa,λ,λ(gθ ;0). We consider the
slightly more general statistic

(1.5) Qa,λ,λ(gθ ; r) = 1

λd

a∑
k1,...,kd=−a

gθ (ωλ,k)Jn(ωλ,k)Jn(ωλ,k+r), r ∈ Zd,

and show asymptotic normality of Qa,λ,λ(gθ ; r) when the random field is station-
ary and Gaussian and obtain the second-order properties of Qa,λ,λ(gθ ; r) when the
random field is stationary (but not necessarily Gaussian). The sampling properties
of Qa,λ,λ(gθ ;0) when the domain is kept fixed are considered in Section 4.4. The
variance of Qa,λ,λ(gθ ;0) is usually difficult to directly estimate. However, in Sec-
tion 5 we show that if the locations are independent, uniformly distributed random
variables, then {Qa,λ,λ(gθ ; r)} forms a “near uncorrelated” sequence whose vari-
ance is asymptotically equivalent to Qa,λ,λ(gθ ;0). More precisely, if Qa,λ,λ(gθ ;0)

is real we define the the Studentized statistic

(1.6) TS = Qa,λ,λ(gθ ;0) − I (gθ ; a
λ
)√

1
|S|
∑

r∈S |Qa,λ,λ(gθ ; r)|2
,

for some fixed set S ⊂ Zd/{0}. We show that TS
D→ t2|S| as λ → ∞, where t2|S| de-

notes a t-distribution with 2|S| degrees of freedom and |S| denotes the cardinality
of S .

We now summarize the paper. In Section 2, we state the assumptions required
in this paper and the sampling properties of the Fourier transform {Jn(ω�,k)}. In
Section 2.3, we use these properties to motivate examples of estimators which have
the form Qa,�,λ(gθ ;0). In Section 3, we summarize the sampling properties of
{Qa,�,λ(gθ ;0)}. In Section 4, we focus on Qa,λ,λ(gθ ; r) and these results are used
to study the sampling properties of TS in Section 5. Qa,�,λ(gθ ;0) is a quadratic
form of an irregular sampled spatial process, and as far as we are aware, there exist
very few results on the moment and sampling properties of such quadratic forms.
The purpose of the supplementary material, [36], is to take a few steps in this
direction. Many of these results build on the work of [23], [6], [14] and [30] and
may be of independent interest. A simulation study to illustrate the performance of
the nonparametric nonnegative definite estimator of the spatial covariance is given
in [36], Appendix J.
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2. Assumptions and examples.

2.1. Assumptions and notation. In this section we state the required assump-
tions and notation. This section can be skipped on the first reading.

We observe the spatial random field {Z(s); s ∈ Rd} at the locations {sj }nj=1
where sj ∈ [−λ/2, λ/2]d . Throughout this paper, we will use the following as-
sumptions on the spatial random field.

ASSUMPTION 2.1 (Spatial random field). (i) {Z(s); s ∈ Rd} is a second-
order stationary random field with mean zero and covariance function: c(s1 −
s2) = cov(Z(s1),Z(s2)|s1, s2). We define the spectral density function as f (ω) =∫
Rd c(s) exp(−is′ω) ds [and c(s) = (2π)−d

∫
Rd f (ω) exp(is′ω) dω].

(ii) {Z(s); s ∈ Rd} is a stationary Gaussian random field.

We require the following definitions. For some finite 0 < C < ∞ and δ > 0, let

(2.1) βδ(s) =
{
C, |s| ∈ [−1,1],
C|s|−δ, |s| > 1.

Let βδ(s) =∏d
j=1 βδ(sj ). For sequences, we define ξη(j) = C[I (j = 0) + I (j 
=

0)|j |−η] [for some finite constant C and I (·) denotes the indicator function].
To minimise notation, we will often use

∑a
k=−a to denote the multiple sum∑a

k1=−a · · ·∑a
kd=−a . Let ‖ · ‖1 and ‖ · ‖2 denote the 
1-norm and 
2-norm of a

vector, respectively. Let �X and 
X denote the real and imaginary parts of X. We
make heavy use of the sinc function which is defined as

(2.2) sinc(ω) = sin(ω)

ω
and Sinc(ω) =

d∏
j=1

sinc(ωj ).

Define the triangle kernel, T : R → R where T (u) = 1 − |u| for u ∈ [−1,1] and
zero elsewhere and the d-dimensional triangle kernel T (u) =∏d

j=1 T (uj ). We use
the notation {ω�,k = 2πk/�;k ∈ Zd} for a general frequency grid. If � > λ, we
say the frequency grid is “fine.” Conversely, if � < λ, we say the frequency grid
is “coarse.” Further, as mentioned in the Introduction, using λ = � is optimal,
therefore, to reduce notation we let {ωk = 2πk/λ;k ∈ Zd}.

We adopt the assumptions of [21, 27] and [1] and assume that {sj } are i.i.d.
random variables with density 1

λd h( ·
λ
), where h : [−1/2,−1/2]d →R.

ASSUMPTION 2.2 (Nonuniform sampling). The locations {sj } are indepen-
dent distributed random variables on [−λ/2, λ/2]d , where the density of {sj } is
1
λd h( ·

λ
), and h(·) admits the Fourier representation

h(u) = ∑
j∈Zd

γj exp
(
i2πj ′u

)
,
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where
∑

j∈Zd |γj | < ∞ such that |γj | ≤ C
∏d

i=1 ξ1+δ(ji) (for some δ > 0).
This assumption is satisfied if the second derivative of h is bounded on the d-
dimensional torus [−1/2,1/2]d .

REMARK 2.1. If h is such that sups∈[−1/2,1/2]d | ∂m1+··· ,md h(s1,...,sd )

∂s
m1
1 ···∂s

md
d

| < ∞ (0 ≤
mi ≤ 2) but h is not continuous on the d-dimensional torus [−1/2,1/2]d , then
|γj | ≤ C

∏d
i=1 ξ1(ji) and the above condition will not be satisfied. However,

this assumption can be induced by tapering the observations such that Z(sj ) is
replaced with Z̃(sj ), where Z̃(sj ) = t (sj )Z(sj ), t (s) = ∏d

i=1 t (si) and t is a
weight function which has a bounded second derivative, t (−1/2) = t (1/2) = 0
and t ′(1/2) = t ′(−1/2) = 0. By using Z̃(sj ) instead of Z(sj ), in all the deriva-
tions below we replace the density h(s) with t (s)h(s). This means the re-
sults now rely on the Fourier coefficients of t (s)h(s), which decay at the rate
| ∫[−1/2,1/2]d t (s)h(s) exp(i2πj ′s) ds| ≤ C

∏d
i=1 ξ2(ji), and thus the above condi-

tion is satisfied. Note that [27], Definition 2, uses a similar data-tapering scheme
to induce a similar condition.

The case that the locations follow a uniform distribution is an example of a
distribution which satisfies Assumption 2.2. It gives rise to several elegant simpli-
fications. Thus, we state the uniform case as a separate assumption.

ASSUMPTION 2.3 (Uniform sampling). The locations {sj } are independent
uniformly distributed random variables on [−λ/2, λ/2]d .

Many of the results in this paper use that the locations follow a random design.
This helps in understanding the sampling properties of these complex estimators.
However, it can “mask” the approximation errors when replacing sums by integrals
and the role that the sample size n plays in these approximations. To get some idea
of these approximations when the domain λ is kept fixed but n → ∞, we will, on
occasion, treat the locations as deterministic and make the following assumption.

ASSUMPTION 2.4 (Near lattice locations for d = 1). Let {sn,j ; j = 1, . . . , n}
denote the locations. The number of locations n → ∞ in such a way that

n−1∑
j=1

∣∣∣∣λn − (sn,(j+1) − sn,(j)

)∣∣∣∣= O

(
λ

n

)
,

n−1∑
j=1

(
sn,(j+1) − sn,(j)

)2 = O

(
λ

n

)
,

where {sn,(j)}j denotes the order statistics corresponding {sn,j }j .
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The integrated periodogram Qa,�,λ(g;0) resembles the integrated periodogram
estimator commonly used in time series (see, e.g., [8, 13, 15, 22, 39] and [28]).
However, there are some fundamental differences, between time series estimators
and Qa,�,λ(g;0) which makes the analysis very different. Unlike regularly spaced
or near regularly spaced data, “truly” irregular sampling means that the DFT can
estimate high frequencies, without the curse of aliasing (a phenomena which was
noticed as early as [32] and [4]). In this case, if the function gθ , in the definition of
Qa,�,λ(gθ ;0) is bounded, there is no need for the frequency grid to be bounded,
and a can be magnitudes larger than λ. Below we state assumptions on the function
gθ and the frequency grid.

ASSUMPTION 2.5 [Assumptions on gθ (·) and the size of frequency grid].
Suppose

Qa,�,λ(gθ ; r) = 1

�d

a∑
k=−a

gθ (ω�,k)Jn(ω�,k)Jn(ω�,k+r).

(i) If gθ is not a bounded function over Rd but supω∈[−C,C]d |gθ (ω)| < ∞, then
we must restrict the frequency grid {ω�,k;−a ≤ k1, . . . , kd ≤ a} to lie in [−C,C]d
(thus a = C�). Further, we assume for all 1 ≤ j ≤ d , supω∈[−C,C]d | ∂gθ (ω)

∂ωj
| < ∞.

(ii) If supω∈Rd |gθ (ω)| < ∞, then the frequency grid can be unbounded (in the
sense that a/� → ∞ as a and � → ∞). Further, we assume for all 1 ≤ j ≤ d ,
supω∈Rd | ∂gθ (ω)

∂ωj
| < ∞.

The same assumptions apply to the “bias” corrected version of Qa,�,λ(g;0) which
is defined in Section 3.

ASSUMPTION 2.6 (Conditions on the spatial process). (a) There exists a δ >

0, where |c(s)| ≤ β2+δ(s).
Required for the bounded frequency grid, to obtain the covariance of

{Jn(ω�,k)}k .

(b) There exists a δ > 0, where f (ω) ≤ β1+δ(ω).
Required for the unbounded frequency grid—using this assumption instead of

(a) in the case of bounded frequency grids leads to slightly larger errors bounds in
the derivation of the mean and variance of Qa,�,λ(g; r). This assumption is also
used to obtain the CLT result for both the bounded and unbounded frequency grids.

(c) For all 1 ≤ j ≤ d and some δ > 0, the partial derivatives satisfy | ∂f (ω)
∂ωj

| ≤
β1+δ(ω).

We use this condition to approximate sums with integral for both the bounded
and unbounded frequency grids. It is also used to make a series of approximations
to derive the limiting variance of Qa,�,λ(g; r) in the case that the frequency grid
is unbounded.
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(d) There exists a δ > 0, where | ∂df (ω)
∂ω1,...,∂ωd

| ≤ β1+δ(ω).
Required only in the proof of Theorem 4.1(ii)(b).
(e) There exists a δ > 0, where |f (ω)| ≤ β2+δ(ω).
Required only for the fixed-domain asymptotics.

REMARK 2.2. Assumption 2.6(a) is satisfied by a wide range of covariance
functions. Examples include:

(i) The Wendland covariance, since its covariance is bounded and has a com-
pact support.

(ii) The Matern covariance, which for ν > 0 is defined as cν(‖s‖2) = ‖s‖ν
2 ×

Kν(‖s‖2) (Kν is the modified Bessel function of the second kind); see [34]. To
see why, we note that if ν > 0 then cν(s) is a bounded function. Furthermore, for
large ‖s‖2, cν(‖s‖2) ∼ Cν‖s‖ν−0.5

2 exp(−‖s‖2) as ‖s‖2 → ∞ (where Cν is a finite
constant). Thus, by using the inequality

d−1/2(|s1| + |s2| + · · · + |sd |)≤√s2
1 + s2

2 + · · · + s2
d ≤ (|s1| + |s2| + · · · + |sd |)

we can show |cν(s)| ≤ β2+δ(s) for any δ > 0.

REMARK 2.3. Assumption 2.6(b,c,d) appears quite technical, but it is satis-
fied by a wide range of spatial covariance functions. For example, the spectral den-

sity of the Matern covariance defined in Remark 2.2 is fν(ω) = 2ν−1�(ν+ d
2 )

πd/2(1+‖ω‖2
2)

(ν+d/2)

(see [34], p. 49). It is straightforward to show that this spectral density satisfies
Assumption 2.6(b,c,d), noting that the δ used to define β1+δ will vary with ν, di-
mension d and order of derivative.

If the spatial random field is non-Gaussian, we require the following assump-
tions on the higher order cumulants.

ASSUMPTION 2.7 (Non-Gaussian random fields). {Z(s); s ∈ Rd} is a fourth-
order stationary spatial random field, in the sense that E[Z(s)] = 0, cov[Z(s1),

Z(s2)] = c(s1 − s2), cum[Z(s1),Z(s2),Z(s3)] = κ2(s1 − s2, s1 − s3) and
cum[Z(s1),Z(s2),Z(s3),Z(s4)] = κ4(s1 − s2, s1 − s3, s1 − s4), for some func-
tions κ3(·) and κ4(·) and all s1, . . . , s4 ∈ Rd . We define the fourth-order spectral
density as f4(ω1,ω2,ω3) = ∫

R3d κ4(s1, s2, s3) exp(−i
∑3

j=1 s′
jωj ) dω1 dω2 dω3.

We assume that for some δ > 0 the spatial tri-spectral density function is
such that |f4(ω1,ω2,ω3)| ≤ β1+δ(ω1)β1+δ(ω2)β1+δ(ω3) and | ∂f4(ω1,...,ω3d )

∂ωj
| ≤

β1+δ(ω1)β1+δ(ω2)β1+δ(ω3).



SPATIAL STATISTICS DEFINED IN THE FOURIER DOMAIN 477

2.2. Properties of Fourier transforms. In this section we briefly summarize
some of the characteristics of the Fourier transforms Jn(ω�,k). These results will
be used in the construction of several estimators.

THEOREM 2.1 (Increasing domain asymptotics). Let us suppose that {Z(s);
s ∈ Rd} is a stationary spatial random field whose covariance function [defined in
Assumption 2.1(i)] satisfies Assumption 2.6(a) for some δ > 0. Furthermore, the
locations {sj } satisfy Assumption 2.2. Then we have

(2.3) cov
[
Jn(ωk1), Jn(ωk2)

]= 〈γ, γ(k2−k1)〉f (ωk1) + c(0)γk2−k1λ
d

n
+ O

(
1

λ

)
,

where the bounds are uniform in k1,k2 ∈ Zd and 〈γ, γr〉 =∑
j∈Zd γjγr−j .

Further, suppose Assumption 2.6(c) holds and that |γj | ≤ ∏d
i=1 ξ2+δ(ji) for

some δ > 0. If � > λ (fine frequency grid is used), then

(2.4)

cov
[
Jn(ω�,k1), Jn(ω�,k2)

]
= f (ω�,k1)

∑
j1,j2∈Zd

γj1
γj2

Sinc
(
π

[
(j1 + j2) − λ

�
(k1 − k2)

])

+ O

(
λd

n
+ logλ

λ

)
.

PROOF. See [36], Appendix A. �

Comparing (2.3) with (2.4), we see that if k1 and k2 are such that λ
2 ×

max |ω�,k1 − ω�,k2 | < 1 then there is a high amount of correlation between the
Fourier transforms. On the other hand, if λmax |ω�,k1 − ω�,k2 | → ∞ as λ → ∞,
the correlation declines. This means if the frequency grid is very coarse, � � λ

(as considered in [1] and [2]) the DFTs are almost uncorrelated. On the other hand,
if the frequency grid is very fine, � � λ [see (2.4)] frequencies which are close to
each other are highly correlated. These observations suggest that estimators based
on Jn(ω�,k) do not gain in efficiency when � > λ but there will be a loss in effi-
ciency when � < λ. We show this heuristic to be true in Section 3.

The results in the above theorem give the limit within the increasing domain
framework. In Theorem G.1, [36], we obtain the properties of Jn(ω�,k) within the
fixed-domain framework, where λ is kept fixed but n → ∞. The expressions are
long, but we summarize the most relevant parts in the remark below.

REMARK 2.4 (Fixed-domain asymptotics). (i) Let

(2.5) Aλ

(
k

�

)
=
∫
[−λ,λ]d

T

(
u

λ

)
c(u) exp

(
2iπk′u

�

)
du,
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where T (·) is the d-dimensional triangle kernel. Using Theorem G.1(iii), [36], un-
der Assumption 2.3 (locations are uniformly distributed) we have var[Jn(

2πk
�

)] =
Aλ(

k
�

) + λdc(0)
n

.
Therefore, if the sampling frequency, �, is chosen such that � ≥ 2λ, then

1
�d Aλ(

k
�

) are the Fourier coefficients of T (u
λ
)c(u) defined on the domain

[−�/2,�/2]d . In Section 2.3, we show that this fixed-domain approximation can,
in some cases, be used to obtain unbiased estimators.

(ii) If the locations are not uniformly distributed, then by keeping λ fixed and
using Theorem G.1(i) we see that var[Jn(

2πk
�

)] is not a separable function of the
spatial spectral density and the Fourier coefficients of the random design. Whereas
the approximation of var[Jn(

2πk
�

)] as λ → ∞ given in Theorem 2.1 is a separable
function of the spatial spectral density and spatial design. Using the separable ap-
proximation as the basis of an estimation scheme is simpler than using the exact
but nonseparable formula.

REMARK 2.5. We observe from Theorems 2.1 that in the increasing domain
framework |Jn(ω�,k)|2 is an estimator of the spectral density function, f (ω�,k)

whereas within the fixed-domain framework |Jn(ω�,k)|2 is an estimator of the
Fourier coefficient Aλ(k/�). However, if

∫
Rd |f (ω)|dω < ∞ and the ratio k/�

is kept fixed then Aλ(
k
�

) → f (ω�,k) as λ → ∞.

2.3. Examples of estimators defined within the Fourier domain. Many param-
eters or quantities of interest can be written as a linear functional involving the
spectral density function f . In Theorem 2.1 and Remark 2.5, we showed that if
λ is large and the design of locations uniform then E[Jn(ω�,k)] ≈ f (ω�,k) (if
the design is not uniform then there will be an additional multiplicative constant).
Motivated by this observation, in this section we consider estimators (or criterions)
which take the form (1.5). If the locations follow a uniform distribution, then for
some of the examples below it is possible to reduce the (fixed-domain) bias in the
estimator.

2.3.1. The Whittle likelihood. Suppose the stationary spatial process {Z(s);
s ∈ Rd} has spectral density fθ0(ω) [and corresponding covariance cθ0(s)] where
θ0 is unknown but belongs to the compact parameter space �. Matsuda and Yajima
[27] propose using the integrated Whittle likelihood to estimate θ0. More precisely,
they define the Whittle likelihood as

LI,n

(
θ, η2)= ∫

�

(
log
[
fθ (ω) + η2]+ |Jn(ω)|2

[fθ (ω) + η2]
)

dω,

and use (θ̂ , η̂) ∈ arg minθ,η Ln(θ, η) as an estimator of θ and η (where η is an
estimator of the “ridge effect”). Of course, this integral cannot be evaluated in
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practice and a Riemann sum approximation is necessary. Using {ωk = 2πk/λ;k =
(k1, . . . , kd),−Cλ ≤ kj ≤ Cλ}, we approximate the integral with the sum

LS,n

(
θ, η2)= 1

λd

a∑
k=−a

(
log
[
fθ(ωk) + η2]+ |Jn(ωk)|2

[fθ (ωk) + η2]
)
.

A heuristic motivation for the above likelihood is that in the case the locations
are uniformly distributed then {Jn(ωk)} are near uncorrelated random variables
with asymptotic variance fθ0(ωk) + η2

0. If Jn(ωk) were Gaussian, uncorrelated
random variables with variance fθ0(ωk) + η2

0 then LS,n(θ, η2) would be the true
likelihood. The choice of a = Cλ is necessary (where C does not depend on λ),
since |fθ (ω)| → 0 as ‖ω‖ → ∞ (for any norm ‖ · ‖), thus the discretized Whittle
likelihood is only well defined over a bounded frequency grid. The choice of C

is tied to how fast the tails in the parametric class of spectral density functions
{fθ ; θ ∈ �} decay to zero.

If either Assumption 2.3 or 2.4 is satisfied, then we observe from Remark 2.4
that Aλ(

k
λ
; θ0) is a better approximation of var[Jn(ωk)] than fθ0(ωk) [where Aλ(·)

is defined in (2.5)]. Therefore, if Assumption 2.3 or 2.4 is satisfied, a better finite
sample approximation can be obtained by using θ̂ = arg minLS,n(θ) as an estima-
tor of θ , where

(2.6) LS,n

(
θ, η2)= 1

λd

a∑
k=−a

(
log
[
Aλ

(
k

λ
; θ
)

+ η2
]

+ |Jn(ωk)|2
[Aλ(

k
λ
; θ) + η2]

)

and Aλ(
k
λ
; θ) = ∫

[−λ,λ]d T (u
λ
)cθ (u) exp(2iπk′u

λ
) du.

2.3.2. The spectral density estimator. We recall from Theorem 2.1 that
var[Jn(ωk)] ≈ 〈γ, γ0〉f (ωk). Since f (·) is locally constant in a neighbourhood
of ω and motivated by spectral methods in time series, we use f̂λ,n(ω) as a non-
parametric estimator of f (or a constant multiple of it), where

f̂λ,n(ω) =
λ/2∑

k=−λ/2

Wb(ω − ωk)
∣∣Jn(ωk)

∣∣2 = 1

bd
Qa,λ,λ(Wb,0),

Wb(ω) = b−d∏d
j=1 W(

ωj

b
) and W : [−1/2,−1/2] → R is a spectral window. In

this case, we set the number of frequencies a = λ/2, and Assumption 2.5(i) is
satisfied.

2.3.3. A nonparametric nonnegative definite estimator of the spatial covari-
ance. In this section we propose a nonparametric estimator of the covariance.
The estimator is based on the representation

c(u) = 1

(2π)d

∫
Rd

f (ω) exp
(
iω′u

)
dω.
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Since the expectation of |Jn(ωk)|2 is approximately f (ωk), to estimate the spatial
covariance we propose approximating the above integral with a sum and the spec-
tral density with the absolute square of the Fourier transform. However, using the
frequency grid ωk = 2πk

λ
is problematic outside the region [−λ/2, λ/2]d . Instead,

we propose using a finer grid to estimate the covariance, namely

c̃�,n(u) = 1

�d

a∑
k=−a

∣∣Jn(ω�,k)
∣∣2 exp

(
iu′ω�,k

)
, u ∈

[
−�

2
,
�

2

]d
,

where � ≥ 2λ. In this case, a = a(�) can be chosen such that a/� → ∞ as
a → ∞ and � → ∞ [thus Assumption 2.5(ii) is satisfied].

A disadvantage with the above “raw estimator” of the covariance is that there is
no guarantee that it yields a nonnegative definite spatial auto-covariance function.
However, this can easily be remedied by multiplication of c̃�,n(u) with the triangle
kernel. More precisely, we define the estimator

ĉ�,n(u) = T

(
u

�̂

)
c̃�,n(u),

where T (u) =∏d
j=1 T (uj ) and �̂ ≤ �. This covariance estimator has the advan-

tage that it is zero outside the region [−�̂, �̂]d . Moreover, ĉ�,n(u) is a nonnega-
tive definite sequence. To show this result, we use that the Fourier transform of the
triangle kernel, T (u) is sinc2(ω

2 ). Thus, the Fourier transform of ĉ�,n(u) is

f̂�(ω) =
∫
[−�̂,�̂]d

ĉ�,n(u) exp
(−iω′u

)
du

= �̂d

�d

a∑
k=−a

∣∣Jn(ω�,k)
∣∣2 Sinc2

[
�̂

2
(ω�,k − ω)

]
.

Clearly, f̂�(ω) ≥ 0, therefore, the estimator {ĉ�,n(u)} is a nonnegative definite
function, and thus a valid covariance function.

In Appendix J, [36], we illustrate the performance of the nonparametric non-
negative definite estimator of the spatial covariance with some simulations.

2.3.4. A nonlinear least squares estimator of a parametric covariance function.
We recall that the Whittle likelihood can only be defined on a bounded frequency
grid. This can be an issue if the observed locations are dense on the spatial do-
main, and thus contain a large amount of high frequency information which would
be missed by the Whittle likelihood. An alternative method for parameter estima-
tion of a spatial process is to use a different loss function. Motivated by [31], the
discussion on the Whittle estimator in Section 2.3.1 and Theorem 2.1 we define
the quadratic loss function

Ln(θ) = 1

λd

a∑
k=−a

(∣∣Jn(ωk)
∣∣2 − 〈γ, γ0〉fθ (ωk)

)2
,
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and let θ̂n = arg minθ∈� Ln(θ) or equivalently solve ∇θLn(θ) = 0, where

∇θLn(θ) = −2〈γ, γ0〉
λd

a∑
k=−a

∇θfθ (ωk)
{∣∣Jn(ωk)

∣∣2 − 〈γ, γ0〉fθ (ωk)
}

= −〈γ, γ0〉
[
Qa,λ,λ

(
2∇θfθ (·);0

)− 〈γ, γ0〉 2

λd

a∑
k=−a

fθ (ωk)∇θfθ (ωk)

]
.

It is well known that the distributional properties of a quadratic loss function are
determined by its first derivative. In particular, the asymptotic sampling properties
of θ̂n are determined by Qa,λ,λ(2∇θf (·; θ);0). In this case, a can be such that
a/λ → ∞ as λ → ∞ and Assumption 2.5(ii) is satisfied. An estimator of 〈γ, γ0〉
is given in Remark 4.1. Note that in the definition of Ln(θ), 〈γ, γ0〉 can be replaced
with σ 2, in which case one is estimating a multiple of fθ0(ω).

If either Assumption 2.3 or 2.4 is satisfied, then we can replace fθ (ωk) with
Aλ(

k
λ
; θ), to obtain a better fixed-domain approximation.

3. A summary of the sampling properties of Qa,�,λ(g;0). In this section
we consider the sampling properties of Qa,�,λ(g;0) for the general frequency grid
{ω�,k = 2πk

�
}. The proof and more general results can be found in Appendix D,

[36]. To simplify notation in this section we mainly consider the case that the
locations are uniformly distributed.

LEMMA 3.1. Suppose Assumptions 2.1(i), 2.3 and 2.6(a,c) or (b,c) hold. Let
I (g; a

�
) and Aλ(·) be defined as in (1.3) and (2.5), respectively. Then

E
[
Qa,�,λ(g;0)

]= c2

�d

a∑
k=−a

g

(
2πk

�

)
Aλ

(
k

�

)
+ c(0)λd

n�d

a∑
k=−a

g(ω�,k),(3.1)

where c2 = n(n − 1)/2. If we let λ → ∞, then

E
[
Qa,�,λ(g;0)

]= c2I

(
g; a

�

)
+ c(0)λd

n�d

a∑
k=−a

g(ω�,k) + O

(
logλ

λ
+ 1

�

)
.(3.2)

PROOF. See [36], Appendix A. �

We observe an exact expression for the expectation of Qa,�,λ(g;0) is in terms
of the Fourier coefficients Aλ(k/�). However, an approximation of the expection
of Qa,�,λ(g;0) (within the increasing domain framework) is in terms of an integral
of the spectral density function.

We apply the above results to some of the examples considered in the previous
section. The results are given in the general case that the locations are random vari-
ables but not necessarily uniformly distributed (see Theorem 4.2 and Lemma A.2
for the details).
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EXAMPLE 3.1. (i) The Whittle likelihood. Under Assumption 2.2, using The-
orems 2.1 and 4.2, within the increasing domain asymptotics framework we have

E
[
LS,n

(
θ, η2)]

= 1

(2π)d

∫
[−a/λ,a/λ]d

(
log
[
fθ(ω) + η2]+ 〈γ, γ0〉fθ0(ω) + γ0η

2
0

fθ (ω) + η2

)
dω

+ O

(
1

λ

)
,

where fθ0(·) denotes the true spectral density, η2
0 = λdn−1c(0; θ0) [note that η2

0 =
O(λd/n)] with c(s; θ0) the corresponding spatial covariance.

Assuming Assumption 2.3 holds, within the fixed-domain framework the ex-
pectation of (2.6) is

E
[
LS,n

(
θ, η2)]= 1

λd

a∑
k=−a

(
log
[
Aλ

(
k

λ
; θ
)

+ η2
]

+ Aλ(
k
λ
; θ0)

[Aλ(
k
λ
; θ) + η2]

)

+ O

(
1

n

(
a

λ

)2d)
,

where in the above error bound we use that the tails of Aλ(k/λ; θ) decay at the
rate

∏d
i=1 ξ2(ki).

(ii) The nonparametric covariance. Within the increasing domain framework
and using Lemma A.2(ii), [36], for u ∈ [−min(λ,�/2),min(λ,�/2)]d we have

E
[
c̃�,n(u)

]= 〈γ, γ0〉c(u) + O

(
logλ

λ
+ 1

�

)
,

and E[̂c�,n(u)] = 〈γ, γ0〉T ( u
�̂

)c(u)+O(T ( u
�̂

)[ logλ
λ

+ 1
�

]) where 〈γ, γ0〉 is defined
in Theorem 2.1.

In order to understand the properties of c̃�,n(u) within the fixed-domain frame-
work, we assume that Assumption 2.3 holds. If � ≥ 2λ and u ∈ [−λ,λ], then by
using Lemma 3.1 we have

E
[
c̃�,n(u)

]= 1

�d

∞∑
k=−∞

Aλ

(
k

�

)
exp
(
iu′ω�,k

)+ O

(
1

n
+ 1

a

)

= T

(
u

λ

)
c(u) + O

(
1

n
+ 1

a

)
,

where we recall T (·) denotes the triangle kernel.
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In Lemma 3.1, we observe the bias c(0)λd

n�d

∑a
k=−a g(ω�,k). It can be removed

by using a bias corrected version of Qa,�,λ(g;0)

(3.3)

Q̃a,�,λ(g;0) = 1

�d

a∑
k=−a

g(ω�,k)
∣∣Jn(ω�,k)

∣∣2
− λd

�dn

a∑
k=−a

g(ω�,k)
1

n

n∑
j=1

Z(sj )
2.

For the remainder of this section, we focus on this bias corrected estimator. The
analogous result for Qa,�,λ(g;0) can be found in Appendix H, [36].

We show in Appendix D, [36] that in the case that {Z(u);u ∈Rd} is a Gaussian
stationary spatial process

var
[
Q̃a,�,λ(g;0)

]≈ C1

(
a

�

)
1

�d

2a∑
k1,...,kd=−2a

Sinc2
(

λ

�
kπ

)
,

where

C1

(
a

�

)
= 1

(2π)d

∫
−[2πa/�,2πa/�]d

f (ω)2[g(ω)|2 + g(ω)g(−ω)
]
dω.(3.4)

Observe that the rate of convergence of var[Q̃a,�,λ(g;0)] is determined by

2a∑
k1,...,kd=−2a

Sinc2
(

λ

�
kπ

)
=

d∏
i=1

2a∑
ki=−2a

sinc2
(

λ

�
kiπ

)
.

It is this term along with the following result which gives the crucial insight into
the rate of convergence for different frequency grids {ω�,k}. If a → ∞, then

1

�

∞∑
k=−∞

sinc2
(

λ

�
kπ

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

λ
,

λ

�
< 1,

1

�
,

λ

�
∈ Z,

O

(
1

�

)
,

λ

�
> 1 and

λ

�
/∈ Z,

further, if λ/� → ∞ then
∑∞

k=−∞ sinc2( λ
�

kπ) → 1 (see Appendix D, [36] for the
proof). This result implies that

var
[
Q̃a,�,λ(g;0)

]=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

O

(
1

λd

)
, λ < �,

O

(
1

�d

)
, λ ≥ �.
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In other words, the frequency grid ωλ,k = 2πk
λ

or finer will yield a rate of con-
vergence of O(λ−d) and var[Q̃a,�,λ(g;0)] ≈ λ−dC1(

a
�

). However, a coarse fre-
quency grid ω�,k = 2πk

�
where � < λ will yield a slower rate of convergence of

O(�−d). In the theorem below, we make this precise.
For the following theorem, we consider general stationary spatial random fields.

This requires the following definition:

D1

(
a

�

)
= 1

(2π)2d

∫
[−2πa/�,2πa/�]2d

g(ω1)g(ω2)

× f4(−ω1,−ω2,ω2) dω1 dω2.

(3.5)

This term arises if the spatial random field is non-Gaussian.

THEOREM 3.1. Suppose Assumptions 2.1(i), 2.2, 2.5(i) or (ii), 2.6(b,c) and
2.7 hold. Let C1(·) and D1(·) be defined as in (3.4) and (3.5), respectively:

(i) If a fine frequency grid is used ( λ
�

< 1), then

λd var
[
Q̃a,�,λ(g;0)

]= C1

(
a

�

)[
λd

�d

2a∑
k=−2a

Sinc2
(

λ

�
kπ

)]
+ D1

(
a

�

)

+ O
(


(2)
a,�,λ

)
,

(ii) If a coarse frequency grid is used ( λ
�

≥ 1), then

�d var
[
Q̃a,�,λ(g;0)

]= C1

(
a

�

)[ 2a∑
k=−2a

Sinc2
(

λ

�
kπ

)]
+
(

�

λ

)d

D1

(
a

�

)

+ O
(

̃
(2)
a,�,λ

)
,

where 
̃
(2)
a,�,λ is defined in (D.16), Appendix D, [36].

PROOF. See [36], Appendix D. �

As mentioned above, one important implication of the above result is that the
rate of convergence depends on whether the frequency grid is coarser or finer than
1/λ, where λ is the length of the spatial domain. In terms of the asymptotic sam-
pling properties (see Lemma 3.1 and Theorem 3.1), there seems to be little benefit
in using a very fine frequency grid, as it does not reduce the bias or variance (but
is computationally costly).

We observe that if the spatial process is non-Gaussian then an additional term,
D1(a/�), involving the fourth-order cumulant of the spatial process, arises. How-
ever, if the frequency grid is extremely coarse in the sense that λ/� → ∞ as
λ → ∞ and � → ∞, then D1(a/�) is asymptotic negligible compared with the
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leading term which is a function of the spectral density. For example, if λ/� ∈ Z+
then

�d var
[
Q̃a,�,λ(g;0)

]= C1

(
a

�

)
+ O

(


(2)
a,�,λ + �d

λd

)
.

Thus, if λ/� → ∞ as λ → ∞ and � → ∞ [and g(ω) = g(−ω)] we have verified
condition (C.4) in [2],

var[∑a
k=−a g(ω�,k)|Jn(ω�,k)|2]

2
∑a

k=−a |g(ω�,k)|2f (ω�,k)
2

P→ 1,

which is required for their proposed spatial spectral empirical likelihood method-
ology. Therefore, a very coarse grid has the advantage that the term D1(·) is neg-
ligible. However, we see from Lemma 3.1 and Theorem 3.1 that the disadvantage
is that there is a substantial increase in both variance and bias.

Since the grid, ωk = 2πk/λ, yields optimal sampling properties in Section 4 we
focus on deriving sampling properties of Q̃a,λ(g; r), where

Q̃a,λ(g; r) = 1

λd

a∑
k1,...,kd=−a

g(ωk)Jn(ωk)Jn(ωk+r)

− 1

n

a∑
k=−a

g(ωk)
1

n

n∑
j=1

Z(sj )
2e

−is′
jωr .

(3.6)

4. Sampling properties of ˜Qa,λ(g;r). In this section we show that under the
increasing domain framework Q̃a,λ(g; r) [defined (3.6)] is a consistent estimator
of I (g; a

λ
) (or some multiple of it), where I (g; a

λ
) is defined in (1.3). The sampling

properties in the fixed-domain framework are given in Section 4.4.

4.1. The expectation of Q̃a,λ(g; r). We start with the expectation of Q̃a,λ(g;
r). We show if supω∈Rd |g(ω)| < ∞, the choice of a does not play a significant role
in the asymptotic properties of Q̃a,λ(g; r). If a � λ, the analysis of Q̃a,λ(g; r) re-
quires more delicate techniques. We start by stating some pertinent features in
the analysis of Q̃a,λ(g; r), which gives a flavour of our approach. By writing
Q̃a,λ(g; r) as a quadratic form, it is straightforward to show that

E
[
Q̃a,λ(g; r)

]
= c2

a∑
k=−a

g(ωk)
1

λd

∫
[−λ/2,λ/2]2d

c(s1 − s2) exp
(
iω′

k(s1 − s2) − is′
2ωr

)
(4.1)

× h

(
s1

λ

)
h

(
s2

λ

)
ds1 ds2,
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where c2 = n(n − 1)/n2. The proof of Theorem 2.1 is based on making a change
of variables v = s1 − s2 and then systematically changing the limits of the inte-
gral. This method can be applied to the above, if a is such that the ratio a/λ is
fixed for all λ. However, if the frequency grid [−a/λ, a/λ]d is allowed to grow
with λ, applying this brute force method to E[Q̃a,λ(g; r)] has the disadvantage
that it aggregates the errors within the sum of E[Q̃a,λ(g; r)]. Instead, to further
the analysis, we replace c(s1 − s2) by its spectral representation c(s1 − s2) =

1
(2π)d

∫
Rd f (ω) exp(iω′(s1 − s2)) dω and focus on the case that the sampling de-

sign is uniform; h(s/λ) = λ−dI[−λ/2,λ/2](s) (later we consider general sampling
densities). This reduces the first term in E[Q̃a,λ(g; r)] to the Fourier transforms of
step functions, which is the product of sinc functions. Specifically, we obtain

E
[
Q̃a,λ(g; r)

]
= c2

(2π)d

a∑
k=−a

g(ωk)

∫
Rd

f (ω)Sinc
(

λω

2
+ kπ

)
Sinc

(
λω

2
+ (k + r)π

)
dω

= c2

πd

∫
Rd

Sinc(y)Sinc(y + rπ)

[
1

λd

a∑
k=−a

g(ωk)f

(
2y

λ
− ωk

)]
dy,

where the last line above is due to a change of variables y = λω
2 + kπ .

Since the spectral density function is absolutely integrable, it is clear that
[ 1
λd

∑a
k=−a g(ωk)f (

2y
λ

−ωk)] is uniformly bounded over y and that E[Q̃a,λ(g; r)]
is finite for all λ. Furthermore, if f (

2y
λ

− ωk) were replaced with f (−ωk), then
what remains in the integral are two shifted sinc functions, which is zero if
r ∈ Zd/{0}, that is,

E
[
Q̃a,λ(g; r)

]= c2

πd

∫
Rd

Sinc(y)Sinc(y + rπ)

[
1

λd

a∑
k=−a

g(ωk)f (−ωk)

]
dy + R,

where

R = c2

πd

∫
Rd

Sinc(y)Sinc(y + rπ)

×
[

1

λd

a∑
k=−a

g(ωk)

(
f

(
2y

λ
− ωk

)
− f (−ωk)

)]
dy.

In the following theorem, we show that under certain conditions on f , R is asymp-
totically negligible.

THEOREM 4.1. Let I (g; ·) be defined as in (1.3). Throughout the theorem,
we suppose Assumptions 2.1(i) and 2.3 hold. Let b(r) denote the number of zero
values in r :
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(i) If Assumptions 2.5(i) and 2.6(a,c) hold, then we have

(4.2) E
[
Q̃a,λ(g; r)

]=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

O

(
1

λd−b(r)

)
, r ∈ Zd/{0},

I (g;C) + O

(
1

λ

)
, r = 0.

(ii) Suppose Assumptions 2.5(ii) holds and:

(a) Assumption 2.6(b) holds, then supa |E[Q̃a,λ(g; r)]| < ∞.
(b) Assumption 2.6(b,c,d) holds, then we have

E
[
Q̃a,λ(g; r)

]=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

O

(
1

λd−b(r)

d−b(r)∏
j=1

(
logλ + log |mj |)

)
, r ∈ Zd/{0},

I

(
g; a

λ

)
+ O

(
logλ

λ
+ 1

n

)
, r = 0,

where {m1, . . . ,md−b(r)} is the subset of nonzero values in r = (r1, . . . , rd).

(c) If only Assumption 2.6(b,c) holds, then the O( 1
λd−b(r)

∏d−b(r)
j=1 (logλ +

log |mj |)) term in (b) is replaced with the slower rate O( 1
λ
(logλ + log[1 +

‖r‖1])).
Note that the above bounds for (b) and (c) are uniform in a.

PROOF. See [36], Appendix A. �

We observe that if r 
= 0, then Q̃a,λ(g; r) is estimating zero as λ → ∞. It would
appear that Q̃a,λ(g; r) when r 
= 0 does not contain any useful information, how-
ever, in Section 5 we show how these terms can be used to estimate nuisance
parameters.

In order to analyze E[Q̃a,λ(g; r)] in the case that the locations are not from a
uniform distribution, we return to (4.1) and replace c(s1 − s2) and h(·) by their
Fourier representations:

E
[
Q̃a,λ(g; r)

]= c2

πd

∑
j1,j2∈Z

γj1
γj2

1

λd

a∑
k=−a

g(ωk)

∫ ∞
−∞

f

(
2y

λ
− ωk

)
× Sinc(y)Sinc

(
y + (r − j1 − j2)π

)
dy.

This representation allows us to use similar techniques to those used in the uniform
sampling case to prove the following result.

THEOREM 4.2. Let I (g; ·) be defined as in (1.3). Suppose Assumptions 2.1(i)
and 2.2 hold:
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(i) If in addition Assumptions 2.5(i) and 2.6(a,c) hold, then we have

E
[
Q̃a,λ(g; r)

]= 〈γ, γr〉I
(
g; a

λ

)
+ O

(
λ−1),

O(λ−1) is uniform over r ∈ Zd .
(ii) If in addition Assumptions 2.5(ii) and 2.6(b,c) hold, then we have

E
[
Q̃a,λ(g; r)

]= 〈γ, γ−r〉I
(
g; a

λ

)
+ O

(
logλ + log(1 + ‖r‖1)

λ

)
.

PROOF. See [36], Appendix A. �

We observe that by applying Theorem 4.2 to the case that h is uniform (us-
ing that γ0 = 1 else γj = 0) gives E[Q̃a,λ(g; r)] = O(λ−1) for r 
= 0. Hence, in
the case that the sampling is uniform, Theorems 4.1 and 4.2 give similar results,
though the bounds in Theorem 4.1 are sharper.

REMARK 4.1 (Estimation of
∑

j∈Zd |γj |2). The above lemma implies that
E[Q̃a,λ(g;0)] = 〈γ, γ0〉I (g; a

λ
). Therefore, to estimate I (g; a

λ
) we require an esti-

mator of 〈γ, γ0〉. To do this, we recall that

〈γ, γ0〉 = ∑
j∈Z

|γj |2 = 1

λd

∫
[−λ/2,λ/2]d

h

(
ω

λ

)2
dω.

Therefore, one method for estimating the above integral is to define a grid on
[−λ/2, λ/2]d and estimate h(·) at each point on the grid, then to take the average
squared over the grid (see Remark 1, [27]). An alternative, computationally simpler
method, is to use the method proposed in [18]. That is, use

〈̂γ, γ0〉 = 2

n(n − 1)b

∑
1≤j1<j2≤n

K

(
sj1 − sj2

b

)2
,

as an estimator of 〈γ, γ0〉, where K : [−1/2,1/2]d →R is a kernel function. Note
that multiplying the above kernel with exp(−iω′

rsj2) results in an estimator of
〈γ, γr〉. In the case d = 1 and under certain regularity conditions, [18] show if
the bandwidth b is selected in an appropriate way then 〈̂γ, γ0〉 attains the classi-
cal O(n−1/2) rate under suitable regularity conditions (see, also, [5] and [25]). It
seems plausible a similar result holds for d > 1 (though we do not prove it here).
Therefore, an estimator of I (g; a

λ
) is Q̃a,λ(g; r)/〈̂γ, γ0〉.

4.2. The covariance and asymptotic normality. In the previous section, we
showed that the expectation of Q̃a,λ(g; r) depends only on the number of frequen-
cies a through the limit of the integral I (g; a

λ
) [if supωRd |g(ω)| < ∞]. In this sec-

tion, we show that a plays a mild role in the higher order properties of Q̃a,λ(g; r).
We focus on the case that the random field is Gaussian and later describe how the
results differ in the case that the random field is non-Gaussian.
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THEOREM 4.3. Suppose Assumptions 2.1, 2.2 hold. Let U1(r1, r2;ωr1,ωr2)

and U2(r1, r2;ωr1,ωr2) be defined as in equation (C.1), [36].

(i) If Assumption 2.5(i) and 2.6(a,c) also hold. Then uniformly for all 0 ≤
‖r1‖1,‖r2‖1 ≤ C|λ|, we have

λd cov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]= U1(r1, r2;ωr1,ωr2) + O

(
1

λ
+ λd

n

)
and

λd cov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]= U2(r1, r2;ωr1,ωr2) + O

(
1

λ
+ λd

n

)
.

(ii) If Assumption 2.5(ii) and 2.6(b) also hold. Then

λd sup
a,r

var
[
Q̃a,λ(g; r )

]
< ∞

with λd/n → c (where 0 ≤ c < ∞) as λ → ∞ and n → ∞.
(iii) If Assumption 2.5(ii) and 2.6(b,c) also hold. Then uniformly for all 0 ≤

‖r1‖1,‖r2‖1 ≤ C|a| (for some finite constant C) we have

λd cov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]= U1(r1, r2;ωr1,ωr2) + O(
λ,a,n),

λd cov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]= U2(r1, r2;ωr1,ωr2) + O(
λ,a,n),

where


λ,a,n = log2(a)

[
loga + logλ

λ

]
+ λd

n
.(4.3)

PROOF. See [36], Appendix C. �

We now briefly discuss the above results. From Theorem 4.3(ii), we see that
Q̃a,λ(g; r) is a mean squared consistent estimator of 〈γ, γr〉I (g; a

λ
), that is,

E[Q̃a,λ(g; r) − 〈γ, γr〉I (g; a
λ
)]2 = O(λ−d + (

logλ
λ

+ 1
n
)2) as a → ∞ and λ → ∞.

In order to obtain an explicit expression for the variance additional conditions
are required. In particular, Theorem 4.3(iii) states that if the frequency grid is un-
bounded we require some additional conditions on the spectral density function
and some mild constraints on the rate of growth of the frequency domain a. More
precisely, a should be such that a = O(λk) for some 1 ≤ k < ∞.

REMARK 4.2 (Selecting a in practice). The above gives theoretical guide-
lines. In practice, if supω∈Rd |g(ω)| < ∞ we suggest plotting |Jn(ωk)|2 against
ωk . |Jn(ωk)|2 will drop close to zero for large ‖ωk‖1 (see Figure 1, Appendix J,
[36]). Thus, a should be chosen such that it lies after this point. The precise value
does not matter too much as the results are not too sensitive to the choice of a.
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The expressions for cov[λd cov[Q̃a,λ(g; r1), Q̃a,λ(g; r2)]] (see equation (C.1),
[36]) are unwieldy; however, some simplifications can be made if ‖r1‖1 � λ and
‖r2‖1 � λ.

COROLLARY 4.1. Suppose Assumptions 2.2, 2.5 and 2.6(a,c) or 2.6(b,c) hold.
Then

(4.4)
U1(r1, r2;ωr1,ωr2) = �r1−r2C1 + O

(
εr1,r2(λ)

)
,

U2(r1, r2;ωr1,ωr2) = �r1+r2C2 + O
(
εr1,r2(λ)

)
,

where �r =∑
j1+j2+j3+j4=r γj1

γj2
γj3

γj4
, εr1,r2(λ) = ‖r1‖1+‖r2‖1

λ
and

C1 = 1

(2π)d

∫
2π [−a/λ,a/λ]d

f (ω)2[∣∣g(ω)
∣∣2 + g(ω)g(−ω)

]
dω,

C2 = 1

(2π)d

∫
2π [−a/λ,a/λ]d

f (ω)2[g(ω)g(−ω) + g(ω)g(ω)
]
dω.

Recall that C1 = C1(a/λ) [where C1(·) is defined in (3.4)].

In the following theorem, we derive bounds for the cumulants of Q̃a,λ(g; r),
which are subsequently used to show asymptotical normality of Q̃a,λ(g; r).

THEOREM 4.4. Suppose Assumptions 2.1, 2.2, 2.5 and 2.6(b) hold. Then for
all q ≥ 3 and uniform in r1, . . . , rq ∈ Zd , we have

cumq

[
Q̃a,λ(g, r1), . . . , Q̃a,λ(g, rq)

]= O

(
log2d(q−2)(a)

λd(q−1)

)
(4.5)

if λd

n log2d (a)
→ 0 as n → ∞, a → ∞ and λ → ∞.

PROOF. See [36], Section E. �

From the above theorem, we see that if λd

n log2d (a)
→ 0 and log2(a)/λ1/2 → 0

as λ → ∞, n → ∞ and a → ∞, then we have λdq/2 cumq(Q̃a,λ(g, r1), . . . ,

Q̃a,λ(g, rq)) → 0 for all q ≥ 3. Using this result, we show asymptotic normal-
ity of Q̃a,λ(g, r ).

THEOREM 4.5. Suppose Assumptions 2.1, 2.2, 2.5 and 2.6(b,c) hold. Let C1
and C2, be defined as in Corollary 4.1. Under these conditions, we have

λd/2�−1/2

⎛⎜⎜⎝�
(
Q̃a,λ(g, r ) − 〈γ, γ−r〉I

(
g; a

λ

))


(
Q̃a,λ(g, r ) − 〈γ, γ−r〉I

(
g; a

λ

))
⎞⎟⎟⎠ D→ N (0, I2),
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where

� = 1

2

(�(�0C1 + �2rC2) −
(�2rC2)

−
(�2rC2) �(�0C1 − �2rC2)

)

with log2(a)

λ1/2 → 0 and λd/n → 0 as λ → ∞, n → ∞ and a → ∞.

PROOF. See [36], Appendix E. �

It is likely that the above result also holds when the assumption of Gaussianity
of the spatial random field is relaxed and replaced with the conditions stated in
Theorem 4.6 (below) together with some mixing-type assumptions. We leave this
for future work. However, in the following theorem, we obtain an expression for
the variance of Q̃a,λ(g; r) for non-Gaussian random fields.

THEOREM 4.6. Let us suppose that {Z(s); s ∈ Rd} is a fourth-order station-
ary spatial random field that satisfies Assumption 2.1(i), 2.2, 2.5, 2.7 and 2.6(a,c)
or 2.6(b,c) are satisfied.

If ‖r‖1,‖r‖2 � λ, then we have

λd cov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
= �r1−r2(C1 + D1) + O

(

λ,a,n + (aλ)d

n2 + εr1,r2(λ)

)
,

λd cov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
= �r1+r2(C2 + D2) + O

(

λ,a,n + (aλ)d

n2 + εr1,r2(λ)

)
,

where C1 and C2 are defined as in Corollary 4.1 and

D1 = 1

(2π)2d

∫
2π [−a/λ,a/λ]2d

g(ω1)g(ω2)f4(−ω1,−ω2,ω2) dω1 dω2,

D2 = 1

(2π)2d

∫
2π [−a/λ,a/λ]2d

g(ω1)g(ω2)f4(−ω1,ω2,−ω2) dω1 dω2.

PROOF. See [36], Appendix C. �

We observe that to ensure the term (aλ)d

n2 → 0 we need to choose a such that
ad = o(n2/λd). In contrast for Gaussian random fields, a = O(λk) for some 1 ≤
k < ∞ was sufficient for obtaining an expression for the variance and asymptotic
normality.
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4.3. Mixed domain verses pure increasing domain asymptotics. The asymp-
totics in this paper are mainly done using mixed domain asymptotics, that is, as the
domain λ → ∞, the number of locations observed grows at a faster rate than λ, in
other words λd/n → 0 as n → ∞. However, as rightly pointed out by a referee,
for a given application it may be difficult to disambiguate Mixed Domain (MD)
from the Pure Increasing Domain (PID) setup, where λd/n → c (0 < c < ∞). We
briefly discuss how the results change under PID asymptotics and the implications
of this. We find that the results point to a rather intriguing difference for spatial
processes that are Gaussian and non-Gaussian.

In the case that spatial process is Gaussian, using both MD and PID asymp-
totics we have λd var[Q̃a,λ(g; r )] = O(1) [see Theorem 4.3(i)]. Furthermore, an
asymptotic expression for the variance is

λd var
[
Q̃a,λ(g; r )

]= �0[C1 + E1] + O
(

λ,a,n + εr,r(λ)

)
,

where E1 = O(λd/n) is a function of the spectral density; this term is not asymp-
totically negligible under PID asymptotics. From the above, we see that if we
choose a such that a = O(λk) for some 1 < k < ∞ then similar results as those
stated in Sections 4.1 and 4.2 hold under PID asymptotics. In the case that the
process is non-Gaussian, using Theorem 4.6 we have

λd var
[
Q̃a,λ(g; r )

]= �0[C1 + D1 + E1 + F1] + O

(

λ,a,n + (aλ)d

n2 + εr,r(λ)

)
,

where F1 = O(λd/n) is a function of the fourth-order spectral density function.
However, there arises an additional term O((aλ)d/n2). From the proof of The-

orem 4.6, we see if (aλ)d

n2 → ∞ as a,λ,n → ∞, then λd var[Q̃a,λ(g; r )] is not

bounded. Thus, the number of frequencies, a, should be such that (aλ)d/n2 → 0.
In the case of MD asymptotics, we choose a such that (aλ)d/n2 → 0 and
log3(a)/λ → 0. Under these two conditions, the frequency grid can be un-
bounded and grow at the rate a/λ as λ → ∞. However, under PID asymp-
totics [where λ = O(n1/d)] in order to ensure that (aλ)d/n2 = O(1) we require
a = O(n1/d) = O(λ). This constrains the frequency grid to be bounded. To sum-
marize, in the case that the spatial process is non-Gaussian and n = O(λd) in
order that var[Q̃a,λ(g; r )] → 0 as λ → ∞, the frequency grid must be bounded or
a coarser frequency grid ω�,k (where λ > �) used (see Section 3).

4.4. Fixed-domain asymptotics. We now turn our attention to asymptotic sam-
pling properties of Q̃a,λ(g;0) when the domain λ is kept fixed but the number of
sampling locations n → ∞. In order to simplify notation, we consider the case
d = 1. We will assume the locations, {sn,j }, lie close to a lattice and satisfy As-
sumption 2.4. It is clear that as n → ∞ the Fourier transform Jn(ωk) can be ap-
proximated by the Fourier transform over the continuum

Jλ

(
k

λ

)
= 1

λ1/2

∫ λ/2

−λ/2
Z(s) exp

(
2πiks

λ

)
ds.
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Thus, asymptotic expressions for the mean and variance of Q̃a,λ(g;0), where λ is
fixed but n → ∞ are in terms of the covariances of {Jλ(

k
λ
)}k∈Z. In Appendix G,

[36] we show that

var
[
Jλ

(
k

λ

)]
= Aλ

(
k

λ

)
and

cov
[
Jλ

(
k1

λ

)
,Jλ

(
k2

λ

)]
= (−1)k1−k2+1

π(k1 − k2)

[
Bλ

(
k1

λ

)
− Bλ

(
k2

λ

)]
,

where

(4.6)

Aλ

(
k

λ

)
=
∫ λ

−λ

(
1 − |u|

λ

)
c(u)e2πiu/λ du and

Bλ

(
k

λ

)
=
∫ λ

0
c(u) sin

(
2πku

λ

)
du.

These expressions are used to prove the following result.

THEOREM 4.7. Suppose Assumptions 2.1, 2.4 and 2.6(e) hold. Then keeping
λ fixed but letting n → ∞ we have

E
[
Q̃a,λ(g;0)

]= 1

λ

a∑
k=−a

g(ωk)Aλ

(
k

λ

)
+ O

(
1

n

[
a∑

k=−a

(|k| + 1
)∣∣g(ωk)

∣∣])(4.7)

and if supω∈R |g(ω)| < ∞

var
[
Q̃a,λ(g;0)

]= 1

λ2

∞∑
k1,k2=−∞

g(ωk)g(ωk1)Bλ(k1, k2)

+ O

(
a4

n2 + a loga

n
+ 1

a

)
,

(4.8)

where

Bλ(k1, k2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2I (k = 0)Aλ(0)2

+ I (k 
= 0)

[
Aλ

(
k

λ

)2
+ 1

π2k2 Bλ

(
k

λ

)2]
, k1 = k2 (= k),

1

π2(k1 − k2)2

[
Bλ

(
k1

λ

)
− Bλ

(
k2

λ

)]2

+ 1

π2(k1 + k2)2

[
Bλ

(
k1

λ

)
+ Bλ

(
k2

λ

)]2
, k1 
= k2,

and Aλ(·) and Bλ(·) are defined in (4.6).

PROOF. See [36], Appendix G. �
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From the above result, we see that if supω∈R |g(ω)| < ∞ and the number of
terms in the definition of Q̃a,λ(g;0), grows at a sufficiently slow rate as n → ∞
then Q̃a,λ(g;0) is asymptotically an unbiased estimator of

∑
k∈Z g(ωk)Aλ(

k
λ
) and

the variance bounded [which fits with the conclusions of Theorem 4.3(ii)].
We now consider a special example of an estimator defined within the frequency

domain and later compare it with the Gaussian maximum likelihood estimator for
the same problem. More precisely, we consider the case that the covariance of
a spatial Gaussian process is σ 2c(u) where c(u) is known but σ 2 is unknown
and our aim is to estimate σ 2. Let Aλ(

k
λ
) = ∫ λ

−λ c(u)(1 − |u|/λ) exp(2πiku/λ)du.
Since E[|Jn(ωk)|2] = σ 2Aλ(

k
λ
) + O(n−1(λ + |k|)), it seems natural to use σ̂ 2 as

an estimator of σ 2, where

σ̂ 2 = 1

a

a∑
k=1

|Jn(ωk)|2
Aλ(

k
λ
)

.

Note σ̂ 2 corresponds to the Whittle likelihood estimator of σ 2 when c(·) is known.
Using Theorem 4.7, equation (4.7) we have

E
[
σ̂ 2]= σ 2 + O

(
1

n

[
1

a

a∑
k=1

(|k| + 1
)|k|2

])
.

Hence, if a is chosen such that the error above goes to zero as n → ∞ then σ̂ 2

is asymptotically an unbiased estimator of σ 2. Now we evaluate its variance. By
using Corollary G.1, [36] it can be shown that

(4.9)

var
[
σ̂ 2]= 1

a2

a∑
k=1

Bλ(k, k)

Aλ(
k
λ
)2

+ 2

a2

a∑
k1=1

a∑
k2=k1+1

Bλ(k1, k2)

Aλ(
k1
λ
)Aλ(

k2
λ
)

+ O

(
a6

n2 + a3

n

)
.

But here we run into a problem. One would expect that if a is chosen such that
a3/n → 0 as a → ∞ and n → ∞, then var[σ̂ 2] = O(a−1). This is true for the
first term on the right-hand side of the above, but it is not necessarily true for the
second term, which for most covariances will remain of order O(1) for all a. The
problem is that Aλ(

k
λ
) is a continuous function on the torus [−1,1], thus for large k

Aλ(
k
λ
) decays at the rate k−2. On the other hand, Bλ(k1/λ, k2/λ) is a function of

Bλ

(
k1

λ

)
− Bλ

(
k2

λ

)
= 1

2

∫ λ

0
c(u) sin

(
k1 − k2

λ
πu

)
cos
(

k1 + k2

λ
πu

)
du.

For most covariances c(0) 
= c(λ), consequently, using integration by parts we see
that |Bλ(

k1
λ
) − Bλ(

k2
λ
)| ∼ |k1 − k2|−1 (a faster rate of convergence is not possible).

Applying these bounds to (4.9) gives var[σ̂ 2] = O(1). Thus, even as n → ∞ and
a → ∞, σ̂ 2 is not a mean squared consistent estimator of σ 2. One exception is
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when c(u) = c(λ − u) for all u ∈ [0, λ/2], in this case Bλ(
k
λ
) = 0 for all k and

var[σ̂ 2] ≈ a−1.
Therefore, in general, it seems that we cannot consistently estimate σ 2 using a

Fourier domain approach. We conjecture that the only transformation of the data
that will consistently estimate σ 2 is a transformation with the eigenfunctions as-
sociated with the covariance operator c. In contrast, [40] and [41] showed that
if the maximum likelihood were used to estimate σ 2 in a Gaussian random field
with covariance σ 2c(·) where c(·) is a known Matern covariance function, then
even within the fixed-domain framework σ 2 can be consistently estimated. This
demonstrates that there exist situations where there are clear gains by working
within the likelihood framework (if the correct distribution is specified). However,
if the true covariance is c(u) = c(u; θ) and θ is also unknown, then even within
the Gaussian likelihood framework one cannot consistently estimate σ 2 and θ .

5. A Studentized ˜Qa,λ(g;0)-statistic. The expression for the variance
Q̃a,λ(g;0) given in the examples above, is rather unwieldy and difficult to estimate
directly. In this section we describe a simple method for estimating the variance of
Q̃a,λ(g;0) under the assumption the locations are uniformly distributed. This es-
timator is used to obtain a simple Studentized statistic for Q̃a,λ(g;0). We assume
in this section that Q̃a,λ(g;0) is a real random variable. Our approach is motivated
by the method of orthogonal samples for time series proposed in [37], where the
idea is to define a sample which by construction shares some of the properties as
the estimator of interest. In this section we show that {Q̃a,λ(g; r); r 
= 0} is an
orthogonal sample associated with Q̃a,λ(g;0).

We will assume, for ease of presentation, that the spatial random field is Gaus-
sian. Using Theorem 4.1 we have E[Q̃a,λ(g;0)] = I (g; a

λ
) + o(1). Furthermore,

noting that the Fourier coefficients of h(·) for uniformly sampled locations are
γ0 = 1 and γj = 0 if j 
= 0, using Theorem 4.3 we have

λd var
[
Q̃a,λ(g;0)

]= C1 + O(
λ,a,n).

In contrast, we observe that if no elements of the vector r are zero, then by The-
orem 4.1 E[Q̃a,λ(g; r)] = O(

∏d
i=1[logλ + log |ri |]/λd) (slightly slower rates are

obtained when r contains zeros). In other words, Q̃a,λ(g; r) is (asymptotically)
estimating zero. On the other hand, using Theorem 4.3 we have

λd cov
[�Q̃a,λ(g; r1),�Q̃a,λ(g; r2)

]
=
⎧⎪⎨⎪⎩

1

2
C1 + O

(

λ,a,n + ‖r‖1

λ

)
, r1 = r2 (= r),

O(
λ,a,n), r1 
= r2, r1 
= −r2.

A similar result holds for {
Q̃a,λ(g; r)}, furthermore we have λd cov[�Q̃a,λ(g;
r1),
Q̃a,λ(g; r2)] = O(
λ,a,n).
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In summary, if ‖r‖1 is not too large, then {�Q̃a,λ(g; r),
Q̃a,λ(g; r)} are “near
uncorrelated” random variables whose variance is approximately the same as
Q̃a,λ(g;0)/

√
2. This suggests we use {�Q̃a,λ(g; r),
Q̃a,λ(g; r); r ∈ S} to es-

timate var[Q̃a,λ(g;0)], where the set S is defined as

(5.1) S = {
r; ‖r‖1 ≤ M, r1 
= r2 and all elements of r are nonzero

}
.

This leads to the following estimator:

(5.2)

ṼS = λd

2|S|
∑
r∈S

(
2
∣∣�Q̃a,λ(g; r)

∣∣2 + 2
∣∣
Q̃a,λ(g; r)

∣∣2)

= λd

|S|
∑
r∈S

∣∣Q̃a,λ(g; r)
∣∣2,

where |S| denotes the cardinality of the set S . Note that we specifically select the
set S such that no element r contains zero, this is to ensure that E[Q̃a,λ(g; r)] is
small and does not induce a large bias in ṼS

In the following theorem, we obtain a mean squared bound for ṼS .

THEOREM 5.1. Let ṼS be defined as in (5.2), where S is defined in (5.1).
Suppose Assumptions 2.1, 2.3 and 2.6(a,b,c) hold and either Assumption 2.5(i) or
(ii) holds. Then we have

E
(
ṼS − λd var

[
Q̃a,λ(g;0)

])2 = O
(|S|−1 + |M|λ−1 + 
λ,a,n + λ−d log4d(a)

)
as λ → ∞, a → ∞ and n → ∞ [where 
a,λ,n is defined in (4.3)].

PROOF. See [36], Appendix I. �

Thus, it follows from the above result that if the set S grows at a rate such
that |M|λ−1 → 0 as λ → ∞, then ṼS is a mean square consistent estimator of
λd var[Q̃a,λ(g;0)]. We use this result to define an asymptotically pivotal statistic.
Let

TS = λd/2[Q̃a,λ(g;0) − I (g; a
λ
)]√

ṼS
.

By using Theorem E.1 in [36], we can immediately show that for fixed S ,

TS
D→ t2|S| as λ → ∞. Therefore, TS is asymptotically pivotal and can be used

to construct confidence intervals and test hypothesis about the parameter I (g; a
λ
).

We note that the same approach and Studentization can be used in the case
that the random field is non-Gaussian. However, it is unclear how to relax the
assumption that the locations are uniformly distributed. This is because in the case
of a nonuniform design E[Q̃a,λ(g; r)] (r 
= 0) will not, necessarily, be estimating
zero.
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Supplement to “Statistical inference for spatial statistics defined in the
Fourier domain” (DOI: 10.1214/17-AOS1556SUPP; .pdf). The supplement con-
tains the proofs for all the results of the main article and some related results.
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