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STRONG ORTHOGONAL ARRAYS OF STRENGTH TWO PLUS
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Strong orthogonal arrays were recently introduced and studied in He and
Tang [Biometrika 100 (2013) 254–260] as a class of space-filling designs for
computer experiments. To enjoy the benefits of better space-filling proper-
ties, when compared to ordinary orthogonal arrays, strong orthogonal arrays
need to have strength three or higher, which may require run sizes that are
too large for experimenters to afford. To address this problem, we introduce
a new class of arrays, called strong orthogonal arrays of strength two plus.
These arrays, while being more economical than strong orthogonal arrays of
strength three, still enjoy the better two-dimensional space-filling property of
the latter. Among the many results we have obtained on the characterizations
and constructions of strong orthogonal arrays of strength two plus, worth spe-
cial mention is their intimate connection with second-order saturated designs.

1. Introduction. Computer experiments call for space-filling designs [Fang,
Li and Sudjianto (2006), Santner, Williams and Notz (2003)]. One approach to
finding such designs is to employ an algorithmic search based on a distance or
discrepancy criterion. Though flexible, this approach is computer-intensive and
quickly becomes ineffective for large problems. Design selection based on a
model-dependent criterion is another good idea to use when experiments are con-
ducted in phases. A tentative model built using the data from one phase of exper-
imentation can then be used to guide the selection of design points for the next
phase of experimentation. The most attractive approach to constructing space-
filling designs is that based on orthogonal arrays or similar structures. Designs
so constructed enjoy guaranteed space-filling properties. As this approach is about
general theoretical constructions, computing is not an issue, unless one wants to
conduct an algorithmic search on top of theoretical constructions.

The idea goes back to McKay, Beckman and Conover (1979) who introduced
Latin hypercubes, which are orthogonal arrays of strength one. Owen (1992)
proposed the use of randomized orthogonal arrays and Tang (1993) constructed
orthogonal array based Latin hypercubes. Both classes of designs achieve t-
dimensional space-filling when orthogonal arrays of strength t are used. Inspired
by (t,m, s)-nets from quasi-Monte Carlo [Niederreiter (1992)], He and Tang
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(2013) introduced and studied strong orthogonal arrays (SOAs). Such arrays of
strength t are more space-filling in any g < t dimensions than comparable ordi-
nary orthogonal arrays while being as space-filling in t dimensions as the latter.
As Latin hypercubes, based on either class of arrays, all achieve the maximum
stratification in one-dimension, and to enjoy the benefits of SOAs, they need to be
of strength 3 or higher, which may result in prohibitively large run sizes for certain
investigations.

We address this problem in this paper by introducing SOAs of strength 2+. This
new class of arrays retains the two-dimensional space-filling property of SOAs of
strength 3 while having more economical run sizes than the latter. The paper then
goes on to study the characterizations and constructions of SOAs of strength 2+.
Among the many results, we have obtained on SOAs of strength 2+, a surpris-
ing finding is their intimate connection with second-order saturated (SOS) designs
introduced by Block and Mee (2003).

Here is a brief preview of the paper. Section 2 introduces background, gives a
formal definition of SOAs of strength 2+, and then provides a general character-
ization of such arrays. We consider in Section 3 characterizing and constructing
SOAs of strength 2+ using 2m−p designs. A key result in this section is the char-
acterization of SOAs of strength 2+ through SOS designs. Some construction re-
sults for SOS designs are also presented here. Section 4 presents similar results but
from using sm−p (s > 2) designs. We then examine in Section 5 a generalization
of SOAs of strength 2+ and their construction. Section 6 concludes the paper.

2. Defining and characterizing SOAs of strength two plus.

2.1. Orthogonal arrays and strong orthogonal arrays. An n × m matrix with
entries from {0,1, . . . , sj − 1} in the j th column is an orthogonal array of n runs
for m factors, and having strength t if all possible combinations appear with the
same frequency in any of its n × t submatrices. We use OA(n,m, s1 × · · · × sm, t)

to denote such an array. The array is symmetric if s1 = · · · = sm = s in which
case a simpler notation OA(n,m, s, t) is used, and it is called asymmetric other-
wise. Hedayat, Sloane and Stufken (1999) is an excellent general reference for
orthogonal arrays. Many useful sources of information are also available in Dey
and Mukerjee (1999) and Cheng (2014).

Inspired by the notion of nets from quasi-Monte Carlo, He and Tang (2013)
introduced SOAs for computer experiments. An elementary interval in base s is an
interval in [0,1)m of form

∏m
j=1[cj/s

dj , (cj +1)/sdj ), where nonnegative integers

cj and dj satisfy 0 ≤ cj < sdj . For 0 ≤ w ≤ k, a (w, k,m)-net in base s is a set of
sk points in [0,1)m such that every elementary interval in base s of volume sw−k

contains exactly sw points [Niederreiter (1992)].
An n×m matrix with entries from {0,1, . . . , st − 1} is called an SOA of n runs,

m factors, st levels and strength t if any subarray of g columns for any g with
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1 ≤ g ≤ t can be collapsed into an OA(n, g, su1 × · · · × sug , g) for any positive
integers u1, . . . , ug with u1 + · · · + ug = t , where collapsing st levels into suj

levels is according to [a/st−uj ] for a = 0,1, . . . , st −1. We use SOA(n,m, st , t) to
denote such an array. As an SOA(n,m, st , t) is collapsible into an OA(n,m, s, t),
we must have n = λst for some integer λ. This λ is called the index of the SOA.

If λ = sw for some integer w, then the existence of an SOA(λst ,m, st , t) is
equivalent to that of a (w, k,m)-net in base s where k = w + t [He and Tang
(2013)]. As SOAs are defined without restricting the index to be a power of s, they
provide a broader concept than (w, k,m)-nets. For more details on the relationship
between the two, we refer the reader to He and Tang (2013).

From the above general definition of SOAs, an SOA(n,m, s2,2) of strength 2
is an orthogonal array of strength one in itself and becomes an orthogonal array of
strength 2 if its s2 levels are collapsed into s levels using [a/s]. Thus, in any two
dimensions, an SOA(n,m, s2,2) achieves a stratification on an s × s grid just like
an OA(n,m, s,2). This means that an SOA(n,m, s2,2) is as space-filling as but
no better than an OA(n,m, s,2) in two-dimensions.

SOAs of strength t ≥ 3 are more space-filling than comparable orthogonal ar-
rays. An SOA(n,m, s3,3) of strength 3 achieves stratifications on s2 ×s and s ×s2

grids in two-dimensions and s × s × s grids in three-dimensions. Whereas an
OA(n,m, s,3) achieves stratifications on s × s × s grids in three-dimensions, it
only promises stratifications on s × s grids in two-dimensions. The better space-
filling property in two-dimensions offered by an SOA(n,m, s3,3) is evident.

It is quite remarkable that SOAs of strength 3 can be constructed from an or-
thogonal array of strength 3 at almost no cost. We know that an SOA(n,m, s3,3)

can be constructed from any OA(n,m + 1, s,3) [He and Tang (2013)] or a semi-
embeddable OA(n,m, s,3) [He and Tang (2014)]. As much satisfying as these
results are, SOAs of strength 3 may require run sizes that are too large for certain
scientific investigations. A new class of arrays, SOAs of strength 2+, to be intro-
duced next, is aimed at solving this problem. In a nutshell, SOAs of strength 2+
are SOAs of strength 2 that possess the two-dimensional space-filling property of
SOAs of strength 3.

2.2. Strong orthogonal arrays of strength 2+.

DEFINITION 1. An n×m matrix with entries from {0,1, . . . , s2 − 1} is called
a strong orthogonal array of strength 2+, and with n runs and m factors of s2

levels, if any subarray of two columns can be collapsed into an OA(n,2, s2 × s,2)

and an OA(n,2, s × s2,2). We denote this array by SOA(n,m, s2,2+).

Essentially, an SOA(n,m, s2,2+) is an SOA(n,m, s2,2) with a better two-
dimensional space-filling property. While an SOA(n,m, s2,2) only promises
stratifications on s × s grids in two-dimensions, an SOA(n,m, s2,2+) achieves
stratifications on s2 × s and s × s2 grids in two-dimensions. This property of strat-
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ifications on finer grids in two-dimensions is what makes an SOA(n,m, s3,3) bet-
ter than an OA(n,m, s,3) when it comes to constructing designs for computer
experiments.

EXAMPLE 1. An SOA(16,10,4,2+) is given below:

2 2 2 2 2 2 0 0 0 0
2 2 0 2 0 0 1 2 2 2
2 0 2 0 2 1 2 1 2 2
2 0 0 0 0 3 3 3 0 0
0 2 2 1 1 2 2 2 1 2
0 2 0 1 3 0 3 0 3 0
0 0 2 3 1 1 0 3 3 0
0 0 0 3 3 3 1 1 1 2
1 1 1 2 2 2 2 2 2 1
1 1 3 2 0 0 3 0 0 3
1 3 1 0 2 1 0 3 0 3
1 3 3 0 0 3 1 1 2 1
3 1 1 1 1 2 0 0 3 3
3 1 3 1 3 0 1 2 1 1
3 3 1 3 1 1 2 1 1 1
3 3 3 3 3 3 3 3 3 3

One can check that any array of two columns is collapsible into an OA(16,2,4×
2,2) and an OA(16,2,2 × 4,2). An SOA(16,7,8,3) enjoys the same two-
dimensional space-filling property but only allows the study of 7 factors as there
does not exist an SOA(16,m,8,3) for m ≥ 8 [He and Tang (2013), Theorem 2]. In
contrast, the above SOA(16,10,4,2+) is able to accommodate up to 10 factors.

SOAs of strength t can be completely characterized by generalized orthogonal
arrays [He and Tang (2013)]. A similar result can also be established for SOAs of
strength 2+.

PROPOSITION 1. An SOA(n,m, s2,2+), say D, exists if and only if there
exist two arrays A and B where A = (a1, . . . , am) is an OA(n,m, s,2) and B =
(b1, . . . , bm) is an OA(n,m, s,1) such that (aj , ak, bk) is an orthogonal array of
strength 3 for any j �= k. The three arrays are linked through D = sA + B .

The proof is similar to that for the characterization of SOAs of strength t as in
He and Tang (2013), and is thus omitted.

REMARK 1. In Proposition 1, array A is not required to have strength 3, but
if it does, then an SOA(n,m, s3,3) can be constructed. Dropping this requirement
of strength 3 for array A is a hallmark of SOAs of strength 2+. It allows designs
for more factors to be constructed, as shown in Example 1.
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3. Characterization and construction using 2m−p designs. This section ex-
amines how to construct SOAs of strength 2+ using regular 2m−p designs. More
specifically, we consider the construction of D, an SOA(n,m,4,2+), from A and
B through D = 2A + B as in Proposition 1, where the columns of A and B are
selected from a saturated two-level regular design. Regular two-level designs are
most commonly and conveniently studied with their two levels denoted by ±1,
an approach we adopt here. When A and B have levels ±1, they can be made to
have levels 0,1 by (A + 1)/2 and (B + 1)/2 where, for example, A + 1 denotes
the matrix obtained by adding 1 to all elements of A. Because of this, instead of
D = 2A + B , we should be using

(1) D = 2
{
(A + 1)/2

} + (B + 1)/2 = A + B/2 + 3/2

in constructing D from A and B that have entries ±1.
A regular saturated design S of n = 2k runs for n − 1 factors can be obtained

by first writing down a full factorial for k factors and then adding all possible
interaction columns. If we regard S as a set of n−1 columns, then a subset C of m

columns is a 2m−p design where p = m−k, which is guaranteed to have resolution
III or higher. The set of columns that are not in C is the complementary design of
C, which we denote by C̄ = S \ C. Because S is regular, it has the property that
ab ∈ S for any a, b ∈ S, a �= b, where ab stands for the interaction column of
a and b. Block and Mee (2003) introduced the notion of second-order saturated
(SOS) designs to describe those designs of which all degrees of freedom can be
used to estimate main effects or two-factor interactions. In our notation, a design
C is an SOS design if any d ∈ C̄ can be written as d = ab for some a, b ∈ C.

THEOREM 1. If an SOA of strength 2+ is to be constructed through (1) where
the columns of A and B are selected from S, a saturated regular design, then it is
necessary and sufficient that Ā is an SOS design.

PROOF. Let D = A + B/2 + 3/2 in (1) be an SOA of strength 2+. We need
to show that Ā is SOS. By Proposition 1, A = (a1, . . . , am) and B = (b1, . . . , bm)

have the property that (aj , ak, bk) is of strength 3 for any j �= k, which is impossi-
ble if bk = ak or bk = aj . This implies that bk ∈ Ā for any k. It is also clear that if
akbk = aj , then (aj , ak, bk) cannot have strength 3. This shows that akbk ∈ Ā. Let
b′
k = akbk ∈ Ā. We then have ak = bkb

′
k where bk, b

′
k ∈ Ā, proving that Ā is SOS.

Now suppose Ā is SOS. Then aj = bjb
′
j for some bj , b

′
j ∈ Ā. Choose B =

(b1, . . . , bm). Since ajbj = b′
j ∈ Ā, we have that ajbj �= ak for any k, which means

that (aj , bj , ak) must have strength 3. Invoking Proposition 1, we conclude that D

obtained from (1) is an SOA of strength 2+. �

The proof of the sufficiency part shows that an SOA(2k,m,4,2+) can be con-
structed from an SOS design C as follows:

Step 1. Take A = C̄. Write A = (a1, . . . , am).
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Step 2. Since C is an SOS design, we must have aj = bjb
′
j for some bj , b

′
j ∈ C.

Take B = (b1, . . . , bm).
Step 3. Obtain D, an SOA(2k,m,4,2+), using equation (1).

EXAMPLE 2. Let (a1, a2, a3, a4) be a full 24 factorial in 16 runs. Then

S = {a1, a2, a3, a4, a1a2, a1a3, a1a4, a2a3, a2a4, a3a4,

a1a2a3, a1a2a4, a1a3a4, a2a3a4, a1a2a3a4}
is a saturated design of 16 runs in 15 factors. One can check that C = {a1, a2, a3,

a4, a1a2a3a4} is an SOS design. According to the construction method above, ma-
trix A and B can be obtained as follows:

A = C̄ = {a1a2, a1a3, a1a4, a2a3, a2a4, a3a4, a1a2a3, a1a2a4, a1a3a4, a2a3a4}
and one choice for B is B = (a1, a1, a1, a2, a2, a3, a4, a3, a2, a1). Then D = A +
B/2 + 3/2 is an SOA(16,10,4,2+), one version of which has been displayed in
Example 1.

We now present some constructions of SOS designs. The saturated design S of
n = 2k runs for n − 1 factors is based on k independent columns, which we now
denote by a1, . . . , ak1 , b1, . . . , bk2 where k = k1 + k2. Further let P be a subset of
S consisting of a1, . . . , ak1 and all their interaction columns, and similarly Q be
a subset of S consisting of b1, . . . , bk2 and all their interaction columns. To avoid
the trivial cases, we let k1 ≥ 2 and k2 ≥ 2 for the rest of the section. Consider the
following four design constructions:

(i) C1 = P ∪ Q,
(ii) C2 = (P \ {a1}) ∪ (Q \ {b1}) ∪ {a1b1},

(iii) C3 = (P \ {a1}) ∪ (a1Q),
(iv) C4 = (b1P) ∪ (a1Q \ {a1b1}).
PROPOSITION 2. Designs C1, C2, C3 and C4 given above are all SOS designs.

The proof of Proposition 2 is a bit tedious but quite straightforward, and thus
omitted.

Let mk be the largest m for an SOA(2k,m,4,2+) based on regular designs to
exist. Then the following result can be established.

THEOREM 2. We have that

2k − 2[k/2] − 2k−[k/2] + 2 ≤ mk ≤ 2k − 1 − M(k),

where M(k) is the largest m for a resolution V design to exist.

PROOF. Consider an SOS design of 2k runs with the smallest number m′
k of

factors. By simply counting degrees of freedom, we obtain m′
k ≥ M(k), which
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TABLE 1
Maximum numbers of factors for SOAs of strength 3 and 2+

hk mk

k n = 2k (strength 3) (strength 2+)

4 16 7 10*
5 32 15 22*
6 64 31 50*
7 128 63 106
8 256 127 226

implies that mk ≤ 2k − 1 − M(k) as mk + m′
k = 2k − 1 due to Theorem 1. Con-

structions (ii), (iii) and (iv) all give SOS designs for 2k1 +2k2 −3 factors. This leads
to m′

k ≤ 2k1 + 2k2 − 3. Minimizing the right-hand side of the above inequality for
given k, we obtain m′

k ≤ 2[k/2]+2k−[k/2]−3. Thus, mk ≥ 2k −2[k/2]−2k−[k/2]+2.
�

Recall that an SOA(2k,m,4,2+) enjoys the same two-dimensional space-
filling property as an SOA(2k,m,8,3). The maximum number hk of factors for
an SOA(2k, hk,8,3) to exist is hk = 2k−1 − 1 [He and Tang (2013), Theorem 2].
In contrast, the maximum number mk of factors for an SOA(2k,mk,4,2+) is at
least 2k − 2[k/2] − 2k−[k/2] + 2, which is substantially larger than hk = 2k−1 − 1
for all nontrivial cases k ≥ 4. Table 1 provides a comparison.

The mk values in Table 1 are all from the lower bound in Theorem 2. Those
entries with a * are in fact exact, which is obvious for k = 4 and can be easily
checked using the complete catalog of Chen, Sun and Wu (1993) for k = 5. For k =
6, the exactness of m6 = 50 has been verified through a combination of theoretical
arguments and computer search.

4. Characterization and construction using sm−p designs. This section
studies the characterization and construction of SOA(n,m, s2,2+) using regu-
lar sm−p designs where s ≥ 3 is a prime power. Let GF(s) = {w0 = 0,w1 =
1,w2, . . . ,ws−1} denote a Galois field of order s. The Rao–Hamming construction
produces a linear orthogonal array OA(sk, (sk − 1)/(s − 1), s,2) for any k ≥ 2,
which is a regular saturated design of sk runs and s levels for (sk − 1)/(s − 1)

factors. This saturated design can also be obtained by first writing down a full sk

factorial for k factors and adding all possible interaction columns.
If we use e1, . . . , ek to denote the k independent columns, then any linear com-

bination u1e1 + · · · + ukek , where uj ∈ GF(s) that are not all zero, is an interac-
tion column. Two linear combinations u1e1 + · · · + ukek and u′

1e1 + · · · + u′
kek

actually represent the same interaction if (u1, . . . , uk) = w(u′
1, . . . , u

′
k) for some

w ∈ GF(s). One way to make sure to generate all different interaction columns
is to use the (u1, . . . , uk)’s with the first nonzero uj equal to 1. The set of all
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(sk − 1)/(s − 1) columns, denoted by S, is in fact a projective geometry. For
any two columns a, b ∈ S, there are s − 1 distinct interaction columns a + wjb

where j = 1, . . . , s − 1. In the language of projective geometry, the s + 1 columns
a, b, a + w1b, . . . , a + ws−1b form a line.

We consider constructing D, an SOA(sk,m, s2,2+) through

(2) D = sA + B

using A = (a1, . . . , am) and B = (b1, . . . , bm) with the columns aj ’s and bk’s se-
lected from S, the saturated design. Because A and B , when their columns are se-
lected from S, have entries from GF(s) = {w0,w1, . . . ,ws−1}, one should convert
these symbols to {0,1, . . . , s − 1} before applying (2). No conversion is necessary
if s is a prime.

THEOREM 3. If D, an SOA(sk,m, s2,2+), is to be constructed using (2) from
A and B whose columns are selected from S, then it is necessary and sufficient that
for each aj ∈ A, there exist s columns bj1, . . . , bjs in the complementary design
Ā = S \ A such that the s + 1 columns aj , bj1, . . . , bjs form a line.

PROOF. Suppose D is an SOA(sk,m, s2,2+). Then (ak, aj , bj ) where k �= j

has strength 3, which implies that bj ∈ Ā for any j . That (ak, aj , bj ) has strength 3
also implies that aj + w1bj , . . . , aj + ws−1bj must be all in Ā. These s columns
bj , aj + w1bj , . . . , aj + ws−1bj that are all in Ā, together with aj , form a line.

On the other hand, suppose that s+1 columns aj , bj1, . . . , bjs form a line where
bj1, . . . , bjs are all in Ā. If we take B = (b1, . . . , bm) with bj = bj1, then it is easy
to see that (ak, aj , bj ) must be of strength 3. This shows that D obtained from (2)
is an SOA(sk,m, s2,2+). �

Once we have a regular design A with the property described in Theorem 3, then
D, an SOA(sk,m, s2,2+) can be constructed as follows. Let A = (a1, . . . , am) and
B = (b11, . . . , bm1). If s is a prime, obtain D = sA + B directly. If s is a prime
power, first replace wj by j in both A and B for j = 0,1, . . . , s −1 and then obtain
D = sA + B .

We next present a construction result for an SOA(sk,m, s2,2+) through the
construction of A with the property as stated in Theorem 3. To save space, an
interaction column u1e1 + · · ·ukek is represented by e

u1
1 · · · euk

k , which is not un-
common in standard design textbooks.

EXAMPLE 3. For s = k = 3, the saturated design S has 27 runs for 13 factors.
The 13 columns are given by

S = {
e1, e2, e3, e1e2, e1e

2
2, e1e3, e1e

2
3, e2e3, e2e

2
3, e1e2e3, e1e

2
2e3, e1e2e

2
3, e1e

2
2e

2
3
}
.

It can be verified that

A = {
e1e

2
2, e1e

2
3, e2e

2
3, e1e

2
2e3, e1e2e

2
3, e1e

2
2e

2
3
}
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has the property required by Theorem 3. One choice for B is B = (e1, e1, e2, e2,

e3, e1). Then we obtain D = 3A + B which is an SOA(27,6,9,2+).

Example 3 is an illustration of a general method of constructing an SOA(sk,m,

s2,2+) we now present. Let A select all interaction columns e
u1
1 · · · euk

k such that
at least one uj equals ws−1. Since the first nonzero uj is set at 1, the set A excludes
the selection of columns e

ws−1
j .

THEOREM 4. For any k ≥ 3 and any prime power s ≥ 3, an SOA(sk,m,

s2,2+) where m = (sk − 1)/(s − 1) − ((s − 1)k − 1)/(s − 2) can be constructed.

PROOF. A simple counting shows that A contains m = (sk − 1)/(s − 1) −
((s − 1)k − 1)/(s − 2) columns. What remains to be done is to verify that A de-
fined above satisfies the condition in Theorem 3. For ease of presentation, we do
this for k = 3. For k > 3, the same idea applies. An element in A must be of
one of the following three kinds: (i) e1e

ws−1
2 , (ii) e1e

wi

2 e
ws−1
3 where 1 ≤ i ≤ s − 2

and (iii) e1e
ws−1
2 e

ws−1
3 . In case (i), the s columns e1, e2, e1e2, . . . , e1e

ws−2
2 are all in

Ā, and together with e1e
ws−1
2 , they form a line. For case (ii), the s + 1 columns

e1e
wi

2 , e3, e1e
wi

2 e3, . . . , e1e
wi

2 e
ws−1
3 form a line where all except e1e

wi

2 e
ws−1
3 are

in Ā. For case (iii), the s + 1 columns e1, e2e3, e1e2e3, . . . , e1(e2e3)
ws−1 form a

line where all except e1e
ws−1
2 e

ws−1
3 are in Ā. �

For k = 3, the SOA(s3,m, s2,2+) constructed in Theorem 4 has m = 2s factors
whereas an SOA(s3,m, s3,3) for m = s + 1 can be constructed [He and Tang
(2014), Proposition 2]. For k = 4, the SOA(s4,m, s2,2+) from Theorem 4 has
m = 3s2 − s + 1 factors whereas He and Tang (2014) allows the construction of an
SOA(s4,m, s3,3) with m = s2 + 1 factors. The advantage of SOAs of strength 2+
over SOAs of strength 3 is evident. Table 2 provides some numerical comparisons
of the numbers of factors for the two classes of arrays.

TABLE 2
A comparison of the number m′ of factors for SOA(sk,m′, s3,3)

in He and Tang (2014) and the number m′′ of factors for
SOA(sk,m′′, s2,2+) from Theorem 4

k s n = sk m′ m′′

3 3 27 4 6
3 4 64 5 8
3 5 125 6 10
4 3 81 10 25
4 4 256 17 45
4 5 625 26 71
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5. Generalization and further results. The ideas in Definition 1 and Propo-
sition 1 can be easily made more general. Now let A = (a1, . . . , am) be an
OA(n,m, s1 ×· · ·× sm,2) and B = (b1, . . . , bm) be an OA(n,m,α1 ×· · ·×αm,1)

such that (aj , ak, bk) is an OA(n,3, sj × sk × αk,3) for any j �= k. Then D =
(d1, . . . , dm) with dj = αjaj + bj is an OA(n,m, (α1s1) × · · · × (αmsm),1) of
which any two columns (dj , dk) can be collapsed into an OA(n,2, (αj sj ) × sk,2)

and an OA(n,2, sj × (αksk),2). This is a generalization of an SOA(n,m, s2,2+).
Of special interest is when s1 = · · · = sm = s and α1 = · · · = αm = α, in which

case we obtain a symmetric D. We use SOAα(n,m,αs,2+) to denote such an ar-
ray. Note that there is a need to make α explicit in the notation. Below, we will
give a construction of such SOAα(n,m,αs,2+)’s. Though simple, the construc-
tion provides some very interesting space-filling designs that are not possible to
obtain from the results in Sections 3 and 4.

Let A0,A1, . . . ,Aα−1 all be OA(n1,m, s,2)’s, which can be but are not neces-
sarily the same. Then create an array by appending one column to the juxtaposition
of A0,A1, . . . ,Aα−1 as follows:

(3) A∗ =
(

0 · · ·0 1 · · ·1 · · · α − 1 · · ·α − 1

AT
0 AT

1 · · · AT
α−1

)T

.

This array has n = αn1 runs with α levels in the first column and s levels in the rest
of columns. Write A∗ = (a0, a1, . . . , am) where a0, a1, . . . , am denote the columns
of A∗ in (3). Now define A = (a1, . . . , am) and B = (b1, . . . , bm) where bj = a0
for j = 1, . . . ,m. Clearly, we have that (aj , ak, bk) is an OA(n,3, s × s ×α,3) for
any j �= k. This leads to the following result.

THEOREM 5. Design D obtained from D = αA+B with A and B constructed
above is an SOAα(n,m,αs,2+).

EXAMPLE 4. Using α = 2 and an OA(9,4,3,2) as both A0 and A1, we obtain
an SOA2(18,4,6,2+) (transposed here):

0 0 0 2 2 2 4 4 4 1 1 1 3 3 3 5 5 5
0 2 4 0 2 4 0 2 4 1 3 5 1 3 5 1 3 5
0 2 4 2 4 0 4 0 2 1 3 5 3 5 1 5 1 3
0 2 4 4 0 2 2 4 0 1 3 5 5 1 3 3 5 1

This array achieves stratifications on 6 × 3 and 3 × 6 grids in all two-dimensions.

REMARK 2. The above construction method works just well if A0,A1, . . . ,

Aα−1 are all OA(n1,m, s1 × · · · × sm,2). Then we will obtain an SOAα(n,m,

(αs1) × · · · × (αsm),2+), a natural notation to use for such an array.

Two families of SOAα(n,m,αs,2+)s can be readily obtained. Using OA(sk,m,

s,2) from Rao–Hamming construction, we obtain an SOAα(αsk,m,αs,2+)
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TABLE 3
Some SOAα(n,m,αs,2+)s

α s n m OA(n1,m, s,2) SOAα(n,m,αs,2+)

2 3 18 4 OA(9,4,3,2) SOA2(18,4,6,2+)

2 3 36 7 OA(18,7,3,2) SOA2(36,7,6,2+)

2 3 54 13 OA(27,13,3,2) SOA2(54,13,6,2+)

2 4 32 5 OA(16,5,4,2) SOA2(32,5,8,2+)

2 5 50 6 OA(25,6,5,2) SOA2(50,6,10,2+)

3 4 48 5 OA(16,5,4,2) SOA3(48,5,12,2+)

3 5 75 6 OA(25,6,5,2) SOA3(75,6,15,2+)

where m = (sk − 1)/(s − 1). The second family is to use OA(2sk,m, s,2) from
Addelman–Kempthorne construction, which gives an SOAα(2αsk,m,αs,2+)

where m = 2(sk − 1)/(s − 1) − 1. Table 3 lists some of SOAαs along with the
corresponding orthogonal arrays.

6. Conclusions and further work. This paper introduces and constructs a
new class of arrays, namely SOAs of strength 2+. These arrays share the same
two-dimensional space-filling property as comparable SOAs of strength 3 but do
so in a more economical fashion. The same simple device as constructing OA-
based Latin hypercubes can be used to turn an SOA of strength 2+ into a Latin
hypercube. It would be interesting to study if Latin hypercubes so constructed can
be made orthogonal. Recent work on orthogonal Latin hypercubes includes Sun,
Liu and Lin (2009) and Georgiou and Efthimiou (2014).

Regular SOS designs are equivalent to 1-saturating sets in projective geometry
and the dual codes of linear codes with covering radius 2 in coding theory. We are
currently studying these results from projective geometry and coding theory, and
will report our findings in a future paper. Noteworthy is a sophisticated yet quite
ingenious construction of Gabidulin, Davydov and Tombak (1991), which can be
used to improve the lower bound in Theorem 2 for large run sizes. The same future
paper will also document our investigation into the use of nonregular designs to
construct SOAs of strength 2+. An excellent review paper on nonregular designs
is Xu, Phoa and Wong (2009). Although nonregular designs may not help improve
the bounds in Theorem 2, they are advantageous due to their flexible run sizes. For
example, one result from this investigation will allow the construction of an SOA
of strength 2+ with 48 runs for 34 factors.

Finally, we briefly mention a potential application of SOAs of strength 2+ to
numerical integration. As SOAs of strength 2+ are more space-filling in two-
dimensional margins than SOAs of strength 2, they should do a better job in inte-
grating the bivariate interaction terms in the functional ANOVA decomposition of
an integrand.
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