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HIGH DIMENSIONAL CENSORED QUANTILE REGRESSION
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University of Louisville, Emory University and University of Michigan

Censored quantile regression (CQR) has emerged as a useful regression
tool for survival analysis. Some commonly used CQR methods can be charac-
terized by stochastic integral-based estimating equations in a sequential man-
ner across quantile levels. In this paper, we analyze CQR in a high dimen-
sional setting where the regression functions over a continuum of quantile
levels are of interest. We propose a two-step penalization procedure, which
accommodates stochastic integral based estimating equations and address the
challenges due to the recursive nature of the procedure. We establish the uni-
form convergence rates for the proposed estimators, and investigate the prop-
erties on weak convergence and variable selection. We conduct numerical
studies to confirm our theoretical findings and illustrate the practical utility
of our proposals.

1. Introduction. High dimensional data arise in a wide variety of scientific
studies such as genomics, neuroimaging, social network and finance. In such data,
the number of candidate covariates p often greatly exceeds the number of observa-
tions n, but the number of truly relevant variables s is relatively small. This poses
unprecedented challenges and opportunities in statistical analysis.

Penalization methods have been intensively studied to tackle these challenges.
A number of penalty functions such as Lasso [Tibshirani (1996)], SCAD [Fan and
Li (2001)], Adaptive Lasso (ALasso [Zou (2006)]), and MCP [Zhang (2010)] have
been developed and investigated with various regression models. However, the re-
lated development in dealing with censored survival (i.e., time-to-event) responses
has been relatively sparse. Most of the existing approaches focus on the Cox pro-
portional hazard model and the accelerated failure time model (AFT) [Huang, Ma
and Xie (2006), Johnson (2009), Huang and Ma (2010), Bradic, Fan and Jiang
(2011), among others]. Despite the success of the Cox model and the AFT model in
survival analysis, their limitations from assuming constant covariate effects (e.g.,
proportional hazards, location shift effects) have been recognized. For example,
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variable selection based on these models may pose a considerable risk of miss-
ing variables that have complex, nonconstant survival impact but are scientifically
important [Peng, Xu and Kutner (2014)].

Quantile regression [Koenker and Bassett (1978)] has emerged as a useful al-
ternative regression strategy for survival analysis. By allowing covariates to have
varying impact across different segments of the response distribution, quantile re-
gression significantly extends the traditional AFT regression. Quantile regression
also provides a direct approach to predicting the quantiles of a survival response
(which have better identifiability than the mean in the presence of censoring).
These nice modeling features make quantile regression a desirable platform for
investigating covariate sparsity and building parsimonious prediction models for a
survival response subjects to censoring.

Censored quantile regression (CQR) methods that deal with randomly cen-
sored survival data have been well studied in the finite p case [Peng and Huang
(2008), Powell (1986), Ying, Jung and Wei (1995), Portnoy (2003), Wang and
Wang (2009), among others]. Two popular CQR approaches are Portnoy’s (2003)
method and its variants [Neocleous, Vanden Branden and Portnoy (2006), Portnoy
and Lin (2010)], which were grounded on the principle of self-consistency [Efron
(1967)], and Peng and Huang’s (2008) method, which was built upon the mar-
tingale structure of randomly censored data. These methods require the relatively
weak random censoring assumption and enjoy efficient and stable implementa-
tion by standard statistical software, for example, R function crq(·) [Koenker
(2016)], and SAS procedure PROC QUANTREG. With p fixed, several authors
also investigated the variable selection problem for CQR. For example, Shows,
Lu and Zhang (2010) and Peng, Xu and Kutner (2014) proposed penalized esti-
mating equations where censoring was handled by inverse probability weighting.
Wang, Zhou and Li (2013) developed a robust variable selection method based on
Wang and Wang’s (2009) work, adopting a global dimension reduction formula-
tion to facilitate the local weight estimation. Volgushev, Wagener and Dette (2014)
studied an extension of Peng and Huang’s (2008) method with properly designed
penalty terms. The existing work on fixed p problems provides useful insights for
developing high dimensional CQR methods.

In this work, we study the high dimensional CQR methods based on Portnoy
(2003) (and its variants) and Peng and Huang (2008). We focus on these meth-
ods, because they require weaker assumptions on censoring but use a recursive
scheme in estimation, which poses technical challenges. As delineated in Peng
(2012), the CQR approach proposed by either Portnoy (2003) or Peng and Huang
(2008) is essentially attached to a stochastic integral based estimating equation.
As a result, the estimation is not separately done at each individual quantile index
but performed sequentially across quantile indices with the estimate correspond-
ing to a larger quantile index depending on estimates obtained for lower quantile
indices. With fixed p, traditional empirical process arguments, coupled with in-
duction, were used by Peng and Huang (2008) and Volgushev, Wagener and Dette
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(2014) to control the errors cumulated from sequentially estimating the stochastic
process of the quantile index (i.e., cumulative estimation errors). However, such
a technique does not apply directly when p > n. To overcome this difficulty, we
apply the generic chaining idea from Talagrand (2005) and van de Geer (2008)
and incorporate it into a sophisticated induction framework that fits both sequen-
tial estimation and penalization. As shown in our theoretical studies, there exists a
complicated entanglement between the penalization and the control of cumulative
estimation errors. This fact necessitates a dynamic penalization scheme, which is
new in the literature. Our work constitutes the first effort to tackle high dimensional
stochastic integral based estimating equations, and the techniques employed here
can be useful in other settings.

In this paper, we adopt the perspective of globally concerned quantile regres-
sion [Zheng, Peng and He (2015)], which concerns conditional quantiles over a
continuum of quantile indices. Compared to the classical practice of quantile re-
gression, which is generally confined to model a single or multiple quantiles at
fixed quantile levels [e.g., Fan, Fan and Barut (2014), Wang, Wu and Li (2012),
Zheng, Gallagher and Kulasekera (2013)], the globally concerned quantile regres-
sion enjoys some advantages: (1) it utilizes all useful information across quantiles
to improve the robustness of variable selection; (2) it grasps global sparsity in a
more concise way; (3) it also encompasses locally concerned quantile regression
[see Zheng, Peng and He (2015)].

Our proposed procedure on high dimensional CQR consists of two steps. In the
first step, we incorporate a Lasso type L1 penalty into the stochastic integral based
estimating equation for CQR and obtain a uniformly consistent estimator. In the
second step, we use an ALasso type penalty to reduce the bias induced by the L1
penalty and the resulting estimator achieves improved estimation efficiency and
model selection consistency.

The first step of our procedure is not a routine implementation of L1 penaliza-
tion. The penalization at a quantile level τ not only has to take into account the
local sparsity, but also needs to adapt stochastic process estimation errors resulted
from penalization at other τ ’s. Note that adopting the L1 penalties in this step
helps us avoid the nonconvex optimization issues, and at the same time facilitates
the adjustment for cumulative estimation errors by maintaining the same forms of
penalty across quantiles. With well-modulated penalties, we can establish a sharp
upper bound for local estimation error at each τ . Consequently, we are able to de-
rive a useful formula for the upper bound of the cumulative estimation error, which
renders a uniform convergence rate

√
s log(p ∨ n)/n for the resulting estimator of

the coefficient function. This result lays the foundation for the subsequent ALasso
step.

With ALasso penalties weighted by the estimator obtained from the first step,
we can reduce the estimation bias to the order

√
s logn/n, the oracle rate of uni-

form convergence. In this step, the cumulative estimation errors become negligible
compared to the amount of penalization that ensures sparsity. This enables us to
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adopt a uniform selector of the tuning parameter to control the overall model com-
plexity over the set of quantile levels of interest. In the development of the tuning
parameter selector, to accommodate censoring, we propose to measure model fit-
ness by calibrating the violation from the assumed martingale process by using
deviance residuals. Along this line, we develop a general information criterion
(GIC) type tuning parameter selector, which allows us to achieve model selection
consistency and also performs well in finite-sample simulation studies. In addition,
we also show that our proposed ALasso penalized estimator converges weakly to
a Gaussian process as a function of the quantile index τ .

The rest of the article is organized as follows. In Section 2, we briefly review the
finite dimensional CQR methods and the basic framework of globally concerned
CQR. In Section 3, we introduce our two-step penalized CQR method with Lasso
type and Adaptive Lasso type penalties. The theoretical properties of our proposed
estimator are investigated in Section 4. We conduct simulation studies to evaluate
the finite sample performance of the proposed estimators in Section 5. In Section 5,
an application to a real data example is also presented. We defer all technical proofs
and some discussions to the Appendix.

2. Preliminaries.

2.1. Censored quantile regression. Let T denote a survival response of inter-
est, which is subject to right censoring by C. Under the standard random censoring
assumption, C is independent of T given Z̃, a (p−1)×1 covariate vector (p > 1).
Let X = min{T ,C}, � = I (T ≤ C), and Z = (1, Z̃T )T . The observed data consist
of n i.i.d replicates of (X,�,Z), denoted by {(Xi,�i,Zi), i = 1, . . . , n}.

Define the τ th conditional quantile of T given Z as QT (τ |Z) = inf{t : Pr(T ≤
t |Z) ≥ τ }. A linear quantile regression model for logT may take the form

(1) QT (τ |Z) = exp
{
ZT β0(τ )

}
, τ ∈ (0, τU ],

where β0(τ ) is a p-dimensional vector of unknown coefficients and 0 < τU < 1.
The nonintercept coefficients in β0(τ ) represent the effects of the covariates on
the τ th quantile of logT given Z. It is worth noting that model (1) is confined to a
τ -interval away from 1, (0, τU ] with 0 < τU < 1, due to the identifiability issue at
upper quantiles due to censoring. Peng and Huang (2008) discussed the theoretical
constraints on τU as well as the practical selection of τU with real datasets.

Peng and Huang (2008) proposed a stochastic integral based estimating equa-
tion for β0(τ ) in model (1). More recently, Peng (2012) showed that the self-
consistent CQR approaches [Neocleous, Vanden Branden and Portnoy (2006),
Portnoy (2003), Portnoy and Lin (2010), for example] can also be formulated as
stochastic integral based estimating equations. For the sake of simplicity, we shall
focus on Peng and Huang’s (2008) method for CQR in the sequel.

Let Ni(t) = 1{logXi ≤ t,�i = 1}, �T (t |Z) = − log(1 − Pr(logT ≤ t |Z)),
and H(u) = − log(1 − u). By Fleming and Harrington (1991), Mi(t) := Ni(t) −
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�T (t ∧ logXi |Zi ) is a martingale process, and hence E[Mi(t)|Zi] = 0. This, com-
bined with the fact that �T (ZT

i β0(τ ) ∧ logXi |Zi ) = ∫ τ
0 1{logXi ≥

ZT
i β0(u)}dH(u) under model (1), implies

E

[
Zi

(
Ni

(
ZT

i β0(τ )
)−

∫ τ

0
1
{
logXi ≥ ZT

i β0(u)
}
dH(u)

)]
= 0

(2)
for 0 < τ ≤ τU .

Motivated by this fact, Peng and Huang (2008) proposed to estimate β0(·) by the
following estimating equation:

n−1/2
n∑

i=1

Zi

[
Ni

(
ZT

i β0(τ )
)−

∫ τ

0
1
{
logXi ≥ ZT

i β0(u)
}
dH(u)

]
= 0

(3)
τ ∈ (0, τU ].

The way that equation (3) involves stochastic integrals entails a sequential es-
timation procedure for β0(τ ), τ ∈ (0, τU ]. More specifically, let �mn be a grid
of τ -values, 0 = τ0 < τ1 < · · · < τmn = τU . Peng and Huang’s (2008) estimator
of β0(τ ), denoted by β̌(τ ), is defined as a right-continuous piecewise-constant
function that only jumps at the grid points, satisfying exp(ZT

i β̌(τ0)) = 0 for all
1 ≤ i ≤ n. At grid points greater than τ0, β̌(τk), k = 1, . . . ,mn, are sequentially
obtained by solving the following estimating equation for h:

(4) n−1/2
n∑

i=1

Zi

(
Ni

(
ZT

i h
)−

k−1∑
r=0

∫ τr+1

τr

1
{
logXi ≥ ZT

i β̌(τr)
}
dH(u)

)
= 0.

Equation (4) is a monotone estimating equation and can be efficiently solved via
L1-minimization. Peng and Huang (2008) showed that β̌(τ ) is uniformly consis-
tent and converges weakly to a mean zero Gaussian process for τ ∈ [�,τU ], where
0 < � < τU .

2.2. Globally concerned CQR framework. Much of the published work on
high dimensional quantile regression is generally confined to model a single or
multiple quantiles [Wang, Wu and Li (2012), Zheng, Gallagher and Kulasekera
(2013), Fan, Fan and Barut (2014), for example]. Referred to as locally concerned
quantile regression, this strategy involves choices of the fixed quantile levels,
which might be natural in some applications, but highly subjective in others.

In this paper, we take the perspective of globally concerned quantile regression
[Zheng, Peng and He (2015)] to tackle the high dimensional modeling of CQR.
That is, we specify an interval of quantile indices [τL, τU ] according to scientific
questions of interest. Our goal under high dimensional CQR (HDCQR) is to iden-
tify the set of relevant variables, defined as

S∗ := ⋃
τ∈[τL,τU ]

supp
(
β0(τ )

) =
{
j : sup

τ∈[τL,τU ]
∣∣β(j)

0 (τ )
∣∣ 	= 0

}
,
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and then to estimate β
(j)
0 (τ ) for j ∈ S∗ and τ ∈ [τL, τU ]. Here and hereafter, u(j)

denotes the j th element of the vector u and supp(u) denotes {j : u(j) 	= 0}. Study-
ing the HDCQR under this set-up will render information on which variables and
how they influence the targeted segment of the distribution of the survival response.

3. Proposed methods.

3.1. HDCQR estimator with Lasso type penalties (L-HDCQR). It is clear that
equation (4) for the low dimensional CQR is not directly solvable when p 
 n.
We use Lasso type penalties to address this problem.

We first introduce the following assumption to circumvent the singularity prob-
lem with censored regression quantile at τ = 0.

ASSUMPTION 3.1. There exists a quantile index v and some constant c

such that n−1 ∑n
i=1 1{logCi ≤ ZT

i β0(v)}(1 − �i) ≤ cn−1/2 holds for sufficiently
large n.

This assumption requires that the number of censored observations below the
vth quantile does not exceed cn1/2. A similar but stronger condition is imposed
in Portnoy (2003), which requires no censoring below the vth quantile. Note that
ZT

i β0(0) = −∞ under model (1). Therefore, Assumption 3.1 can be met when
the lower bound of C’s support is greater than 0, a situation that seems reason-
able for most censoring mechanisms in survival analysis. We cannot really verify
Assumption 3.1 for any given data set, because the assumption is asymptotic in
nature, but it does suggest how we need to choose v in real data analysis. Based on
our numerical experiences, we recommend choosing v as a value such that only a
small proportion of the X′

is below the fitted vth quantiles are censored. One may
further confirm the selection of v by conducting a sensitivity analysis that repeats
the estimation with different choices of v. Our simulations in Section 5.1 suggest
that as long as v is chosen reasonably small (e.g., ≤ 0.1), the proposed method
has a robust performance even when this technical assumption is violated with a
positive probability.

Under Assumption 3.1, simple calculations yield that E[∫ v
0 1{logXi ≥

ZT
i β0(u)}dH(u)] = v. Consequently, we obtain a slightly modified version of

equation (2):

E

[
Zi

(
Ni

(
ZT

i β0(τ )
)−

∫ τ

v
1
{
logXi ≥ ZT

i β0(u)
}
dH(u) − v

)]
= 0

(5)
for v ≤ τ ≤ τU .

The modification in (5) to the stochastic integral implies that one can start the
sequential estimation procedure from the vth quantile. Therefore, throughout the
rest of the paper, we set τ0 = v in the τ -grid �mn . Moreover, we require �mn to be
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a equally spaced grid for simplicity. A more general choice of the grid is discussed
in the Section B of the supplementary material [Zheng, Peng and He (2018)]; see
Remark 2.

Without assuming any prior information about the impact of covariates on the
τ th quantile of T , we adopt Lasso type penalties, and the proposed L-HDCQR
estimator, β̃(·), is defined as a right-continuous piecewise-constant function that
only jumps on the grid points of �mn . At each τk ∈ �mn , β̃(τk) is obtained as the
minimizer of the following L1-type convex objective functions sequentially:

(6) Q̃k(h) = L̃k(h) + λ̃k,n‖h‖1, 0 ≤ k ≤ mn,

where λ̃k,n is the tuning parameter, and

L̃k(h) =
n∑

i=1

�i

∣∣logXi − hT Zi

∣∣+ hT
n∑

i=1

�iZi

(7)

− 2hT
n∑

i=1

Zi

(
k−1∑
r=0

∫ τr+1

τr

1
{
logXi ≥ ZT

i β̃(τr)
}
dH(u) + τ0

)
.

In particular, L̃0(h) = ∑n
i=1 �i | logXi −hT Zi |+hT ∑n

i=1 �iZi −2hT ∑n
i=1 Ziτ0.

For any τk < τ < τk+1,0 ≤ k ≤ mn − 1, we set β̃(τ ) = β̃(τk).
It is worth mentioning that locating the minimizers of (6) is equivalent to finding

the generalized solutions to the following equations:

n∑
i=1

Zi

(
Ni

(
ZT

i h
)− τ0

)+ 1

2
λ̃0,n sign(h) ≈ 0,(8)

n∑
i=1

Zi

(
Ni

(
ZT

i h
)−

k−1∑
r=0

∫ τr+1

τr

1
{
logXi ≥ ZT

i β̃(τr)
}
dH(u)

)

(9)

+ 1

2
λ̃k,n sign(h) ≈ 0, k ≥ 1.

These estimating equations are the first-order equivalents of (6), and can be viewed
as a penalized version of the stochastic integral based estimating equation (5).

The minimization problem for (6) can be easily solved by using R pack-
age quantreg. Specifically, let �n+1 = �n+2 = 1 and logXn+1 = logXn+2 = R,
where R is a large constant. For example, we set R = 104 in our numerical stud-
ies. Let Zi (k) = Zi , i = 1, . . . , n, Zn+1(k) = 2

∑n
i=1 Zi (

∑k−1
r=0

∫ τr+1
τr

,1{logXi ≥
ZT

i β̃(τr)}dH(u) + τ0), and Zn+2(k) = −∑n
i �iZi . Then the Q̃k(h) in (6) can

be re-expressed as
∑n+2

i=1 |�i logXi − hT �iZi (k)| + λ̃k,n‖h‖1. This suggests that
the minimization of Q̃k(h) can be solved by penalized uncensored quantile regres-
sion with responses {�i logXi}n+2

i=1 , covariates {�iZi (k)}n+2
i=1 and tuning parameter

λ̃k,n, which can implemented by the rq(·) function in R.
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3.2. HDCQR estimator with ALasso type penalties (AL-HDCQR). The the-
oretical results in Section 4.2 suggest that the proposed L-HDCQR estimator is
uniformly consistent, but its convergence rate is sub-optimal. It also does not pro-
duce consistent variable selection. To improve on the HDCQR we consider the
HDCQR estimator with weighted Lasso penalty, which has been demonstrated as
an effective tool to ameliorate the estimation bias and improve variable selection
accuracy.

The basic strategy is to modify the L-HDCQR procedure by assigning weighted
penalties to covariates according to their impact on the response distribution, which
can be captured by the proposed L-HDCQR estimator β̃(τ ). Following the work
by Zheng, Peng and He (2015), the weighted penalties, ω(j)(τ ) (τ ∈ [τL, τU ], j =
2, . . . , p), under the globally concerned CQR, can be specified in the following
ways:

(a) (Pointwise) ω(j)(τ ) = χ(|β̃(j)(τ )|);
(b) (Average) ω(j)(τ ) = χ(

∫ τL
τ0

|β̃(j)(u)|du) if τ0 ≤ τ < τL, and ω(j)(τ ) =
χ(

∫ τU
τL

|β̃(j)(u)|du) if τL ≤ τ ≤ τU ;

(c) (Uniform) ω(j)(τ ) = χ(supτ0≤τ<τL
|β̃(j)(τ )|) if τ0 ≤ τ < τL, and ω(j)(τ ) =

χ(supτL≤τ≤τU
|β̃(j)(τ )|) if τL ≤ τ ≤ τU ;

where χ(·) is a nonincreasing function. The pointwise weight in (a) corresponds to
a traditional way of choosing adaptive weight, which captures the “local” impor-
tance of a covariate at a single τ . The average weight in (b) and the uniform weight
in (c) are tailored to the globally concerned quantile regression framework and are
designed to penalize a covariate according to its cumulative effect or maximum
effect over a specified τ -interval. Note that in (b) and (c), the average weight and
the uniform weight are assigned different values for τ ∈ [τ0, τL) and τ ∈ [τL, τU ].

Denote the proposed AL-HDCQR estimator by β̂(τ ). We can obtain β̂(τk)’s by
sequentially minimizing

Q̂k(h) = L̂k(h) + λn∗‖ωk ◦ h‖1 for all τ0 ≤ τk < τL,(10)

Q̂k(h) = L̂k(h) + λ∗
n‖ωk ◦ h‖1 for all τL ≤ τk ≤ τU ,(11)

where

L̂k(h) =
n∑

i=1

�i

∣∣logXi − hT Zi

∣∣+ hT
n∑

i=1

�iZi

− 2hT
n∑

i=1

Zi

(
k−1∑
r=0

∫ τr+1

τr

1
{
logXi ≥ ZT

i β̂(τr)
}
dH(τ) + τ0

)
,

λn∗ and λ∗
n are tuning parameters for [τ0, τL) and [τL, τU ], respectively, ωk is

the vector function (0,ω(2)(τ ), . . . ,ω(p)(τ ))T evaluated at τ = τk , and ◦ denotes
the Hadamard product. Following the discussion on the minimization of (6) in
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Section 3.1, one can obtain the minimizers of (10) and (11) similarly by using
the rq(·) function in R. A detailed description of our computational algorithm for
obtaining β̂(τ ) is provided in Section F of the supplemental article [Zheng, Peng
and He (2018)].

As shown above, the proposed AL-HDCQR estimator adopts different tuning
parameters and possibly different adaptive weights for the penalization over τ ∈
[τ0, τL) and τ ∈ [τL, τU ]. Doing so allows us to tailor the shrinkage of {β̂(τ ) : τ ∈
[τL, τU ]} to the sparsity over τ ∈ [τL, τU ], the quantile levels of interest in S∗.
The penalization over τ ∈ [τ0, τL) is aimed at providing consistent estimates for
{β0(τ ) : τ ∈ [τ0, τL)} that have estimation errors bounded by O(

√
s logn/n). This

may be achieved by penalization strategies different from that shown in (10). For
the sake of simplicity in the presentation, we adopt the same type of penalization
in each set of τ ∈ [τ0, τL) and τ ∈ [τL, τU ].

It is worth emphasizing that the tuning parameter λ∗
n is constant over [τL, τU ].

We are allowed to do so, because the cumulative estimation errors in the AL-
HDCQR are significantly reduced by the introduction of adaptive weights, and
thus they would not affect the sparsity, if λ∗

n and ω are chosen appropriately. Us-
ing a common λ∗

n for τ ∈ [τL, τU ] allows us to tune for the sparsity across the
targeted τ -region rather than local sparsity at each τ . As noted in Zheng, Peng
and He (2015), this plays an important role in achieving consistent variable selec-
tion by the proposed AL-HDCQR. Theoretical constraints on λ∗

n are provided in
Propositions 4.1 and 4.2, and Theorem 4.3. We will discuss the selections of tuning
parameters in Section 4.4.

There are also many different choices for the function χ(·). For example, we
can choose χ1(u) = 1/u, for u > 0 [Zou (2006)], χ2(u) = 1{u ≤ λn/n} + 1{u >

λn/n}(aλn/n − u)+/((a − 1)λn/n) for a given constant a > 2 and tuning param-
eter λn [Fan and Li (2001)], or χ3(u) = (1 − u/(γ λn/n))+, for a given constant
γ > 0 [Zhang (2010)]. In our numerical studies, we use the SCAD function χ2(u)

with a = 2.4.

4. Theoretical studies.

4.1. Notation and regularity conditions. Given a random sample Z1, . . . ,Zn,
let Gn(f ) = Gn(f (Zi)) := n−1/2 ∑n

i=1(f (Zi) − E[f (Zi)]) and Enf =
Enf (Zi) := ∑n

i=1 f (Zi)/n. We use ‖ · ‖r to denote the lr -norm. In particular,
we denote the l2-norm by ‖ · ‖. Given a vector δ ∈ R

p and a set of indices
T ⊂ {1, . . . , p}, we denote by T c and |T | the complementary set and the cardi-
nality of T respectively, and denote by δT the vector in which δ

(j)
T = δ(j) if j ∈ T ,

and δ
(j)
T = 0 if j /∈ T . Define ‖δ‖r,T = ‖δT ‖r . The loss function of quantile re-

gression at τ th quantile is denoted by ρτ (u) := u(τ − 1{u < 0}).
Regularity conditions: We assume the following regularity conditions:
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(C1) (Condition on covariates): ‖Z‖∞ ≤ C0, for some constant C0. Without loss
of generality, we assume C0 = 1.

(C2) (Condition on the conditional density): Let FT (t |Z) = Pr(logT ≤ t |Z),
�T (t |Z) = − log(1 − FT (t |Z)), F(t |Z) = Pr(logX ≤ t |Z), and G(t |Z) =
Pr(logX ≤ t,� = 1|Z). Also, define f (t |Z) = dF(t |Z)/dt , and g(t |Z) =
dG(t |Z)/dt .
(a) There exist constants f , f̄ , g and ḡ such that

f ≤ inf
z,τ∈[τ0,τU ]f

(
zT β0(τ )|z) ≤ sup

z,τ∈[τ0,τU ]
f
(
zT β0(τ )|z) ≤ f̄ ,

g ≤ inf
z,τ∈[τ0,τU ]g

(
zT β0(τ )|z) ≤ sup

z,τ∈[τ0,τU ]
g
(
zT β0(τ )|z) ≤ ḡ.

(b) There exist constants κ and A, such that ∀|t | ≤ κ ,

sup
z,τ∈[τ0,τU ]

∣∣f (
zT β0(τ ) + t |z)− f

(
zT β0(τ )|z)∣∣ ≤ A|t |,

sup
z,τ∈[τ0,τU ]

∣∣g(zT β0(τ ) + t |z)− g
(
zT β0(τ )|z)∣∣ ≤ A|t |.

(C3) (Sparsity and dimensionality): Let Sτ := {j : |β(j)
0 (τ )| > 0,1 ≤ j ≤ p},

S∗ := ⋃
τ∈[τ0,τL) Sτ = {supτ0≤τ<τL

|β(j)
0 (τ )| 	= 0}, the set of relevant covari-

ates over [τ0, τL), and S := ⋃
τ∈[τ0,τU ] Sτ = S∗ ∪ S∗, where S∗ stands for the

set of relevant covariates over [τL, τU ] as defined in Section 2.2. We assume
logp = o(n1/2) and s := |S| does not change with n.

(C4) [Smoothness of β0(τ )]: let μ̃(τ ) = E[1{logX > ZT β0(τ )}]. There exist a
positive constant L, such that |β(j)

0 (τ1)−β
(j)
0 (τ2)| ≤ L|τ1 −τ2| and |μ̃(τ1)−

μ̃(τ2)| < L|τ1 − τ2|, for all τ1, τ2 ∈ [τ0, τU ] and 1 ≤ j ≤ p.
(C5) (Restricted eigenvalue condition and restricted nonlinear impact): Let Aτ

denote the restricted set {δ ∈ R
p : ‖δ‖1,Sc

τ
≤ ((c0 + 1)/(c0 − 1))‖δ‖1,Sτ ,‖δ‖0,Sc

τ
≤ n} and AS denote {δ ∈ R

p : ‖δ‖1,Sc ≤ ((c0 + 1)/(c0 − 1))‖δ‖1,S,

‖δ‖0,Sc ≤ n}, for some constant c0 > 1. We can see that Aτ ⊂ AS , for all
τ ∈ [τ0, τU ].
(a) (Restricted eigenvalue condition) 0 < λmin ≤ infδ∈AS,δ 	=0 δT E[ZiZT

i ]δ/
‖δ‖2.

(b) (Restricted nonlinear impact) q := infδ∈AS,δ 	=0 E[(ZT
i δ)2]3/2/

E[|ZT
i δ|3] > 0.

(C6) (Grid size of �mn): Let εn := τk − τk−1, τk ∈ �mn . The grid size satisfies
cn−1 ≤ εn ≤ c−1√log(p ∧ n)/n for some constant c.

Condition (C1) assumes the boundedness of the covariates, which is reasonable
in most applications. Following the discussions in Koenker (2005), Zheng, Peng
and He (2015) pointed out that a global linear quantile regression model is most
sensible when the covariates are confined to a compact set. In an unbounded
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covariate space, the linear quantile functions have to be parallel, which means
i.i.d. errors; otherwise the quantiles functions would cross. The same argument
applies to censored quantile regression. Under a location shift linear model, we
may allow the support of the covariates to be unbounded. This is confirmed by
the simulation results reported in the supplemental article [Zheng, Peng and He
(2018)]. Condition (C2) imposes mild assumptions on the conditional density
f (t |Z) ≡ d Pr(logT ∧ logC ≤ t |Z)/dt , which, by its definition, accounts for the
effect of censoring on the observed data. Condition (C2) implies the positiveness
of f (t |Z) everywhere between ZT β0(τL) and ZT β0(τU ), which plays an impor-
tant role to ensure the identifiability of β0(τ ) for τ < τU . The selection of τU in
real data analysis can follow the same principle suggested by Peng and Huang
(2008) for finite-dimensional CQR. By Condition (C3), the number of candidate
covariates may increase at an exponential rate as a function of n, but the true model
size s is fixed over n. In fact, Condition (C3) can be relaxed to allow s to increase
with n. More specifically, we show in Theorem 4.1 that

sup
τ0≤τ≤τU

∥∥β̃(τ ) − β0(τ )
∥∥ ≤ (

C1 exp(C2τUs) + L · c−1)√s log(p ∨ n)/n,

which implies that our proposed estimator is still consistent if s increases at the
rate o(logn). However, s is not allowed to grow at the rate of o(n1/3) as in He
and Shao (2000) due to the unique challenge in controlling the cumulative esti-
mation error in our estimation procedure. Condition (C4) requires that β0(τ ) is
sufficiently smooth. Condition (C5) is a type of assumptions commonly seen in
the high dimensional data analysis literature [Belloni and Chernozhukov (2011),
Bickel, Ritov and Tsybakov (2009), Fan, Fan and Barut (2014), for example]. The
eigenvalue condition (C5a) is crucial to the model identifiability. The restricted
nonlinear impact (RNI) coefficient q in condition (C5b) controls the quality of
minoration of the quantile loss function by a quadratic function, which is needed
to establish the consistency of the proposed estimators. Condition (C6) imposes
constraints on the fineness of the grid �mn . The condition cn−1 ≤ εn is required
merely to simplify our proof. We can relax it with more tedious arguments.

4.2. Theoretical properties of L-HDCQR. The sequential nature of our L-
HDCQR estimation procedure suggests investigating the properties of β̃(τ ) by
induction.

Let {νk,n(b), k = 0, . . . ,mn} be a positive sequence satisfying ν0,n(b) = ν0,n =√
s log(p ∨ n)/n and νk+1,n(b) = νk,n(1+bsεn) for some constant b, where εn :=

τk −τk−1. Given two positive constants a and b, we define �̃k(a, b), k = 0, . . . ,mn

as the event that for all 0 ≤ r ≤ k,

inf
‖(E[ZiZT

i ])1/2δ‖=√
λminaνr,n(b),δ∈Aτr

Q̃r

(
β0(τr) + δ

)− Q̃r

(
β0(τr)

)
> 0 and

β̃(τr) − β0(τr) ∈ Aτr ,
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where Aτr = {δ ∈ R
p : ‖δ‖1,Sc

τr
≤ ((c0 + 1)/(c0 − 1))‖δ‖1,Sτr

,‖δ‖0,Sc
τr

≤ n} is de-

fined in Condition (C5). Note that �̃0(a, b) only depends on a since ν0,n(b) is free
of b by its definition. It can be seen that if the event �̃k(a, b) holds, then by the
convexity of Q̃r(h), ‖(E[ZiZT

i ])1/2(β̃(τr) − β0(τr))‖ ≤ √
λminaνr,n(b), and con-

sequently ‖β̃(τr) − β0(τr)‖ ≤ aνr,n(b), for all 0 ≤ r ≤ k, according to Condition
(C5a). Thus, �̃k(a, b) can be roughly viewed as the event that β̃(τr) is located in
the local ball with center β0(τr) and radius aνr,n(b) for all 0 ≤ r ≤ k. If we can
show that there exist some constants a and b, such that Pr(�̃mn(a, b)) → 1, and
νmn,n(b) → 0, then the uniform estimation consistency of β̃(τ ) for τ ∈ [τ0, τU ]
can be established given the smoothness of β0(τ0) imposed by Condition (C3).

We apply induction arguments to examine the probability that �̃k(a, b) holds.
Specifically, in Proposition A.1 (see Appendix A), we show that there exists a uni-
versal large constant C1, such that P(�̃0(C1,0)) > 1 − 16 exp(−4 log(p ∧ n)) −
2 exp(−3 log(p ∨ n)). As discussed above, this establishes the estimation consis-
tency of β̃(τ0) with the convergence rate

√
s log(p ∨ n)/n, and hence provides the

baseline result for the induction. Next, we establish the key result for the induction
in Proposition A.2 (see Appendix A). That is, there exists a universal large constant
C2, such that given the event �̃k−1(C1,C2) holds, k = 1, . . . ,mn, if the tuning pa-
rameter λ̃k,n and εn are well chosen, then the event �̃k(C1,C2) holds with proba-
bility at least 1−4(5k+7) exp(−3 log(p∨n)). It is worthy mentioning here that in
Proposition A.2 we show that the cumulative estimation errors from β̃(τr)

′s, r < k

involved in (7) may achieve the sparsity threshold level
√

n log(p ∨ n) and dete-
riorate the estimate at τk , thus we need to adjust the tuning parameter to produce
sparse consistent estimates. More details are presented in Appendix A.

By Propositions A.1 and A.2, we can infer the estimation consistency of the L-
HDCQR estimator over [τ0, τU ]. First, according to the definition of the sequence
that νk+1,n(C2) ≤ νk,n(C2)(1 + C2sεn),0 ≤ k ≤ mn − 1, we have νmn,n(C2) ≤
ν0,n(1 + C2sεn)

τU/εn → exp(C2sτU )
√

s log(p ∨ n)/n, which converges to 0 with
the rate

√
s log(p ∨ n)/n, under Condition (C3). Next, by our choices of εn from

Condition (C6) for grid �mn , we obtain that Pr(�̃mn(C1,C2)) ≥ 1 −∑mn

k=0 4(5k +
7) exp(−3 log(p ∨ n)) ≥ 1 − C3(p ∨ n)−1 for some constant C3. Combining the
above two results yields the estimation consistency of β̃(τk) at k = 1, . . . ,mn, and
consequently by Condition (C4), we can establish the uniform consistency of β̃(τ )

over [τ0, τU ] as stated in the following theorem.

THEOREM 4.1. Suppose the conditions in Propositions A.1 and A.2 are sat-
isfied. There exist some constants C1,C2 and C3, such that

sup
τ0≤τ≤τU

∥∥β̃(τ ) − β0(τ )
∥∥ ≤ C1 exp(C2sτU )

√
s log(p ∨ n)/n + L

√
sεn

≤ (
C1 exp(C2sτU ) + L · c−1)√s log(p ∨ n)/n,
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with probability at least 1−C3(p∨n)−1, where L and c are defined in Conditions
(C4) and (C6), respectively.

The model identified by β̃(τ ) over [τL, τU ] is denoted by S̃∗ := {j :
supτ∈[τL,τU ] |β̃(j)(τ )| 	= 0}. Based on the uniform consistency of β̃(τ ), we can
see that if the maximum signal of each relevant covariate j ∈ S∗ is strong
enough in [τL, τU ] such that supτ∈[τL,τU ] |β̃(j)(τ )| ≥ supτ∈[τL,τU ] |β(j)

0 (τ )| −
(C1 exp(C2τUs) + L · c−1)

√
s log(p ∨ n)/n > 0, then S∗, the true model over

[τL, τU ] is included in S̃∗, as stated by the following corollary.

COROLLARY 4.1. Under Conditions (C1)–(C6) and Assumption 3.1, if
supτ∈[τL,τU ] |β(j)

0 (τ )| > C1 exp(C2sτU )
√

s log(p ∨ n)/n + L
√

sεn, for all j ∈ S∗,

then S∗ ⊆ S̃∗ with probability at least 1 − C3(p ∨ n)−1. Moreover, provided any
hard-thresholding γ , such that (C1 exp(C2τUs)+L · c−1)

√
s log(p ∨ n)/n < γ <

infj∈S∗ supτL≤τ≤τU
|β(j)

0 (τ )| − (C1 exp(C2τUs) + L · c−1)
√

s log(p ∨ n)/n,{
j : sup

τL≤τ≤τU

∣∣β̃(j)(τ )
∣∣ > γ

}
= S∗,

with probability at least 1 − C3(p ∨ n)−1.

The second result of Corollary 4.1 indicates that if the maximum signals of
all relevant covariates are beyond 2(C1 exp(C2τUs) + L · c−1)

√
s log(p ∨ n)/n,

the additional hard thresholding can screen out all irrelevant covariates that are
mis-selected by β̃(τ ) over [τL, τU ]. However, the hard thresholding here explic-
itly depends on the unknown constants C1 and C2, and hence has little practical
utility. Moreover, as shown in the literature [Zou (2006), Zheng, Gallagher and
Kulasekera (2013), Fan, Fan and Barut (2014), for example] and in our numeri-
cal analysis, the Lasso-type estimators usually suffer from large bias, especially in
high dimensional data.

4.3. Theoretical properties of AL-HDCQR. Let {ϑk,n(b), k = 0, . . . ,mn} be
a positive sequence satisfying ϑ0,n(b) = ϑ0,n = √

s logn/n and ϑk+1,n(b) =
ϑk,n(1 + bsεn) for some constant b. Given some constants a and b, we define
�̂k(a, b), k = 0, . . . ,mn as the event that for all 0 ≤ r ≤ k,

inf
‖(E[ZiZT

i ])1/2δ‖=√
λminaϑr,n(b),supp(δ)⊆S∗

Q̂r

(
β0(τr) + δ

)− Q̂r

(
β0(τr)

)
> 0,

{
j : β̂(j)

(τr) 	= 0
} ⊆ S∗

when τ0 ≤ τr < τL, and

inf
‖(E[ZiZT

i ])1/2δ‖=√
λminaϑr,n(b),supp(δ)⊆S∗

Q̂r

(
β0(τr) + δ

)− Q̂r

(
β0(τr)

)
> 0,

{
j : β̂(j)

(τr) 	= 0
} ⊆ S∗
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when τL ≤ τr ≤ τU . Similar to �̃k(a, b), �̂k(a, b) can be approximately viewed
as the event that β̂(τr) is not only located in the local ball with center β0(τr)

and radius aϑr,n(b), but also does not include any irrelevant variables, for all 0 ≤
r ≤ k. We would like to show that Pr(�̂mn(a, b)) → 1, and ϑmn,n(b) → 0 for
some constants a and b, from which the estimation consistency of the AL-HDCQR
estimator follows.

PROPOSITION 4.1. Under Conditions (C1)–(C6) and Assumption 3.1, if
λn∗‖ω0‖2,S∗ ≤ c2

√
sn logn for some constant c2, and infj /∈S∗ λn∗ω(j)

0 /√
sn log(p ∨ n) → ∞, then there exists a sufficiently large constant C4, such that

the event �̂0(C4,0) holds with probability at least 1 − 38 exp(−3 log(p ∨ n)).

PROPOSITION 4.2. Under Conditions (C1)–(C6), if λn∗‖ωk‖2,S∗ ≤
c2

√
sn logn, λ∗

n‖ωk‖2,S∗ ≤ c2
√

sn logn, and infj /∈S∗ λn∗ω(j)
k /

√
sn log(p ∨ n) →

∞, infj /∈S∗ λ∗
nω

(j)
k /

√
sn log(p ∨ n) → ∞, there exists a universal constant C5,

such that given the event �̂k−1(C4,C5), the event �̂k(C4,C5) holds with proba-
bility at least 1 − 2(19k + 27) exp(−3 log(p ∨ n)).

The results in Propositions 4.1 and 4.2 are analogous to those in Proposi-
tions A.1 and A.2 in Appendix A, respectively. From Propositions 4.1 and 4.2,
it can be seen that if the tuning parameters and adaptive weights are appropri-
ately imposed such that the irrelevant covariates receive strong penalties over
the level

√
sn log(p ∨ n) and the penalties for relevant covariates are no more

than c2
√

sn logn at all τr < τk , then the estimation bias can be reduced to the
level

√
s logn/n. As a result, the errors from the part

∑k−1
r=0

∫ τr+1
τr

1{logXi ≥
ZT

i β̂(τr)}dH(u) in L̂k(h) at τk is at most of the level
√

sn logn, which is neg-
ligible compared to the sparsity threshold level for the irrelevant covariates, as
infj /∈S∗ λn∗ω(j)

k /
√

sn log(p ∨ n) → ∞ and infj /∈S∗ λ∗
nω

(j)
k /

√
sn log(p ∨ n) → ∞.

Therefore, the sparsity would not be altered and it is unnecessary to adjust the
tuning parameter and adaptive weights to control the cumulative estimation errors.

Propositions 4.1 and 4.2 imply that ϑmn,n(C5) ≤ ϑ0,n(1 + C5sεn)
τU /εn →

C4 exp(C5sτU )
√

s logn/n, which converges to 0 with the rate
√

s logn/n, and
also Pr(�̂mn(C4,C5)) ≥ 1 −∑mn

k=0 2(19k + 27) exp(−3 log(p ∨ n)) ≥ 1 − C6(p ∨
n)−1 for some constant C6. Then by Condition (C4), we obtain the uniform con-
sistency of β̂(τ ) across τ ∈ [τ0, τU ], as stated in the following theorem.

THEOREM 4.2. Suppose the conditions in Propositions 4.1 and 4.2 are satis-
fied. Then there exist some constants C4,C5, and C6, such that

sup
τ0≤τ≤τU

∥∥β̂(τ ) − β0(τ )
∥∥ ≤ (

C4 exp(C5sτU ) + L · c−1)√s logn/n,

with probability at least 1 − C6(p ∨ n)−1, where L is defined in Condition (C4).



322 Q. ZHENG, L. PENG AND X. HE

Noting that the uniform rate of β̂(τ ) is improved to
√

s logn/n, By the def-
inition of �̂k(C4,C5), Pr(�̂mn(C4,C5)) → 1 also implies that the model identi-
fied by β̂(τ ) over [τL, τU ], Ŝ∗ := ⋃

τ∈[τL,τU ]{j : β̂(j)(τ ) 	= 0}, is a submodel of
S∗ with probability tending to 1. Furthermore, if infj∈S∗ supτ∈[τL,τU ] |β(j)(τ )| >

(C4 exp(C5sτU )+L · c−1)
√

s logn/n, then Ŝ∗ = S∗ can be inferred from the esti-
mation consistency of β̂(τ ). The model selection consistency of the AL-HDCQR
estimator is stated in the next corollary.

COROLLARY 4.2. Suppose the conditions in Theorem 4.2 hold, if
infj∈S∗ supτ∈[τL,τU ] |β(j)(τ )| > (C4 exp(C5sτU ) + L · c−1)

√
s logn/n, then Ŝ∗ =

S∗ with probability at least 1 − C6(p ∨ n)−1.

If we adopt the uniform weighted penalty ω
(j)
k = χ2(supτ0≤τr<τL

|β̃(j)(τr)|) for

all τ0 ≤ τk < τL, and ω
(j)
k = χ2(supτL≤τr≤τU

|β̃(j)(τr)|) for all τL ≤ τk ≤ τU , j =
2, . . . , p, and χ2(u) = 1{u ≤ λn/n} + 1{u > λn/n}(aλn/n − u)+/((a − 1)λn/n),
then the conditions max1≤k≤mn{λn∗‖ωk‖2,S∗, λ

∗
n‖ωk‖2,S∗} ≤ c2

√
sn logn and

min1≤k≤mn{infj /∈S∗ λn∗ω(j)
k , infj /∈S∗ λ∗

nω
(j)
k }/√sn log(p ∨ n) → ∞ can be satis-

fied by choosing

λn∗, λ∗
n = O

(√
sn log(p ∨ n) log logn

)
,

inf
j∈S∗

sup
τ∈[τ0,τL)

∣∣β(j)
0 (τ )

∣∣ ≥ aλn∗/n + (
C1 exp(C2sτU ) + L · c−1)√s log(p ∨ n)/n

− (a − 1)c2

√
s logn/n,

inf
j∈S∗ sup

τ∈[τL,τU ]
∣∣β(j)

0 (τ )
∣∣ ≥ aλ∗

n/n + (
C1 exp(C2sτU ) + L · c−1)√s log(p ∨ n)/n

− (a − 1)c2

√
s logn/n,

the same conditions required by high dimensional quantile regression for the com-
plete data in Fan, Fan and Barut (2014). Thus, AL-HDCQR requires slightly
stronger signal conditions than L-HDCQR to achieve both estimation consistency
and model selection consistency. However, it does not demand the knowledge
about unknown quantities to conduct hard-thresholding.

We next present the weak convergence of the proposed AL-HDCQR estimator.

THEOREM 4.3. Under Conditions (C1)–(C6) and Assumption 3.1, if n−1/2 ×
λn∗‖ωk‖2,S∗ = o(1), infj /∈S∗ λn∗ω(j)

k /
√

sn log(p ∨ n) → ∞, for all τ0 < τk < τL,

and n−1/2λ∗
n‖ωk‖2,S∗ = o(1), infj /∈S∗ λ∗

nω
(j)
k /

√
sn log(p ∨ n) → ∞, for all τL ≤

τk ≤ τU , then n1/2(β̂S(τ ) − β0S(τ )) converges weakly to a mean zero Gaussian
process for τ ∈ [τ0, τU ].
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The details of the Gaussian process in Theorem 4.3 are regulated to the
supplemental article [Zheng, Peng and He (2018)]; see Section B. Theorem
4.3 requires stronger signal conditions than Propositions 4.1 and 4.2 so that
n−1/2λn∗‖ωk‖2,S∗ and n−1/2λ∗

n‖ωk‖2,S∗ , the bias introduced by the penalties is

asymptotically negligible. We can show that if infj∈S∗ supτ∈[τ0,τL) |β(j)
0 (τ )| ≥

aλn∗/n + (C1 exp(C2sτU ) + L · c−1)
√

s log(p ∨ n)/n and

inf
j∈S∗ sup

τ∈[τL,τU ]
∣∣β(j)

0 (τ )
∣∣ ≥ aλ∗

n/n + (
C1 exp(C2sτU ) + L · c−1)√s log(p ∨ n)/n,

the conditions in Theorem 4.3 can be satisfied by using the uniform weights
and χ2(·). If we adopt the point-wise weights, the sufficient signal strength
to satisfy conditions in Theorem 4.3 is infj∈S∗ infτ∈[τ0,τL) |β(j)

0 (τ )| ≥ aλn∗/n +
(C1 exp(C2sτU ) + L · c−1)

√
s log(p ∨ n)/n and infj∈S∗ infτ∈[τL,τU ] |β(j)

0 (τ )| ≥
aλ∗

n/n+ (C1 exp(C2sτU )+L · c−1)
√

s log(p ∨ n)/n. Therefore, Theorem 4.3 en-
tails weaker signal conditions with the choice of uniform weights than that from
pointwise weighted penalty.

4.4. The choice of tuning parameter. It is known the performance of penal-
ized methods greatly depends on the choice of tuning parameters. Because some
unknown parameters are involved in conditions from Propositions 4.1 and 4.2,
the theoretically optimal tuning parameters that satisfy those conditions cannot be
prescribed in practice.

For uncensored high dimensional quantile regression, Zheng, Peng and He
(2015) studied a GIC type tuning parameter selector, which is obtained as a mini-
mizer of the following function:

(12) GIC(λ;�) :=
∫
�

log
(
Enρτ

(
logTi − ZT

i β̂(τ ;λ)
))

dτ + ∣∣Ŝ(�;λ)
∣∣φn,

where λ is a candidate regularized parameter tuning the sparsity over �, an interval
of quantile levels; β̂(τ ;λ) and Ŝ(�;λ) are respectively a penalized quantile regres-
sion estimator and the corresponding selected model obtained with the tuning pa-
rameter λ across τ ∈ �, and φn is a sequence converging to 0 with n. Zheng, Peng
and He (2015) demonstrated that their GIC type selector can consistently identify
the set of relevant variables over �. In (12),

∫
� log(Enρτ (logTi − ZT

i β̂(τ ;λ))) dτ

serves to measure the overall model fitness over �, which however is not obtain-
able in the presence of censoring, as some Ti’s are not observed.

To accommodate censoring, we propose to use r̂(τ ;λ) := En[|D̂i(β̂(τ ;λ))|] to
assess the fitness of model (1), where

D̂i

(
β̂(τ ;λ)

) = sign
(
M̂i

(
β̂(τ ;λ)

))√−2
(
M̂i

(
β̂(τ ;λ)

)+ �i

)
log

(
�i − M̂i

(
β̂(τ ;λ)

))
with M̂i(β̂(τ ;λ)) = Ni(ZT

i β̂(τ ;λ)) − ∫ τ
τ0

1{logXi ≥ Ni(ZT
i β̂(u;λ)}dH(u) − τ0.

Here, M̂i(β̂(τ ;λ)) and D̂i(β̂(τ ;λ)), respectively, stand for the martingale residual
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and the deviance residual under the assumed model (1). Due to the skewness of
martingale residuals, we choose to measure the overall model fitness based on
deviance residuals (which is expected to produce a more normal shaped symmetric
distribution through a transformation to the martingale residuals).

Our modified GIC type tuning parameter selector is defined as a minimizer
of (13):

(13) GIC(λ;�) :=
∫
�

log r̂(τ ;λ)dτ + ∣∣Ŝ(�;λ)
∣∣φn.

By setting � as [τ0, τL) and [τL, τU ] sequentially in (13), we can get the practi-
cal tuning parameters λ̂n∗ and λ̂∗

n. Further investigations on the properties of this
tuning parameter selector will require additional work at the technical level.

5. Numerical analysis.

5.1. Simulation studies. We conduct simulation studies to assess the finite
sample performance of the proposed L-HDCQR and AL-HDCQR estimators.
For the AL-HDCQR estimator, we consider the pointwise, uniform and aver-
age weights as described in Section 4. The proposed estimators are compared
with Huang and Ma’s (2010) variable selection method for the accelerated fail-
ure time (AFT) model, hereafter referred to as ALasso AFT method. We set
the sample size n = 300 and the number of covariates p = 400. The quan-
tile interval of interest is [0.3,0.7], that is, τL = 0.3 and τU = 0.7. For each
simulation setup considered below, we set τ0 = 0.1 regardless of whether As-
sumption 3.1 is satisfied or not. The τ -grid �mn are n/5 equally space points
between τ0 and τU . In the L-HDCQR step, we first select a conservative λ̃0,n

following Belloni and Chernozhukov (2011) or Fan, Fan and Barut (2014). For
k = 1,2, . . . ,mn, we then use 5-fold cross-validation (CV) to select λ̃k,n −
λ̃k−1,n, the increment of the tuning parameter, from a grid within the range,
(aεn

√
log(p ∨ n)n, bεn

√
log(p ∨ n)n). For AL-HDCQR, we implement our GIC

procedure with φn = log(logn) logp/n and search the tuning parameter over a λ-
grid in [a′√sn log(p ∨ n) log logn,b′√sn log(p ∨ n) log logn]. Here, a, b, a′ and
b′ are pre-specified constants.

We consider the following five setups:
Setup (I): We generate the event times following the form

logTi = Z̃T
i b + εi,

where the covariates Z̃i ’s are generated from the multivariate normal distribu-
tion Np(0,�) with � = (σjk)p×p and σjk = 0.5|j−k| and truncated to be be-
tween −5 and 5, the coefficients b are set as b(1) = 2, b(2) = 1.5, b(5) = 4/5,
b(10) = 4/3, b(16) = 1, b(25) = 5/3 and b(j) = 0 for all other j ’s, and εi ∼ N(0,1),
where N(·, ·) denotes the normal distribution. Therefore, β0(τ ) = (Qε(τ ),bT )T

for all τ ∈ (0,1) under model (1), where Qε(τ) denotes the τ th quantile of
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the distribution of ε. The censoring time is generated as logCi ∼ N(0,16) +
N(−6,1)+N(10,0.25), an equal probability mixture of N(0,16),N(−6,1), and
N(10,0.25), if Z̃

(1)
i ≥ 0, and N(0,16) + N(0,1), an equal probability mixture

of N(0,16) and N(0,1), if Z̃
(1)
i < 0. In this case, the censoring distribution is

covariate dependent. The censoring rate is around 35%.
Setup (II): The event times are generated following the same settings as in

Setup (I) except εi ∼ Laplace(0,3/2), the double exponential distribution with
location parameter 0 and scale parameter 3/2. The censoring time is generated as
logCi ∼ N(0,16)+N(−6,1)+N(10,0.25), which is covariate-independent. The
censoring rate is around 25%.

Setup (III): The model used to generate the event times takes the form

logTi = Z̃T
i b + 1.75Z̃

(3)
i εi,

where b(1) = 2, b(10) = 4/3, b(16) = 4/5, b(25) = 1, and b(j) = 0 for all other j ’s,
and εi ∼ N(0,1). We first generate Źi as in Setup (I), and then set Z̃i = Źi , except
Z̃(3)

i = |Ź(3)
i | + 0.5. Therefore, β0(τ ) under (1) satisfies β(1)(τ ) = 0, β(4)(τ ) =

1.75Qε(τ), and β(j)(τ ) = b(j+1), for all other j ’s. The censoring time is generated
following the same distribution as in Setup (II). The censoring rate is round 30%.

Setup (IV): The event times are generated following

logTi = Z̃T
i b + φ1(ξi)Z̃

(1)
i + φ5(ξi)Z̃

(5)
i ,

where b(8) = 2, b(15) = 1, b(25) = 1 and b(j) = 0 for all other j ’s, φ1(·), φ5(·)
are two functions plotted in Figure 1, and ξi ∼ Unif(0,1). We first generate Źi

as in Setup (III), and then set Z̃(1)
i = |Ź(1)

i |, Z̃(5)
i = |Ź(5)

i |, and Z̃(j)
i = Ź(j)

i , for all
other j ’s. Then we can show that the quantile coefficient β0(τ ) under (1) takes
the form β(1)(τ ) = 0, β(2)(τ ) = φ1(τ ), β(6)(τ ) = φ5(τ ), and β(j)(τ ) = b(j+1) for
all other j ’s. The censoring time is generated as logCi ∼ N(0,16) + N(−6,1) +
N(12,0.36) if Z̃(8) ≥ 0 and N(0,16) + N(0,1) if Z̃(8) < 0. The censoring rate is
around 25%.

Setup (V): The event times are generated following the same settings as in Setup
(I) but we consider the fixed censoring time logCi = 2. The censoring rate is
around 30%.

For each simulation setup, we conducted 200 replications. In each replication,
the following three performance measures are calculated:

(1) Number of correctly identified relevant covariates over [τL, τU ], denoted by
NC;

(2) Number of incorrectly selected covariates over [τL, τU ], denoted by NI;
(3) The relative absolute estimation errors with respect to the unpenalized CQR

estimator β̂
o
(τ ) over [τL, τU ] provided the true model is used. It is defined as

REEo =
∫ τU
τL

‖β̂(τ ) − β0(τ )‖1 dτ∫ τU
τL

‖β̂o
(τ ) − β0(τ )‖1 dτ

.
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FIG. 1. The quantile coefficient functions β2(·), β6(·) in simulation setup (IV).

For ALasso AFT, we calculate REEo by extrapolating the coefficient function
estimate as a constant function over [τL, τU ].

The NC and NI evaluate the model selection performance. A good method is ex-
pected to produce NC and NI close to the true number of relevant covariates and 0,
respectively. The criterion REEo measures the global estimation accuracy over the
quantile index interval of interest. In addition, we classify the selected model as
under-fitted, correctly-fitted and over-fitted.

Table 1 presents the averages of NC, NI, the percentages of under-fitted,
correctly-fitted and over- fitted models (PUF, PCF and POF), and the median of
REEo (MREEo) from 200 simulations.

In setup (I) and (II), all covariates have only constant quantile effects. The ac-
celerated failure time assumption holds in both setups. It can be seen that the per-
formance of ALasso AFT are quite different between setups (I) and (II). Given
the errors follow a normal distribution in setup (I), it is reasonable to observe
that ALasso AFT achieves a good PCF (95.0%) and the smallest MREEo (0.847).
However, in setup (II), where the errors become heavy-tailed, the model selection
performance of ALasso AFT degrades considerably; the PUF is over 40% and
the PCF is only around 35%. In contrast, the AL-HDCQR methods with the three
different choices of weight (i.e., Pointwise, Average, Uniform) have very good
performance in model selection in both setups with PCFs all above 85%. This sug-
gests the proposed AL-HDCQR is robust against heavy-tailed errors, a desirable
property inherited from quantile regression.

Setup (III) and (IV) are designed to assess the performance of different meth-
ods when some covariates have varying effects on different quantiles. In setup (III),
the effect of covariate Z̃(3) at the τ th conditional quantile of logT is 1.75�−1(τ ),



HIGH DIMENSIONAL CENSORED QUANTILE REGRESSION 327

TABLE 1
Simulation results of setup (I)–(V)

Setup Method Weights PUF(%) PCF(%) POF(%) NC NI MREEo

Setup (I) L-HDCQR – 0.0 0.0 100.0 6.000 112.945 6.906
Pointwise 1.0 98.0 1.0 5.990 0.010 2.538

AL-HDCQR Average 1.0 97.0 2.0 5.990 0.020 1.578
Uniform 0.5 98.5 1.0 5.995 0.010 1.541

ALasso AFT – 0.5 95.0 4.5 5.995 0.065 0.847

Setup (II) L-HDCQR – 0.0 0.0 100.0 6.000 147.810 9.447
Pointwise 5.5 88.5 6.0 5.945 0.065 1.521

AL-HDCQR Average 4.5 91.0 4.5 5.955 0.050 1.289
Uniform 2.0 93.0 5.0 5.980 0.055 1.255

ALasso AFT – 46.5 34.5 19.0 5.380 0.635 1.702

Setup (III) L-HDCQR – 0.5 0.0 99.5 4.995 158.435 9.827
Pointwise 11.0 82.5 6.5 4.887 0.871 1.569

AL-HDCQR Average 12.0 81.5 6.5 4.872 0.077 1.134
Uniform 11.0 81.5 7.5 4.882 0.097 1.140

ALasso AFT – 100.0 0.0 0.0 3.282 0.430 1.752

Setup (IV) L-HDCQR – 0.0 0.0 100.0 5.000 149.055 9.346
Pointwise 18.5 79.5 2.0 4.790 0.030 1.141

AL-HDCQR Average 24.5 75.5 0.0 4.755 0.005 1.200
Uniform 21.0 77.0 2.0 4.775 0.025 1.155

ALasso AFT – 100.0 0.0 0.0 2.955 0.350 2.236

Setup (V) L-HDCQR – 0.0 0.0 100.0 6.000 134.945 8.286
Pointwise 0.0 98.0 2.0 6.000 0.020 2.131

AL-HDCQR Average 0.0 98.5 1.5 6.000 0.015 1.977
Uniform 0.0 99.5 0.5 6.000 0.005 1.745

ALasso AFT – 2.0 96.5 1.5 5.980 0.005 0.879

where �(·) is the cumulative distribution function of a standard normal distribu-
tion. Therefore, the effect of Z̃(3) in this setup is 0 at τ = 0.5 and becomes stronger
as τ moves towards 0 or 1. Figure 1 presents the coefficient functions for Z̃(1) and
Z̃(5) in setup (IV), showing that these two covariates have partial effects on two
disjoint τ -regions. Clearly, ALasso AFT suffers in these two cases. In both cases,
its PUFs are 100%, and NCs are 3.282 and 2.955, respectively. These results in-
dicate that ALasso AFT cannot consistently select relevant variables with varying
effects. Contrariwise, the proposed AL-HDCQR methods can satisfactorily iden-
tify all relevant covariates over the quantile region of interest; the PCFs in setups
(III) and (IV) are still above 75%.

Setup (V) is the same as setup (I) except that it has fixed censoring. Table 1 sug-
gests that the proposed AL-HDCQR methods still perform well with good PCFs
(close 100%) and small MREEos when the censoring variable is a constant. From
Table 1, we also observe that L-HDCQR method tends to yield an over-fitted model
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with POF around 100% in all five setups. This is in line with our theoretical results
in Corollary 4.2. Compared to L-HDCQR, the introduction of weighted penalties
in AL-HDCQR significantly reduce the coefficient estimation bias as expected.
Although the simulation results demonstrate that all three AL-HDCQR estima-
tors are able to achieve consistency in both model selection and coefficient es-
timation, as proved in Propositions 4.1, 4.2 and Theorem 4.2, by comparing the
results produced by three AL-HDCQR estimators, we find that the one with the
uniform weight in general outperforms the estimator based on the pointwise or
average weight. Relative to the pointwise weights, the uniform weights better re-
flect the global signal strength and hence reduce the variability of penalties across
[τL, τU ]. Compared with the average weights, the uniform weights enable better
power for detecting the weak signals. Therefore, we recommend adopting the uni-
form weights in the practical application of the proposed AL-HDCQR procedure.

We also examined the robustness of our proposed estimators to the choice of
[τL, τU ]. We considered setup (IV) with [τL, τU ] = [0.29,0.71] and [0.31,0.69],
which are resulted from applying small perturbations to [0.3,0.7] and yet may
represent the same interest in the conditional distribution as [0.3,0.7]. It would
be desirable to obtain similar variable selection and estimation results between
these three choices of [τL, τU ]. The detailed simulation study is reported in the
supplementary material (see Section A of the supplemental article [Zheng, Peng
and He (2018)]). The results suggest that our proposed estimators are robust to
reasonable variations in the choice of [τL, τU ].

Additional simulations were conducted to evaluate the proposed methods in
cases with heavy censoring or a heavy-tailed error distribution, and scenarios
where the covariate sparsity at upper quantiles are of interest. Please see Section A
of the supplemental article [Zheng, Peng and He (2018)] for more details.

5.2. Real data analysis. We now illustrate the proposed HDCQR estimators
by the analysis of a real dataset. Our data comes from a large retrospective study
[Shedden et al. (2008)] that used gene expression values to predict the survival time
in lung cancer, the leading cause of cancer death in the United States. This microar-
ray data set contains expression values of 22,283 genes and the survival time on
442 lung adenocarcinomas. The median follow-up time is 46 months. About 46%
subjects had censored survival time.

Following Huang, Ma and Zhang (2008) and Wang, Wu and Li (2012), we first
carry out data preprocessing: (step 1) remove observations with missing values;
(step 2) exclude each gene whose maximum expression value among subjects in
study was less than the 25th percentile of the entire expression values; (step 3) re-
move each gene that lacked sufficient variability. For a gene to be considered “suf-
ficiently variable,” we require the range of its expression values is no less than 2.
There are 440 subjects and 15,983 genes left after these preprocessing steps. We
next select 3000 genes with the largest variances. From these 3000 genes, we fur-
ther choose the top 600 genes that have the largest correlation coefficients with the
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TABLE 2
Analysis results of lung cancer data over two [τL, τU ]

All data Random partition prediction
[τL,τU ] Method Weights # of genes selected error: mean (sd)

[0.1, 0.675] AL-HDCQR Pointwise 11 0.855 (0.073)
Average 10 0.854 (0.072)
Uniform 11 0.840 (0.057)

ALasso AFT – 4 1.195 (0.142)

[0.1, 0.700] AL-HDCQR Pointwise 11 0.853 (0.073)
Average 10 0.853 (0.074)
Uniform 11 0.843 (0.059)

ALasso AFT – 4 1.196 (0.128)

observed log survival time. Then we apply the proposed methods and ALasso AFT
to investigate the impact of these 600 genes on lung cancer survival time.

We apply the proposed methods with [τL, τU ] = [0.1,0.675] and [0.1,0.700].
Such choices of [τL, τU ] reflect our interest in finding prognostic gene expression
signatures for moderate-risk lung cancer cases. The number of covariates selected
by these methods using all 440 subjects are reported in Table 2. The proposed
AL-HDCQR estimator with average weighted penalties selected 10 genes, which
are included in the 11 genes found by AL-HDCQR estimators with pointwise or
uniform weights. Our methods identify the same set of genes over the two different
choices of intervals, suggesting the robustness of our method to small changes in
the specification of [τL, τU ]. On the other hand, ALasso AFT selects 4 genes, of
which 2 genes are in common with those identified by AL-HDCQR methods.

To evaluate the AL-HDCQR methods, we also compute their prediction error
as follows. We randomly split the 440 subjects into a training data set with 300
subjects and a testing data set with the other 140 subjects. We then apply the AL-
HDCQR and ALasso AFT method into the training set and obtain the estimator
β̂(τ ). Next, we calculate the prediction errors over the quantile interval in the
testing data set. For AL-HDCQR approaches, the prediction errors over [τL, τU ]
are calculated as

PEcqr (τL, τU) =
∑n

i=1 1{i in testing set} ∫ τU
τL

|D̂i(β̂(τ ))|dτ∑n
i=1 1{i in testing set} ,

where D̂i(β̂(τ )) is the deviance residual from censored quantile regression defined
in Section 4.4. For ALasso AFT, we extrapolate the estimated coefficient function
as a constant function.

We present the averages of PE along with the corresponding standard deviations
(within parentheses) based on 200 replications of random splitting into training and
test sets in Table 2.
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Table 2 shows that the proposed AL-HDCQR approaches selected more genes
and producing much smaller prediction errors, as compared to the ALasso AFT
method. The standard deviations of the prediction errors are also much smaller for
the AL-HDCQR approaches. The ALasso AFT method producing fewer selected
gene in this example is consistent with our simulation results, which suggest that
the ALasso AFT method is highly likely to miss the relevant variables with varying
covariate effects [e.g., PUF = 100% in setups (III) and (IV)]. Therefore, the less
desirable performance of the ALasso AFT method in this example may result from
the violation of the constant covariate effect assumption of the AFT model. It is
also worth noting that the results from AL-HDCQR are impressively consistent
among different choices of weights and [τL, τU ]. This once again endorses the
robustness of the proposed AL-HDCQR methods.

APPENDIX A: PROPOSITIONS A.1 AND A.2

In this section, we present Propositions A.1 and A.2 and provide some discus-
sions.

PROPOSITION A.1. Under Conditions (C1)–(C6) and Assumption 3.1, one
can find λ̃0,n of order

√
log(p ∨ n)n and a sufficiently large constant C1 such that

the event �̃0(C1,0) holds with probability at least 1 − 16 exp(−4 log(p ∨ n)) −
2 exp(−3 log(p ∨ n)).

Proposition A.1 lays the foundation to control the cumulative estimation errors.
Next, we show that there exists a constant C2, such that under event �̃k−1(C1,C2),
event �̃k(C1,C2) holds with probability tending to 1.

PROPOSITION A.2. Suppose Conditions (C1)–(C6) hold, there exists a uni-
versal constant C2 such that under event �̃k−1(C1,C2), 1 ≤ k ≤ mn, if

(a) 2c0

[
5
√

τ̃k log(p ∨ n)n + 6f̄ C1c0

c0 − 1

εn

1 − τU

√
sn

k−1∑
r=0

νr,n(C2)

+ 8kεn

1 − τU

log(p ∨ n) + 3
√

log(p ∨ n)n

]

≤ λ̃k,n ≤ c−1
√

log(p ∨ n)n,

(b)
6f̄ C1c0

c0 − 1

εn

1 − τU

√
snνk−1,n(C2) + 8εn

1 − τU

log(p ∨ n)

≤ λ̃k,n − λ̃k−1,n ≤ c−1εn

√
log(p ∨ n)n

and where τ̃k is defined in Lemma C.6 and c is some constant, then the event
�̃k(C1,C2) holds with probability at least 1 − 4(5k + 7) exp(−3 log(p ∨ n)).
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Conditions (a) and (b) specify the theoretical conditions for tuning parameters
λ̃k,n’s. Condition (a) is similar to the strength conditions of tuning parameters
that are widely imposed in high dimensional literature [Zhang and Huang (2008),
Belloni and Chernozhukov (2011), for example]. The first inequality requires the
penalization to be strong enough to produce the sparse estimates, while the second
inequality provides an upper bound for penalization to avoid over-shrinkage. The
item 6f̄ C1c0εn

√
sn

∑k−1
r=0 νr,n(C2)/((c0 −1)(1− τU))+8kεn log(p∨n)/(1− τU)

in condition (a) is new, and serves as an upper bound for the cumulative estimation
errors up to τk−1. If one adopts a common tuning parameter for all 0 ≤ k ≤ mn,
say λ̃n, then C1 ≥ 2c0λ̃n/(λmin(c0 − 1)

√
s log(p ∨ n)n) from the proof of Propo-

sition A.1. Therefore, the cumulative errors can reach

6f̄ C1
c0

(c0 − 1)(1 − τU )
εn

√
sn

k−1∑
r=0

√
s log(p ∨ n)/n + 8

1 − τU

kεn log(p ∨ n)

≥ 12f̄
c2

0

λmin(c0 − 1)2(1 − τU )

√
skεnλ̃n,

which may exceed λ̃n as k increases, resulting in insufficient penalization. Even if
we choose a large λ̃n, the insufficient penalization may still occur, as using a large
tuning parameter at small τk’s would lead to an unnecessarily large estimation error
in β̃(τk), and consequently the cumulative estimation errors. This indicates that
adjusting λ̃k,n with k is critical for achieving enough sparsity. By condition (b), one
can increase the tuning parameter at each k to offset the increase in the cumulative
estimation error so that sparse estimates can still be realized. The increment of
λ̃k,n satisfying condition (b) exists and is of asymptotic order εn

√
log(p ∨ n)n. By

condition (b), one can increase the tuning parameter at each k to offset the increase
in the cumulative estimation error so that sparse estimates can still be realized.
The increment of λ̃k,n satisfying condition (b) exists and is of asymptotic order
εn

√
log(p ∨ n)n. With the modulation of λ̃k,n, �̃k(C1,C2) holds with probability

tending to 1 and the estimation error of β̃(τk) is bounded with the rate C1νk,n. It is
worth noting that Lasso type penalties λ̃k,n’s maintain the same form at different
k, which facilitates the development of the properties of L-HDCQR.

APPENDIX B: TECHNICAL PROOFS

We present the proofs of our main results in this section. All lemmas used in
this section are provided in Appendix C.

PROOF OF PROPOSITION A.1. By Lemma C.2, we have with probabil-
ity at least 1 − 2 exp(−3 log(p ∨ n)), β̃(τ0) − β0(τ0) ∈ Aτ0 . Therefore, we
restrict our attention to event �̃0,0 := {β̃(τ0) − β0(τ0) ∈ Aτ0}, and consider
Q̃0(β0(τ0) + δ) − Q̃0(β0(τ0)) for any δ ∈ Aτ0, δ

T E[ZiZT
i ]δ = t2 and t ≤
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κ/
√

λmin. Q̃0(β0(τ0) + δ) − Q̃0(β0(τ0)) can be decomposed as ητ0(β0(τ0) +
δ) − ητ0(β0(τ0)) + λ̃0,n(‖β0(τ0) + δ‖1 − ‖β0(τ0)‖1), where ητ0(·) is defined
in Lemma C.2. We first evaluate ητ0(β0(τ0) + δ) − ητ0(β0(τ0)). It can be writ-
ten as E[ητ0(β0(τ0) + δ) − ητ0(β0(τ0))] + ητ0(β0(τ0) + δ) − ητ0(β0(τ )) −
E[ητ0(β0(τ0) + δ) − ητ0(β0(τ0))]. By Lemma C.3, uniformly for δ ∈ Aτ0 that
satisfies δT E[ZiZT

i ]δ = t2, t ≤ κ/
√

λmin,

(14) n−1E
[
ητ0

(
β0(τ0) + δ

)]− n−1E
[
ητ0

(
β0(τ0)

)] ≥ gt2 − 2At3/(3q).

Since ητ0(β0(τ0) + δ) − ητ0(β0(τ )) − E[ητ0(β0(τ0) + δ) − ητ0(β0(τ0))] can be
written as 2Gn[ρτ0(logXi − ZT

i (β0(τ0)+ δ))−ρτ0(logXi − ZT
i β0(τ0))], then we

have

sup
δ∈Aτ0 ,δT E[ZiZT

i ]δ=t2

∣∣ητ0

(
β0(τ0) + δ

)− ητ0

(
β0(τ0)

)

− E
[
ητ0

(
β0(τ0) + δ

)− ητ0

(
β0(τ0)

)]∣∣
≤ 2

√
nA0(t),

where A0(t) is defined in Lemma C.4. According to Lemma C.4,

Pr
(
A0(t) ≥ 48

√
2c0

√
s log(p ∨ n)t/

(
(c0 − 1)

√
λmin

))
(15)

≤ 16p exp
(−4 log(p ∨ n)

)
.

It is easy to see that

sup
δ∈Aτ0 ,δT E[ZiZT

i ]δ=t2

λ̃0,n

∣∣∥∥β0(τk) + δ
∥∥

1 − ∥∥β0(τk)
∥∥

1

∣∣
(16)

≤ 2λ̃0,nc0
√

st/
(
(c0 − 1)

√
λmin

)
.

If we choose λ̃0,n = 8c0
√

τ0(1 − τ0) log(p ∨ n)n, then by (14), (15) and (16), we
obtain that

inf
δ∈Aτ0 ,δT E[ZiZT

i ]δ=t2
n−1[Q̃0

(
β0(τ0) + δ

)− Q̃0
(
β0(τ0)

)]

≥ t

{
gt − 2

3q
At2 − 96

√
2c0

√
s log(p ∨ n)/n/

(
(c0 − 1)

√
λmin

)

− 16c0
√

τ0(1 − τ0)c0

√
s log(p ∨ n)/n/

(
(c0 − 1)

√
λmin

)}

with probability at least 1 − 16 exp(−4 log(p ∨ n)). Therefore, there exists a suffi-
ciently large constant C1, such that

inf
δ∈Aτ0 ,δT E[ZiZT

i ]δ=λminC
2
1 s log(p∨n)/n

Q̃0
(
β0(τ0) + δ

)− Q̃0
(
β0(τ0)

)
> 0.
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Since (7) is convex with respect to h, we have with probability at least 1 −
16 exp(−4 log(p∨n))−2 exp(−3 log(p∨n)), ‖(E[ZiZT

i ])1/2(β̃(τ0)−β0(τ0))‖ ≤√
λminC1

√
s log(p ∨ n)/n. By Condition (C5), ‖β̃(τ0) − β0(τ0)‖ ≤

C1
√

s log(p ∨ n)/n. This completes the proof of Proposition A.1. �

PROOF OF PROPOSITION A.2. We choose some constant C2 such that

C2 > 4
f̄

(1 − τU )sg
+ 64

√
2

1

(1 − τU )sgC1λmin

c0

c0 − 1

+ 8
1

(1 − τU )g

c0

c0 − 1
√

s
√

λmin

+ 12
f̄

(1 − τU )g

c0

(c0 − 1)2

1

λmin
,

where C1 is from Proposition A.1, g is defined in Condition (C2), and, c0 and λmin
are defined in Condition (C5). It can be seen that the choice of C2 does not depend
on n. Then we show under the event �̃k−1(C1,C2), event �̃k(C1,C2) holds with
large probability.

By Lemma C.10, if

λ̃k,n ≥ 2c0

[
5
√

τ̃k log(p ∨ n)n + 6f̄ C1
εn

1 − τU

c0

c0 − 1

√
sn

k−1∑
r=0

νr,n(C2)

+ εn

1 − τU

8k log(p ∨ n) + 3
√

log(p ∨ n)n

]
,

then under �̃k−1(C1,C2) given 1 ≤ k ≤ mn, with probability at least 1 − 4(k +
1) exp(−3 log(p ∨ n)), we have β̃(τk) − β0(τk) ∈ Aτk

. Therefore, we restrict our
attention on �̃k,0 := {β̃(τk) − β0(τk) ∈ Aτk

}.
We follow the similar arguments used in Proposition A.1. By Lemmas C.11,

C.12 and C.13, we have under �̃k−1(C1,C2),

inf
δ∈Aτk

,δT E[ZiZT
i ]δ=t2

n−1[Q̃k

(
β0(τk) + δ

)− Q̃k

(
β0(τk)

)]

≥ t

{
gt − 2

3q
At2 − 2

εn

1 − τU

k−1∑
r=0

(
f̄ C1

√
λminνr,n(C2) + Lεn

)

− 80
√

2
c0

(c0 − 1)
√

λmin

√
s log(p ∨ n)/n

− 32τ0
√

2
c0

(c0 − 1)
√

λmin

√
s log(p ∨ n)/n
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− 64
√

2
k−1∑
k=0

εn

1 − τU

c0

(c0 − 1)
√

λmin

√
s log(p ∨ n)/n

− 2
εn

1 − τU

k−1∑
k=0

(
4C1

c0

c0 − 1

√
sνr,n(C2) + f̄ C1

√
λminνr,n(C2) + Lεn

)

− 2
√

s
λ̃k,n

n

c0

(c0 − 1)
√

λmin

}

with probability at least 1 − 4(5k + 7) exp(−3 log(p ∨ n)). Therefore, we have

0 ≤ gC1
√

λminνk−1,n(C2) − 2

3q
Aλmin

(
C1νk−1,n(C2)

)2

− 2
εn

1 − τU

k−2∑
r=0

(
f̄ C1

√
λminνr,n(C2) + Lεn

)

− 80
√

2
c0

(c0 − 1)
√

λmin

√
s log(p ∨ n)/n

− 32τ0
√

2
c0

(c0 − 1)
√

λmin

√
s log(p ∨ n)/n(17)

− 64
√

2
k−2∑
k=0

εn

1 − τU

c0

(c0 − 1)
√

λmin

√
s log(p ∨ n)/n

− 2
εn

1 − τU

k−2∑
k=0

(
4C1

c0

c0 − 1

√
sνr,n(C2) + f̄ C1

√
λminνr,n(C2) + Lεn

)

− 2
√

s
λ̃k−1,n

n

c0

(c0 − 1)
√

λmin
,

under �̃k−1(C1,C2).

Let νk,n(C2) = (1 + C2sε)νk−1,n(C2). If we choose λ̃k,n − λ̃k−1,n = 6f̄ C1c0
c0−1 ×

εn

1−τU

√
snνk−1,n(C2) + 8εn

1−τU
log(p ∨ n), then simple algebra yields that

gC1
√

λminνk−1,n(C2) − 2

3q
Aλmin

(
C1(1 + C2sε)νk−1,n(C2)

)2

− 2
εn

1 − τU

k−2∑
r=0

(
f̄ C1

√
λminνk−1,n(C2) + Lεn

)

− 80
√

2
c0

(c0 − 1)
√

λmin

√
s log(p ∨ n)/n

− 32τ0
√

2c0

√
s log(p ∨ n)/n/

(
(c0 − 1)

√
λmin

)
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− 64
√

2
k−2∑
k=0

εn

1 − τU

c0

(c0 − 1)
√

λmin

√
s log(p ∨ n)/n

− 2
εn

1 − τU

k−2∑
k=0

(
4C1

c0

c0 − 1

√
sνr,n(C2) + f̄ C1

√
λminνr,n(C2) + Lεn

)

− 2
√

s
λ̃k−1,n

n

c0

(c0 − 1)
√

λmin

+ gC1C2
√

λminsεnνk−1,n(C2) − 2
εn

1 − τU

(
f̄ C1

√
λminνk−1,n(C2) + Lεn

)

− 64
√

2
εn

1 − τU

c0

(c0 − 1)
√

λmin

√
s log(p ∨ n)/n

− 2
εn

1 − τU

(
4C1

c0

c0 − 1

√
sνk−1,n(C2) + f̄ C1

√
λminνk−1,n(C2) + Lεn

)

− 2
√

s
c0

(c0 − 1)
√

λmin

(
6f̄ C1

εn

1 − τU

c0

c0 − 1

√
sνk−1,n(C2)

+ 8
εn

1 − τU

log(p ∨ n)

n

)
> 0

by our choice of C2. Again, since (7) is convex with respect to h, under
�̃k−1(C1,C2), we have with probability at least 1−4(5k +7) exp(−3 log(p ∨n)),∥∥(E[

ZiZT
i

])1/2(
β̃(τk) − β0(τk)

)∥∥ ≤ √
λminC1νk,n(C2).

By condition (C5), we have ‖β̃(τk) − βk(τk)‖ ≤ C1νk,n(C2). This completes the
proof of Proposition A.2. �

PROOF OF THEOREM 4.1. By Propositions A.1 and A.2, we have with prob-
ability at least 1 −∑mn

r=0 4(5r + 7) exp(−3 log(p ∨ n)),

sup
τ0≤τ≤τU

∥∥β̃(τ ) − β0(τ )
∥∥

≤ max
{

sup
τk≤τ<τk+1,k=0,...,mn−1

∥∥β̃(τ ) − β0(τ )
∥∥,∥∥β̃(τmn) − β0(τmn)

∥∥}

≤ max
{

max
k=0,...,mn−1

∥∥β̃(τk) − β0(τk)
∥∥

+ sup
τk≤τ<τk+1,k=0,...,mn−1

∥∥β0(τ ) − β0(τk)
∥∥,C1νmn,n(C2)

}

≤ max
{

max
k=0,...,mn−1

C1νk,n(C2) + L
√

sεn,C1νmn,n(C2)
}

(18)

≤ C1(1 + C2sεn)
mn + L

√
sεn
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≤ C1(1 + C2sεn)
τU/εn + L

√
sεn

≤ C1 exp(C2sτU )
√

s log(p ∨ n)/n + L
√

sc−1
√

log(p ∧ n)/n

≤ (
C1 exp(C2sτU ) + L · c−1)√s log(p ∨ n)/n,

where the third and sixth inequalities follow from Conditions (C4) and (C6).
Since we can always find some constant C3 satisfying 1 − C3(p ∨ n)−1 ≤ 1 −∑mn

r=0 4(5r + 7) exp(−3 log(p ∨ n)) and εn ∼ O(
√

logn/n), β̃(τ ) is uniformly
consistent to β0(τ ) with the convergence rate

√
s log(p ∨ n)/n across τ ∈ [τ0, τU ].

�

PROOF OF PROPOSITION 4.1. The proof of Proposition 4.1 follows the lines
in Theorem A.1 and Theorems 3.1–3.3 in Zheng, Peng and He (2015). We can
show there exists a constant C4 such that∥∥(E[

ZiZT
i

])1/2(
β̂(τ0) − β0(τ0)

)∥∥ ≤ √
λminC4

√
s logn/n,

∥∥β̂(τ0) − β0(τ0)
∥∥

≤ C4

√
s logn/n,

and {j : β̂
(j)

(τ0) 	= 0} ⊂ S∗ with probability at least 1 − 38 exp(−3 log(p ∨ n)).
We omit the details here. �

PROOF OF PROPOSITION 4.2. Let C5 be some positive constant such that

C5 > 4
f̄

(1 − τU)gs
+ 32

√
2

1

(1 − τU)λmingsC4
+ 8

1

(1 − τU)
√

s
√

λming

c0

c0 − 1
.

We only show the case for all τL ≤ τk ≤ τU . The other case can be proved with the
same arguments. By Lemma C.14, if λ̂∗‖ωk‖2,S∗ ≤ c2

√
sn logn, then under event

�̂k−1(C4,C5), we have ‖(E[ZiZT
i ])1/2(β̂

o
(τk) − β0(τk))‖ ≤ √

λminC4ϑk,n(C5),

‖β̂o
(τk) − β0(τk)‖ ≤ C4ϑk,n(C5), with probability at least 1 − 8(2k + 3) ×

exp(−3 log(p ∨ n)), where β̂
o
(τ ) denotes the oracle penalized estimator. Since

infj /∈S∗ λ̂∗ω(j)
k /

√
n log(p ∨ n) → ∞, then according to Lemma C.15, β̂

o
(τk) =

β̂(τk) with probability at least 1 − 2(19k + 22) exp(−3 logp). This immediately
implies that under event �̂k−1(C4,C5), �̂k(C4,C5) holds with probability at least
1 − 2(19k + 22) exp(−3 logp). �

PROOF OF THEOREM 4.2. The proof of Theorem 4.2 follows the lines in The-
orem 4.1. We omit the details here. �

PROOF OF THEOREM 4.3. By Lemma C.16 and our choice of �mn , we have

(19) sup
τ0≤τ≤τU

sup
j∈S

∣∣Gn

[
ZiSNi

(
ZT

i β̂(τ )
)− ZiSNi

(
ZT

i β0(τ )
)]∣∣ p→ 0.
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By Lemma C.17, we also obtain

sup
τ0≤τ≤τU

sup
j∈S

∣∣∣∣Gn

[
ZiS

(∫ τ

τ0

1
{
logXi ≥ ZT

i β̂(u)
}
dH(u) + τ0

)
(20)

−
(∫ τ

τ0

1
{
logXi ≥ ZT

i β0(u)
}
dH(u) + τ0

)]∣∣∣∣ p→ 0.

From (19) and (20), we obtain that

−n1/2
En

[
ZiS

(
Ni

(
ZT

i β0(τ )
)−

∫ τ

τ0

1
{
logXi ≥ ZT

i β0(u)
}
dH(u) − τ0

)]

= n1/2(E[
ZiS

(
Ni

(
ZT

i β̂(τ )
)− Ni

(
ZT

i β0(τ )
))])+ n−1/2 sup

1≤k≤mn

λ̂∗ωk

− n1/2
∫ τ

τ0

E
[
ZiS1

{
logXi ≥ ZT

i β̂(u)
}

− ZiS1
{
logXi ≥ ZT

i β0(u)
}]

dH(u) + op(1)

= n1/2(E[
ZiS

(
Ni

(
ZT

i β̂(τ )
)− Ni

(
ZT

i β0(τ )
))])

−
∫ τ

τ0

(
E
[
Zi,SZT

i,Sg
(
ZT

i β0(τ )
)](

E
[
Zi,SZT

i,Sf
(
ZT

i β0(τ )
)])−1 + op(1)

)
× n1/2(E[

ZiS

(
Ni

(
ZT

i β̂(τ )
)− Ni

(
ZT

i β0(τ )
))])

dH(τ) + op(1).

The rest of the proof follows from the same arguments used for Theorem 2 in Peng
and Huang (2008). �

APPENDIX C: LEMMAS

We present the technical lemmas used in the proofs of our theorems and propo-
sitions. The proofs of lemmas are relegated to the supplementary material [see
Section C of Zheng, Peng and He (2018)].

LEMMA C.1. Let φi(τ0) = 2τ0 − 2�i1{logXi ≤ ZT
i β0(τ0)}. Under Assump-

tion 3.1,

Pr
(

sup
1≤j≤p

En

[
Z

(j)
i φi(τ0)

]
> 8

√
τ0(1 − τ0) log(p ∨ n)/n

)
≤ 2 exp

(−3 log(p ∨ n)
)
,

when n is sufficiently large.

LEMMA C.2. Under the same conditions from Lemma C.1, if λ̃0,n ≥
8c0

√
τ0(1 − τ0) log(p ∨ n)n, then with probability at least 1 − 2 exp(−3 log(p ∨

n)), β̃(τ0) − β0(τ0) ∈ Aτ0 .
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LEMMA C.3. Under Conditions (C2), (C5) and Assumption 3.1, given any
0 < t ≤ κ/

√
λmin, we have n−1E[ητ0(β0(τ0) + δ)] − n−1E[ητ0(β0(τ0))] ≥ gt2 −

2At3/(3q), uniformly for δ ∈ Aτ0 that satisfies δT E[ZiZT
i ]δ = t2.

LEMMA C.4. Let ρ̄τ0,i(h) := �iρτ0(logXi − ZT
i h) + τ0(1 − �i)(logXi −

ZT
i h) and

A0(t) := sup
δT E[ZiZT

i ]δ≤t2,δ∈Aτ0

∣∣Gn

[
ρ̄τ0,i

(
β0(τ0) + δ

)− ρ̄τ0,i

(
β0(τ0)

)]∣∣,
under Conditions (C1)–(C6) and Assumption 3.1, we have

Pr
(
A0(t) ≥ 12K1

) ≤ 16p exp
(
− K2

1

2(2c0
√

st/((c0 − 1)
√

λmin))2

)

for K1 > t .

LEMMA C.5. ‖β̃(τk)‖0 ≤ n ∧ p uniformly over 1 ≤ k ≤ m.

LEMMA C.6. Let 2τ̃k = 2τk + 2H 2(τk). Suppose Condition (C1) holds, we
have for all 1 ≤ k ≤ m

Pr

(
sup

1≤j≤p

∣∣∣∣∣
n∑

i=1

Z
(j)
i

{
Ni

(
ZT

i β0(τk)
)−

∫ τk

0
1
{
logXi > ZT

i β0(u)
}
dH(u)

}∣∣∣∣∣
> 5

√
τ̃k log(p ∨ n)n

)

≤ 2 exp
(−4 log(p ∨ n)

)
.

LEMMA C.7. Suppose Condition (C4) holds, we have, for sufficiently large n

Pr

(
sup

1≤j≤p

n∑
i=1

∣∣Z(j)
i

∣∣(1{logXi > ZT
i β0(τk)

}− 1
{
logXi > ZT

i β0(τk+1)
})

> 4 log(p ∨ n)

)

≤ 2 exp
(−3 log(p ∨ n)

)
.

LEMMA C.8. Given 0 ≤ k ≤ m − 1, under conditions (C1) and (C2), if
‖β̃(τk) − β0(τk)‖ ≤ C1νk,n(C2) and β̃(τk) ∈ Aτk

, then for sufficiently large n,

Pr
(

sup
1≤j≤p

∣∣En

[
Z

(j)
i

(
1
{
logXi − ZT

i β̃(τk) > 0
}− 1

{
logXi − ZT

i β0(τk) > 0
})]∣∣

> 6f̄ C1c0/(c0 − 1)
√

sνk,n(C2)
)

≤ 2 exp
(−3 log(p ∨ n)

)
.
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Let

φ̃i,k(u) = Ni

(
ZT

i u
)−

(
k−1∑
r=0

∫ τr+1

τr

1
{
logXi ≥ ZT

i β̃(τk)
}
dH(τ) + τ0

)
.

LEMMA C.9. Suppose conditions (C1)–(C6) hold, for any 1 ≤ k ≤ mn, under
event �̃k−1(C1,C2),

Pr

(
n max

1≤j≤p

∣∣En

[
Z

(j)
i φ̃i,k

(
β0(τk)

)]∣∣ > 5
√

τ̃k log(p ∨ n)n

+ 6f̄ C1
εn

1 − τU

c0

c0 − 1

√
sn

k−1∑
r=0

νr,n(C2)

+ εn

1 − τU

8k log(p ∨ n) + 3
√

log(p ∨ n)n

)

≤ 4(k + 1) exp
(−3 log(p ∨ n)

)
.

LEMMA C.10. Under conditions (C1)–(C6), under �̃k−1(C1,C2) given 1 ≤
k ≤ m, if

λ̃k,n ≥ 2c0

[
5
√

τ̃k log(p ∨ n)n + 6f̄ C1
ε

1 − τU

c0

c0 − 1

√
sn

k−1∑
r=0

νr,n(C2)

+ ε

1 − τU

8k log(p ∨ n) + 3
√

log(p ∨ n)n

]
,

then with probability at least 1 − 4(k + 1) exp(−3 log(p ∨ n)), β̃(τk) − β0(τk) ∈
Aτk

.

LEMMA C.11. Under event �̃k−1(C1,C2), given 1 ≤ k ≤ mn, if t ≤ κ/
√

λmin

n−1E
[
L̃k

(
β0(τk) + δ

)]− n−1E
[
L̃k

(
β0(τk)

)]

≥ gt2 − 2

3q
At3 − 2

εn

1 − τU

k−1∑
r=0

(
f̄ C1

√
λminνr,n(C2) + Lεn

)
t

uniformly for δ ∈ Aτk
satisfying δT E[ZiZT

i ]δ = t2.

LEMMA C.12. Given 1 ≤ k ≤ mn, let

Ak(t) := sup
δ∈Aτk

,δT E[ZiZT
i ]δ=t2

∣∣Gn

[
�i

(∣∣logXi − ZT
i

(
β0(τ ) + δ

)∣∣
− ∣∣logXi − ZT

i β0(τ )
∣∣)+ �iZT

i δ
]∣∣,
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under conditions (C1)–(C6), we have

Pr
(
Ak(t) ≥ 20K1

) ≤ 16p exp
(
− K2

1

2(2c0
√

st/((c0 − 1)
√

λmin))2

)
,

for K1 > t .

LEMMA C.13. Given 1 ≤ k ≤ mn, let

Ck(t) := sup
δ∈Aτk

,δT E[ZiZT
i ]δ≤t2

∣∣∣∣∣Gn

[
δT Zi

(
k−1∑
r=0

∫ τr+1

τr

1
{
logXi > ZT

i β̃(τr)
}
dH(u)

+ τ0

)]∣∣∣∣∣,
under event �̃k−1(C1,C2), we have

Pr

(
Ck(t) >

k−1∑
r=0

[
8

εn

1 − τU

K1

+ εn

1 − τU

(
4C1

c0

c0 − 1

√
sνr,n(C2)

+ f̄ C1
√

λminνr,n(C2) + Lεn

)√
nt

]
+ 4τ0K1

)

≤ 8(2k + 1)p exp
(
− K2

1

2(2c0
√

st/((c0 − 1)
√

λmin))2

)

for any K1 > t .

LEMMA C.14. Suppose conditions (C1)–(C6) hold, if λ̂∗‖ωk‖2,S∗ ≤
c2

√
sn logn for τ0 < τk < τL, and λ̂∗‖ωk‖2,S∗ ≤ c2

√
sn logn for τL ≤ τk ≤ τU ,

then under event �̂k−1(C4,C5), for any 1 ≤ k ≤ mn,

∥∥(E[
ZiZT

i

])1/2(
β̂

o
(τk) − β0(τk)

)∥∥ ≤ √
λminC4ϑk,n(C5),

∥∥β̂o
(τk) − β0(τk)

∥∥
≤ C4ϑk,n(C5),

with probability at least 1 − 8(2k + 3) exp(−3 logn).

LEMMA C.15. Suppose the regularity conditions (C1)–(C6) hold. Under,
�̂k−1(C4,C5), if infj /∈S∗ λ̂∗ω(j)

k /
√

n logp → ∞, for all τ0 < τk < τL, and
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infj /∈S∗ λ̂∗ω(j)
k /

√
n logp → ∞ for all τL ≤ τk ≤ τU , such that

c3

√
n logp :> max

k≤mn

{
ḡ
√

λminC4ϑk,n(C5)n

+ 20λ
1/4
min

(
ḡλmaxC4ϑk,n(C5)sn logp/q

)1/2

+ n
εn

1 − τU

k−1∑
r=0

(
Lεn + f̄

√
λminC4ϑr,n(C5)

)

+ 3
√

n logp − 3 log(1 − τU )
√

n logp

+
k−1∑
r=0

(
20

εn

1 − τU

λ
1/4
min

(
f̄ λmaxC4ϑr,n(C5)sn logp/q

)1/2

+ 4
εn

1 − τU

√
λmaxLεnn

)}

and β̂
o
(τk) − β0(τk) ∈ RS∗(τk), where RS∗(τk) denotes the restricted space {δ :

‖δ‖0,S∗c = 0,‖δ‖ ≤ C4ϑk,n(C5),‖(E[ZiZT
i ])1/2δ‖ ≤ √

λminC4ϑk,n(C5)}, then

β̂
o
(τk) = β̂(τk) with probability at least 1 − 2(9k + 10) exp(−3 logp).

LEMMA C.16. Given any α ∈ R
p , such that (1) ‖α‖0,Sc = 0 and ‖α‖ = 1 or

(2) α = ej , where ej is the j th column of the identity matrix, if δ ∈ RS(τk) := {δ :
‖δ‖0,Sc = 0,‖δ‖ ≤ C4ϑk,n(C5),‖(E[ZiZT

i ])1/2δ‖ ≤ √
λminC4ϑk,n(C5)}, then

Pr
(

sup
δ∈RS(τk)

∣∣Gn

[
αT ZiNi

(
ZT

i

(
β0(τk) + δ

))− αT ZiNi

(
ZT

i β0(τk)
)]∣∣

≥ 20λ
1/4
min

(
ḡλmaxC4ϑk,n(C5)s logn/q

)1/2
)

≤ 16 exp(−4s logn).

LEMMA C.17. Let α be the same as in Lemma C.16. Under �̂k−1(C4,C5),
we have

Pr

(∣∣∣∣∣Gn

[
αT Zi

(
k−1∑
r=0

∫ τr+1

τr

1
{
logXi ≥ ZT

i β̂(τr)
}
dH(τ)

−
∫ τk

0
1
{
logXi ≥ ZT

i β0(τ )
}
dH(τ)

)]∣∣∣∣∣
≥

k−1∑
r=0

20
εn

1 − τU

λ
1/4
min

(
f̄ λmaxC4ϑr,n(C5)s logn/q

)1/2 + 4
εn

1 − τU

√
λmaxLεn

)

≤ 18k exp(−4 logn).
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SUPPLEMENTARY MATERIAL

Supplement to “High dimensional censored quantile regression” (DOI:
10.1214/17-AOS1551SUPP; .pdf). Additional simulation results, remarks, and
proofs of technical lemmas.
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