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CONDITIONAL MEAN AND QUANTILE DEPENDENCE TESTING
IN HIGH DIMENSION

BY XIANYANG ZHANG∗,1, SHUN YAO† AND XIAOFENG SHAO†,2

Texas A&M University∗ and University of Illinois at Urbana-Champaign†

Motivated by applications in biological science, we propose a novel test
to assess the conditional mean dependence of a response variable on a large
number of covariates. Our procedure is built on the martingale difference di-
vergence recently proposed in Shao and Zhang [J. Amer. Statist. Assoc. 109
(2014) 1302–1318], and it is able to detect certain type of departure from the
null hypothesis of conditional mean independence without making any spe-
cific model assumptions. Theoretically, we establish the asymptotic normality
of the proposed test statistic under suitable assumption on the eigenvalues of a
Hermitian operator, which is constructed based on the characteristic function
of the covariates. These conditions can be simplified under banded depen-
dence structure on the covariates or Gaussian design. To account for hetero-
geneity within the data, we further develop a testing procedure for conditional
quantile independence at a given quantile level and provide an asymptotic
justification. Empirically, our test of conditional mean independence delivers
comparable results to the competitor, which was constructed under the lin-
ear model framework, when the underlying model is linear. It significantly
outperforms the competitor when the conditional mean admits a nonlinear
form.

1. Introduction. Estimation and inference for regression models is of cen-
tral importance in statistics. For a response variable Y ∈ R and a set of covariates
X ∈ R

p , it would be desirable to determine whether X is useful in modeling a
certain aspect of the response, such as the mean or quantiles of Y , even before
constructing a parametric/nonparametric model. The main thrust of this article is
to introduce new tests for conditional mean and quantile dependence in high di-
mension, which allow the dimension p to be much larger than sample size n. Our
dependence testing problem in the high-dimensional setting is well motivated by
an important problem in biological science, which is to test for the significance
of a gene set and identify significant sets of genes that are associated with cer-
tain clinical outcomes; see Subramanian et al. (2005), Efron and Tibshirani (2007)
and Newton et al. (2007), among others. Since the size of a gene set can range
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from a few to thousands, this calls for a simultaneous test that can accommodate
high-dimensional covariates and possible dependence within the covariates.

Recently, Zhong and Chen (2011) proposed a simultaneous test for coefficient
in high-dimensional linear regression. Specifically, for a univariate response Y

and high-dimensional covariates X ∈ R
p , they assume E(Y |X) = α + XT β and

var(Y |X) = σ 2, and test H0 : β = β0 versus Ha : β �= β0 for a specific β0 ∈ R
p

based on a random sample from the joint distribution of (X,Y ). A special case of
primary interest is when β0 = 0, which indicates insignificance of all covariates.
However, the assumption of a high-dimensional linear model seems quite strong
and we are not aware of any procedure to validate this linear model assumption
in the high-dimensional setting. To assess the usefulness of the covariates X in
modeling the mean of Y , we effectively want to test

H0 : E(Y |X) = E(Y ) almost surely, versus Ha : P (
E(Y |X) = E(Y )

)
< 1,

in other words, the conditional mean independence of Y on X. Thus, it seems
desirable to develop a test that can accommodate the high-dimensionality and de-
pendence in the covariates without assuming a linear (or parametric) model. It
turns out that the above testing problem in a model-free setting is very challenging
since the class of alternative we target is huge owing to the growing dimension and
nonlinear dependence.

To circumvent the difficulty, we focus on testing the weak null hypothesis

H ′
0 : E[Y |xj ] = E[Y ] almost surely, for all 1 ≤ j ≤ p,

where X = (x1, . . . , xp)T , which is itself an interesting and meaningful testing
problem; see Section 2 for more discussions. Since H0 implies H ′

0, a rejection of
H ′

0 automatically rejects H0. Furthermore, H0 and H ′
0 are equivalent in the frame-

work of high-dimensional linear models under some mild assumptions; see Exam-
ple 2.1. In this paper, we propose a new test for H ′

0, that is, the conditional mean
independence for each xj , that can allow high dimensionality and dependence in
X without any parametric or homoscedastic model assumption. Our test statistic
is built on the so-called martingale difference divergence (MDD, hereafter) [Shao
and Zhang (2014)], which fully characterizes the conditional mean independence
of a univariate response on the covariates of arbitrary dimension. For any random
variable Y and random vector X , the MDD is defined as the weighted L2 norm
of cov(Y, eı〈s,X 〉) with ı = √−1 and the weighting function similar to the one
used in distance covariance [Székely, Rizzo and Bakirov (2007)], and thus inherits
many desirable properties of distance covariance; see Shao and Zhang (2014) and
Park, Shao and Yao (2015) for more details. Theoretically, we establish the asymp-
totic normality of our MDD-based test statistic under suitable assumption on the
eigenvalues of a Hermitian operator constructed based on the characteristic func-
tions of the covariates. These conditions can be further simplified under banded
dependence structure on the covariates or Gaussian design. The theoretical results
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are of independent interest since they provide some insights on the asymptotic be-
havior of U -statistic in high dimension. From a practical viewpoint, our test does
not involve any tuning parameter and uses standard z critical value, so it can be
conveniently implemented. To reduce the finite sample size distortion, we further
propose a studentized wild bootstrap approach and justify its consistency. Simula-
tion results show that the wild bootstrap leads to more accurate size for most cases,
at the expense of additional computation.

For heterogeneous data where var(Y |X) is not a constant, conditional quantiles
of Y given X can provide additional information not captured by conditional mean
in describing the relationship between Y and X. Quantile regression [Koenker and
Bassett (1978)] has evolved into a quite mature area of research over the past sev-
eral decades. For high-dimensional heterogeneous data, quantile regression models
continue to be useful; see Wang, Wu and Li (2012) and He, Wang and Hong (2013)
for recent contributions. For the use of quantile based models and methods in ge-
nomic data analysis, see Wang and He (2007, 2008), among others. Motivated by
the usefulness of conditional quantile modeling, we propose to extend the test for
conditional mean independence H ′

0 and introduce a test for conditional quantile
independence at a particular quantile level τ ∈ (0,1). It is worth mentioning that
we are not aware of any tests in the literature developed for conditional quantile
independence in the high-dimensional setting.

There is a recent surge of interest in inference for regression coefficients in
a high-dimensional setting, as motivated by the emergence of high-dimensional
data in various scientific areas such as medical imaging, atmospheric and climate
sciences and biological science. The analysis of high-dimensional data in the re-
gression framework is challenging due to the high dimensionality of covariates,
which can greatly exceed the sample size, and traditional statistical methods de-
veloped for low and fixed-dimensional covariates may not be applicable to modern
large data sets. Here, we briefly mention some related work on testing for depen-
dence or the significance of regression coefficients in high-dimensional regression
setting. Yata and Aoshima (2013) proposed a simultaneous test for zero correla-
tion between Y and each component of X in a nonparametric setting; Feng et al.
(2013) proposed a rank-based test building on the one in Zhong and Chen (2011)
under the linear model assumption; Testing whether a subset of X is significant
or not after controlling for the effect of the remaining covariates is addressed in
Wang and Cui (2013) and Lan, Wang and Tsai (2014); Székely and Rizzo (2013)
studied the limiting behavior of distance correlation [Székely, Rizzo and Bakirov
(2007)] based test statistic for independence test when the dimensions of Y and X

both go to infinity while holding sample size fixed; Goeman, van de Geer and van
Houwelingen (2006) introduced a score test against a high-dimensional alternative
in an empirical Bayesian model.

It should be noted that our testing problem is intrinsically different from the
marginal feature screening problem in terms of the formulation, goal and method-
ology. The marginal screening has been extensively studied in the literature since
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Fan and Lv’s (2008) seminal work; see Liu, Zhong and Li (2015) for an excellent
recent review. Generally speaking, marginal screening aims to rank the covariates
using sample marginal utility (e.g., sample MDD), and reduce the dimension of
covariates to a moderate scale, and then perform variable selection using LASSO,
etc. For example, if we use MDD as the marginal utility, as done in Shao and
Zhang (2014), we then screen out the variables that do not contribute to the mean
of Y . The success of the feature screening procedure depends on whether the sub-
set of kept variables is able to contain the set of all the important variables, which
is referred as the sure screening consistency in theoretical investigations. For the
testing problem we address in this paper, we aim to detect conditional mean de-
pendence of Y on X, and the formulation and the output of the inference is very
different from that delivered by the marginal screening. In practice, the testing can
be conducted prior to model building, which includes marginal screening as an
initial step. In particular, if our null hypothesis holds, then there is no need to do
marginal screening using MDD, as the mean of the response does not depend on
covariates. It is worth noting that our test is closely tied to the adaptive resampling
test of McKeague and Qian (2015), who test for the marginal uncorrelatedness of
Y with xj , for j = 1, . . . , p in a linear regression framework. We shall leave a more
detailed discussion of the connection and difference of two papers and numerical
comparison to the supplementary material [Zhang, Yao and Shao (2018)].

The rest of the paper is organized as follows. We propose the MDD-based condi-
tional mean independence test and study its asymptotic properties in Section 2. We
describe a testing procedure for conditional quantile independence in Section 3.
Section 4 is devoted to numerical studies. Section 5 concludes. The technical de-
tails, extension to factorial designs, additional discussions and numerical results
are gathered in the supplementary material [Zhang, Yao and Shao (2018)].

2. Conditional mean dependence testing. For a scalar response variable Y

and a vector predictor X = (x1, . . . , xp)T ∈ R
p , we are interested in testing the

null hypothesis:

(1) H0 : E[Y |x1, . . . , xp] = E[Y ] almost surely.

Notice that under H0, we have E[Y |xj ] = E[Y ] for all 1 ≤ j ≤ p. This observation
motivates us to consider the following hypothesis:

(2) H ′
0 : E[Y |xj ] = E[Y ] almost surely,

for all 1 ≤ j ≤ p versus the alternative that

(3) H ′
a : P (

E[Y |xj ] �= E[Y ]) > 0

for some 1 ≤ j ≤ p. We do not work directly on the original hypothesis in (1),
because a MDD-based testing procedure targeting for the global null H0 generally
fails to capture the nonlinear conditional mean dependence when p is large; see



CONDITIONAL DEPENDENCE TESTING IN HIGH DIMENSION 223

Remark 2.2 for more detailed discussions. In addition, if we regard E[Y |xj ]−E[Y ]
as the main effect of xj contributing to the mean of Y , then it seems reasonable
to test for the nullity of main effects first, before proceeding to the higher-order
interactions, in a manner reminiscent of “Effect Hierarchy Principle” and “Ef-
fect Heredity Principle” in design of experiment [see pages 172–173 of Wu and
Hamada (2009)]. Testing H ′

0 versus H ′
a is a problem of own interest from the view-

point of nonparametric regression modeling, where additive and separate effects
from each xj usually first enter into the model before adding interaction terms.

In some cases, E[Y |xj ] = 0 almost surely for 1 ≤ j ≤ p implies that E[Y |x1,

. . . , xp] = 0 almost surely.

EXAMPLE 2.1. Consider a linear regression model

Y = β1x1 + β2x2 + · · · + βpxp + ε,

where X = (x1, . . . , xp)T follows the elliptical distribution ECp(0,�0, φ0) with
φ0 being the so-called characteristic generator of X and �0 = (σ0,ij )

p
i,j=1 [see,

e.g., Fang, Kotz and Ng (1990)], and ε is independent of X with Eε = 0. Under
the elliptical distribution assumption, we have

E[Y |xj ] =
p∑

k=1

βkE[xk|xj ] =
p∑

k=1

βk

σ0,jk

σ0,jj

xj .

Thus, E[Y |xj ] = 0 almost surely implies that
∑p

k=1 βkσ0,jk = 0 for all 1 ≤ j ≤ p.
Writing this in matrix form, we have �0β = 0p×1 for β = (β1, . . . , βp)T , which
suggests that β = 0p×1 provided that �0 is nonsingular. In this case, testing H0 is
equivalent to testing its marginal version H ′

0. In particular, the above result holds
if X follows a multivariate normal distribution with mean zero and covariance �0.

To characterize the conditional mean (in)dependence, we consider the MDD
proposed in Shao and Zhang (2014). Throughout the following discussions, we let
Y be a generic univariate random variable and X be a generic q-dimensional ran-
dom vector (e.g., X = X and q = p, or X = xj for some 1 ≤ j ≤ p and q = 1). Let
L(y, y′) = (y − y′)2/2 and K(x, x′) = |x − x′|q with | · |q denoting the Euclidean
norm of R

q . Under finite second moment assumptions on Y and X , the MDD
which characterizes the conditional mean dependence of Y given X is defined as

MDD(Y|X )2 = E
[
K

(
X ,X ′)L(

Y,Y ′)] +E
[
K

(
X ,X ′)]

E
[
L

(
Y,Y ′)]

− 2E
[
K

(
X ,X ′)L(

Y,Y ′′)](4)

= −E
[
(Y −EY)

(
Y ′ −EY ′)∣∣X −X ′∣∣

q

]
,

where (X ′,Y ′) and (X ′′,Y ′′) denote independent copies of (X ,Y); see Shao and
Zhang (2014) and Park, Shao and Yao (2015). The MDD is an analogue of distance
covariance introduced in Székely, Rizzo and Bakirov (2007) in that the same type
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of weighting function is used in its equivalent characteristic function-based defini-
tion and it completely characterizes the conditional mean dependence in the sense
that MDD(Y|X ) = 0 if and only if E(Y|X ) = E(Y) almost surely; see Section 2
of Shao and Zhang (2014). Note that the distance covariance is used to measure
the dependence, whereas MDD is for conditional mean dependence.

In this paper, we introduce a new testing procedure based on an unbiased esti-
mator of MDD(Y|X )2 in the high-dimensional regime. Compared to the modified
F -test proposed in Zhong and Chen (2011), our procedure is model-free and is able
to detect nonlinear conditional mean dependence. Moreover, the proposed method
is quite useful for detecting “dense” alternatives, that is, there are a large num-
ber of (possibly weak) signals, and it can be easily extended to detect conditional
quantile (in)dependence at a given quantile level (see Section 3). It is also worth
mentioning that our theoretical argument is in fact applicable to testing procedures
based on a broad class of dependence measures including MDD as a special case
[see, e.g., Székely, Rizzo and Bakirov (2007) and Sejdinovic et al. (2013)].

2.1. Unbiased estimator. Given n independent observations (Xi ,Yi)
n
i=1 from

the joint distribution of (X ,Y) with Xi = (Xi1,Xi2, . . . ,Xiq)
T ∈ R

q and Yi ∈ R,
an unbiased estimator for MDD(Y|X )2 can be constructed using the idea of U -
centering [Székely and Rizzo (2014); Park, Shao and Yao (2015)]. Define A =
(Aij )

n
i,j=1 and B = (Bij )

n
i,j=1, where Aij = |Xi − Xj |q and Bij = |Yi − Yj |2/2.

Following Park, Shao and Yao (2015), we define the U -centered versions of Aij

and Bij as

Ãij = Aij − 1

n − 2

n∑
l=1

Ail − 1

n − 2

n∑
k=1

Akj + 1

(n − 1)(n − 2)

n∑
k,l=1

Akl,

B̃ij = Bij − 1

n − 2

n∑
l=1

Bil − 1

n − 2

n∑
k=1

Bkj + 1

(n − 1)(n − 2)

n∑
k,l=1

Bkl.

A suitable estimator for MDD(Y|X )2 is given by

MDDn(Y|X )2 = (Ã · B̃) := 1

n(n − 3)

∑
i �=j

Ãij B̃ij ,

where Ã = (Ãij )
n
i,j=1 and B̃ = (B̃ij )

n
i,j=1. In Section 1.1 of the supplementary

material [Zhang, Yao and Shao (2018)], we show that MDDn(Y|X )2 is indeed an
unbiased estimator for MDD(Y|X )2 and it has the expression

MDDn(Y|X )2 = 1(n
4

) ∑
i<j<q<r

h(Zi ,Zj ,Zq,Zr ),
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where

h(Zi ,Zj ,Zq,Zr ) = 1

6

(i,j,q,r)∑
s<t,u<v

(AstBuv + AstBst ) − 1

12

(i,j,q,r)∑
(s,t,u)

AstBsu

with Zi = (Xi ,Yi ), and
∑(i,j,q,r)

s<t,u<v denotes the summation over the set {(s, t, u, v) :
s < t, u < v, (s, t, u, v) is a permutation of (i, j, q, r)}. Therefore, MDDn(Y|X )2

is a U -statistic of order four. This observation plays an important role in subse-
quent derivations.

2.2. The MDD-based test. Given n observations (Xi, Yi)
n
i=1 with Xi =

(xi1, . . . , xip)T from the joint distribution of (X,Y ), we consider the MDD-based
test statistic defined as

Tn =
√(

n

2

)∑p
j=1 MDDn(Y |xj )

2

Ŝ
,(5)

where Ŝ2 is a suitable variance estimator defined in (7) below. To introduce the
variance estimator, let (X′, Y ′) with X′ = (x′

1, . . . , x
′
p)T be an independent copy of

(X,Y ). Define Uj(x, x′) = E[K(x, x′
j )]+E[K(xj , x

′)]−K(x, x′)−E[K(xj , x
′
j )]

and V (y, y′) = (y − μ)(y′ − μ) with μ = EY and x, x′, y, y′ ∈ R. We further
define the infeasible test statistic

T̆n =
√(

n

2

)∑p
j=1 MDDn(Y |xj )

2

S ,

where S is given in (6). Because MDDn(Y |xj )
2 is a U -statistic, by the Hoeffding

decomposition [see Section 1.2 of the supplementary material, Zhang, Yao and
Shao (2018)], we have under H ′

0

MDDn(Y |xj )
2 = 1(n

2

) ∑
1≤k<l≤n

Uj (xkj , xlj )V (Yk, Yl) + Rj,n,

where Rj,n is the remainder term. It thus implies that

T̆n =
p∑

j=1

1√(n
2

)
S

∑
1≤k<l≤n

Uj (xkj , xlj )V (Yk, Yl) +
√(n

2

)
S

p∑
j=1

Rj,n

= 1

S (Jn,1 + Jn,2),

where Jn,1 = (n
2

)−1/2 ∑
1≤k<l≤n

∑p
j=1 V (Yk,Yl)Uj (xkj , xlj ) is the leading term

and Jn,2 = (n
2

)1/2 ∑p
j=1 Rj,n is the remainder term. Notice that under H ′

0

var(Jn,1) =
p∑

j,j ′=1

EV
(
Y,Y ′)2

Uj

(
xj , x

′
j

)
Uj ′

(
xj ′, x′

j ′
)
.(6)
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Moreover, because the contribution from Jn,2 is asymptotically negligible (see
Theorem 2.1), we may set S2 = var(Jn,1). Based on the discussions in Section 2.1,
we propose the following variance estimator for S2:

Ŝ2 = 2

n(n − 1)cn

∑
1≤k<l≤n

p∑
j,j ′=1

Ãkl(j)Ãkl

(
j ′)B̃2

kl,(7)

where Ãkl(j) is the U -centered version of Akl(j) = |xkj − xlj |, and

cn = (n − 3)4

(n − 1)4 + 2(n − 3)4

(n − 1)4(n − 2)3 + 2(n − 3)

(n − 1)4(n − 2)3 ≈ (n − 3)4

(n − 1)4 ,

is a finite sample adjustment factor to reduce the bias of Ŝ2. See more details in
the supplementary material [Zhang, Yao and Shao (2018)].

REMARK 2.1. We remark that Ŝ2 is a biased estimator for S2. To construct an
unbiased estimator for S2, we let a(x1, x2, x3, x4) = |x1 − x2| − |x1 − x3| − |x2 −
x4|+ |x3 −x4| and b(y1, y2, y3, y4) = (y1 −y3)(y2 −y4) for xi, yi ∈ R. Define the
estimator

S̆2 = 1( n
10

) ∑
(j1,...,j10)

p∑
j,j ′=1

a(xj1,j , xj2,j , xj3,j , xj4,j )a(xj1,j
′, xj2,j

′, xj5,j
′, xj6,j

′)

× b(Yj1, Yj2, Yj7, Yj8)b(Yj1, Yj2, Yj9, Yj10),

where the summation
∑

(j1,...,j10)
is over all combination (j1, . . . , j10) chosen with-

out replacement from {1,2, . . . , n}. It is straightforward to verify that E[S̆2] = S2.
However, the calculation of S̆2 is much more expensive and it seems less conve-
nient to use in the high-dimensional case.

REMARK 2.2. An alternative test statistic can be constructed based on the
unbiased estimator of MDD(Y |X)2. Specifically, we consider

T̃n =
√√√√(

n

2

)
MDDn(Y |X)2

η̂
,

with η̂2 being a suitable estimator for EŪ2(X,X′)V 2(Y,Y ′), where Ū (x, x′) =
E[K(x,X′)] + E[K(X,x′)] − K(x, x′) − E[K(X,X′)]. Note that T̃n targets
directly for the global hypothesis in (1). Using Taylor expansion and simi-
lar arguments in Székely and Rizzo (2013), it is expected that Ū (X,X′) =
〈X−μX,μX−X′〉√

τ
+ R∗ as p → +∞, where τ = E|X − X′|2p , μX = EX and R∗ is
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the remainder term. We have up to a smaller order term

MDD(Y |X)2 = −E
[
V

(
Y,Y ′)Ū (

X,X′)]
≈ 1√

τ
E

[〈
(Y − μ)(X − μX),

(
Y ′ − μ

)(
X′ − μX

)〉]
= 1√

τ

〈
E(Y − μ)(X − μX),E

(
Y ′ − μ

)(
X′ − μX

)〉
= 1√

τ

p∑
j=1

cov2(Y, xj )

with μ = EY and 〈a, b〉 = aT b for a, b ∈ R
p . Thus, for large p, T̃n can be viewed

as a combination of the pairwise covariances. Because cov(Y, xj ) only captures the
linear dependence, the proposed test Tn enjoys the advantage over T̃n in the sense
of detecting certain degree of componentwise nonlinear dependence. This idea is
also related to additive modeling, where the effects of the covariates cumulate in
an additive way.

Below we study the asymptotic properties of the proposed MDD-based test. Let
Z′ = (X′, Y ′), Z′′ = (X′′, Y ′′) and Z′′′ = (X′′′, Y ′′′) be independent copies of Z =
(X,Y ). Define Ũ (X,X′) = ∑p

j=1 Uj(xj , x
′
j ) and H(Z,Z′) = V (Y,Y ′)Ũ(X,X′).

Further define G(Z,Z′) = E[H(Z,Z′′)H(Z′,Z′′)|(Z,Z′)]. We present the fol-
lowing result regarding the asymptotic behavior of T̆n under H ′

0.

THEOREM 2.1. Under the assumption that

E[G(Z,Z′)2]
{E[H(Z,Z′)2]}2 → 0,

(8)
E[H(Z,Z′)4]/n +E[H(Z,Z′′)2H(Z′,Z′′)2]

n{E[H(Z,Z′)2]}2 → 0,

and the null hypothesis H ′
0, we have

Jn,1

S = 1√(n
2

)
S

∑
1≤i<j≤n

H(Zi,Zj ) →d N(0,1).(9)

Moreover, assuming that

E[Ũ (X,X′′)2V (Y,Y ′)2]
S2 = o(n),(10)

var(Y )2 ∑p

j,j ′=1 dcov(xj , xj ′)2

S2 = o
(
n2)

,(11)
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where

dcov(xj , xj ′)2 = EUj

(
xj , x

′
j

)
Uj ′

(
xj ′, x′

j ′
)

denotes the (squared) distance covariance between xj and xj ′ [see the definition
in Székely, Rizzo and Bakirov (2007)]. Then we have Jn,2/S = op(1), and hence

T̆n →d N(0,1).(12)

The following theorem shows that Ŝ2 is ratio-consistent under the null.

THEOREM 2.2. Under the conditions in Theorem 2.2, we have Ŝ2/S2 →p 1.
As a consequence, Tn →d N(0,1).

Condition (8) ensures the asymptotic normality of the leading term Jn,1 as well
as the ratio-consistency for Ŝ2, while conditions (10)–(11) guarantee that the re-
mainder Jn,2 is asymptotically negligible. To gain more insight on condition (8),
we define the operator

A(g)(z) = E
[
H(Z, z)g(Z)

]
,

where g : Rp+1 →R is a measurable function. Let {λj }+∞
j=1 be the set of eigenval-

ues for A. To obtain a normal limit for the leading term, a typical condition [see
Hall (1984)] is given by

(
∑+∞

j=1 λt
j )

2/t∑+∞
j=1 λ2

j

→ 0,(13)

for some t > 2. Note that EG(Z,Z′)2 = ∑+∞
j=1 λ4

j and EH(Z,Z′)2 = ∑+∞
j=1 λ2

j .

Thus, the condition EG(Z,Z′)2/{EH(Z,Z′)2}2 → 0 is equivalent to (13) with
t = 4.

2.3. Further discussions on the conditions. Because MDD has an interpreta-
tion based on characteristic function, we provide more discussions about condi-
tion (13) based on this interpretation. Let ı = √−1 and w(t) = 1/(πt2), and de-
note by ā the conjugate of a complex number a. Define Gj(uj , y; t) = (fxj

(t) −
eıtuj )(μ−y) for uj , y, t ∈ R, where fxj

denotes the characteristic function for xj .
By Lemma 1 of Székely, Rizzo and Bakirov (2007), it can be shown that

H
(
z, z′) =

∫
R

p∑
j=1

Gj(uj , y; t)Gj

(
u′

j , y
′; t)w(t) dt,

where z = (u1, . . . , up, y)T and z′ = (u′
1, . . . , u

′
p, y′)T . Let L2(w) be the space

of functions such that
∫
R

f (t)2w(t) dt < ∞ for f ∈ L2(w). For g ∈ L2(w), let
ϕji(g)(t) = ∫

R
g(t ′)E[Gj(xj , Y ; t)Gi(xi, Y ; t ′)]w(t ′) dt ′. For g = (g1, . . . , gp)T
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with gj ∈ L2(w), define the operator

(g) =
( p∑

i=1

ϕ1i (gi), . . . ,

p∑
i=1

ϕpi(gi)

)
.

It is shown in Section 1.4 of the supplementary material [Zhang, Yao and Shao
(2018)] that λj is the eigenvalue associated with . If we define Tr as the nuclear
norm for the Hermitian operator , then with t = 4, the condition required is that

Tr1/2(4)

Tr(2)
→ 0,

which can be viewed as a generalization of the condition in the linear case [see
Chen and Qin (2010); Zhong and Chen (2011)] to the nonlinear situation.

Below we show that the assumptions in Theorem 2.1 can be made more explicit
in the following two cases: (i) banded dependence structure; (ii) Gaussian design.

ASSUMPTION 2.1. Assume that

0 < c ≤ var(Y |X) ≤ E
[(

Y −E[Y |X])4|X]1/2 ≤ C < +∞,

almost surely for some constants c and C.

Suppose Y = g(X) + σ(X)ε, where E[ε|X] = 0, E[ε2|X] ≥ c1 > 0 and
E[ε4|X] < C1 < ∞. If 0 < c < σ(X) < C < ∞, it can be verified that Assump-
tion 2.1 holds.

PROPOSITION 2.1. Suppose for an unknown permutation π : {1,2, . . . , p} →
{1,2, . . . , p}

xπ(i) = gπ(i)(εi, εi+1, . . . , εi+L),

for 1 ≤ i ≤ p and L ≥ 0, where {εi} are independent random variables, and gi is
measurable function such that xi is well defined. Suppose

(14)
p(L + 1)3 max{max1≤j≤p n−1 var(xj )

2,max1≤j≤p(E[|xj − μj |])4}
(
∑

|j−k|≤L dcov(xj , xk)2)2 → 0,

and Assumption 2.1 holds. Then the conditions in Theorem 2.1 are satisfied. In par-
ticular, if L = o(p1/3) and max1≤j≤p var(xj )/min1≤j≤p dcov(xj , xj )

2 is bounded
from above, (14) is fulfilled.

PROPOSITION 2.2. Suppose X ∼ N(0,�) with � = (σjk)
p
j,k=1 and σii = 1.

Assume that maxj �=k |σjk| ≤ c < 1 and∑p
j,k,l,m=1 |σjkσklσlmσmj |

Tr2(�2)
→ 0,

∑p
j=1(

∑p
k=1 σ 2

jk)
3

nTr2(�2)
→ 0.(15)

Then under Assumption 2.1, the conditions in Theorem 2.1 are satisfied.
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From the above two propositions, we can see that the asymptotic normality
of our test statistic under the null hypothesis can be derived without any explicit
constraints on the growth rate of p as a function of n. In certain cases (e.g., in the
Gaussian design with � = Ip), p can grow to infinity freely as n → ∞.

2.4. Wild bootstrap. To improve the finite sample performance when sam-
ple size is small, we further propose a wild bootstrap approach to approxi-
mate the null distribution of the MDD-based test statistic as a useful alterna-
tive to normal approximation. Recall from Section 2.1 that MDDn(Y |xj )

2 =
1

n(n−3)

∑
k �=l Ãkl(j)B̃kl , we then need to perturb the sample MDDs using a

symmetric distributed random variable with mean 0 and variance 1. Specifically,
generate {ei}ni=1 from standard normal distribution. Then the bootstrap MDDn is
defined as

MDD∗
n(Y |xj )

2 = 1

n(n − 1)

∑
k �=l

Ãkl(j)B̃klekel.

The Studentized bootstrap statistic is given by

T ∗
n =

√√√√(
n

2

)∑p
j=1 MDD∗

n(Y |xj )
2

Ŝ∗ ,

where

Ŝ∗2 = 1(n
2

) p∑
j,j ′=1

∑
1≤k<l≤n

Ãkl(j)Ãkl

(
j ′)B̃2

kle
2
ke

2
l .

The form of Ŝ∗2 can be motivated from the same argument used in (6) by
deriving the leading term in the unconditional variance of

∑p
j=1 MDD∗

n(Y |xj )
2.

Notice that conditional on the sample, Ŝ∗2 is an unbiased estimator for

var∗(
√(n

2

)∑p
j=1 MDD∗

n(Y |xj )
2), where var∗ stands for the variance conditional

on the sample. Repeat the above procedure B times, and denote by T
∗(b)
n the val-

ues of the bootstrap statistics for 1 ≤ b ≤ B . The corresponding bootstrap p-value
is given by 1

B

∑B
b=1 1(T

∗(b)
n ≥ Tn). We reject the null hypothesis when the p-value

is less than the nominal level α. To study the theoretical property of the bootstrap
procedure, we first introduce a notion of bootstrap consistency; also see Li, Hsiao
and Zinn (2003).

DEFINITION 2.1. Let ζn denote a statistic that depends on the random samples
{Zi}ni=1. We say that (ζn|Z1,Z2, . . . ) converges to (ζ |Z1,Z2, . . . ) in distribution
in probability if for any subsequence ζnk

there is a further subsequence ζnkj
such

that (ζnkj
|Z1,Z2, . . . ) converges to (ζ |Z1,Z2, . . . ) in distribution for almost every

sequence {Z1,Z2, . . . }.
The following theorem establishes the bootstrap consistency.
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THEOREM 2.3. Suppose the conditions in Theorem 2.1 hold. Then we have√√√√(
n

2

)∑p
j=1 MDD∗

n(Y |xj )
2

Ŝ∗ →D∗
N(0,1),

where →D∗
denotes convergence in distribution in probability.

2.5. Asymptotic analysis under local alternatives. Below we turn to the
asymptotic analysis under local alternatives. Define L̃(x, y) = EŨ (x,X )V (y,Y)

and H ∗(Z,Z′) = H(Z,Z′)− L̃(X,Y )− L̃(X′, Y ′)+E[Ũ(X,X′)V (Y,Y ′)]. Note
that E[H ∗(z,Z′)] = E[H ∗(Z, z′)] = 0. Thus, H ∗ can be viewed as a demeaned
version of H under alternatives. With some abuse of notation, denote

G∗(
Z,Z′) = E

[
H ∗(

Z,Z′′)H ∗(
Z′,Z′′)|(Z,Z′)]

and let S2 = var(H ∗(Z,Z′)).

THEOREM 2.4. Under the assumptions that var(L̃(X,Y )) = o(n−1S2) and

E[G∗(Z,Z′)2]
{E[H ∗(Z,Z′)2]}2 → 0,

E[H ∗(Z,Z′)4]/n +E[H ∗(Z,Z′′)2H ∗(Z′,Z′′)2]
n{E[H ∗(Z,Z′)2]}2 → 0.

We have

1√(n
2

)
S

∑
1≤k<l≤n

(
H(Zk,Zl) −

p∑
j=1

MDD(Y |xj )
2

)
→d N(0,1).

Moreover, assuming (10), (11) and that var(L̃(X,Y ′)) = o(S2) with S2 =
var(H ∗(Z,Z′)), we have√√√√(

n

2

)∑p
j=1{MDDn(Y |xj )

2 − MDD(Y |xj )
2}

S →d N(0,1).

REMARK 2.3. Under H ′
0, we have L̃(x, y) = 0 for any x and y, and H ∗(·, ·) =

H(·, ·). Hence, Theorem 2.4 provides a natural generalization of the results in
Theorem 2.1 to the case of local alternatives.

REMARK 2.4. The conditions in Theorem 2.4 also have the characteristic
function interpretation. In particular, the results in Section 2.3 also hold for local
alternatives when Gj(uj , y; t) is replaced by its demeaned version Gj(uj , y; t) −
EGj(xj , Y ; t).
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REMARK 2.5. In Section 1.7 of the supplementary material [Zhang, Yao and
Shao (2018)], we show that the two conditions

var
(
L̃(X,Y )

) = o
(
n−1S2)

, var
(
L̃

(
X,Y ′)) = o

(
S2)

,

have similar interpretation as equation (4.2) in Zhong and Chen (2011). More pre-
cisely, let h(t) = (h1(t), . . . , hp(t)) with hj (t) = E(fxj

(t) − eıtxj )(μ − Y) for
1 ≤ j ≤ p. The above two conditions essentially impose constraints on the dis-
tance between h(t) and 0p×1 through a metric in some Hilbert space. The charac-
terization of the local alternative model is somewhat abstract but this is sensible
because MDD targets at very broad alternatives, that is, arbitrary type of condi-
tional mean dependence. In the special case that (X,Y ) are jointly Gaussian, it
is in fact possible to make the conditions in Theorem 2.4 more explicit, but the
details are fairly tedious and complicated, so are omitted due to space limitation.

REMARK 2.6. When Ŝ is close to S under the local alternative, Theorem 2.4
suggests that the power function of Tn is given by

ϕ

(
−cα +

√√√√(
n

2

) p∑
j=1

MDD(Y |xj )
2

/
S

)
,

where ϕ is the distribution function of N(0,1) and cα is the 100(1 − α)% quantile
of N(0,1).

Below we compare the asymptotic power of the MDD-based test with that of
Zhong and Chen’s (2011) test. Consider a linear regression model

Y = β1x1 + β2x2 + · · · + βpxp + ε,

where X = (x1, . . . , xp)T ∼ N(0, �̆) with �̆ = (σ̆ij )
p
i,j=1, and ε is independent of

X with Eε = 0 and var ε = σ 2. By Example 2.1, testing H ′
0 is equivalent to testing

the global null H0 provided that �̆ is invertible. The power function of Zhong and
Chen’s (2011) test is given by

ϕ

(
−cα + nβT �̆2β√

2 tr(�̆2)σ 2

)
.

By Remark 2.6, the asymptotic relative efficiency (Pitman efficiency) of the two
tests is determined by the ratio

R =
∑p

j=1 MDD(Y |xj )
2

S

√
tr(�̆2)σ 2

βT �̆2β
.
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Under the local alternative considered in Theorem 2.4, we can show that
p∑

j=1

MDD(Y |xj )
2 = −

p∑
j=1

βT
E

[
XX

′T ∣∣xj − x′
j

∣∣]β,

S2 = σ 4
p∑

j,j ′=1

dcov(xj , xj ′)2,

which implies that

R = −∑p
j=1 βT

E[XX
′T |xj − x′

j |]β√∑p

j,j ′=1 dcov(xj , xj ′)2

√
tr(�̆2)

βT �̆2β
.

When �̆ = Ip , direct calculation shows that

R = MDD(x1|x1)
2

dcov(x1, x1)
≈ 0.891,

where we have used Theorem 1 in Shao and Zhang (2014). It therefore suggests
that the MDD-based test is asymptotically less powerful than Zhong and Chen’s
(2011) test but the power loss is fairly moderate. This is consistent with our statis-
tical intuition in the sense that Zhong and Chen’s (2011) test is developed under
the linear model assumption while the MDD-based test is model free, and thus can
be less powerful in the linear case.

REMARK 2.7. We mainly focus on the degenerate case in the above discus-
sions. When the test statistic is nondegenerate under the alternative, we have the
following decomposition [see Serfling (1980)]:

p∑
k=1

{
MDDn(Y |xk)

2 − MDD(Y |xk)
2} = 2

n

n∑
i=1

(
L̃(Xi, Yi) −EL̃(Xi, Yi)

) + R̃n,

with R̃n being the remainder term. In this case, the asymptotic normality is still
attainable under suitable assumptions.

3. Conditional quantile dependence testing. In this section, we consider the
problem of testing the conditional quantile dependence in high dimension. Let
Qτ(Y ) and Qτ(Y |·) be the unconditional and conditional quantiles of Y at the τ th
quantile level, respectively. For τ ∈ (0,1), we are interested in testing

H0,τ : Qτ(Y |xj ) = Qτ(Y ) almost surely,

for all 1 ≤ j ≤ p versus the alternative that

Ha,τ : P (
Qτ(Y |xj ) �= Qτ(Y )

)
> 0

for some 1 ≤ j ≤ p. To this end, we define Wj = τ − 1{Yj ≤ Qτ(Y )} and Ŵj =
τ − 1{Yj ≤ Q̂τ }, where Q̂τ is the τ th sample quantile of Y . Define the estimator
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MDDn(Ŵ |xj )
2 for MDD(W |xj )

2 based on the sample (Ŵi,Xi)
n
i=1. Let

σ̂Q,j,j ′ = 1(n
2

) ∑
1≤k<l≤n

Ãkl(j)Ãkl

(
j ′)(B̂∗

Q,kl

)2
,

with B̂∗
Q,kl being the U -centered version of B̂Q,kl = |Ŵk − Ŵl|2/2. Define Ŝ2

Q =∑p

j,j ′=1 σ̂Q,j,j ′ . We consider the test statistic

TQ,n =
√√√√(

n

2

)∑p
j=1 MDDn(Ŵ |xj )

2

ŜQ

,

and its infeasible version

T̆Q,n =
√√√√(

n

2

)∑p
j=1 MDDn(Ŵ |xj )

2

SQ

,

where S2
Q = ∑p

j,j ′=1 EW 2(W ′)2Uj(xj , x
′
j )Uj ′(xj ′, x′

j ′). To facilitate the deriva-
tion, we make the following assumptions.

ASSUMPTION 3.1. The cumulative distribution function of the continu-
ous response variable Y , FY is continuously differentiable in a small neigh-
borhood of Qτ(Y ), say [Qτ(Y ) − δ0,Qτ (Y ) + δ0] with δ0 > 0. Let G1(δ0) =
infy∈[Qτ (Y )−δ0,Qτ (Y )+δ0] fY (y) and G2(δ0) = supy∈[Qτ (Y )−δ0,Qτ (Y )+δ0] fY (y),
where fY is the density function of Y . Assume that 0 < G1(δ0) ≤ G2(δ0) < ∞.

ASSUMPTION 3.2. There exists δ > 0 such that the collection of random vari-
ables {1{Y ≤ Qτ(Y ) + a},−δ ≤ a ≤ δ} is independent of X.

Assumption 3.1 was first introduced in Shao and Zhang (2014) and is quite
mild. We note that the conditional quantile independence at τ th quantile level im-
plies that 1{Y < Qτ(Y )} is independent of X as 1{Y < Qτ(Y )} is a Bernoulli
random variable. Thus, Assumption 3.2 is quite a bit stronger than the indepen-
dence between X and 1{Y < Qτ(Y )} and it can be interpreted as a local quantile
independence assumption. We provide some examples in Section 4 where the lo-
cal quantile independence assumption may or may not hold at some quantile level;
see Examples 4.3 and 4.4. Next, we define T̃Q,n by replacing Ŵ with W in the
definition of T̆Q,n.

PROPOSITION 3.1. Suppose Assumptions 3.1–3.2 hold. We have

|T̃Q,n − T̆Q,n| →p 0.

The above result suggests that the effect by replacing W with Ŵ is asymptot-
ically negligible. The following main result follows immediately from Proposi-
tion 3.1.
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THEOREM 3.1. Suppose the assumptions in Theorem 2.1 hold with Y and
S being replaced by W and SQ, respectively. Then we have T̃Q,n →d N(0,1).
Moreover, under Assumptions 3.1–3.2, we have T̆Q,n →d N(0,1).

4. Simulation studies. In this section, we present simulation results for con-
ditional mean dependence tests in Section 4.1; conditional quantile dependence
tests in Section 4.2. We report the empirical sizes of the wild bootstrap approach
in Section 4.3.

4.1. Conditional mean independence. In this subsection, we conduct several
simulations to assess the finite sample performance of the proposed MDD-based
test for conditional mean independence (mdd, hereafter). For comparison, we also
implement the modified F -test proposed by Zhong and Chen (2011) (ZC test, here-
after). Note that the ZC test is designed for testing the regression coefficients si-
multaneously in high-dimensional linear models while our procedure does not rely
on any specific model assumptions. All the results are based on 1000 Monte Carlo
replications.

EXAMPLE 4.1. Following Zhong and Chen (2011), consider the linear regres-
sion model with the simple random design

Yi = XT
i β + εi, i = 1,2, . . . , n,

where Xi = (xi1, xi2, . . . , xip)T is generated from the following moving average
model:

(16) xij = α1zij + α2zi(j+1) + · · · + αT zi(j+T −1) + μj ,

for j = 1, . . . , p, and T = 10,20. Here, Zi = (zi1, . . . , zi(p+T −1))
T i.i.d.∼

N(0, Ip+T −1) and {μj }pj=1 are fixed realizations from Uniform(2,3), that is, the

uniform distribution on (2,3). The coefficients {αk}Tk=1 are generated from Uni-
form(0,1) and are kept fixed once generated. We consider two distributions for εi

namely, N(0,4) and centralized gamma distribution with shape parameter 1 and
scale parameter 0.5.

Under the null, β = 0p×1. Similar to Zhong and Chen (2011), we consider
two configurations under alternatives. One is the nonsparse case, in which we
equally allocate the first half βj to be positive so that they all have the same
magnitude of signals. The other one is the sparse case, where we choose the
first five elements of β to be positive and also equal. In both cases, we fix
|β|p := (

∑p
j=1 β2

j )1/2 at the level 0.06. In addition, we consider n = 40,60,80
and p = 34,54,76,310,400,550.

Table 1 presents the empirical sizes and powers of the proposed test and the
ZC test. The empirical sizes of both tests are reasonably close to the 10% nomi-
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TABLE 1
Empirical sizes and powers of the MDD-based test for conditional mean independence and the ZC

test at significance levels 5% and 10% for Example 4.1

Normal error Gamma error

mdd ZC mdd ZC

T Case n p 5% 10% 5% 10% 5% 10% 5% 10%

10 H0 40 34 0.069 0.125 0.073 0.116 0.055 0.095 0.055 0.094
60 54 0.075 0.115 0.068 0.114 0.072 0.118 0.067 0.113
80 76 0.069 0.114 0.075 0.107 0.063 0.101 0.056 0.100
40 310 0.043 0.088 0.048 0.092 0.049 0.093 0.053 0.088
60 400 0.060 0.104 0.058 0.106 0.052 0.098 0.054 0.097
80 550 0.060 0.106 0.065 0.107 0.047 0.090 0.047 0.082

Non- 40 34 0.634 0.714 0.678 0.746 0.672 0.748 0.704 0.766
sparse 60 54 0.781 0.833 0.814 0.866 0.803 0.846 0.817 0.871
Ha 80 76 0.848 0.901 0.875 0.914 0.866 0.908 0.883 0.915

40 310 0.262 0.354 0.287 0.392 0.276 0.391 0.317 0.419
60 400 0.385 0.489 0.410 0.530 0.386 0.516 0.406 0.523
80 550 0.435 0.544 0.473 0.574 0.454 0.567 0.474 0.586

Sparse 40 34 0.310 0.396 0.337 0.411 0.331 0.410 0.357 0.435
Ha 60 54 0.313 0.411 0.344 0.435 0.368 0.455 0.375 0.459

80 76 0.350 0.442 0.354 0.436 0.343 0.427 0.368 0.449
40 310 0.067 0.134 0.086 0.145 0.081 0.157 0.088 0.157
60 400 0.110 0.176 0.108 0.182 0.098 0.161 0.094 0.174
80 550 0.102 0.171 0.110 0.171 0.093 0.157 0.096 0.167

20 H0 40 34 0.069 0.114 0.081 0.118 0.063 0.107 0.062 0.090
60 54 0.068 0.100 0.076 0.108 0.052 0.089 0.058 0.093
80 76 0.058 0.102 0.059 0.100 0.073 0.111 0.072 0.114
40 310 0.057 0.098 0.063 0.101 0.077 0.105 0.062 0.096
60 400 0.061 0.089 0.071 0.099 0.045 0.092 0.046 0.096
80 550 0.070 0.104 0.074 0.107 0.054 0.100 0.059 0.099

Non- 40 34 0.976 0.984 0.985 0.990 0.971 0.979 0.977 0.985
sparse 60 54 1.000 1.000 1.000 1.000 0.997 0.998 0.998 0.999
Ha 80 76 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

40 310 0.848 0.903 0.877 0.918 0.858 0.893 0.877 0.917
60 400 0.947 0.967 0.961 0.981 0.946 0.973 0.955 0.976
80 550 0.990 0.994 0.994 0.996 0.981 0.990 0.983 0.990

Sparse 40 34 0.705 0.763 0.737 0.782 0.715 0.779 0.741 0.786
Ha 60 54 0.743 0.808 0.764 0.821 0.753 0.812 0.768 0.819

80 76 0.764 0.813 0.782 0.835 0.743 0.799 0.765 0.819
40 310 0.137 0.212 0.156 0.236 0.185 0.274 0.193 0.269
60 400 0.186 0.268 0.209 0.275 0.183 0.283 0.195 0.285
80 550 0.176 0.271 0.200 0.291 0.208 0.288 0.213 0.289
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FIG. 1. Density curves of the sampling distribution of the proposed test statistic (green lines) and
the standard normal distribution (red line).

nal level for two different error distributions. At the 5% significance level, how-
ever, we see both tests have slightly inflated rejection probabilities under the null.
This is due to the skewness of the test statistics in finite samples, which was
also pointed out in Zhong and Chen (2011). We provide in Figure 1 the density
plot of the proposed test statistic as well as the density of standard Normal for
T = 20. The plot for T = 10 is very similar and omitted. As we can see from the
plot, when sample size and dimension are both small, the distribution of the test
statistic is skewed to the right, which explains the inflated type I error; when we
increase dimension and sample size, the sampling distribution is getting closer
to the standard Normal. Overall, both tests perform reasonably well under the
null.

For the empirical powers, since the underlying model is indeed a simple linear
model, we expect the ZC test to have more power under correct model specification
than our test. From Table 1, we see that for the nonsparse alternative, the powers
are quite high and close to each other for the two tests; the powers are comparable
for two error distributions. Under the sparse alternative, both tests have substantial
power loss when the dimension is much larger than the sample size indicating that
both the mdd and ZC tests target for dense alternatives. Overall, our test is highly
comparable to the ZC test under the simple linear model.
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EXAMPLE 4.2. The second experiment is designed to evaluate the perfor-
mance of the tests under nonlinear model

Yi =
√√√√√ p∑

j=1

βjx
2
ij + εi, i = 1,2, . . . , n,

where the covariates Xi = (xi1, xi2, . . . , xip)T are generated from the following
model:

(17) xij = (ςij + ςi0)/
√

2, j = 1,2, . . . , p,

where (ςi0, ςi1, . . . , ςip)T
i.i.d.∼ N(0, Ip+1). Hence, the covariates are strongly cor-

related with the pairwise correlation equal to 0.5. We consider three configurations
for the error, N(0,1), t3 and χ2 − 1, respectively.

Under the null, we set β = (β1, . . . , βp)T = 0p×1. Under the nonsparse alterna-
tive, we set βj = 1{1 ≤ j ≤ �n/2�}. For the sparse alternative, βj = 1{1 ≤ j ≤ 5}.
We consider n = 100 and p = 50,100,200.

Table 2 reports the empirical size and power for the two tests. The size phe-
nomenon is very similar to that of Example 4.1. Under the alternatives, the mdd
test consistently outperforms the ZC test in all cases. We observe that under the
nonlinear model, the ZC test exhibits very low powers. By contrast, our proposed
test is much more powerful (especially in the nonsparse case) regardless of p and
the error distribution.

4.2. Conditional quantile independence. In this subsection, we carry out addi-
tional simulations to evaluate the performance of the proposed test for conditional
quantile independence.

EXAMPLE 4.3. Consider the following mixture distribution:

Y = (1 + Z) · ε − (
1 + XT β

) · (1 − ε),

where ε is a Bernoulli random variable with success probability 0.5; Z is from
Gamma(2,2) and X has p components generated from i.i.d. Gamma(6,1).

Here, β = 0p×1 under the null and it is positive for some components under
the alternative. Hence, Y has a mixture distribution with half probability to be
positive or negative. We also consider a nonsparse and sparse alternative and fix
|β|p = 0.06 as in Example 4.1. We set p = 50,100,200, n = 100 and consider
three different quantile levels, τ = 0.25,0.5,0.75.

It is not difficult to see that when β = 0, Y and X are independent at all quan-
tile levels; when β �= 0, Y is conditionally quantile independent of X only when
τ ≥ 0.5. Furthermore, when β �= 0, the local quantile independence described in
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TABLE 2
Empirical sizes and powers of the MDD-based test for conditional mean independence and the ZC

test at significance levels 5% and 10% for Examples 4.2

mdd ZC

Error Case p 5% 10% 5% 10%

N(0,1) H0 50 0.078 0.112 0.075 0.098
100 0.075 0.111 0.078 0.109
200 0.065 0.091 0.062 0.089

Nonsparse 50 0.927 0.990 0.200 0.221
Ha 100 0.970 0.997 0.213 0.238

200 0.980 0.998 0.230 0.249

Sparse 50 0.428 0.583 0.143 0.176
Ha 100 0.370 0.519 0.147 0.172

200 0.331 0.477 0.129 0.161

t3 H0 50 0.084 0.110 0.080 0.104
100 0.075 0.106 0.072 0.097
200 0.082 0.112 0.063 0.091

Nonsparse 50 0.759 0.877 0.178 0.206
Ha 100 0.870 0.955 0.182 0.209

200 0.939 0.983 0.199 0.226

Sparse 50 0.246 0.355 0.108 0.141
Ha 100 0.208 0.302 0.105 0.136

200 0.209 0.311 0.108 0.131

χ2
1 − 1 H0 50 0.083 0.114 0.083 0.110

100 0.061 0.096 0.058 0.086
200 0.058 0.084 0.047 0.078

Nonsparse 50 0.838 0.937 0.162 0.202
Ha 100 0.933 0.983 0.198 0.226

200 0.967 0.995 0.216 0.245

Sparse 50 0.269 0.384 0.113 0.150
Ha 100 0.247 0.364 0.124 0.155

200 0.233 0.323 0.111 0.141

Assumption 3.2 is satisfied when τ = 0.75, but does not hold at τ = 0.5. As pre-
sented in Table 3, our proposed test demonstrates nontrivial power only at quantile
level 0.25 under both the sparse and nonsparse alternative, which is consistent with
the theory.

EXAMPLE 4.4. This example considers a simple model with heteroscedastic-
ity:

Yi = (
1 + XT

i β
)2

εi,
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TABLE 3
Empirical sizes and powers of the MDD-based test for conditional quantile independence at

significance levels 5% and 10% for Example 4.3

Nonsparse Sparse
H0 H0/Ha H0/Ha

τ p 5% 10% 5% 10% 5% 10%

0.25 50 0.054 0.104 0.522 0.644 0.554 0.663
100 0.048 0.094 0.322 0.464 0.352 0.473
200 0.044 0.100 0.231 0.368 0.230 0.349

0.50 50 0.058 0.106 0.071 0.129 0.069 0.130
100 0.047 0.093 0.062 0.104 0.059 0.104
200 0.056 0.093 0.065 0.104 0.058 0.107

0.75 50 0.050 0.108 0.050 0.108 0.050 0.108
100 0.058 0.103 0.058 0.103 0.058 0.103
200 0.067 0.120 0.067 0.120 0.067 0.120

where Xi = (xi1, xi2, . . . , xip)T is a p-dimensional vector of covariates generated
as in (17) and εi is the error independent of Xi . All the other configurations are the
same as Example 4.2.

We examine the sizes and powers under both nonsparse alternatives and sparse
alternatives with four different error distributions, that is, N(0,1), t3, Cauchy(0,1)

and χ2
1 − 1. We are interested in testing the conditional quantile independence at

τ = 0.25,0.5,0.75. Consider p = 50,100,200 and n = 100. For the purpose of
comparison, we also include the results using our MDD-based test for conditional
mean independence. Note that when β is nonzero, conditional quantile indepen-
dence only holds at τ = 0.5 for the errors of three types (Normal, Student-t and
Cauchy), while conditional quantile dependence is present for other combinations
of quantile levels and error distributions. Further note that the local quantile inde-
pendence assumption (Assumption 3.2) does not hold when β �= 0 and τ = 0.5.

Table 4 shows the empirical sizes and powers for various configurations. The
sizes are generally precise at 10% level and slightly inflated at 5% level under
H0, and they do not seem to depend on the error distribution much. The empirical
powers apparently depend on the error distribution. For symmetric distributions,
N(0,1), t3 and Cauchy(0,1) error, they have comparable powers at τ = 0.25 and
0.75. The powers suffer big reduction under sparse alternatives. In contrast, power
for χ2

1 − 1 is almost 1 under the nonsparse alternative at τ = 0.25 and remains
high even under sparse alternative; at τ = 0.75, the proposed test has moderate
power in the nonsparse case and suffers a great power loss in the sparse case.
This phenomenon may be related to the fact that the chi-square distribution is
skewed to the right. At τ = 0.5, we observe a significant upward size distortion for
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TABLE 4
Empirical sizes and powers of the MDD-based test for conditional quantile independence at

significance levels 5% and 10% for Example 4.4

N(0,1) t3 Cauchy(0,1) χ2
1 − 1

τ Case p 5% 10% 5% 10% 5% 10% 5% 10%

0.25 H0 50 0.084 0.112 0.058 0.077 0.073 0.094 0.074 0.099
100 0.073 0.104 0.067 0.094 0.069 0.101 0.071 0.099
200 0.064 0.085 0.058 0.095 0.062 0.082 0.069 0.094

Nonsparse 50 0.573 0.640 0.494 0.554 0.368 0.424 0.999 0.999
Ha 100 0.840 0.864 0.727 0.778 0.578 0.632 1.000 1.000

200 0.936 0.956 0.925 0.941 0.842 0.880 1.000 1.000

Sparse 50 0.207 0.243 0.146 0.196 0.122 0.162 0.951 0.970
Ha 100 0.198 0.240 0.154 0.196 0.125 0.161 0.956 0.967

200 0.199 0.235 0.174 0.224 0.125 0.168 0.952 0.965

0.5 H0 50 0.083 0.106 0.076 0.097 0.068 0.099 0.064 0.089
100 0.072 0.100 0.063 0.087 0.057 0.092 0.062 0.091
200 0.073 0.100 0.053 0.073 0.071 0.095 0.063 0.088

Nonsparse 50 0.110 0.145 0.093 0.125 0.091 0.127 0.704 0.755
H0/Ha 100 0.151 0.184 0.123 0.168 0.126 0.169 0.862 0.888

200 0.230 0.274 0.232 0.269 0.196 0.242 0.939 0.953

Sparse 50 0.083 0.110 0.075 0.100 0.077 0.099 0.234 0.288
H0/Ha 100 0.079 0.108 0.063 0.088 0.066 0.107 0.252 0.299

200 0.077 0.109 0.057 0.085 0.079 0.098 0.242 0.303

0.75 H0 50 0.067 0.098 0.080 0.108 0.062 0.084 0.065 0.085
100 0.057 0.085 0.078 0.098 0.076 0.111 0.073 0.095
200 0.064 0.095 0.063 0.085 0.069 0.095 0.065 0.088

Nonsparse 50 0.585 0.638 0.516 0.577 0.384 0.445 0.129 0.161
Ha 100 0.834 0.875 0.744 0.800 0.587 0.645 0.199 0.233

200 0.944 0.961 0.925 0.940 0.824 0.865 0.329 0.385

Sparse 50 0.187 0.235 0.191 0.232 0.131 0.168 0.076 0.096
Ha 100 0.193 0.237 0.197 0.236 0.131 0.172 0.092 0.116

200 0.195 0.244 0.167 0.213 0.135 0.170 0.078 0.109
Mean H0 50 0.071 0.103 0.069 0.101 0.067 0.098 0.052 0.097

100 0.074 0.101 0.075 0.097 0.071 0.101 0.060 0.103
200 0.067 0.094 0.078 0.105 0.066 0.088 0.054 0.096

Nonsparse 50 0.077 0.107 0.071 0.107 0.109 0.144 0.058 0.107
Ha 100 0.077 0.102 0.063 0.091 0.117 0.143 0.057 0.107

200 0.076 0.109 0.078 0.117 0.146 0.166 0.059 0.102

Sparse 50 0.072 0.103 0.066 0.102 0.080 0.110 0.057 0.094
Ha 100 0.067 0.100 0.059 0.084 0.080 0.105 0.060 0.112

200 0.068 0.102 0.075 0.108 0.091 0.116 0.053 0.095
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all the three symmetric distribution (i.e., Normal, student-t and Cauchy), where
the conditional median does not depend on the covariates (i.e., under the null).
We speculate that this size distortion is related to the violation of local quantile
independence in Assumption 3.2, and indicates the necessity of Assumption 3.2
in obtaining the weak convergence of our test statistics to the standard normal
distribution. For nonsymmetric distribution (Chi-square), the power is satisfactory
at the median.

In comparison, the MDD-based test for conditional mean has power close to
the level for N(0,1), t3 and χ2

1 − 1 as the covariates only contribute to the condi-
tional variance of the response but not to the conditional mean. In addition, when
the mean does not exist, for example, in the Cauchy(0,1) case, we observe that
the MDD-based test for conditional mean has very little power. Therefore, the test
for the conditional quantile dependence can be a good complement to the con-
ditional mean independence test, especially for models that exhibit conditional
heteroscedasticity and heavy tail.

4.3. Wild bootstrap. In this section, we implement the Wild bootstrap pro-
posed in Section 2.4. We again consider Example 4.1 under the null of β = 0p×1
in Section 4.1. The results are summarized in Table 5, where we compare the type
I errors delivered by normal approximation (mdd) with the wild bootstrap (Boot)
approach. It is observed that the size is usually more accurate using wild boot-
strap. This is not surprising as it is known in the literature that application of the

TABLE 5
Size comparison for the proposed test using the normal approximation (mdd) and the wild bootstrap

approximation for Example 4.1

Normal error Gamma error

5% 10% 5% 10%

T n p mdd Boot mdd Boot mdd Boot mdd Boot

10 40 34 0.069 0.055 0.125 0.109 0.055 0.044 0.095 0.087
60 54 0.075 0.068 0.115 0.113 0.072 0.053 0.118 0.115
80 76 0.069 0.053 0.114 0.106 0.063 0.048 0.101 0.093
40 310 0.043 0.037 0.088 0.083 0.049 0.046 0.093 0.085
60 400 0.060 0.053 0.104 0.101 0.052 0.052 0.098 0.096
80 550 0.060 0.058 0.106 0.101 0.047 0.039 0.090 0.090

20 40 34 0.069 0.059 0.114 0.103 0.063 0.048 0.107 0.097
60 54 0.068 0.056 0.100 0.092 0.052 0.035 0.089 0.081
80 76 0.058 0.040 0.102 0.094 0.073 0.051 0.111 0.106
40 310 0.057 0.046 0.098 0.091 0.077 0.064 0.105 0.097
60 400 0.061 0.053 0.089 0.088 0.045 0.039 0.092 0.088
80 550 0.070 0.056 0.104 0.093 0.054 0.044 0.100 0.091
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FIG. 2. Histograms of the p-values of the test statistics using the studentized bootstrap critical
value.

bootstrap method to pivotal statistics has better asymptotic properties, for exam-
ple, faster rate of convergence of the actual significance level to the nominal sig-
nificance level; see the discussions in Westfall and Young (1993). To understand
whether the bootstrap distribution is mimicking the finite sample distribution of our
test statistics under the null, we also provide in Figure 2 the histograms of the p-
values corresponding to the wild bootstrap. As we can see from these histograms,
the p-values are close to being uniformly distributed between 0 and 1 indicating
the bootstrap distribution is consistently approximating the null distribution of the
test statistics.

5. Conclusion. In this paper, we proposed new tests for testing conditional
mean and conditional quantile independence in the high-dimensional setting,
where the number of covariates is allowed to grow rapidly with the sample size.
Our test statistics are built on the MDD, a recently proposed metric for quanti-
fying conditional mean dependence, and do not involve any tuning parameters.
A distinctive feature of our test is that it is totally model-free and is able to cap-
ture nonlinear dependence which cannot be revealed by using traditional linear
dependence metric. Our test for conditional mean independence can be viewed as
a nonparametric model-free counterpart of Zhong and Chen’s test, which was de-
veloped for high-dimensional linear models with homoscedastic errors; our test for
conditional quantile independence seems to be the first simultaneous test proposed
in the high-dimensional setting that detects conditional quantile dependence. Be-
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sides the methodological advance, our theoretical analysis reveals a key assump-
tion generally needed in establishing the asymptotic normality for a broad class of
U -statistic based tests in high dimension, and shed light on the asymptotic theory
for high-dimensional U -statistic.

Our analysis of local asymptotic power shows that our test is less powerful
than Zhong and Chen’s test when the high-dimensional linear model holds, but the
efficiency loss is fairly moderate. As a tradeoff, our test for conditional mean de-
pendence achieves great robustness against model mis-specification, under which
the power of Zhong and Chen’s test can greatly deteriorate, as we demonstrate
in our simulations. In particular, the proposed conditional mean dependence test
can significantly outperform the modified F -test in Zhong and Chen (2011) when
the underlying relationship between Y and X is nonlinear. Since there seem to be
no well-developed methods yet to check the validity of a high-dimensional linear
model and it is often unknown whether the response is linearly related to covari-
ates, it might be safe and more reliable to apply our model-free dependence test in
practice.

To conclude, we point out a few future research directions. First, given a set of
variables X ∗ which are believed to have significant impact on the response Y , it is
of interest to test whether the conditional mean or quantile of Y depends on another
set of variables X , adjusting for the effect of X ∗. Based on the recently proposed
concept of partial MDD [Park, Shao and Yao (2015)], we expect that the results
could be extended to test the conditional mean or quantile dependence controlling
for a set of significant variables. Second, we only handle a single quantile level in
our test, and it would be interesting to extend our test to testing conditional quantile
independence over a range of quantile levels, say [τ1, τ2], where 0 < τ1 < τ2 < 1.
Third, the studentized wild bootstrap showed great promise in reducing the size
distortion associated with normal approximation in Section 4.3, but there is yet
any theory that states the second order accuracy for the wild bootstrap approach.
Fourth, our MDD-based tests mainly target the marginal conditional mean depen-
dence and may fail to capture conditional mean dependence at higher order, which
needs to be taken into account in developing new tests. Finally, our test statistics
are of L2-type, and it may be of interest to develop a L∞-version, which targets
for sparse and strong alternatives. We leave these topics for future research.
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SUPPLEMENTARY MATERIAL

Supplement to “Conditional mean and quantile dependence testing in high
dimension” (DOI: 10.1214/17-AOS1548SUPP; .pdf). This supplement contains
proofs of the main results in the paper, extension to factorial designs, additional
discussions and numerical results.
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